

Draft Report

MEASURES AND ASSUMPTIONS FOR DEMAND SIDE MANAGEMENT (DSM) PLANNING

APPENDIX C: SUBSTANTIATION SHEETS

Presented to

Ontario Energy Board

Ontario Energy Board 2300 Yonge Street, 27th Floor Toronto, Ontario M4P 1E4

FEBRUARY 6, 2009

Navigant Consulting Inc. 1 Adelaide Street East, Suite 2601 Toronto, ON M5C 2V9 416.927.1641 www.navigantconsulting.com

TABLE OF CONTENTS

GLOSSARY AND DEFINITION OF TERMS	4
RESIDENTIAL SPACE HEATING	6
Air Sealing	7
BASEMENT WALL INSULATION (R-12)	
CEILING INSULATION (R-40)	
ENHANCED FURNACE (ELECTRONICALLY COMMUTATED MOTOR) – EXISTING RESIDENTIAL	
ENHANCED FURNACE (ELECTRONICALLY COMMUTATED MOTOR) – NEW CONSTRUCTION	
ENERGY STAR WINDOWS (LOW-E)	
HEAT REFLECTIVE PANELS.	
High Efficiency (Condensing) Furnace - Residential Programmable Thermostat - Residential	
PROGRAMMABLE THERMOSTAT - RESIDENTIAL WALL INSULATION (R-19)	
RESIDENTIAL WATER HEATING	
FAUCET AERATOR (RESIDENTIAL BATHROOM)	
FAUCET AERATOR (RESIDENTIAL KITCHEN)	
LOW-FLOW SHOWERHEAD (1.5 GPM, RESIDENTIAL, UG ESK)	
Low-Flow Showerhead (1.25 Gpm, Residential, Enbridge TAPS) Low-Flow Showerhead (1.25 Gpm, Residential, UG ESK)	
PIPE WRAP (R-4)	
Solar Pool Heaters	
SOLAR FOOL HEATERS	
TANKLESS GAS WATER HEATER - DAUSTING RESIDENTIAL	
LOW INCOME SPACE HEATING	
PROGRAMMABLE THERMOSTAT (LIA)	
WEATHERIZATION (LIA)	
LOW INCOME WATER HEATING	
FAUCET AERATOR (BATHROOM) (LIA)	108
FAUCET AERATOR (KITCHEN) (LIA)	
LOW-FLOW SHOWERHEAD (1.5 GPM, UG ESK) (LIA)	
LOW-FLOW SHOWERHEAD (1.25 GPM, ENBRIDGE TAPS) (LIA)	
LOW-FLOW SHOWERHEAD (1.25 GPM, UG ESK) (LIA)	
PIPE WRAP – R4 (LIA)	130
COMMERCIAL COOKING	134
ENERGY STAR COMMERCIAL FRYER	135
HIGH EFFICIENCY COMMERCIAL GRIDDLE	139
COMMERCIAL SPACE HEATING	143
AIR CURTAINS – SINGLE DOOR (8' X 6')	144
AIR CURTAINS – DOUBLE DOOR (2 x 8' x 6')	
CONDENSING BOILERS (M ³ /BTU/HOUR)	
DEMAND CONTROL KITCHEN VENTILATION (DCKV – 5000 CFM)	
DEMAND CONTROL KITCHEN VENTILATION (DCKV – 10000 CFM)	
DEMAND CONTROL KITCHEN VENTILATION (DCKV – 15000 CFM)	
DESTRATIFICATION FAN	
ENERGY RECOVERY VENTILATOR (ERV)	
ENERGY RECOVERY VENTILATOR (ERV)	
ENHANCED FURNACE (ELECTRONICALLY COMMUTATED MOTOR) – EXISTING COMMERCIAL ENHANCED FURNACE (ELECTRONICALLY COMMUTATED MOTOR) – NEW COMMERCIAL	
HEAT RECOVERY VENTILATOR (HRV) – EXISTING COMMERCIAL	
HEAT RECOVERY VENTILATOR (HRV) – EXISTING COMMERCIAL	
HIGH EFFICIENCY (CONDENSING) FURNACE - COMMERCIAL	
INFRARED HEATERS	205

Programmable Thermostat - Commercial	
PRESCRIPTIVE SCHOOLS – ELEMENTARY	
PRESCRIPTIVE SCHOOLS – SECONDARY	
COMMERCIAL WATER HEATING	
CONDENSING GAS WATER HEATER - COMMERCIAL	
PRE-RINSE SPRAY NOZZLE (1.6 GPM)	
PRE-RINSE SPRAY NOZZLE (1.24 GPM)	
TANKLESS WATER HEATER - COMMERCIAL	
MULTI-FAMILY WATER HEATING	241
ENERGY STAR FRONT-LOADING CLOTHES WASHER	
FAUCET AERATOR (MUTI-FAMILY BATHROOM)	
FAUCET AERATOR (MULTI-FAMILY KITCHEN)	
LOW-FLOW SHOWERHEAD (1.5 GPM, MUTI-FAMILY, UG ESK)	
LOW-FLOW SHOWERHEAD (1.25 GPM, MUTI-FAMILY, ENBRIDGE TAPS)	
LOW-FLOW SHOWERHEAD (1.25 GPM, MUTI-FAMILY, UG ESK)	

GLOSSARY AND DEFINITION OF TERMS

Measure Name

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Description of energy efficient technology

Base Equipment and Technologies Description

Description of base technology.

Decision Type	Target Market(s)	End Use
Description of the decision type (e.g. New, Retrofit, Removal)	Description of the target market(s) for the measure (e.g. Residential / Small Commercial, New homes / Existing Homes, Single-Family / Multi-Family)	Description of the end use of the measure (e.g., space heating, water heating)

Codes, Standards, and Regulations

Description of any applicable codes, standards, and / or regulations that governing the performance (e.g, energy consumption) of the equipment.

Resource Savings Table (10 year Effective Useful Life [EUL] illustrated)

	Electricity	and Other Resource	I Other Resource Savings Equipment & O&M Costs of Equipment & O&M		
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m³)	(kWh)	(L)	(\$)	(\$)
1					
2	Annual natural	Annual electricity	Annual water	Annual equipment and	Annual equipment and
	gas savings for lifetime of	savings for life of measure (if	savings for life of measure (if	operations and maintenance cost of energy efficient	operations and maintenance cost of
9	measure	applicable)	applicable)	measure	baseline measure
10					
TOTALS	Total natural gas savings	Total electricity savings	Total water savings	Total equipment and O&M cost	Total equipment and O&M cost

Resource Savings Assumptions

Annual Natural Gas Savings	m ³
Basis for determination of natural gas savings.	
Annual Electricity Savings	kWh
Basis for determination of electricity savings.	
Annual Water Savings	L
Basis for determination of water savings.	

Other Input Assumptions

Effective Useful Life (EUL)	Years
Description and rationale of how many years the savings for the energy e to last.	fficient measure are expected
Base & Incremental Conservation Measure Equipment and O&M Costs	\$
Description and rationale of difference in the equipment cost and any ope associated for the energy efficient measure and the baseline measure.	ration and maintenance cost
Customer Payback Period (Natural Gas Only)	Years
Rationale used to determine the length of time required to recover the cos measure based on the natural gas savings only.	st of the energy efficient
Market Penetration or Market Share	% or level
High level description and rationale used to determine the current penetra efficient measure in the target market area or the current market share of the target market area. When available, the current market penetration of provided, else, an estimated "low", "medium" or "high" scale is used, when is between 5 and 50%, and "high" is greater than 50%.	the energy efficient measure in or market share percentage is

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Source of database reported by other jurisdiction	Annual gas savings reported by other jurisdiction	Effective useful life reported by other jurisdiction	Incremental cost by reported by jurisdiction	Market penetration/share reported in other jurisdiction
Comments Description of any input assumptions or values used by the other jurisdictions to determine their savings.				

RESIDENTIAL SPACE HEATING

Air Sealing

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Air infiltration control; caulking, weather stripping of doors and windows, etc. (6 ACH₅₀)

Base Equipment and Technologies Description

Existing infiltration controls (8 ACH₅₀)¹

Decision Type	Target Market(s)	End Use
Retrofit	Existing Residential (Pre-1980s)	Space heating

Codes, Standards, and Regulations

Ontario Building Code (2006)² requires:

- Windows that separate heated space from unheated space are designed to limit the rate of air infiltration to no more than 0.77 L/s for each metre of sash crack when tested at pressure differential of 75 Pa.
- Sliding glass door assemblies that separate heated space from unheated space are designed to limit the rate of air infiltration to no more than 2.5 L/s for each square metre of door area when tested at a pressure differential of 75 Pa.
- Swinging doors that separate heated space from unheated space are designed to limit the rate
 of air infiltration to no more than 6.35 L/s for each square metre of door area when tested at a
 pressure differential of 75 Pa.
- Caulking material to reduce air infiltration is: non-hardening, compatible with the substrate to which it is applied.
- Any location where there is a possibility of air leakage into heated spaces in a building through exterior walls will be caulked, gasketed or sealed.

¹ Base and efficient equipment air change rates are estimates of the average scenario for a home built in the 1950s to 1980s.

Determined from communication with a local contractor specializing in the sale and installation of air infiltration control measures.

² Ontario Regulations 350/06, 2006 Building Code

Resource Savings Table

	Electricity	Electricity and Other Resource Savings Equipment & O&M Equipmen		Equipment & O&M Costs of	
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m³)	(kWh)	(L)	(\$)	(\$)
1	231	101	0	1,000	0
2	231	101	0	0	0
3	231	101	0	0	0
4	231	101	0	0	0
5	231	101	0	0	0
6	231	101	0	0	0
7	231	101	0	0	0
8	231	101	0	0	0
9	231	101	0	0	0
10	231	101	0	0	0
11	231	101	0	0	0
12	231	101	0	0	0
13	231	101	0	0	0
14	231	101	0	0	0
15	231	101	0	0	0
TOTALS	3,465	1,515	0	1,000	0

Resource Savings Assumptions

Annual Natural Gas Savings	231 m ³
Assumptions and inputs:	
 Navigant Consulting used HOT2000³ to model energy savings resulting from the energy efficient upgrade. The following input assumptions where based on a candidate house for a typical pre-1980 home⁴. 	

 ³ NRCan, <u>http://canmetenergy-canmetenergie.nrcan-rncan.gc.ca/eng/software_tools/hot2000.html</u>
 ⁴ Candidate home characteristics are based on previous weatherization study completed by Marbek in 2008 for Union Gas and Navigant Consulting input assumptions.

House Ch	naracteristics using HOT2000
Location	Toronto, ON
Storeys	2
Above Grade Wall Insulation	R-Value = 8
Below Grade Wall Insulation	R-Value = 1
Attic Insulation	R-Value = 10
Foundation Floor Insulation	R-Value = 5
Air Leakage (ACH)	8.0
Window Type	Double pane with standard glazing, Aluminum
Number of Windows	8
Ceiling Area (ft ²)	829
Main Level Wall Area (ft ²)	944
Living Space Area (ft ²)	1,658
Basement Wall Area (ft ²)	827
Basement Floor Area (ft ²)	829
Base Loads Use	Defaults
Furnace Efficiency (AFUE)	80
Furnace Capacity (Btu/hr)	75,000
Fans Mode	Auto
A/C Efficiency (SEER)	10
A/C Capacity (Btu/hr)	13000^{\dagger}

⁺ The current version of HOT2000 has limitation on A/C capacities under specified conditions. 13000 Btu/hr is the maximum value it allows.

HOT2000 Simulation Results	Space Heating NG Consumption (m ³)	Space Cooling Consumption (kWh)	Annual Furnace Fan Consumption (kWh)
Base Case	2,965	682	501
Air Sealing Upgrade	2,735	677	461
Savings	229	5	39
Savings%	7.7%	0.7%	7.9%

• Based on the assumptions above, the following results are obtained:

Energy savings estimated by the three other jurisdictions listed below (Washington State, Iowa and New Hampshire⁵) are between 6 to 35% over their baseline. The large variation is due to differing input assumptions for both the base case scenario and the energy efficient scenario.

In terms of the baseline consumption, Navigant Consulting estimates that a typical pre-1980's home consumes approximately 25% more natural gas then a typical baseline home used by Enbridge⁶ (2,436 m3), approximately 3,000 m³.

• Applying the 7.7% savings calculated in the table above to the average annual consumption of natural gas cited directly above yields:

• Natural gas savings = 7.7% x 3,000 = 231 m³

Annual Electricity Savings

Annual electricity savings are derived from two sources:

- 1. Space cooling consumption
- 2. Furnace fan consumption

101 kWh

⁵ Opinion Dynamics Corporation, *The New Hampshire Electric Utilities' Low-income Retrofit Program – Impact Evaluation*, January 2006 <u>http://www.cee1.org/eval/db_pdf/556.pdf</u>

⁶ Enbridge Gas Customer Profiling Yearly Average End Use, November 23, 2004

Space cooling consumption:

Assuming that baseline house is equipped with a SEER 10, 2.5 ton⁷ A/C unit and is used 500 hours per year⁸, this implies that:

Base A/C electricity use = 500 (cooling hours)*[30,000 (Btu/hr)/(10 (SEER)* 1,000)] = 1,500 kWh

 Applying the 0.7% savings calculated in the table in the previous section to the average annual consumption of electricity cited directly above yields:

Electricity savings (A/C) = 0.7 %*1,500 kWh = 10.5 kWh

Furnace fan consumption:

- Annual furnace fan consumption for a typical Toronto home with a non-continuous mid-efficiency furnace = 1,150 kWh⁹
- Applying the 7.9% savings calculated in the table in the previous section to the annual furnace fan electricity consumption cited directly above yields:

Electricity savings (furnace fan) = 7.9%*1,150 = 90.85 kWh.

Total Electricity Savings

• Total electricity savings are the sum of furnace fan savings and air conditioner savings:

Total electricity savings = 10.5 + 90.85 = 101.4 kWh
--

Annual Water Savings	0 L
N/A.	

Other Input Assumptions

Effective Useful Life (EUL)	15 Years		
Based on a survey of the EUL used in other jurisdictions (Vermont ¹⁰ – 20 years, Washington State ¹¹ – 10 years, Iowa ¹² – 15 years and Oregon ¹³ – 15 years) Navigant Consulting estimates a EUL of 15 years.			
Base & Incremental Conservation Measure Equipment \$1,000			
Incremental cost determined from communication with local contractor ¹⁴ .			
Customer Payback Period (Natural Gas Only) ¹⁵ 8.3 Years			
Using a 5-year average commodity cost (avoided cost) ¹⁶ of $0.38 / m^3$ and an average residential distribution cost ¹⁷ of $0.14 / m^3$, the payback period for natural gas savings is determined to be 8.3 years, based on the following:			

⁷ Implying input of 30,000 Btu/hr, Energy Star Savings Calculator,

⁹ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls

⁸ Number of full-load cooling hours provided by <u>http://energyexperts.org/ac%5Fcalc/</u> and based on the assumption that Ontario's climate is sufficiently similar to that of the north-eastern U.S.

Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf ¹⁰ Efficiency Vermont, *Technical Reference User Manual (TRM)*, February 2006

¹¹Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy

¹² Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

¹³ Ecotope Inc. Natural Gas Efficiency and Conservation Measure Assessment for Residential and Commercial Sectors Prepared for Energy Trust of Oregon. August, 2003.

¹⁴ Incremental cost is an increasing function of the magnitude change in air tightness and a decreasing function of the base ACH₅₀ – improving a house's air tightness from 8 to 5 ACH₅₀ will be **more** than 50% more expensive than improving it from 8 to 6 ACH₅₀, and improving a house's air tightness from 10 ACH₅₀ to 8 ACH₅₀ will cost much less than improving a house's air tightness from 8 to 6 ACH₅₀.

¹⁵ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹⁶ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

¹⁷ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>https://portal-</u>

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2).

Payback Period = Incremental cost / (natural gas savings x natural gas cost)

= 8.3 years

Market Penetration ¹⁸	Medium
Based on the observation of high penetration in one jurisdiction (Washington State ¹⁹ – 60%), of medium	
penetration in another (Iowa ²⁰ – 25%) and on communication with a local contractor, Navigant	
Consulting estimates the penetration in Ontario to be medium.	

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
State of Iowa Utilities Board ²¹	193	15	363	25%
Comments Furnace central heating of a single family existing home. Annual electricity savings for central A/C: 257.5 kWh. Measure saves 10% of 1,935 m ³ required for space heating.				

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Puget Sound Energy, 2007 ²²	102	10	650	60%

Comments

No indication of base or efficient air tightness. Measure saves 6% of 1,707 m³ required for space heating.

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Energy Trust of Oregon, 2003 ²³	106	15	250	N/A

Comments

Changing from a base of 10 ACH₅₀ to 8 ACH₅₀. No indication given of percentage savings or base natural gas consumption for space heating.

¹⁸ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

 ¹⁹ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy
 ²⁰ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2
 ²¹ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2
 ²² Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

²² Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy

²³ Ecotope Inc. Natural Gas Efficiency and Conservation Measure Assessment for Residential and Commercial Sectors Prepared for Energy Trust of Oregon. August, 2003. http://www.cee1.org/eval/db_pdf/544.pdf

Basement Wall Insulation (R-12)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description
Basement wall insulation R-12
Base Equipment and Technologies Description

Basement wall insulation R-1

Decision Type	Target Market(s)	End Use
Retrofit	Existing Residential (Pre-1980)	Space Heating

Codes, Standards, and Regulations

The minimum R value required by Ontario Building Code¹ for foundation wall is R-12.

Resource Savings Table

Electricity and Other Resource Savings		Equipment & O&M Costs of	Equipment & O&M		
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m³)	(kWh)	(L)	(\$/ft ²)	(\$)
1	237	87	0	2	0
2	237	87	0	0	0
3	237	87	0	0	0
4	237	87	0	0	0
5	237	87	0	0	0
6	237	87	0	0	0
7	237	87	0	0	0
8	237	87	0	0	0
9	237	87	0	0	0
10	237	87	0	0	0
11	237	87	0	0	0
12	237	87	0	0	0
13	237	87	0	0	0
14	237	87	0	0	0
15	237	87	0	0	0
16	237	87	0	0	0
17	237	87	0	0	0
18	237	87	0	0	0
19	237	87	0	0	0
20	237	87	0	0	0
21	237	87	0	0	0
22	237	87	0	0	0
23	237	87	0	0	0
24	237	87	0	0	0
25	237	87	0	0	0
TOTALS	5,925	2,175	0	2	0

¹ Ontario Regulations 350/06, 2006 Building Code

Resource Savings Assumptions

nual Natural Gas Savings 237 m ³					
	10 ² to model energy savings resulting fro nptions where based on a candidate ho				
House Ch	aracteristics using HOT2000				
Location	Toronto, ON				
Storeys	2				
Above Grade Wall Insulation	R-Value = 8				
Below Grade Wall Insulation	R-Value = 1				
Attic Insulation	R-Value = 10				
Foundation Floor Insulation	R-Value = 5				
Air Leakage (ACH)	8.0				
Window Type	Double pane with standard glazing,	Aluminum			
Number of Windows	8				
Ceiling Area (ft ²)	829				
Main Level Wall Area (ft ²)	944				
Living Space Area (ft ²)	1,658				
Basement Wall Area (ft ²)	827				
Basement Floor Area (ft ²)	829				
Base Loads Use	Defaults				
Furnace Efficiency (AFUE)	80				
Furnace Capacity (Btu/hr)	75,000				
Fans Mode	Auto				
A/C Efficiency (SEER)	10				
A/C Capacity (Btu/hr)	13000^{\dagger}				

⁺ The current version of HOT2000 has limitation on A/C capacities under specified conditions. 13000 Btu/hr is the maximum value it allows.

• Based on the above assumptions, the following results are obtained:

HOT2000 Simulation Results	Space Heating NG Consumption (m ³)	Space Cooling Consumption (kWh)	Annual Furnace Fan Consumption (kWh)
Base Case	2,965	682	501
Basement Wall Upgrade	2,729	682	463
Savings	235	0	38
Savings%	7.9%	0.0%	7.6%

• Annual natural gas savings for space heating is 7.9%.

In terms of the baseline consumption, Navigant Consulting estimates that a typical pre-1980's home consumes approximately 25% more natural gas then a typical baseline home used by Enbridge⁴ (2,436 m³), approximately 3,000 m³.

• Applying the 7.9% savings calculated in the table above to the average annual consumption of natural gas cited directly above yields:

Natural Gas Savings = $3,000 \text{ m}^3 \text{ x} 7.9\% = 237 \text{ m}^3$

² NRCan, <u>http://canmetenergy-canmetenergie.nrcan-rncan.gc.ca/eng/software_tools/hot2000.html</u>

Annual Electricity Savings	87 kWh
Annual electricity savings are derived from two sources:	
1. Space cooling consumption	
2. Furnace fan consumption	
Space cooling consumption:	
 Assuming that baseline house is equipped with a SEER 10, 2.5 ton⁵ A/C per year⁶, this implies that: 	unit and is used 500 hours
Base A/C electricity use = 500 (cooling hours (SEER)* 1,000)] = 1,500 kWh	s)*[30,000 (Btu/hr)/(10
• Applying the 0% savings calculated in the table in the previous section to consumption of electricity cited directly above yields:	the average annual
Electricity savings (A/C) = 0% x 1,500 kWh/y	ear = 0 kWh.
Furnace fan consumption:	
 Annual furnace fan consumption for a typical Toronto home with a non-co furnace = 1,150 kWh⁷ 	ontinuous mid-efficiency
 Applying the 7.6% savings calculated in the table in the previous section the electricity consumption cited directly above yields: 	to the annual furnace fan
Electricity savings (furnace fan) = 7.6% x 115	50 kWh = 87.4 kWh
Total Electricity Savings:	
• Total electricity savings are the sum of furnace fan savings and air condit	ioner savings:
Total electricity savings = 0 kWh + 87.4 kWh	= 87.4 kWh ≈ 87 kWh
Annual Water Savings	0 L
N/A	

Other Input Assumptions

Effective Useful Life (EUL)	25 Years
The EUL is reported to be 25 years by the Iowa Utilities Board ⁸ . Navigant of 25 years.	Consulting estimates an EUL
Base & Incremental Conservation Measure Equipment and O&M Costs	\$2 / ft ²
Based on communication with various local vendors, the incremental cost R-12 is approximately \$2 per ft ² , which includes only the insulation materi of wall removal and reconstruction required for installation. For the candid cost is estimated to be \$1,654 ($$2.00 \times 827$ ft ² = \$1,645).	al and labour but not the costs
Customer Payback Period (Natural Gas Only) ⁹	13.4 Years
Using an 5-year average commodity cost (avoided cost) ¹⁰ of $0.38 / m^3$ a distribution cost ¹¹ of $0.14 / m^3$, the payback period for natural gas saving years, based on the following:	nd an average residential s is determined to be 13.4
³ Candidate home characteristics are based on previous weatherization study completed by Navigant Consulting input assumptions.	Marbek in 2008 for Union Gas and

⁴ Enbridge Gas Customer Profiling Yearly Average End Use, November 23, 2004

⁵ Implying input of 30,000 Btu/hr, Energy Star Savings Calculator, <u>http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls</u>

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls
 ⁶ Number of full-load cooling hours provided by http://energyexperts.org/ac%5Fcalc/ and based on the assumption that Ontario's climate is sufficiently similar to that of the north-eastern U.S.
 ⁷ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf
 ⁸ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2
 ⁹ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

decrease when electricity and/or water savings are included.

Payback Period = Incremental cost / (natural gas savings x natural gas cost)
= \$2 /ft ² x 827 ft ² / (237 m ³ /year * \$0.52 / m ³)
= 134 years

_ 10.4 years	
Market Penetration ¹²	High
Based on penetration rates of other jurisdictions (63% in Iowa State) and contractors, Navigant Consulting estimates the penetration in Ontario to b	

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m ³)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
State of Iowa Utilities Board ¹³	122.5	25	1,933	63%	
Comments Assuming baseline R-value of basement wall insulation is 8 and upgrade R-value of basement wall					

insulation is 13. Estimated 6.4% savings are based on 696 therms, which would translate to 44.5 therms (122.5 m³)

¹⁰ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost. ¹¹ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and

 ¹² Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,
 ¹³ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Ceiling Insulation (R-40)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description
Ceiling insulation R-40
Base Equipment and Technologies Description
Ceiling insulation R-10

Decision Type	Target Market(s)	End Use
Retrofit	Existing Residential (Pre-1980s)	Space Heating

Codes, Standards, and Regulations

The minimum R value required by Ontario Building Code¹ for ceiling below attic or roof space is 40.

Resource Savings Table

Electricity and		and Other Resource Savings		Equipment & O&M Costs of	Equipment & O&M
Year	Natural Gas	Electricity	y Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$/ft ²)	(\$)
1	348	214	0	0.7	0
2	348	214	0	0	0
3	348	214	0	0	0
4	348	214	0	0	0
5	348	214	0	0	0
6	348	214	0	0	0
7	348	214	0	0	0
8	348	214	0	0	0
9	348	214	0	0	0
10	348	214	0	0	0
11	348	214	0	0	0
12	348	214	0	0	0
13	348	214	0	0	0
14	348	214	0	0	0
15	348	214	0	0	0
16	348	214	0	0	0
17	348	214	0	0	0
18	348	214	0	0	0
19	348	214	0	0	0
20	348	214	0	0	0
TOTALS	6,960	4,280	0	0.7	0

¹ Ontario Regulations 350/06, 2006 Building Code

Resource Savings Assumptions

ual Natural Gas Savings		348 m ³
	0 ² to model energy savings resulting from the enptions where based on a candidate house for a	
House Ch	aracteristics using HOT2000	
Location	Toronto, ON	
Storeys	2	
Above Grade Wall Insulation	R-Value = 8	
Below Grade Wall Insulation	R-Value = 1	
Attic Insulation	R-Value = 10	
Foundation Floor Insulation	R-Value = 5	
Air Leakage (ACH)	8.0	
Window Type	Double pane with standard glazing, Aluminu	m
Number of Windows	8	
Ceiling Area (ft ²)	829	
Main Level Wall Area (ft ²)	944	
Living Space Area (ft ²)	1,658	
Basement Wall Area (ft ²)	827	
Basement Floor Area (ft ²)	829	
Base Loads Use	Defaults	
Furnace Efficiency (AFUE)	80	
Furnace Capacity (Btu/hr)	75,000	
Fans Mode	Auto	
A/C Efficiency (SEER)	10	
A/C Capacity (Btu/hr)	13000 ⁺	

⁺ The current version of HOT2000 has limitation on A/C capacities under specified conditions. 13000 Btu/hr is the maximum value it allows.

• Based on the above assumptions, the following results are obtained:

HOT2000 Simulation	Space Heating NG	Space Cooling	Annual Furnace Fan
Results	Consumption (m ³)	Consumption (kWh)	Consumption (kWh)
Base Case	2,965	682	501
Ceiling Upgrade	2,622	648	440
Savings	343	34	61
Savings%	11.6%	5.0%	12.1%

- Annual natural gas savings for space heating is 11.6%.
- Energy savings estimated by the three other jurisdictions listed below (Washington State, Iowa and New Hampshire) estimate savings are between 5 to 25% over their baseline. The large variation is due to differing input assumptions for both the base case and the energy efficient scenario.
- In terms of the baseline consumption, Navigant Consulting estimates that a typical pre-1980's home consumes approximately 25% more natural gas then a typical baseline home used by Enbridge⁴ (2,436 m³), approximately 3,000 m³.
- Applying the 11.6% savings calculated in the table above to the average annual consumption of natural gas cited directly above yields:

Natural Gas Savings = $3,000 \text{ m}^3 \text{ x} 11.6\% = 348 \text{ m}^3$

² NRCan, <u>http://canmetenergy-canmetenergie.nrcan-rncan.gc.ca/eng/software_tools/hot2000.html</u>

Annual Electricity Sa	vings	214 kWh
Annual electricity savings a	re derived from two sources:	
 Space cooling const 	sumption	
2. Furnace fan consul	nption	
Space cooling consumptior	1:	
 Assuming that baseline per year⁶, this implies the second second	house is equipped with a SEER 10, 2.5 ton ⁵ A nat:	VC unit and is used 500 hours
	Base A/C electricity use = 500 (cooling he (SEER)* 1,000)] = 1,500 kWh	ours)*[30,000 (Btu/hr)/(10
	is calculated in the table in the previous section ity cited directly above yields:	n to the average annual
	Electricity savings (A/C) = 5% x 1,500 kW	/h/year = 75 kWh.
Furnace fan consumption:		
 Annual furnace fan con furnace = 1,150 kWh⁷ 	sumption for a typical Toronto home with a nor	n-continuous mid-efficiency
	rings calculated in the table in the previous sec cited directly above yields:	tion to the annual furnace fan
	Electricity savings (furnace fan) = 12.1%	x 1150 kWh = 139.2 kWh
Total Electricity Savings:		
Total electricity savings	are the sum of furnace fan savings and air con Total electricity savings = 139.2 kWh + 75	-
Annual Water Saving	s	0 L
N/A		

Other Input Assumptions

Effective Useful Life (EUL)	20 Years
The EUL is reported to be 25 years by the Iowa Utilities Board ⁸ and 30 ye The OPA reports the EUL as 20 years. Navigant Consulting is assuming 2	
Base & Incremental Conservation Measure Equipment and O&M Costs	\$0.7 / ft ²
Based on communication with various local vendors, the incremental cost to R-40 is approximately 70 cents per ft ² . For the candidate home, the in be \$580 ($0.70 \times 829 \text{ ft}^2 = 580).	of ceiling insulation from R-10 cremental cost is estimated to
Customer Payback Period (Natural Gas Only) ¹⁰	3.2 Years
Using a 5-year average commodity cost (avoided cost) ¹¹ of \$0.38 / m ³ an	d an average residential

³ Candidate home characteristics are based on previous weatherization study completed by Marbek in 2008 for Union Gas and Navigant Consulting input assumptions.

 ⁴ Enbridge Gas Customer Profiling Yearly Average End Use, November 23, 2004
 ⁵ Implying input of 30,000 Btu/hr, Energy Star Savings Calculator,

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls

⁶ Number of full-load cooling hours provided by <u>http://energyexperts.org/ac%5Fcalc/</u> and based on the assumption that Ontario's climate is sufficiently similar to that of the north-eastern U.S.

⁷ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and

Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf ⁸ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

⁹Quantec, Puget Sound Energy Demand-Side Management Resource Assessment

¹⁰ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

distribution cost¹² of \$0.14 / m³, the payback period for natural gas savings is determined to be 3.2 years, based on the following:

Payback Period = Incremental cost / (natural gas savings x natural gas cost)

$$=$$
 \$0.7/ft² x 829 ft² / (348 m³/year * \$0.52 / m³)

= 3.2 years

Market Penetration¹³

Medium

Based on the penetration rates in other jurisdictions (25% in Iowa State and 20% in Washington State) and communication with local contractors, Navigant Consulting estimates the penetration in Ontario to be medium.

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m ³)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
State of Iowa Utilities Board ¹⁴	88	25	287	25%
Comments Assuming baseline R-va Estimated 4.6% savings				
Source	Annual Natural Gas Savings (m ³)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Puget Sound Energy ¹⁵	556.3	30	720	20%
Comments Assuming baseline R-va Estimated 9% savings a	lue of ceiling insulati re based on 6,181 m	on is 11 and upgra ³ , which would trai	ade R-value of ceili nslate to 556.3 m ³ .	ng insulation is 38.
Source	Annual Natural Gas Savings (m ³)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
New Hampshire Electric Utilities ¹⁶	223	N/A	N/A	N/A
Comments New Hampshire Electric	Utilities Estimates 2	5% natural gas sav	vings on ceiling ins	ulation.

¹¹ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost. ¹² Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and

Enbridge Gas websites (https://portal-

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2). ¹³ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

¹⁴ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

¹⁵ Quantec, Puget Sound Energy Demand-Side Management Resource Assessment

¹⁶ ODC, The New Hampshire Electric Utilities' Low-income Retrofit Program Impact Evaluation, Jan 16, 2006

Enhanced Furnace (Electronically Commutated Motor) – Existing Residential

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Gas furnace equipped with an electronically commutated motor (ECM)

Base Equipment and Technologies Description

Gas Furnace with a permanent split capacitor (PSC) Motor

Decision Type	Target Market(s)	End Use
Retrofit	Residential Existing Homes	Space Heating

Codes, Standards, and Regulations

- Under Ontario's building code, all gas furnaces installed in new residential constructions must meet a minimum condensing efficiency level effective January 1, 2007.¹
- Presently, there is no minimum energy performance standard restricting the electricity consumption of furnace fan blowers.
- NRCan proposes to increase the minimum performance level, the Annual Fuel Utilization Efficiency (AFUE), for gas-fired furnaces with an input rate not exceeding 65.92 kW (225,000 Btu/h) to 90% for December 31, 2009².

¹ Ministry of Energy, "Heating and Cooling your Home: A Conservation Guide", Reproduced with the permission of Natural Resource Canada, 2004. <u>http://www.energy.gov.on.ca/english/pdf/conservation/heating_and_cooling_your_home.pdf</u>

² Office of Energy Efficiency, Canada's Energy Efficiency Regulations, Proposed Regulations Bulletin, March 2007. <u>http://www.oee.nrcan.gc.ca/regulations/bulletin/gas-furnace-mar2007.cfm?Text=N&PrintView=N</u>

Resource Savings Table (for 2 different cases) Continuous Fan Usage

[Electricity	and Other Resour	ce Savings	Equipment & O&M Costs of Consection Equipment & O&M	
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure ³
(EUL=)	(m³)	(kWh)	(L)	(\$)	(\$)
1	-183	1,387	0	960	0
2	-183	1,387	0	0	0
3	-183	1,387	0	0	0
4	-183	1,387	0	0	0
5	-183	1,387	0	0	0
6	-183	1,387	0	0	0
7	-183	1,387	0	0	0
8	-183	1,387	0	0	0
9	-183	1,387	0	0	0
10	-183	1,387	0	0	0
11	-183	1,387	0	0	0
12	-183	1,387	0	0	0
13	-183	1,387	0	0	0
14	-183	1,387	0	0	0
15	-183	1,387	0	0	0
TOTALS	-2,745	20,805	0	960	0

³ US DOE Energy Star Furnace Calculator, "Assumptions" tab. <u>http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_Furnaces.xls</u>

Resource Savings Assumptions

Annual Natural Gas Savings-183 m³Continuous fan use and non-continuous fan use is estimated to be 26% and 74%, respectively, based
on Ontario customer survey results⁴.A study conducted by the Canadian Center for Housing Technologies determined that the annual gas
use of a typical existing home with a continuous ECM actually *increases* by 180 m³ for high efficiency
furnaces (AFUE 92) and 202 m³ for mid-efficiency furnaces (AFUE 82)⁵. The increase in natural gas
consumption is a result of the reduction of heat added to the home from the decrease in electricity usage
by the furnace motor. NCI assumes that 12% of new furnaces are mid-efficiency and 88% of furnaces
are high efficiency based on recent survey results for residential furnaces⁶, resulting in an average
increase of 183 m³.

The CCHT study gives a baseline gas use as $2,769 \text{ m}^3$ for high efficiency furnaces and $3,107\text{m}^3$ for midefficiency furnaces⁷. Using the same mix of high-efficiency and mid-efficiency furnaces as above, a typical home with a PSC motor is expected to use $2,810 \text{ m}^3$. Using an energy efficient motor (ECM), a typical home is expected to use $2,993 \text{ m}^3$ of natural gas (2,810 + 183), or an increase of 6.5% over the baseline.

Annual Electricity Savings

1,387 kWh

Based on the Ontario Power Authority's 2009 OPA Measure and Assumptions Lists⁸, the electricity savings for an existing home using an ECM are estimated to be 1,387 kWh/year for continuous furnace fan usage. This represents a saving of 72% over a conventional PSC motor.

These results are based on the same CCHT study, which determined that annual electricity savings for an existing home using a gas furnace with a continuous ECM for heating only are 1,535 kWh for high efficiency furnaces (AFUE 92) and 1,545 kWh for mid-efficiency furnaces (AFUE 82)⁹. Since it is unlikely that the furnace fan is running continuously during the shoulder season, the OPA assumes that during the shoulder season, the same electricity savings from a non-continuous ECM are applicable.

Annual Water Savings

0 L

Consulting, Evaluation Report: 2007 Hot and Cool Savings Programs, prepared for the Ontario Power Authority (OPA), July 2008. ⁵ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and Consulta from the CCHT Research Facility and Projections" http://www.consulta.com/

⁷ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and Case Less Papeula from the CCHT Research Eacility and Projections" http://jice.researc.go.co/uub/fiultox/orce32500.pdf

Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf ⁸ Ontario Power Authority, 2009 OPA Measures and Assumptions List (Mass Market), November 2008.

⁴ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, based on Navigant

Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf ⁶ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, based on Navigant Consulting, Evaluation Report: 2007 Hot and Cool Savings Programs, prepared for the Ontario Power Authority (OPA), July 2008.

⁹ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and Gas Use: Results from the CCHT Research Facility and Projections" http://jrc.prccnrc.gc.ca/pubs/fulltext/prcc38500/prcc38500

Non-Continuous Fan Usage

	Electricity	and Other Resour	ce Savings	Equipment & O&M Costs of Concernation Equipment & O&M Cost	
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure ¹⁰
(EUL=)	(m³)	(kWh)	(L)	(\$)	(\$)
1	-26.4	324	0	960	0
2	-26.4	324	0	0	0
3	-26.4	324	0	0	0
4	-26.4	324	0	0	0
5	-26.4	324	0	0	0
6	-26.4	324	0	0	0
7	-26.4	324	0	0	0
8	-26.4	324	0	0	0
9	-26.4	324	0	0	0
10	-26.4	324	0	0	0
11	-26.4	324	0	0	0
12	-26.4	324	0	0	0
13	-26.4	324	0	0	0
14	-26.4	324	0	0	0
15	-26.4	324	0	0	0
TOTALS	-396	4,860	0	960	0

Resource Savings Assumptions

Annual Natural Gas Savings

Jas Savings	-20.4 m
and non-continuous fan use is estimated to be 26% a	nd 74%, respectively, based

Continuous fan use and non-continuous fan use is estimated to be 26% and 74%, respectively, based on customer survey results¹¹.

A study conducted by the Canadian Center for Housing Technologies determined that a the annual gas use of a typical existing home with a non-continuous ECM actually *increases* by 26 m³ for high efficiency furnaces (AFUE 92) and 29 m³ for mid-efficiency furnaces (AFUE 82)¹². The increase in natural gas consumption is a result of the reduction of heat added to the home from the decrease in electricity usage by the furnace motor. NCI assumes that 12% of new furnaces are mid-efficiency and 88% of furnaces are high efficiency based on recent survey results for residential furnaces¹³, resulting in an average increase of 26.4 m³.

The CCHT study gives a baseline gas use as $2,953 \text{ m}^3$ for high efficiency furnaces and $3,313 \text{ m}^3$ for mid-efficiency furnaces¹⁴. Using the same mix of high-efficiency and mid-efficiency furnaces as above, a typical home with a PSC motor is expected to use $2,996 \text{ m}^3$. Using an energy efficient motor (ECM), a typical home is expected to use $3,022 \text{ m}^3$ of natural gas (2,996 + 26), or an increase of 0.9% over the baseline.

¹⁰ US DOE Energy Star Furnace Calculator, "Assumptions" tab.

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_Furnaces.xls

¹¹ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, based on Navigant Consulting, Evaluation Report: 2007 Hot and Cool Savings Programs, prepared for the Ontario Power Authority (OPA), July 2008.
¹² The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and

Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf ¹³ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, based on Navigant Consulting, Evaluation Report: 2007 Hot and Cool Savings Programs, prepared for the Ontario Power Authority (OPA), July 2008.

¹⁴ Ibid.

Annual Electricity Savings	324 kWh	
Based on the Ontario Power Authority's 2009 OPA Measure and Assumptions List ¹⁵ , the electricity savings for a new home using an ECM are estimated to be 324 kWh/year for non-continuous furnace fan usage. This represents a saving of 40% over a conventional PSC motor.		
These results are based on the same CCHT study, which determined tha new home using a gas furnace with an ECM for heating only are 324 kWh furnaces (AFUE 92) mid-efficiency furnaces (AFUE 82) ¹⁶ .	t annual electricity savings for a n for both high efficiency	
Annual Water Savings	0 L	
N/A		

¹⁵ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008. ¹⁶ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf

Other Input Assumptions

Effective Useful Life (EUL)15 YearsAn OPA commissioned study by Seeline Group Inc. suggests a useful life of 15 years. Furthermore, a June 2007 study by GDS Associates, Inc. ¹⁷ for New England State Program Working Group (SPWG) also suggest 15 years. Finally, the Iowa Utilities Board ¹⁸ also uses 15 years as an effective useful life an ECM.Base & Incremental Conservation Measure Equipment and O&M Costs\$960Based on the average of a survey of prices from HVAC contractors in Ontario ¹⁹ , the incremental cost in
June 2007 study by GDS Associates, Inc. ¹⁷ for New England State Program Working Group (SPWG) also suggest 15 years. Finally, the Iowa Utilities Board ¹⁸ also uses 15 years as an effective useful life t an ECM.Base & Incremental Conservation Measure Equipment and O&M Costs\$960
and O&M Costs \$960
Based on the average of a survey of prices from HVAC contractors in Ontario ¹⁹ , the incremental cost i
estimated to be \$960. Incremental costs were confirmed through communication with additional HVA0 contractors.
Customer Payback Period (Natural Gas and Electricity) Continuous = 22 years Non-Continuous = 51 years
Since natural gas usage increases with an ECM, Navigant Consulting has used both natural gas and electricity savings to calculate the customer payback period.
For Natural Gas Usage:
Combining a 5-year average commodity cost (avoided cost) ²⁰ of \$0.38 / m ³ and an average residentia distribution cost ²¹ of \$0.14 / m ³ , the total cost of natural gas for residential customers is determined to \$0.52.
<i>For Electricity Savings:</i> An average commodity and distribution cost of \$0.10 / kWh is assumed for residential customers.
The payback period incorporating both natural gas usage and electricity savings is determined to be 2 years for continuous usage and 51 years for non-continuous furnace fan usage, based on the followin
Payback Period = Incremental cost / [(natural gas savings x natural gas cost) + (electricity savings x electricity cost)]
Continuous Fan Usage: = \$960 / [(-183 m³/year * \$0.52 / m³) + (1,387 kWh/year * \$0.10 / kWh)] = 22 years
Non-Continuous Fan Usage: = \$960 / [(-26.4 m³/year * \$0.52 / m³) + (324 kWh/year * \$0.10 / kWh)] = 51 years
Market Share ²² Low
Although the benefits of electronically commutated motors are increasingly being promoted by the

¹⁷ GDS Associates Inc, Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for The New England State Program Working Group (SPWG) For use as an Energy Efficiency Measures/Programs Reference Document for the ISO Forward Capacity Market (FCM), June 2007.

¹⁸ Joint Assessment Study, MidAmerican Energy Company, Appendix C. State of Iowa Utilities Board Docket No. EEP-08-2, 2008,

C-131 ¹⁹ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, based on Navigant

Consulting, Evaluation Report: 2007 Hot and Cool Savings Programs, prepared for the Ontario Power Authority (OPA), July 2008. ²⁰ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost. ²¹ Average distribution cost taken calculated from both Union Gas website (http://www.uniongas.com/residential/rates/) and

Enbridge Gas websites (<u>https://portal-plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2</u>). ²² Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

industry, the overall market share still remains low in the residential retrofit market, as seen in another jurisdiction (lowa reports a 5% market penetration for residential homes²³). Therefore, Navigant Consulting estimates the market share in Ontario to be low.

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/ Market Share
2009 OPA Measures and Assumptions List ²⁴	-80.1m ³ (continuous) 22.6m ³ (non- continuous)	15	\$960	N/A

Comments

Assumptions made in the OPA Measures and Assumptions List are the same assumptions that are made in the above tables.

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/ Market Share	
Iowa State Utility Board ²⁵	n/a	15	\$76	5%	
Comments					

Only electricity savings reported (75% over base equipment). Base equipment is a standard motor on a gas fired furnace. Baseline consumption is reported on an annual basis (e.g. 723 kWh for a single family).

²³ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2 ²⁴ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008.

²⁵ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Enhanced Furnace (Electronically Commutated Motor) – New Construction

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Gas furnace equipped with an electronically commutated motor (ECM)

Base Equipment and Technologies Description

Gas Furnace with a permanent split capacitor (PSC) Motor

Decision Type	Target Market(s)	End Use
New	Residential New Home	Space Heating

Codes, Standards, and Regulations

- Under Ontario's building code, all gas furnaces installed in new residential constructions must meet a minimum condensing efficiency level effective January 1, 2007.¹
- Presently, there is no minimum energy performance standard restricting the electricity consumption of furnace fan blowers.
- NRCan proposes to increase the minimum performance level, the Annual Fuel Utilization Efficiency (AFUE), for gas-fired furnaces with an input rate not exceeding 65.92 kW (225,000 Btu/h) to 90% for December 31, 2009².

¹ Ministry of Energy, "Heating and Cooling your Home: A Conservation Guide", Reproduced with the permission of Natural Resource Canada, 2004. <u>http://www.energy.gov.on.ca/english/pdf/conservation/heating_and_cooling_your_home.pdf</u>

² Office of Energy Efficiency, Canada's Energy Efficiency Regulations, Proposed Regulations Bulletin, March 2007. <u>http://www.oee.nrcan.gc.ca/regulations/bulletin/gas-furnace-mar2007.cfm?Text=N&PrintView=N</u>

Resource Savings Table (for 2 different cases) Continuous Fan Usage

	Electricity and Other Resource Savings		Equipment & O&M	Equipment & O&M Costs of	
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure ³
(EUL=)	(m³)	(kWh)	(L)	(\$)	(\$)
1	-166	1403	0	960	0
2	-166	1403	0	0	0
3	-166	1403	0	0	0
4	-166	1403	0	0	0
5	-166	1403	0	0	0
6	-166	1403	0	0	0
7	-166	1403	0	0	0
8	-166	1403	0	0	0
9	-166	1403	0	0	0
10	-166	1403	0	0	0
11	-166	1403	0	0	0
12	-166	1403	0	0	0
13	-166	1403	0	0	0
14	-166	1403	0	0	0
15	-166	1403	0	0	0
TOTALS	-2,745	20,805	0	960	0

³ US DOE Energy Star Furnace Calculator, "Assumptions" tab. <u>http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_Furnaces.xls</u>

Resource Savings Assumptions				
Annual Natural Gas Savings	-166 m ³			
Continuous fan use and non-continuous fan use is estimated to be 26% and 74%, respectively, based on Ontario customer survey results ⁴ .				
A study conducted by the Canadian Center for Housing Technologies determined that a the annual gas use of a typical new home with a continuous ECM actually <i>increases</i> by 164m ³ for high efficiency furnaces (AFUE 92) and 184m ³ for mid-efficiency furnaces (AFUE 82) ⁵ . The increase in natural gas consumption is a result of the reduction of heat added to the home from the decrease in electricity usage by the furnace motor. NCI assumes that 12% of new furnaces are mid-efficiency and 88% of furnaces are high efficiency based on recent survey results for residential furnaces ⁶ , resulting in an average increase of 166.4m ³ .				
The CCHT study gives a baseline gas use as 1,744 m ³ for high efficiency furnaces and 1,957 m ³ for mid-efficiency furnaces ⁷ . Using the same mix of high-efficiency and mid-efficiency furnaces as above, a typical furnace with a PSC motor is expected to use 1,770 m ³ . Using an energy efficient motor (ECM), a typical home is expected to use 1,936 m ³ of natural gas (1,770 + 166), or an increase of 9.4 % over the baseline.				
Annual Electricity Savings	1,403 kWh			
Based on the Ontario Power Authority's 2009 OPA Measure and Assumptions Lists ⁸ , the electricity savings for a new home using an ECM are estimated to be 1,403 kWh/year for continuous furnace fan usage. This represents a savings of 78% over a conventional PSC motor.				
These results are based on the same CCHT study, which determined that annual electricity savings for a new home using a gas furnace with an ECM for heating only are 1,569 kWh for high efficiency furnaces (AFUE 92) and 1,571 kWh for mid-efficiency furnaces (AFUE 82) ⁹ . Since it is unlikely that the furnace fan is running continuously during the shoulder season, the OPA assumes that during the shoulder season, the same electricity savings from a non-continuous ECM are applicable.				
Annual Water Savings	0 L			

N/A

⁴ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, based on Navigant Consulting, Evaluation Report: 2007 Hot and Cool Savings Programs, prepared for the Ontario Power Authority (OPA), July 2008.

⁵ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500.pdf ⁶ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, based on Navigant

Consulting, Evaluation Report: 2007 Hot and Cool Savings Programs, prepared for the Ontario Power Authority (OPA), July 2008.

⁷ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf ⁸ Ontario Power Authority, 2009 OPA Measures and Assumptions List (Mass Market), November 2008.

⁹ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf

Non-Continuous Fan Usage

	Electricity and Other Resource Savings		Equipment & O&M	Equipment & O&M Costs of	
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure ¹⁰
(EUL=)	(m³)	(kWh)	(L)	(\$)	(\$)
1	-26.4	207	0	960	0
2	-26.4	207	0	0	0
3	-26.4	207	0	0	0
4	-26.4	207	0	0	0
5	-26.4	207	0	0	0
6	-26.4	207	0	0	0
7	-26.4	207	0	0	0
8	-26.4	207	0	0	0
9	-26.4	207	0	0	0
10	-26.4	207	0	0	0
11	-26.4	207	0	0	0
12	-26.4	207	0	0	0
13	-26.4	207	0	0	0
14	-26.4	207	0	0	0
15	-26.4	207	0	0	0
TOTALS	-396	3,105	0	960	0

Resource Savings Assumptions

Annual Natural Gas Savings

Gas Savings	-20.4 ///
and non-continuous fan use is estimated to be 26% a	nd 74%, respectively, based

Continuous fan use and non-continu on customer survey results¹¹.

A study conducted by the Canadian Center for Housing Technologies determined that a the annual gas use of a typical existing home with a non-continuous ECM actually *increases* by 26 m³ for high efficiency furnaces (AFUE 92) and 29 m³ for mid-efficiency furnaces (AFUE 82)¹². The increase in natural gas consumption is a result of the reduction of heat added to the home from the decrease in electricity usage by the furnace motor. NCI assumes that 12% of new furnaces are mid-efficiency and 88% of furnaces are high efficiency based on recent survey results for residential furnaces¹³, resulting in an average increase of 26.4 m³.

The CCHT study gives a baseline gas use as $2,953 \text{ m}^3$ for high efficiency furnaces and $3,313 \text{ m}^3$ for mid-efficiency furnaces¹⁴. Using the same mix of high-efficiency and mid-efficiency furnaces as above, a typical home with a PSC motor is expected to use $2,996 \text{ m}^3$. Using an energy efficient motor (ECM), a typical home is expected to use $3,022 \text{ m}^3$ of natural gas (2,996 + 26), or an increase of 0.9% over the baseline.

¹⁰ US DOE Energy Star Furnace Calculator, "Assumptions" tab.

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_Furnaces.xls

¹¹ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, based on Navigant Consulting, Evaluation Report: 2007 Hot and Cool Savings Programs, prepared for the Ontario Power Authority (OPA), July 2008.
¹² The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and

Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf ¹³ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, based on Navigant Consulting, Evaluation Report: 2007 Hot and Cool Savings Programs, prepared for the Ontario Power Authority (OPA), July 2008.

¹⁴ Ibid.

Annual Electricity Savings	207 kWh			
Based on the Ontario Power Authority's 2009 OPA Measure and Assumptions List ¹⁵ , electricity savings for a new home using an ECM are estimated to be 207 kWh/year for non-continuous furnace fan usage. This represents a savings of 40% over a traditional PSC motor.				
These results are based on the same CCHT study, which determined that annual electricity savings for a new home using a gas furnace with an ECM for heating only are 207 kWh for both high efficiency furnaces (AFUE 92) mid-efficiency furnaces (AFUE 82) ¹⁶				
Annual Water Savings	0 L			
N/A				

¹⁵ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008. ¹⁶ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500.pdf

Other Input Assumptions

Effective Useful Life (EUL) 15 Years An OPA commissioned study by Seeline Group Inc. suggests a useful life of 15 years. Furthermore, a June 2007 study by GDS Associates, Inc. ¹⁷ for New England State Program Working Group (SPWG) also suggest 15 years. Finally, the Iowa Utilities Board ¹⁸ also uses 15 years as an effective useful life for an ECM. Base & Incremental Conservation Measure Equipment and O&M Costs \$960 Based on the average of a survey of prices from HVAC contractors in Ontario ¹⁹ , the incremental cost is estimated to be \$960. Incremental costs were confirmed through communication with additional HVAC contractors. Customer Payback Period (Natural Gas and Electricity) Continuous = 18 years Non-Continuous = 18 years Non-Continuous = 137 years Since natural gas usage increases with an ECM, Navigant Consulting has used both natural gas and electricity savings to calculate the customer payback period. Continuous = 137 years For Natural Gas Usage: Combining a 5-year average commodity cost (avoided cost) ²⁰ of \$0.38 / m ³ and an average residential distribution cost ²¹ of \$0.14 / m ³ , the total cost of natural gas for residential customers. The payback period incorporating both natural gas usage and electricity savings is determined to be 18 years for continuous usage and 137 years for non-continuous furnace fan usage, based on the following: Payback Period = Incremental cost / [(natural gas savings x natural gas cost) + (electricity savings x electricity cost)] alectricity cost)] Continuous Fan Usage: = \$960 / [(-166 m ³ /year * \$0.52 / m ³) + (1,403 kWh/year * \$0.10 / kWh)]		
June 2007 study by GDS Associates, Inc. ¹⁷ for New England State Program Working Group (SPWG) also suggest 15 years. Finally, the Iowa Utilities Board ¹⁸ also uses 15 years as an effective useful life for an ECM. Base & Incremental Conservation Measure Equipment and O&M Costs Based on the average of a survey of prices from HVAC contractors in Ontario ¹⁹ , the incremental cost is estimated to be \$960. Incremental costs were confirmed through communication with additional HVAC contractors. Customer Payback Period (Natural Gas and Electricity) Continuous = 18 years Non-Continuous = 137 years Since natural gas usage increases with an ECM, Navigant Consulting has used both natural gas and electricity savings to calculate the customer payback period. For Natural Gas Usage: Combining a 5-year average commodity cost (avoided cost) ²⁰ of \$0.38 / m ³ and an average residential distribution cost ²¹ of \$0.14 / m ³ , the total cost of natural gas for residential customers is determined to be \$0.52. For Electricity Savings: An average commodity and distribution cost of \$0.10 / kWh is assumed for residential customers. The payback period incorporating both natural gas usage and electricity savings is determined to be 18 years for continuous usage and 137 years for non-continuous furnace fan usage, based on the following: Payback Period = Incremental cost / [(natural gas savings x natural gas cost) + (electricity savings x electricity cost)] Continuous Fan Usage: = \$960 / [(-166 m ³ /year * \$0.52 / m ³) + (1,403 kWh/year * \$0.10 / kWh)] = 18 years Non-Continuous Fan Usage: = \$960 / [(-26.4 m ³ /year * \$0.52 / m ³) + (207 kWh/year * \$0.10 / kWh)] = 137 years Market Share ²² Low	Effective Useful Life (EUL)	15 Years
and 0&M Costs \$900 Based on the average of a survey of prices from HVAC contractors in Ontario ¹⁹ , the incremental cost is estimated to be \$960. Incremental costs were confirmed through communication with additional HVAC contractors. Customer Payback Period (Natural Gas and Electricity) Continuous = 18 years Non-Continuous = 137 years Since natural gas usage increases with an ECM, Navigant Consulting has used both natural gas and electricity savings to calculate the customer payback period. Continuous = 137 years For Natural Gas Usage: Combining a 5-year average commodity cost (avoided cost) ²⁰ of \$0.38 / m³ and an average residential distribution cost ²¹ of \$0.14 / m³, the total cost of natural gas for residential customers is determined to be \$0.52. For Electricity Savings: An average commodity and distribution cost of \$0.10 / kWh is assumed for residential customers. The payback period incorporating both natural gas usage and electricity savings is determined to be 18 years for continuous usage and 137 years for non-continuous furnace fan usage, based on the following: Payback Period = Incremental cost / [(natural gas savings x natural gas cost) + (electricity savings x electricity cost)] Continuous Fan Usage: = \$960 / [(-166 m³/year * \$0.52 / m³) + (1,403 kWh/year * \$0.10 / kWh)] = 18 years Non-Continuous Fan Usage: = \$960 / [(-26.4 m³/year * \$0.52 / m³) + (207 kWh/year * \$0.10 / kWh)] = 137 years	June 2007 study by GDS Associates, Inc. ¹⁷ for New England State Progra also suggest 15 years. Finally, the Iowa Utilities Board ¹⁸ also uses 15 year	am Working Group (SPWG)
estimated to be \$960. Incremental costs were confirmed through communication with additional HVAC contractors. Customer Payback Period (Natural Gas and Electricity) Continuous = 18 years Non-Continuous = 137 years Since natural gas usage increases with an ECM, Navigant Consulting has used both natural gas and electricity savings to calculate the customer payback period. For Natural Gas Usage: Combining a 5-year average commodity cost (avoided cost) ²⁰ of \$0.38 / m ³ and an average residential distribution cost ²¹ of \$0.14 / m ³ , the total cost of natural gas for residential customers is determined to be \$0.52. For Electricity Savings: An average commodity and distribution cost of \$0.10 / kWh is assumed for residential customers. The payback period incorporating both natural gas usage and electricity savings is determined to be 18 years for continuous usage and 137 years for non-continuous furnace fan usage, based on the following: Payback Period = Incremental cost / [(natural gas savings x natural gas cost) + (electricity savings x electricity cost)] Continuous Fan Usage:		\$960
Since natural gas usage increases with an ECM, Navigant Consulting has used both natural gas and electricity savings to calculate the customer payback period. For Natural Gas Usage: Combining a 5-year average commodity cost (avoided cost) ²⁰ of \$0.38 / m³ and an average residential distribution cost ²¹ of \$0.14 / m³, the total cost of natural gas for residential customers is determined to be \$0.52. For Electricity Savings: An average commodity and distribution cost of \$0.10 / kWh is assumed for residential customers. The payback period incorporating both natural gas usage and electricity savings is determined to be 18 years for continuous usage and 137 years for non-continuous furnace fan usage, based on the following: Payback Period = Incremental cost / [(natural gas savings x natural gas cost) + (electricity savings x electricity cost)] Continuous Fan Usage: = \$960 / [(-166 m³/year * \$0.52 / m³) + (1,403 kWh/year * \$0.10 / kWh)] = 18 years Non-Continuous Fan Usage: = \$960 / [(-26.4 m³/year * \$0.52 / m³) + (207 kWh/year * \$0.10 / kWh)] = 137 years Market Share ²² Low	estimated to be \$960. Incremental costs were confirmed through commu	tario ¹⁹ , the incremental cost is nication with additional HVAC
electricity savings to calculate the customer payback period. For Natural Gas Usage: Combining a 5-year average commodity cost (avoided cost) ²⁰ of \$0.38 / m ³ and an average residential distribution cost ²¹ of \$0.14 / m ³ , the total cost of natural gas for residential customers is determined to be \$0.52. For Electricity Savings: An average commodity and distribution cost of \$0.10 / kWh is assumed for residential customers. The payback period incorporating both natural gas usage and electricity savings is determined to be 18 years for continuous usage and 137 years for non-continuous furnace fan usage, based on the following: Payback Period = Incremental cost / [(natural gas savings x natural gas cost) + (electricity savings x electricity cost)] Continuous Fan Usage: = \$960 / [(-166 m ³ /year * \$0.52 / m ³) + (1,403 kWh/year * \$0.10 / kWh)] = 18 years Non-Continuous Fan Usage: = \$960 / [(-26.4 m ³ /year * \$0.52 / m ³) + (207 kWh/year * \$0.10 / kWh)] = 137 years Market Share ²²	Customer Payback Period (Natural Gas and Electricity)	
Combining a 5-year average commodity cost (avoided cost) ²⁰ of \$0.38 / m ³ and an average residential distribution cost ²¹ of \$0.14 / m ³ , the total cost of natural gas for residential customers is determined to be \$0.52. For Electricity Savings: An average commodity and distribution cost of \$0.10 / kWh is assumed for residential customers. The payback period incorporating both natural gas usage and electricity savings is determined to be 18 years for continuous usage and 137 years for non-continuous furnace fan usage, based on the following: Payback Period = Incremental cost / [(natural gas savings x natural gas cost) + (electricity savings x electricity cost)] Continuous Fan Usage: = \$960 / [(-166 m ³ /year * \$0.52 / m ³) + (1,403 kWh/year * \$0.10 / kWh)] = 18 years Non-Continuous Fan Usage: = \$960 / [(-26.4 m ³ /year * \$0.52 / m ³) + (207 kWh/year * \$0.10 / kWh)] = 137 years Market Share ²²		s used both natural gas and
An average commodity and distribution cost of \$0.10 / kWh is assumed for residential customers. The payback period incorporating both natural gas usage and electricity savings is determined to be 18 years for continuous usage and 137 years for non-continuous furnace fan usage, based on the following: Payback Period = Incremental cost / [(natural gas savings x natural gas cost) + (electricity savings x electricity cost)] Continuous Fan Usage: = \$960 / [(-166 m³/year * \$0.52 / m³) + (1,403 kWh/year * \$0.10 / kWh)] = 18 years Non-Continuous Fan Usage: = \$960 / [(-26.4 m³/year * \$0.52 / m³) + (207 kWh/year * \$0.10 / kWh)] = 137 years Market Share ²² Low	Combining a 5-year average commodity cost (avoided cost) ²⁰ of $0.38 / n$ distribution cost ²¹ of $0.14 / m^3$, the total cost of natural gas for residential	n ³ and an average residential I customers is determined to be
years for continuous usage and 137 years for non-continuous furnace fan usage, based on the following: Payback Period = Incremental cost / [(natural gas savings x natural gas cost) + (electricity savings x electricity cost)] Continuous Fan Usage: = \$960 / [(-166 m³/year * \$0.52 / m³) + (1,403 kWh/year * \$0.10 / kWh)] = 18 years Non-Continuous Fan Usage: = \$960 / [(-26.4 m³/year * \$0.52 / m³) + (207 kWh/year * \$0.10 / kWh)] = 137 years Market Share ²² Low		or residential customers.
electricity cost)] Continuous Fan Usage: = \$960 / [(-166 m ³ /year * \$0.52 / m ³) + (1,403 kWh/year * \$0.10 / kWh)] = 18 years Non-Continuous Fan Usage: = \$960 / [(-26.4 m ³ /year * \$0.52 / m ³) + (207 kWh/year * \$0.10 / kWh)] = 137 years Market Share ²² Low		
= \$960 / [(-166 m ³ /year * \$0.52 / m ³) + (1,403 kWh/year * \$0.10 / kWh)] = 18 years Non-Continuous Fan Usage: = \$960 / [(-26.4 m ³ /year * \$0.52 / m ³) + (207 kWh/year * \$0.10 / kWh)] = 137 years Market Share ²² Low		ost) + (electricity savings x
= \$960 / [(-26.4 m ³ /year * \$0.52 / m ³) + (207 kWh/year * \$0.10 / kWh)] = 137 years Market Share ²² Low	= \$960 / [(-166 m³/year * \$0.52 / m³) + (1,403 kWh/year	* \$0.10 / kWh)]
	= \$960 / [(-26.4 m ³ /year * \$0.52 / m ³) + (207 kWh/year *	\$0.10 / kWh)]
	Market Share ²²	Low

¹⁷ GDS Associates Inc, Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for The New England State Program Working Group (SPWG) For use as an Energy Efficiency Measures/Programs Reference Document for the ISO Forward Capacity Market (FCM), June 2007.

¹⁸ Joint Assessment Study, MidAmerican Energy Company, Appendix C. State of Iowa Utilities Board Docket No. EEP-08-2, 2008, C-131

¹⁹ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, based on Navigant

Consulting, Evaluation Report: 2007 Hot and Cool Savings Programs, prepared for the Ontario Power Authority (OPA), July 2008. ²⁰ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and

weather sensitive avoided gas cost. ²¹ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>https://www.eninged.com/portal-plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2)</u>. ²² Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

industry, the overall market share still remains low in the residential retrofit market, as seen in another jurisdiction (lowa reports a 5% market penetration for residential homes²³). Therefore, Navigant Consulting estimates the share in Ontario to be low.

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/ Market Share
2009 OPA Measures and Assumptions List ²⁴	-66.8m ³ (continuos usage) 30.6m ³ (non-continuos)	15	\$960	N/A

Comments

Assumptions made in the OPA Measures and Assumptions List are the same assumptions that are made in the above tables.

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/ Market Share
Iowa State Utility Board ²⁵	n/a	15	\$76	5%
Comments	reported (75% over b	ase equipment)	Base equinment is	a standard motor on a

Only electric savings reported (75% over base equipment). Base equipment is a standard motor on a gas fired furnace. Baseline consumption is reported on an annual basis (e.g. 723 kWh for a single family).

²³ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2 ²⁴ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008.

²⁵ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Energy Star Windows (Low-E)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description
Energy Star Low-E Windows, argon filled (U=0.26 or R=3.8)
Base Equipment and Technologies Description
Double pane with standard glazing (U=0.49 or R = R=2.0)

Decision Type	Target Market(s)	End Use
Retrofit	Exiting Residential	Space heating

Codes, Standards, and Regulations

Minimum ENERGY STAR® requirements are based on either a U-value or Energy Rating (ER) for each of the four Canadian zones¹.

	Maximum U-values			Minimum Energy Rating (ER) Values					
Zone	and Minimum R-Values								
					(Maximum U-value 2.00 W/m ² •K)				
	U-value	U-value	R-Value		Most V	Vindows	Pic	ture	
	(W/m ² •K)	(Btu/h•ft. ² •°F)	(ft. ² •h•°F/Btu)		and A	II Doors	Windo	ws Only	
		-			(includ	les fixed			
					casem	ent style			
					windows)				
					1998	2004*	1998	2004*	
А	2	0.35	2.9	or	-16	17	-6	27	
В	1.8	0.32	3.2	or	-12	21	-2	31	
С	1.6	0.28	3.6	or	-8	25	2	35	
D	1.4	0.25	4	or	-5	29	5	39	

¹ NRCan, Office of Energy Efficiency, http://www.oee.nrcan.gc.ca/energystar/english/consumers/ratings.cfm?text=N&printview=N B-34

Resource Savings Table

	Electricity and Other Resource Savings			Equipment & O&M	Equipment & O&M Costs of	
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure	
(EUL=)	(m ³)	(kWh)	(L)	(\$/window)	(\$)	
1	121	206	0	150	0	
2	121	206	0	0	0	
3	121	206	0	0	0	
4	121	206	0	0	0	
5	121	206	0	0	0	
6	121	206	0	0	0	
7	121	206	0	0	0	
8	121	206	0	0	0	
9	121	206	0	0	0	
10	121	206	0	0	0	
11	121	206	0	0	0	
12	121	206	0	0	0	
13	121	206	0	0	0	
14	121	206	0	0	0	
15	121	206	0	0	0	
16	121	206	0	0	0	
17	121	206	0	0	0	
18	121	206	0	0	0	
19	121	206	0	0	0	
20	121	206	0	0	0	
TOTALS	2,420	4,020	0	\$150	0	

Resource Savings Assumptions

Annual Natural Gas Savings	121 m ³			
Natural gas savings based on REFREN 5.0 modeling using the following ass • Existing frame 2,000 ft ²	umptions:			
• 2-storey residential home, with a gas furnace, central air conditioner				
 300 ft² in windows (15% floor area) 				
• Toronto, ON weather	(1.1.0.40)			
 Baseline windows assumed wood/vinyl double pane, clear (air filled) windows (U=0.49) Energy efficient windows assumes wood/vinyl double pane, low-E, argon filled windows (U=0.26)² 				
Based on the above assumptions, the following results were obtained:				
• Baseline heating consumption = 141.3 MMBtu (3,884 m ³) of natural gas				
 Energy efficient heating consumption = 134.2 MMBtu (3,689 m³) of natural gas Savings = 3,884 m³ - 3,689 m³ = 195 m³ or 5.0% 				
Applying the percent savings to Enbridge's baseline natural gas consumption furnaces ³ (2,436 m ³):	for mid-efficiency			
• Natural Gas Savings = 2,436 m ³ * 5.0% = 121 m ³				
Annual Electricity Savings	206 kWh			
Electric saving from space cooling reduction is based on the same assumption	ons as above:			
Baseline cooling consumption = 590 kWh				
 Energy efficient cooling consumption = 342 kWh Savings = 590 kWh – 384 kWh = 206 kWh or 35% 				
- Savings - 350 kivin - 304 kivin - 200 kivin ol 35 /0				
Annual Water Savings	0 L			
N/A				

Other Input Assumptions

Effective Useful Life (EUL)	20 Years			
The EUL is reported to be 25 years by The New England State Program Working Group (SPWG) ⁴ , the lowa Utilities Board ⁵ and Efficiency Vermont ⁶ . NYSERDA ⁷ and the OPA ⁸ report an EUL of 20 years. Navigant is assuming 20 years.				
Base & Incremental Conservation Measure Equipment and O&M Costs	\$150/window			
Based on communication with various local vendors, the incremental cost of p argon windows over the traditional regular double pane, is approximately \$10 average of \$150 per window. For the modeled candidate home, 300 ft ² of win approximately 12 windows, which translates to a total incremental cost of \$1,8	0-200 per window, or an dows is estimated to be			
Customer Payback Period (Natural Gas Only) ⁹	28 Years			

² Based on communication with various local window vendors, majority of customers are choosing low-e argon filled windows, with R-value approximately 4.

 ³ Enbridge Gas Customer Profiling Yearly Average End Use, November 23, 2004
 ⁴ GDS Associates, Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures prepared for The New England State Program Working Group (SPWG), June 2007

⁵ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

⁶ Vermont Residential Master Technical Reference Manual No.2005-37

 ⁷ NYSERDA, New York Energy \$mart Programs, Deemed Savings Database, August 2008
 ⁸ Ontario Power Authority. 2009 OPA Measures and Assumptions List. November 2008.

Using an 5-year average commodity cost (avoided cost)¹⁰ of \$0.38 / m³ and an average residential distribution cost¹¹ of \$0.14 / m³, the payback period for natural gas savings is determined to be 48 years, based on the following: Payback Period = Incremental cost / (natural gas savings x natural gas cost) = \$1,800 / (121 m³/year * \$0.52 / m³) = 28 years Market Share¹² High According to NRCan, in 2003, almost 70% of Ontario residents who replaced their windows opted for either low-e or gas filled windows. Furthermore, based on communications with local contractors and distributors, the majority of customers are replacing their windows with low-e, gas filled windows.

Therefore, Navigant Consulting estimates the market share in Ontario to be high.

⁹ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹⁰ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

¹¹ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>https://portal-</u>

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2).

¹² Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m ³)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Questar Gas ¹³	6.23 DTh (22.7 m ³)	35	\$201	N/A
Comments Details regarding baselir	ne and new technolog	gy are not listed.		
Source	Annual Natural Gas Savings (m ³)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
State of Iowa Utilities Board ¹⁴	3.8	25	3,868 US\$	75%
code windows (U= 0.35,	Assuming baseline technology of existing windows (U=0.51, SHGC = 0.67) is being replaced with state code windows (U= 0.35, SHGC= 0.32). Savings reported as 0.2% of baseline consumption of 696 therms, which would translate to 1.39 therms, or 3.8 m^3 .			
Source	Annual Natural Gas Savings (m ³)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
2009 OPA Measures and Assumptions List ¹⁵	319	25	\$500/window	N/A
Comments Assuming baseline technology of eight (8) existing windows (single pane with storm windows) being replaced by double pane, low-e argon, wood frame windows. Per window savings also reported as 39.8 m ³ .				

 ¹³ Nexant, DSM Market Characterization Report, prepared for Questar Gas, August 2006
 ¹⁴ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2
 ¹⁵ Ontario Power Authority. 2009 OPA Measures and Assumptions List. November 2008.

Heat Reflective Panels

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

A saw tooth panel made of clear PVC with a reflective surface placed behind a gas radiator reducing heat lost to poorly insulated exterior walls.

Base Equipment and Technologies Description

Existing housing with gas radiant heat with no reflecting panels.

Decision Type	Target Market(s)	End Use
New	Existing single family residential homes (pre-1980)	Space Heating

Codes, Standards, and Regulations

No code or standard exists for heat reflective panels.

Resource Savings Table

	Electricity and Other Resource Savings		Equipment & O&M	Equipment & O&M Costs of	
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	143	0	0	229	0
2	143	0	0	0	0
3	143	0	0	0	0
4	143	0	0	0	0
5	143	0	0	0	0
6	143	0	0	0	0
7	143	0	0	0	0
8	143	0	0	0	0
9	143	0	0	0	0
10	143	0	0	0	0
11	143	0	0	0	0
12	143	0	0	0	0
13	143	0	0	0	0
14	143	0	0	0	0
15	143	0	0	0	0
16	143	0	0	0	0
17	143	0	0	0	0
18	143	0	0	0	0
TOTALS	2,574	0	0	229	0

Annual Natural Gas Savings	143 m ³	
A 2006 Enbridge Gas Distribution Load Research Study ¹ reports an average boiler consumption of 3,493 m ³ for single family homes. A 2008 heat reflective panel pilot study conducted by Enbridge determined an annual gas savings of 4.1% in a single family environment ² .		
Applying this savings to the average annual gas consumption results in a $(3,493 \text{ m}^3 \times 4.1\%)$.	n annual gas savings of 143 m ³	
Annual Electricity Savings	0 kWh	
No electricity savings result from heat reflective panels.		
Annual Water Savings	0 L	
No water savings result from heat reflective panels.		

•				
Effective Useful Life (EUL)	18 Years			
Reflective panels are assumed to have the same effective useful life as a furnace. The US DOE reports an 18 year measure life for gas furnaces, according to a Lawrence Berkeley National Laboratory study ³ . Furthermore, ACEEE ⁴ and State of Iowa ⁵ both estimate an effective useful life of furnaces to be 18 years. Puget Sound Energy ⁶ and New England State Program Working Group (SPWG) ⁷ also suggest 18 years for high efficiency furnaces.				
Base & Incremental Conservation Measure Equipment and O&M Costs	\$229			
The manufacturer of heat reflective panels, Novitherm, provides the avera family home (typically installed by the homeowner) ⁸ .	age price for reflectors in a single			
Customer Payback Period (Natural Gas Only)	3.1 Years			
Using an 5-year average commodity cost (avoided cost) ⁹ of \$0.38 / m ³ ar distribution cost ¹⁰ of \$0.14 / m ³ , the payback period for natural gas saving based on the following:				
Payback Period = Incremental cost / (natural gas savings x natural gas cost) = \$229/ (143 m ³ /year * \$0.52 / m ³) = 3.1 years				

¹ Enbridge Gas Distribution. Residential Boiler Consumption Research: Summary.

² Ibid.

³ US DOE Energy Star Program. Lifecycle Cost Estimate for an Energy Star Qualified Residential Furnace. Assumptions Tab. <u>http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_Furnaces.xls</u>

⁴ Powerful Priorities: Updating Energy Efficiency Standards for Residential Furnaces, Commercial Air Conditioners, and Distribution Transformers. ACEEE, September 2004.

⁵ Joint Assessment Study, MidAmerican Energy Company, Appendix C. State of Iowa Utilities Board Docket No. EEP-08-2, 2008, C-131

⁶ Quantec, Comprehensive Demand-Side Management Resource Assessment, Prepared for Puget Sound Energy, May 2007

⁷ GDS Associates, Inc., Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for The New England State Program Working Group (SPWG), For use as an Energy Efficiency Measures/Programs Reference Document for the ISO Forward Capacity Market (FCM), June 2007

⁸ Novitherm Heat Reflectors, Residential - Reduce Heating Costs <u>www.novitherm.com</u>

⁹ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

¹⁰ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>https://portal-</u>

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2).

Market Penetration ¹¹	Low
Given the relative novelty of this technology. Navigant Consulting estimat	es the penetration in Ontario to

Given the relative novelty of this technology, Navigant Consulting estimates the penetration in Ontario to be low.

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/ Market Share
N/A	N/A	N/A	N/A	N/A
Comments N/A				
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/ Market Share
N/A	N/A	N/A	N/A	N/A
Comments N/A				

¹¹ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

High Efficiency (Condensing) Furnace - Residential

1	Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

High-efficiency condensing furnace with regular PSC motor - AFUE 90, 92 and 96

Base Equipment and Technologies Description

Mid-efficiency furnace AFUE 80¹

Decision Type	Target Market(s)	End Use
New, Retrofit	Residential	Space Heating

Codes, Standards, and Regulations

- Under Ontario's building code, all gas furnaces installed in new residential construction must meet a minimum condensing efficiency level effective January 1, 2007.²
- NRCan proposes to increase the minimum performance level, the Annual Fuel Utilization Efficiency (AFUE), for gas-fired furnaces with an input rate not exceeding 65.92 kW (225,000 Btu/h) to 90% for December 31, 2009.³

¹ The federal baseline is AFUE 78, but very few are sold below 80. *Powerful Priorities: Updating Energy Efficiency Standards for Residential Furnaces, Commercial Air Conditioners, and Distribution Transformers.* ACEEE, September 2004, Page 9.

² Ministry of Energy, "Heating and Cooling your Home: A Conservation Guide." Reproduced with the permission of Natural Resource Canada, 2004. <u>http://www.energy.gov.on.ca/english/pdf/conservation/heating_and_cooling_your_home.pdf</u>

³ Office of Energy Efficiency, Canada's Energy Efficiency Regulations, Proposed Regulations Bulletin, March 2007. <u>http://www.oee.nrcan.gc.ca/regulations/bulletin/gas-furnace-mar2007.cfm?Text=N&PrintView=N</u>

Resource Savings Table (for 3 different cases)

AFUE 90

	Electricity and Other Resource Savings		ce Savings	Equipment & O&M	Equipment & O&M Costs of
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	268	0	0	2,900	2,233
2	268	0	0	0	0
3	268	0	0	0	0
4	268	0	0	0	0
5	268	0	0	0	0
6	268	0	0	0	0
7	268	0	0	0	0
8	268	0	0	0	0
9	268	0	0	0	0
10	268	0	0	0	0
11	268	0	0	0	0
12	268	0	0	0	0
13	268	0	0	0	0
14	268	0	0	0	0
15	268	0	0	0	0
16	268	0	0	0	0
17	268	0	0	0	0
18	268	0	0	0	0
TOTALS	4,824	0	0	2,900	2,233

Recearce caringe / recamptione				
Annual Natural Gas Savings	268 m ³			
 Gas savings associated with upgrading from a mid-efficiency furr are based on the following formula: 	ace to a high efficiency furnace			
 Annual Savings = 1 – Base Technology AFUE / Efficient Equipme = 1 – 80/90 = 11.1% 	ent AFUE			
 The US DOE reports an 11.7% gas savings for an AFUE 90 furnace (based on an AFUE 80 baseline).⁴ 				
 Natural gas savings are based on Enbridge research⁵ indicating t for a mid-efficiency furnace is 2,436m³. 	 Natural gas savings are based on Enbridge research⁵ indicating that the average consumption for a mid-efficiency furnace is 2,436m³. 			
• Using the calculated percent savings (11.1%) multiplied by the base energy consumption (2,436 m ³) the annual gas savings are estimated to be 268 m ³ .				
Annual Electricity Savings	0 kWh			
Electricity savings resulting from high efficiency furnaces are assumed to be negligible.				
Annual Water Savings 0 L				
N/A				

Effective Useful Life (EUL)	18 Years	
ACEEE ⁶ and State of Iowa ⁷ both estimate an effective useful life of 18 years New England State Program Working Group (SPWG) ⁹ also suggest 18 years.	ars. Puget Sound Energy ⁸ and ears for high efficiency	
Base & Incremental Conservation Measure Equipment and O&M Costs	\$667	
Average equipment costs were determined based on communication with several Ontario HVAC contractors. The average baseline equipment cost (AFUE 80) was determined to be \$2,233 and the average cost of a 90 AFUE condensing gas furnace was determined to be \$2,900, resulting in an incremental cost of \$667.		
In comparison, the US DOE ¹⁰ reports an AFUE 80 furnace at \$2,526 and furnace at \$3,170, giving an incremental cost of \$644.	an AFUE 90 condensing gas	
Customer Payback Period (Natural Gas Only)	4.8 Years	
Using an 5-year average commodity cost (avoided cost) ¹¹ of \$0.38 / m ³ a	nd an average residential	

 ⁴ US DOE Residential Furnaces and Boilers Technical Support Document Analytical Tools. Life Cycle Cost Results for Non-Weatherized Gas Furnaces. <u>http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_nwgf_gt6000hdd.xls</u>
 ⁵ Based on information provided by Enbridge Gas, based on Decision for the Enbridge 2006 DSM Plan (EB2005-0001).

⁶ Powerful Priorities: Updating Energy Efficiency Standards for Residential Furnaces, Commercial Air Conditioners, and Distribution Transformers. ACEEE, September 2004.

⁷ Joint Assessment Study, MidAmerican Energy Company, Appendix C. State of Iowa Utilities Board Docket No. EEP-08-2, 2008, C-131

⁸ Quantec, Comprehensive Demand-Side Management Resource Assessment, Prepared for Puget Sound Energy, May 2007

⁹ GDS Associates, Inc., Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for The New England State Program Working Group (SPWG), For use as an Energy Efficiency Measures/Programs Reference Document for the ISO Forward Capacity Market (FCM), June 2007

¹⁰ US DOE Residential Furnaces and Boilers Technical Support Document Analytical Tools. Life Cycle Cost Results for Non-Weatherized Gas Furnaces. <u>http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_nwgf_gt6000hdd.xls</u>

distribution cost¹² of \$0.14 / m³, the payback period for natural gas savings is determined to be 4.8 years, based on the following:

Payback Period = Incremental cost / (natural gas savings x natural gas cost)

$$=$$
 \$667/ (268 m³/year * \$0.52 / m³)

= 4.8 years

Market Share¹³

Medium

According to NRCan, the market penetration of gas fired high efficiency furnaces (AFUE 90+) in single family homes is approximately 27% in Ontario¹⁴. Based on communications with local contractors and distributors, due to recent conservation efforts (e.g., rebates) to promote high efficiency furnaces, customers are increasingly upgrading to high-efficient furnaces over mid-efficiency furnaces. Therefore, Navigant Consulting estimates the market share in Ontario to be medium.

AFUE 92

	Electricity and Other Resource Savings			Equipment & O&M Costs of Concernation Equipment & O&M Costs of	
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	317	0	0	3,300	2,233
2	317	0	0	0	0
3	317	0	0	0	0
4	317	0	0	0	0
5	317	0	0	0	0
6	317	0	0	0	0
7	317	0	0	0	0
8	317	0	0	0	0
9	317	0	0	0	0
10	317	0	0	0	0
11	317	0	0	0	0
12	317	0	0	0	0
13	317	0	0	0	0
14	317	0	0	0	0
15	317	0	0	0	0
16	317	0	0	0	0
17	317	0	0	0	0
18	317	0	0	0	0
TOTALS	5,706	0	0	3611	2,233

¹¹ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost. ¹² Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and

Enbridge Gas websites (https://portal-

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2).

¹³ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

¹⁴ NRCan, Office of Energy Efficiency, Comprehensive Energy Use Database: Table 22: Single detached heating system stock by heating system type, http://oee.nrcan.gc.ca/corporate/statistics/neud/dpa/trends res on.cfm, updated September 2008.

Recearce carrige Recamptione		
Annual Natural Gas Savings	317 m ³	
• Gas savings associated with upgrading from a mid-efficiency furnace to a high efficiency furnace are based on the following formula:		
 Annual Savings = 1 – Base Technology AFUE / Efficient Equipment AFUE = 1 – 80/92 = 13.0% 		
 The US DOE reports a 12.9% gas savings for an AFUE 92 furnace (based on an AFUE 80 baseline).¹⁵ 		
 Natural gas savings are based on Enbridge research¹⁶ indicating that the average consumption for a mid-efficiency furnace is 2,436 m³. 		
 Using the calculated percent savings (13.0%) multiplied by the base energy consumption (2,436 m³) the annual gas savings are estimated to be 317 m³. 		
Annual Electricity Savings	0 kWh	
Electricity savings resulting from high efficiency furnaces are negligible.		
Annual Water Savings	0 L	
N/A		

Effective Useful Life (EUL)	18 Years	
ACEEE ¹⁷ and State of Iowa ¹⁸ both estimate an effective useful life of 18 y and New England State Program Working Group (SPWG) ²⁰ also suggest furnaces.	ears. Puget Sound Energy ¹⁹ 18 years for high efficiency	
Base & Incremental Conservation Measure Equipment and O&M Costs	\$1,067	
Average equipment costs were determined based on communication with several Ontario HVAC contractors. The average baseline equipment cost (AFUE 80) was determined to be \$2,233 and the average cost of a 92 AFUE condensing gas furnace was determined to be \$3,300, resulting in an incremental cost of \$1,067.		
In comparison, the US DOE ²¹ reports an AFUE 80 furnace at \$2,526 and furnace at \$3,611, giving an incremental cost of \$1,067.	an AFUE 92 condensing gas	
Payback Period	6.5 Years	
Using an 5-year average commodity cost (avoided cost) ²² of \$0.38 / m ³ a		

 ¹⁵ US DOE Residential Furnaces and Boilers Technical Support Document Analytical Tools. Life Cycle Cost Results for Non-Weatherized Gas Furnaces. <u>http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_nwgf_gt6000hdd.xls</u>
 ¹⁶ Based on information provided by Enbridge Gas, based on Decision for the Enbridge 2006 DSM Plan (EB2005-0001).

 ¹⁰ Based on information provided by Enbridge Gas, based on Decision for the Enbridge 2006 DSM Plan (EB2005-0001).
 ¹⁷ Powerful Priorities: Updating Energy Efficiency Standards for Residential Furnaces, Commercial Air Conditioners, and Distribution Transformers. ACEEE, September 2004.

 ¹⁸ Joint Assessment Study, MidAmerican Energy Company, Appendix C. State of Iowa Utilities Board Docket No. EEP-08-2, 2008, C-131

¹⁹ Quantec, Comprehensive Demand-Side Management Resource Assessment, Prepared for Puget Sound Energy, May 2007

²⁰ GDS Associates, Inc., Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for The New England State Program Working Group (SPWG), For use as an Energy Efficiency Measures/Programs Reference Document for the ISO Forward Capacity Market (FCM), June 2007

²¹ US DOE Residential Furnaces and Boilers Technical Support Document Analytical Tools. Life Cycle Cost Results for Non-Weatherized Gas Furnaces. <u>http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_nwgf_gt6000hdd.xls</u>

distribution cost²³ of \$0.14 / m³, the payback period for natural gas savings is determined to be 6.5 years, based on the following:

Payback Period = Incremental cost / (natural gas savings x natural gas cost)

= \$1,067/ (317 m³/year * \$0.52 / m³)

= 6.5 years

Market Share²⁴

Medium

According to NRCan, the market penetration of gas fired high efficiency furnaces (AFUE 90+) in single family homes is approximately 27% in Ontario²⁵. Based on communications with local contractors and distributors, due to recent conservation efforts (e.g., rebates) to promote high efficiency furnaces, customers are increasingly upgrading to high-efficient furnaces over mid-efficiency furnaces. Therefore, Navigant Consulting estimates the share in Ontario to be medium.

AFUE 96

	Electricity and Other Resource Savings		Equipment & O&M	Equipment & O&M Costs of	
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	407	0	0	4,667	2,233
2	407	0	0	0	0
3	407	0	0	0	0
4	407	0	0	0	0
5	407	0	0	0	0
6	407	0	0	0	0
7	407	0	0	0	0
8	407	0	0	0	0
9	407	0	0	0	0
10	407	0	0	0	0
11	407	0	0	0	0
12	407	0	0	0	0
13	407	0	0	0	0
14	407	0	0	0	0
15	407	0	0	0	0
16	407	0	0	0	0
17	407	0	0	0	0
18	407	0	0	0	0
TOTALS	7,326	0	0	4,667	2,233

²² 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost. ²³ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2).

²⁴ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

Enbridge Gas websites (https://portal-

²⁵ NRCan, Office of Energy Efficiency, Comprehensive Energy Use Database: Table 22: Single detached heating system stock by heating system type, http://oee.nrcan.gc.ca/corporate/statistics/neud/dpa/trends res on.cfm, updated September 2008.

Resource Savings Assumptions		
Annual Natural Gas Savings	407 m ³	
Gas savings associated with upgrading from a mid-efficiency furr are based on the following formula:	nace to a high efficiency furnace	
 Annual Savings = 1 – Base Technology AFUE / Efficient Equipme = 1 – 80/96 = 16.7% 	ent AFUE	
 The US DOE reports a 16.1% gas savings for an AFUE 96 furned baseline).²⁶ 	ce (based on an AFUE 80	
 Natural gas savings are based on Enbridge research²⁷ indicating that the average consumption for a mid-efficiency furnace is 2,436 m³. 		
 Using the calculated percent savings (16.7%) multiplied by the base energy consumption (2,436 m³) the annual gas savings are estimated to be 407 m³. 		
Annual Electricity Savings	0 kWh	
Electricity savings resulting from high efficiency furnaces are negligible.		
Annual Water Savings	0 L	
N/A		

Effective Useful Life (EUL)	18 Years
ACEEE ²⁸ and State of Iowa ²⁹ both estimate an effective useful life of 18 y and New England State Program Working Group (SPWG) ³¹ also suggest furnaces.	ears. Puget Sound Energy ³⁰ 18 years for high efficiency
Base & Incremental Conservation Measure Equipment and O&M Costs	\$2,433
Average equipment cost were determined based on communication with s contractors. The average baseline equipment cost (AFUE 80) was deterr average cost of a 96 AFUE condensing gas furnace was determined to be ncremental cost of \$2,433.	nined to be \$2,233 and the
In comparison, the US DOE ³² reports an AFUE 80 furnace at \$2,526 and furnace at \$4,560, giving an incremental cost of \$2,433.	an AFUE 96 condensing gas
Payback Period	11.5 Years
Using an 5-year average commodity cost (avoided cost) ³³ of \$0.38 / m ³ a	

 ²⁶ US DOE Residential Furnaces and Boilers Technical Support Document Analytical Tools. Life Cycle Cost Results for Non-Weatherized Gas Furnaces. <u>http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_nwgf_gt6000hdd.xls</u>
 ²⁷ Based on information provided by Enbridge Gas, based on Decision for the Enbridge 2006 DSM Plan (EB2005-0001).

 ²⁷ Based on information provided by Enbridge Gas, based on Decision for the Enbridge 2006 DSM Plan (EB2005-0001).
 ²⁸ Powerful Priorities: Updating Energy Efficiency Standards for Residential Furnaces, Commercial Air Conditioners, and Distribution

Transformers. ACEEE, September 2004.
 ²⁹ Joint Assessment Study, MidAmerican Energy Company, Appendix C. State of Iowa Utilities Board Docket No. EEP-08-2, 2008, C-131

³⁰ Quantec, Comprehensive Demand-Side Management Resource Assessment, Prepared for Puget Sound Energy, May 2007

³¹ GDS Associates, Inc., Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for The New England State Program Working Group (SPWG), For use as an Energy Efficiency Measures/Programs Reference Document for the ISO Forward Capacity Market (FCM), June 2007

³² US DOE Residential Furnaces and Boilers Technical Support Document Analytical Tools. Life Cycle Cost Results for Non-Weatherized Gas Furnaces. <u>http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_nwgf_gt6000hdd.xls</u>

distribution cost ³⁴ of \$0.14 / m ³ , the payback period for natural gas saving years, based on the following:	s is determined to be 11.5
Payback Period = Incremental cost / (natural gas savings x natural gas co = \$2,433 / (407 m ³ /year * \$0.52 / m ³) = 11.5 years	ost)
35	5 <i>4</i> 11
Market Share ³⁵ MediumAccording to NRCan, the market share of gas fired high efficiency furnaces (AFUE 90+) in single family homes is approximately 27% in Ontario ³⁶ . Based on communications with local contractors and distributors, due to recent conservation efforts (e.g., rebates) to promote high efficiency furnaces, customers are increasingly upgrading to high-efficient furnaces over mid-efficiency furnaces. Therefore, Navigant Consulting estimates the penetration in Ontario to be medium.	

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/ Market Share
Otata of laws 1 Hilling	AFUE 90: 13.3% or 259 m ³		US\$175	
State of Iowa Utilities Board ³⁷	AFUE 93: 16.0% or 312 m ³	18	US\$210	N/A
	AFUE 96: 18.8% or 366 m ³		US\$305	
Comments The State of Iowa reports a baseline gas furnace as AFUE 78 (state code) using 701 therms/year or 1947.2 m ³ /year.				
Puget Sound Energy ³⁸	AFUE 90: 13% or 222 m ³	18	US\$600	N/A
	AFUE 96: 19% or 324 m ³	10	US\$950	IN/A

Comments

Puget Sound reports their savings based on a baseline gas furnace of AFUE 78 using 614 therms/year or 1,707 m³/year.

³³ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost. ³⁴ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and

Enbridge Gas websites (https://portal-

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2). ³⁵ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

³⁶ NRCan, Office of Energy Efficiency, Comprehensive Energy Use Database: Table 22: Single detached heating system stock by heating system type, http://oee.nrcan.gc.ca/corporate/statistics/neud/dpa/trends_res_on.cfm, updated September 2008.

³⁷ Joint Assessment Study, MidAmerican Energy Company, Appendix C. State of Iowa Utilities Board Docket No. EEP-08-2, 2008, C-131

³⁸ Quantec, Comprehensive Demand-Side Management Resource Assessment, Prepared for Puget Sound Energy, May 2007 B-49

Programmable Thermostat - Residential

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description
Programmable thermostat.
Base Equipment and Technologies Description

Standard thermostat.

Decision Type	Target Market(s)	End Use
Retrofit	Residential existing homes	Space Heating

Codes, Standards, and Regulations

- For a programmable thermostat to receive Energy Star® qualification, it must meet specific criteria such as having at least two different programming periods (for weekday and weekend programming), at least four possible temperature settings and allow for temporary overriding by the user.
- In Canada, applicable CSA standards can be found in CSA C828-99- CAN/CSA Performance Requirements for Thermostats used with Individual Room Electric Space Heating Devices.

Resource	Savings	Table
1100001100	outingo	IUNIO

	Electricity and Other Resource Savings		Equipment & O&M Costs of	Equipment & O&M	
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	146	182	0	25	0
2	146	182	0	0	0
3	146	182	0	0	0
4	146	182	0	0	0
5	146	182	0	0	0
6	146	182	0	0	0
7	146	182	0	0	0
8	146	182	0	0	0
9	146	182	0	0	0
10	146	182	0	0	0
11	146	182	0	0	0
12	146	182	0	0	0
13	146	182	0	0	0
14	146	182	0	0	0
15	146	182	0	0	0
TOTALS	2,190	2,730	0	25	0

	vings			146 m ³			
Two utility studies ¹ are used to determine savings resulting from residential programmable thermostats on natural gas consumptions.							
normalized for multivariate reg % of total hous natural gas sav 1,253 ccf (3,54 – In the Enbridg analyzed in 20 2,878 m ³ of na	works study ² , 4,061 mail temperature and the energiession analysis. The strate schold annual natural gas vings based on a Non-Pro 18 m ³) natural gas. The Billing Analysis³ , 911 05. Enbridge determined tural gas.	ergy impacts we udy found that p s use. GasNetwo ogrammable Th customers' nat	re determined the programmable the prks is proposing ermostat annual ural gas consum	rough a ermostat saved J 75 ccf (212 m ³) consumption of ption was			
thermostat natural gas sa Ottawa to allow direct co predicted savings for 18°	avings ⁴ . The study was d mparison of changes in c ℃ night setback.	one in two ident operating conditi	ical research hoi ons in a home. I	mes located in t reports a 6.5%			
Ottawa to allow direct co	avings ⁴ . The study was d mparison of changes in c ℃ night setback.	one in two ident operating conditi	ical research hoi ons in a home. I	mes located in t reports a 6.5%			
thermostat natural gas sa Ottawa to allow direct co predicted savings for 18° Based on these three stu	avings ⁴ . The study was d mparison of changes in c ℃ night setback.	one in two ident operating conditi	ical research hoi ons in a home. I	mes located in t reports a 6.5%			
thermostat natural gas sa Ottawa to allow direct co predicted savings for 18° Based on these three stu gas consumptions.	avings ⁴ . The study was d mparison of changes in c 'C night setback. udies, Navigant Consultin Baseline Gas	one in two ident operating conditi g is assuming a Gas Savings	ical research hoi ons in a home. I n average saving	mes located in t reports a 6.5%			
thermostat natural gas sa Ottawa to allow direct co predicted savings for 18° Based on these three stu gas consumptions.	avings ⁴ . The study was demparison of changes in c 'C night setback. udies, Navigant Consultin Baseline Gas Consumption (m ³)	one in two ident operating conditi g is assuming a Gas Savings (m ³)	ical research hoi ons in a home. I n average saving Gas Savings%	mes located in t reports a 6.5%			
thermostat natural gas sa Ottawa to allow direct co predicted savings for 18° Based on these three stu gas consumptions. Studies GasNetworks (2007)	avings ⁴ . The study was demparison of changes in o 'C night setback. Idies, Navigant Consultin Baseline Gas Consumption (m ³) 3,548	one in two ident operating conditi g is assuming a Gas Savings (m ³) 212	ical research hoi ons in a home. If n average saving Gas Savings% 6.0%	mes located in t reports a 6.5%			
thermostat natural gas sa Ottawa to allow direct co predicted savings for 18° Based on these three stu gas consumptions. Studies GasNetworks (2007) Enbridge (2005)	avings ⁴ . The study was demparison of changes in o 'C night setback. Idies, Navigant Consultin Baseline Gas Consumption (m ³) 3,548	one in two ident operating conditi g is assuming a Gas Savings (m ³) 212	ical research hoi ons in a home. If n average saving Gas Savings% 6.0% 5.5%	mes located in t reports a 6.5%			

Therefore, NCI estimates for natural gas savings = $2,436 \text{ m}^{\circ} \times 6\%$ = 146 m°

Annual Electricity Savings

• A side-by-side housing study conducted by the Canadian Centre for Housing Technology⁶ determined seasonal energy savings for a residential unit from a programmable thermostat as follows:

CAC**:

Temp Set Back	Total Summer Furnace and CAC Electricity Consumption (kWh)	Seasonal Savings (%)
None (22C)	3,099	0
25 C daytime set back	2,767	11
24 C daytime set back	2,376	23

** 12 SEER , 2 ton capacity CAC, 362 cooling degree days (18C)

182 kWh

¹ "Resource Savings Values in Selected Residential DSM Prescriptive Programs", Summit Blue Consulting, June 2008.

² RLW Analytics, Validating the impact of programmable thermostats: final report. Prepared for GasNetworks by RLW Analytics. Middletown, CT, January 2007.

³ "Resource Savings Values in Selected Residential DSM Prescriptive Programs", Summit Blue Consulting, June 2008.

⁴ The Effects of Thermostat Setting on Seasonal Energy Consumption at the CCHT Research Facility, Manning, Swinton, Szadkowski, Gusdorf, Ruest, February 14, 2005, http://irc.nrc-cnrc.gc.ca/pubs/rr/rr191/rr191.pdf

⁵ Enbridge Gas Customer Profiling Yearly Average End Use, November 23, 2004; based on Summit Blue Report, Navigant Consulting will use baseline consumption data provided by Enbridge for analysis.

⁶ Canadian Center for Housing Technologies, The Effects of Thermostat Set-back and Set-up on Seasonal Energy Consumption, Surface Temperatures and Recovery Times at the CCHT Twin House Facility, March 2007 http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc48361/nrcc48361.pdf

- A BC Hydro study⁷ reports savings between 10% and 15% for 4°C set back during night and unoccupied periods, Energy Star Calculator⁸ reports 3% saving per degree for heating season (8.25% for full set back). Using the CCHT study results from a full daytime and night-time set back of 4 degrees:
 - Approximate savings is expected for the winter season = 2,314 2,270 = 44 kWh/year
- Navigant Consulting is assuming a base CAC usage of 1,257 kWh/year based on the OPA's assumption using CAC rated at 8.7 SEER and 24,000 Btu/hr unit⁹. Using the CCHT study results, setting the thermostat 3 degrees higher would save 11%:
 - Based on CAC usage of 1,257 kWh/year, electricity savings = 1,257 x 11% = 138 kWh/year
- Therefore, assuming an average home has both space cooking using CAC and force air heating, the total electricity savings = 138 kWh/year + 44 kWh/year = 182 kWh/year.

Annual Water Savings	0 L	
N/A		

Other Input Assumptions

Effective Useful Life (EUL)	15 Years			
Navigant Consulting is estimating 15 years as the effective useful life based on the average lifetime of programmable thermostat from Energy Star ® website.				
Base & Incremental Conservation Measure Equipment and O&M Costs	\$ 25			
Average incremental cost of programmable thermostats determined to be \$25 based on average cost of non-programmable and programmable thermostats from Home Depot and Canadian Tire website in 2008.				
Customer Payback Period (Natural Gas Only) ¹⁰	0.3 Years			
Customer Payback Period (Natural Gas Only) ¹⁰ Using an 5-year average commodity cost (avoided cost) ¹¹ of \$0.38 / m ³ a distribution cost ¹² of \$0.14 / m ³ , the payback period for natural gas saving years, based on the following:	nd an average residential			

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorProgrammableThermostat.xls

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2).

⁷ Marbek Resource Consultants, The Sheltair Group Inc, BC Hydro BC Hydro Conservation Potential Review 2002, Residential Sector Report (Base Year: Fiscal 2000/01) (Revision 1) Submitted to: BC Hydro, June 2003

⁸ US EPA (EPA Energy Star® Simple Savings Calculator – Programmable Thermostat),

⁹ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, referenced from: Heating, Refrigeration and Air Conditioning Institute of Canada (HRAI), 2006 Cool Savings Rebate Program, Prepared for the Ontario Power Authority, April 2007.

¹⁰ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹¹ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

¹² Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>http://portal-</u>

Market Penetration	65%
Due to the number of conservation programs in Ontario currently offering	programmable thermostats
and based on previous research conducted for the OPA ¹³ . Navigant Cons	ulting estimates the

and based on previous research conducted for the OPA¹³, Navigant Consulting estimates the penetration of programmable thermostats amongst single family residents in Ontario to be 65%.

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share		
State of Iowa Utilities Board ¹⁴	276	15	\$25	46% (single family)		
Comments						
Measure provides saving	gs of 11.5% over 2,3	99 m3 required for	space heating wit	h base equipment.		
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share		
Ontario Power Authority ¹⁵ 182 15 \$140 N/A						
Comments Based on gas savings from Canadian Centre for Housing Technology study for an 80% AFUE gas furnace using standard PCS motor and furnace size of 67,500 BTU/hr, using 4761 heating degree hours.						

 ¹³ Navigant Consulting, Inc. for the Ontario Power Authority, *Residential Rebate Program: Participation Forecast and Incentive Bundling Strategy – Key Findings Summary*, December 2008
 ¹⁴ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2
 ¹⁵ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008

Wall Insulation (R-19)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description
Main floor wall insulation R-19
Base Equipment and Technologies Description
Main floor wall insulation R-8

Decision Type	Target Market(s)	End Use
Retrofit	Existing Residential (Pre-1980)	Space Heating

Codes, Standards, and Regulations

The minimum R value required by Ontario Building Code¹ for walls other than the foundation wall is 19.

¹ Ontario Regulations 350/06, 2006 Building Code

Resource Savings Table

	Electricity and Other Resource Savings		e Savings	Equipment & O&M Costs of	Equipment & O&M
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$/ft ²)	(\$)
1	405	194	0	2.5	0
2	405	194	0	0	0
3	405	194	0	0	0
4	405	194	0	0	0
5	405	194	0	0	0
6	405	194	0	0	0
7	405	194	0	0	0
8	405	194	0	0	0
9	405	194	0	0	0
10	405	194	0	0	0
11	405	194	0	0	0
12	405	194	0	0	0
13	405	194	0	0	0
14	405	194	0	0	0
15	405	194	0	0	0
16	405	194	0	0	0
17	405	194	0	0	0
18	405	194	0	0	0
19	405	194	0	0	0
20	405	194	0	0	0
21	405	194	0	0	0
22	405	194	0	0	0
23	405	194	0	0	0
24	405	194	0	0	0
25	405	194	0	0	0
26	405	194	0	0	0
27	405	194	0	0	0
28	405	194	0	0	0
29	405	194	0	0	0
30	405	194	0	0	0
TOTALS	12,150	5,820	0	2.5	0

Resource Savings Assumptions

Annual Natural Gas Savings	405 m ³
 Navigant Consulting used HOT2000² to model energy savings resulting upgrade. The following input assumptions were based on a candidate home³. 	

 ² NRCan, <u>http://canmetenergy-canmetenergie.nrcan-rncan.gc.ca/eng/software_tools/hot2000.html</u>
 ³ Candidate home characteristics are based on previous weatherization study completed by Marbek in 2008 for Union Gas and Navigant Consulting input assumptions.

House Characteristics using HOT2000				
Location	Toronto, ON			
Storeys	2			
Above Grade Wall Insulation	R-Value = 8			
Below Grade Wall Insulation	R-Value = 1			
Attic Insulation	R-Value = 10			
Foundation Floor Insulation	R-Value = 5			
Air Leakage (ACH)	8.0			
Window Type	Double pane with standard glazing, Aluminum			
Number of Windows	8			
Ceiling Area (ft ²)	829			
Main Level Wall Area (ft ²)	944			
Living Space Area (ft ²)	1,658			
Basement Wall Area (ft ²)	827			
Basement Floor Area (ft ²)	829			
Base Loads Use	Defaults			
Furnace Efficiency (AFUE)	80			
Furnace Capacity (Btu/hr)	75,000			
Fans Mode	Auto			
A/C Efficiency (SEER)	10			
A/C Capacity (Btu/hr)	13000 [†]			

⁺ The current version of HOT2000 has limitation on A/C capacities under specified conditions. 13000 Btu/hr is the maximum value it allows.

• Based on the above assumptions, the following results are obtained:

HOT2000 Simulation Results	Space Heating NG Consumption (m ³)	Space Cooling Consumption (kWh)	Annual Furnace Fan Consumption (kWh)
Base Case	2,965	682	501
Main Floor Wall Upgrade	2,563	664	434
Savings	402	19	66
Savings%	13.5%	2.8%	13.2%

• Annual natural gas savings for space heating is 13.5%.

• Energy savings estimated by the three other jurisdictions listed below (Washington State, Iowa and New Hampshire) are between 10 to 15% over their baseline. The variation is due to differing input assumptions for both the base case and the energy efficient scenarios.

- In terms of the baseline consumption, Navigant Consulting estimates that a typical pre-1980's home consumes approximately 25% more natural gas then a typical baseline home used by Enbridge⁴ (2,436 m³), approximately 3,000 m³.
- Applying the 13.5% percent savings calculated in the table above to the average annual consumption of natural gas cited directly above yields:

Natural Gas Savings = $3,000 \text{ m}^3 \text{ x} 13.5 \% = 405 \text{ m}^3$

Annual Electricity Savings 194 kWh		
Annual electricity savings are derived from two sources:		
1. Space cooling consumption		
2. Furnace fan consumption		

⁴ Enbridge Gas Customer Profiling Yearly Average End Use, November 23, 2004

Space cooling consumption:

 Assuming that baseline house is equipped with a SEER 10, 2.5 ton⁵ A/C unit and is used 500 hours per year⁶, this implies that:

Base A/C electricity use = 500 (cooling hours)*[30,000 (Btu/hr)/(10 (SEER)* 1,000)] = 1,500 kWh

• Applying the 2.8% savings calculated in the table in the previous section to the average annual consumption of electricity cited directly above yields:

Electricity savings (A/C) = 2.8% x 1,500 kWh/year = 42 kWh.

Furnace fan consumption:

- Annual furnace fan consumption for a typical Toronto home with a non-continuous mid-efficiency furnace = 1,150 kWh⁷
- Applying the 13.2% savings calculated in the table in the previous section to the annual furnace fan electricity consumption cited directly above yields:

Electricity savings (furnace fan)= 13.2% x 1150 kWh = 151.8 kWh

Total Electricity Savings:

• Total electricity savings are the sum of furnace fan savings and air conditioner savings:

Total electric	Total electricity savings = $151.8 \text{ kWh} + 42 \text{ kWh} = 193.8 \text{ kWh} \approx 194 \text{ kWh}$		
Annual Water Savings	0 L		
N/A			

⁵ Implying input of 30,000 Btu/hr, Energy Star Savings Calculator,

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls

⁶ Number of full-load cooling hours provided by <u>http://energyexperts.org/ac%5Fcalc/</u> and based on the assumption that Ontario's climate is sufficiently similar to that of the north-eastern U.S.

⁷ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf

• •			
Effective Useful Life (EUL)	30 Years		
The EUL is reported to be 25 years by the Iowa Utilities Board ⁸ and 30 years by Puget Sound Energy ⁹ . The OPA reports the EUL to be 30 years, so Navigant Consulting estimates an EUL of 30 years.			
Base & Incremental Conservation Measure Equipment and O&M Costs	\$2.5 / ft ²		
Based on communication with various local vendors, the incremental cost of wall insulation from R=8 to R=19 is approximately \$2.5 per ft ² , which includes only the insulation material and labour but not the costs of wall removal and reconstruction required for installation. For the candidate home, the incremental cost is estimated to be \$2,360 ($$2.50 \times 944 \text{ ft}^2$ / floor = \$2,360).			
Customer Payback Period (Natural Gas Only) ¹⁰	11.2 Years		
Using a 5-year average commodity cost (avoided cost) ¹¹ of $0.38 / m^3$ and distribution cost ¹² of $0.14 / m^3$, the payback period for natural gas saving years, based on the following:	d an average residential		
Using a 5-year average commodity cost (avoided cost) ¹¹ of \$0.38 / m ³ and distribution cost ¹² of \$0.14 / m ³ , the payback period for natural gas saving	d an average residential is is determined to be 11.2		
Using a 5-year average commodity cost (avoided cost) ¹¹ of \$0.38 / m ³ and distribution cost ¹² of \$0.14 / m ³ , the payback period for natural gas saving years, based on the following: Payback Period = Incremental cost / (natural gas savings x natural gas co = \$2.5/ft ² x 944 ft ² / (405 m ³ /year * \$0.52 / m ³)	d an average residential is is determined to be 11.2		

⁸ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2 Quantec, Puget Sound Energy Demand-Side Management Resource Assessment

¹⁰ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included. ¹¹ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and

weather sensitive avoided gas cost. ¹² Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and

Enbridge Gas websites (<u>https://www.eninged.com/portal-plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2)</u>. ¹³ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m ³)	Gas Savings Useful Life		Penetration/Market Share
State of Iowa Utilities Board ¹⁴	211.7	25	1,933	63%
Comments Assuming baseline R-va 11.1% savings are base				
Annual Natural Effective Increm		Incremental Cost (\$)	Penetration/Market Share	
Puget Sound Energy ¹⁵	618	30	1,064	85%
Comments Assuming baseline R-value of wall insulation is 0 and upgrade R-value of wall insulation is 13. Estimated 10% savings are based on 6,181 m ³ , which would translate to 618 m ³ .				
Source	Annual Natural Gas Savings (m ³)		Incremental Cost (\$)	Penetration/Market Share
New Hampshire Electric Utilities ¹⁶	625	N/A	N/A	N/A
Comments New Hampshire Electric Utilities Estimates 15% natural gas savings on wall insulation.				

 ¹⁴ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2
 ¹⁵ Quantec, Comprehensive Demand-Side Management Resource Assessment, Prepared for Puget Sound Energy, May 2007
 ¹⁶ ODC, The New Hampshire Electric Utilities' Low-income Retrofit Program Impact Evaluation, Jan 16, 2006

RESIDENTIAL WATER HEATING

Faucet Aerator (Residential Bathroom)

Revision #	Description/Comment	Date Revised
Efficient Equi	pment and Technologies Description	
Faucet Aerator (Ba	athroom) (1.5 GPM)	
Base Equipme	ent and Technologies Description	
Average existing s	tock (2.2 GPM) ¹	

Decision Type	Target Market(s)	End Use
Retrofit	Residential (existing)	Water heating

Codes, Standards, and Regulations

Ontario Building Code (2006)² requires bathroom and kitchen faucets to have a maximum flow of 2.2 GPM (8.35 L/min).

Resource Savings Table

	Electricity	and Other Resour			Equipment & O&M Costs of	
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure	
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)	
1	10	0	2,004	2	0	
2	10	0	2,004	0	0	
3	10	0	2,004	0	0	
4	10	0	2,004	0	0	
5	10	0	2,004	0	0	
6	10	0	2,004	0	0	
7	10	0	2,004	0	0	
8	10	0	2,004	0	0	
9	10	0	2,004	0	0	
10	10	0	2,004	0	0	
TOTALS	100	0	20,040	2	0	

 ¹ From on-site audit data. Resource Management Strategies, Inc. Regional Municipality of York Water Efficiency Master Plan Update, 2007. Cited in: Summit Blue, Resource Savings Values in Selected Residential DSM Prescriptive Programs, June 2008.
 ² Ontario Regulations 350/06, 2006 Building Code

Annual Natural Gas Savings	10 m ³
Assumptions and inputs:	
 Average faucet water temperature: 32 °C (90 °F)³ 	
 Average water inlet temperature: 7.22 °C (45 °F)⁴ 	
 Average water heater energy factor: 0.57⁵ 	
Annual gas savings calculated as follows:	
Savings = W * 8.33 * $(T_{out} - T_{in}) * \frac{1}{EF} * 10^{-6} * 27.8$	
Where:	
W = Water savings (gallons)	
8.33 = Energy content of water (Btu/gallo	n/°F)
$T_{out} = Faucet water temperature (°F)$	
T_{in} = Water inlet temperature (°F)	
EF = Water heater energy factor 10 ⁻⁶ = Factor to convert Btu to MMBtu	
27.8 = Factor to convert MMBtu to m ³	
Gas savings were determined to be 22% over base case:	
Percent Savings = $\frac{(G_{base} - G_{new})}{G_{base}}$	
Where:	
G _{eff} = Annual natural gas use with efficie	
G _{base} = Annual natural gas use with base	
Annual Electricity Savings	0 kWh
N/A	
Annual Water Savings	2,004 L
Assumptions and inputs:	
• Average household size: 3.1 persons ⁶	и х7
 Baseline faucet use (all faucets) per capita per day: 53 litres (14 g Bathroom faucet use an anomatory of tatal faucet uses 45% 	jallons) [*]
 Bathroom faucet use as a percentage of total faucet use: 15%⁸ Boint estimate of quantity of water that goes straight down the drawn the drawn that goes are straight down that goes are straight d	100.9
 Point estimate of quantity of water that goes straight down the dra 	alli. / U 70

³ Average of findings in two studies. Mayer, P. W. et al, Residential Indoor Water Conservation Study: Evaluation of High Efficiency Indoor Plumbing Fixture Retrofits in Single-Family Homes in East Bay Municipal Utility District Service Area, 2003 and Skeel, T. and Hill, S. Evaluation of Savings from Seattle's "Home Water Saver" Apartment/Condominium Program, 1994. Both cited in:

http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf ⁵ Assumption of the Ministry of Energy of Ontario. See Table 4,

Summit Blue (2008).
 ⁴ Chinnery, Glen. Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices, EPA, Energy Star for homes, March 2004

http://www.energy.gov.on.ca/index.cfm?fuseaction=conservation.guide13

⁶ Summit Blue (2008).

⁷ Ibid.

⁸ DeOreo, W. and P. Mayer, *The End Uses of Hot Water in Snigle Family Homes from Flow Trace Analysis*, 1999 cited in Summit Blue (2008).

⁹ Summit Blue (2008).

Annual water savings calculated as follows:

$$Savings = Fu * Ppl * 365 * Ba * \left((1 - Dr) - \left(1 - \frac{Fl_{base} - Fl_{eff}}{Fl_{base}} \right) * Dr \right)$$

Where:

Fu = Faucet use per capita (gallons) Ppl = Number of people per household 365 = Days per year Dr = Percentage of water that goes straight down the drain Ba = Individual bathroom faucet use as a percentage of total faucet use Fl_{base} = Flow rate of base equipment (GPM) Fleff = Flow rate of efficient equipment (GPM)

Water savings was determined to be 22% over base case:

$$Percent \, Savings = \frac{\left(W_{base} - W_{eff}\right)}{W_{base}}$$

Where:

W_{eff} = Annual water use with efficient equipment: 6,993 litres (1,847 gallons) W_{base}= Annual water use with base equipment: 8,997 litres (2,376 gallons)

Effective Useful Life (EUL)	10 Years		
The U.S. DOE assumes a 10 year life for faucet aerators ¹⁰ .			
Base & Incremental Conservation Measure Equipment and O&M Costs	2 \$		
Average equipment cost based on communication with local hardware sto	ores.		
Customer Payback Period (Natural Gas Only) ¹¹	0.4 Years		
Using a 5-year average commodity cost (avoided cost) ¹² of \$0.38 / m ³ and an average residential distribution cost ¹³ of \$0.14 / m ³ , the payback period for natural gas savings is determined to be 0.4 years, based on the following:			
Payback Period = Incremental cost / (natural gas savings x natural gas co = \$2/ (10 m ³ /year * \$0.52 / m ³) = 0.4 years	ost)		

¹⁰ U.S. Department of Energy, Federal Energy Management Program, FEMP Designated Product: Lavatory Faucets http://www1.eere.energy.gov/femp/procurement/eep_faucets.html

¹¹ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹² 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

¹³ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

et Penetration	90%
an analysis and another and the ADA New insert Consulting	antimates a supervise of forces

Based on previous research conducted for the OPA, Navigant Consulting estimates penetration of faucet aerators (bathroom and kitchen) across all sectors to be 90%¹⁴.

Measure Assumptions Used by Other Jurisdictions

Marke

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
Puget Sound Energy ¹⁵	8	5	N/A	45%	
Comments For a switch from a 2.5 GPM to a 1.8 GPM aerator. Measure saves 1% of 759 m ³ required for water heating.					
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
State of Iowa Utilities Board ¹⁶	32	9	20 US\$	90%	
Comments For a switch from a 3.0 GPM to a 1.5 GPM aerator. In neither study is any distinction made between kitchen and bathroom faucet use. Measure saves 6.2% of 514 m ³ required for water heating.					

 ¹⁴ Navigant Consulting, Inc. for the Ontario Power Authority, *Residential Rebate Program: Participation Forecast and Incentive Bundling Strategy – Key Findings Summary*, December 2008
 ¹⁵ Quantec *Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027)* Prepared for Puget Sound Energy
 ¹⁶ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Faucet Aerator (Residential Kitchen)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Faucet Aerator (kitchen) (1.5 GPM)

Base Equipment and Technologies Description

Average existing stock (2.5 GPM)¹

Decision Type	Target Market(s)	End Use
Retrofit	Residential (existing)	Water heating

Codes, Standards, and Regulations

Ontario Building Code (2006)² requires bathroom and kitchen faucets to have a maximum flow of 2.2 GPM (8.35 L/min).

Resource Savings Table

	Electricity	and Other Resource	ce Savings	Equipment & O&M	Equipment & O&M Costs of
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	38	0	7,797	2	0
2	38	0	7,797	0	0
3	38	0	7,797	0	0
4	38	0	7,797	0	0
5	38	0	7,797	0	0
6	38	0	7,797	0	0
7	38	0	7,797	0	0
8	38	0	7,797	0	0
9	38	0	7,797	0	0
10	38	0	7,797	0	0
TOTALS	380	0	77,970	2	0

¹ From on-site audit data. Resource Management Strategies, Inc. Regional Municipality of York Water Efficiency Master Plan

Update, 2007. Cited in: Summit Blue, Resource Savings Values in Selected Residential DSM Prescriptive Programs, June 2008.

Annual Natural Gas Savings	38 m ³
Assumptions and inputs:	
 Average faucet water temperature: 32 °C (90 °F)³ 	
 Average water inlet temperature: 7.22 °C (45 °F)⁴ 	
 Average water heater energy factor: 0.57⁵ 	
Annual gas savings calculated as follows:	
Savings = W *8.33* $(T_{out} - T_{in})$ * $\frac{1}{EF}$ *10 ⁻⁶ *27.8	
Where:	
W = Water savings (gallons)	
8.33 = Energy content of water (Btu/gallo	on/°F)
T_{out} = Faucet water temperature (°F)	
T_{in} = Water inlet temperature (°F)	
EF = Water heater energy factor 10 ⁻⁶ = Factor to convert Btu to MMBtu	
27.8 = Factor to convert MMBtu to m ³	
Gas savings were determined to be 20% over base case:	
Percent Savings = $\frac{(G_{base} - G_{new})}{G_{base}}$	
Where:	
G _{eff} = Annual natural gas use with efficient G _{base} = Annual natural gas use with base	
Annual Electricity Savings	0 kWh
N/A	
Annual Water Savings	7,797 L
Assumptions and inputs:	
• Average household size: 3.1 persons ⁶	u x7
Baseline faucet use (all faucets) per capita per day: 53 litres (14 g	gallons) ^r
 Kitchen faucet use as a percentage of total faucet use: 65%⁸ Point estimate of quantity of water that goes straight down the dra 	$EO2^{9}$
 Form estimate or quantity or water that goes straight down the dra 	am. 50%

³ Average of findings in two studies. Mayer, P. W. et al, *Residential Indoor Water Conservation Study: Evaluation of High Efficiency* Indoor Plumbing Fixture Retrofits in Single-Family Homes in East Bay Municipal Utility District Service Area, 2003 and Skeel, T. and Hill, S. Evaluation of Savings from Seattle's "Home Water Saver" Apartment/Condominium Program, 1994. Both cited in: Summit Blue (2008).

⁴ Chinnery, Glen. Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices, EPA, Energy Star for homes, March 2004

http://www.energystar.gov/ia/partners/bldrs lenders raters/downloads/Waste Water Heat Recovery Guidelines.pdf ⁵ Assumption of the Ministry of Energy of Ontario. See Table 4,

http://www.energy.gov.on.ca/index.cfm?fuseaction=conservation.guide13

⁶ Summit Blue (2008). 7 Ibid.

⁸ DeOreo, W. and P. Mayer, The End Uses of Hot Water in Snigle Family Homes from Flow Trace Analysis, 1999 cited in Summit Blue (2008).

⁹ Summit Blue (2008).

Annual water savings calculated as follows:

$$Savings = Fu * Ppl * 365 * Ki * \left((1 - Dr) - \left(1 - \frac{Fl_{base} - Fl_{eff}}{Fl_{base}} \right) * Dr \right)$$

Where:

Fu = Faucet use per capita (gallons) Ppl = Number of people per household 365 = Days per year Dr = Percentage of water that goes straight down the drain Ki = Kitchen faucet use as a percentage of total faucet use Fl_{base} = Flow rate of base equipment (GPM) Fl_{eff} = Flow rate of efficient equipment (GPM)

Water savings was determined to be 20% over base case:

$$Percent \, Savings = \frac{\left(W_{base} - W_{eff}\right)}{W_{base}}$$

Where:

- W_{eff} = Annual water use with efficient equipment: 38,986 litres (10,297 gallons)
- W_{base}= Annual water use with base equipment: 31,188 litres (8,237 gallons)

Effective Useful Life (EUL)	10 Years		
The U.S. DOE assumes a 10 year life for faucet aerators ¹⁰ .			
Base & Incremental Conservation Measure Equipment and O&M Costs	2 \$		
Average equipment cost based on communication with local hardware sto	ores.		
Customer Payback Period (Natural Gas Only) ¹¹	0.1 Years		
Using a 5-year average commodity cost (avoided cost) ¹² of \$0.38 / m ³ and an average residential distribution cost ¹³ of \$0.14 / m ³ , the payback period for natural gas savings is determined to be 0.1 years, based on the following:			
Payback Period = Incremental cost / (natural gas savings x natural gas co = \$2/ (38 m³/year * \$0.52 / m³) = 0.1 years	st)		

¹⁰ U.S. Department of Energy, Federal Energy Management Program, *FEMP Designated Product: Lavatory Faucets* <u>http://www1.eere.energy.gov/femp/procurement/eep_faucets.html</u>

¹¹ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹² 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

¹³ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>https://portal-</u>

Penetration	90%
	and the second second section of factors

Based on previous research conducted for the OPA, Navigant Consulting estimates penetration of faucet aerators (bathroom and kitchen) across all sectors to be 90%¹⁴.

Measure Assumptions Used by Other Jurisdictions

Market P

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
Puget Sound Energy ¹⁵	8	5	N/A	45%	
Comments For a switch from a 2.5 (heating.	For a switch from a 2.5 GPM to a 1.8 GPM aerator. Measure saves 1% of 759 m ³ required for water				
Source Annual Natural Effective Gas Savings Useful Life (m3) (Years)		Incremental Cost (\$)	Penetration/Market Share		
State of Iowa Utilities Board ¹⁶	32	9	20 US\$	90%	
Comments For a switch from a 3.0 GPM to a 1.5 GPM aerator. In neither study is any distinction made between kitchen and bathroom faucet use. Measure saves 6.2% of 514 m ³ required for water heating.					

 ¹⁴ Navigant Consulting, Inc. for the Ontario Power Authority, *Residential Rebate Program: Participation Forecast and Incentive Bundling Strategy – Key Findings Summary*, December 2008
 ¹⁵ Quantec *Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027)* Prepared for Puget Sound Energy
 ¹⁶ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Low-Flow Showerhead (1.5 Gpm, Residential, UG ESK)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Low-flow Showerhead (1.5 GPM) – distributed to participants under Union Gas' ESK program.

Base Equipment and Technologies Description

Average existing stock (2.2 GPM)¹.

Decision Type	Target Market(s)	End Use
Retrofit	Residential (Existing)	Water heating

Codes, Standards, and Regulations

Ontario Building Code (2006)² requires shower heads to have a maximum flow of 2.5 GPM (9.5 L/min).

Resource Savings Table

	Electricity	and Other Resourc	e Savings	Equipment & O&M	Equipment & O&M Costs of	
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure	
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)	
1	33	0	6,334	6	0	
2	33	0	6,334	0	0	
3	33	0	6,334	0	0	
4	33	0	6,334	0	0	
5	33	0	6,334	0	0	
6	33	0	6,334	0	0	
7	33	0	6,334	0	0	
8	33	0	6,334	0	0	
9	33	0	6,334	0	0	
10	33	0	6,334	0	0	
TOTALS	330	0	63,340	6	0	

² Ontario Regulations 350/06, 2006 Building Code

¹ Shower-heads distributed under Union Gas's ESK program are installed by homeowners rather than Union contractors. No observation is made of the base equipment's GPM. It is therefore assumed to be the full-on flow rate corresponding to the asused flow from York Region monitoring study calculated using the equation cited below.
Descurse Management Strategies lag. Designed Municipality of York Water Efficiency Master Plan Undete. April 2007. Cited below.

Resource Management Strategies, Inc., Regional Municipality of York Water Efficiency Master Plan Update, April 2007. Cited by: Summit Blue, *Resource Savings Values in Selected Residential DSM Prescriptive Programs*, June 2008.

Annual Natural Gas Savings	33 m ³
 Assumptions and inputs: Average shower temperature with base equipment: 40 Average shower temperature with efficient equipment Average water inlet temperature: 7.22 °C (45 °F)⁴ Average water heater energy factor: 0.57⁵ 	
Annual gas savings calculated as follows:	
$Savings = \left(W_{base} * \left(T_{out, base} - T_{in}\right) - W_{eff} * \left(T_{out, eff} - T_{in}\right)\right) * 8.3$	$3*\frac{1}{EF}*10^{-6}*27.8$
Where: $W_{base} = annual water use with W_{eff} = annual water use with W_{out,base} = Shower temperature T_{out,new} = Shower temperature Shower temperature 8.33 = Energy content of water EF = Water heater energy factor 10-6 = Factor to convert Btu to 27.8 = Factor to convert MME$	efficient equipment (gallons) e with base equipment (°F) e with efficient equipment (°F) (°F) er (Btu/gallon/°F) ctor o MMBtu Btu to m ³
Gas savings were determined to be 12% over base equipment $Percent Savings = \frac{\left(G_{base} - G_{eff}\right)}{G_{base}}$	t:
	with efficient equipment, 249 m ³ e with base equipment, 282 m ³
Annual Electricity Savings	0 kWh
N/A	
Annual Water Savings	6,334 L
Assumptions and inputs:	
 As-used flow rate with base equipment: 1.89 GPM⁶ Average household size: 3.1 persons⁷ 	
 Average nousenoid size: 3.1 persons 	

³ Although evidence for this increase in shower temperature remains anecdotal, Summit Blue suggest it is likely enough to include its effect in the analysis. Summit Blue (2008).

⁴ Chinnery, Glen. Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices, EPA, Energy Star for homes, March 2004

http://www.energystar.gov/ia/partners/bldrs lenders raters/downloads/Waste Water Heat Recovery Guidelines.pdf ⁵ Assumption of the Ministry of Energy of Ontario. See Table 4,

http://www.energy.gov.on.ca/index.cfm?fuseaction=conservation.guide13 ⁶ As-used flow is calculated as a function of "full-on" or label flow: as-used flow = min{ 0.691+0.542*full-on flow, full-on flow}. Proctor, J. Gavelis, B. and Miller, B. Savings and Showers: It's All in the Head, (PGE) Home Energy Magazine, July/Aug 1994. Cited in Summit Blue (2008). Summit Blue uses the equation without assuming that it is a min function, implicitly assuming that participants will have the expertise or desire to make minor adjustments to the house water pressure to compensate for reduced shower flow.

⁷ Summit Blue (2008).

• Showers per capita per day: 0.75⁸

- Proportion of showering affected by measure (i.e. percentage of the time the low-flow showerhead used) : 76%⁹
- Average showering time per capita per day with base equipment: 7.32 minutes
- Average showering time per capita per day with new technology: 7.5 minutes¹⁰

Annual water savings calculated as follows:

 $Savings = Ppl * Sh * 365 * \Pr*(T_{base} * Fl_{base} - T_{eff} * Fl_{eff})$

Where:

 $\begin{array}{l} \mbox{Ppl} = \mbox{Number of people per household} \\ \mbox{Sh} = \mbox{Showers per capita per day} \\ \mbox{365} = \mbox{Days per year} \\ \mbox{T}_{base} = \mbox{Showering time with base equipment (minutes)} \\ \mbox{T}_{eff} = \mbox{Showering time with efficient equipment (minutes)} \\ \mbox{Fl}_{base} = \mbox{As-used flow rate with base equipment (GPM)} \\ \mbox{Fl}_{eff} = \mbox{As-used flow rate with efficient equipment (GPM)} \\ \mbox{Pr} = \mbox{Percentage of showers where efficient equipment used} \\ \end{array}$

Water savings were determined to be 14% over base technology:

Percent Savings =
$$\frac{(W_{base} - W_{eff})}{W_{base}}$$

Where:

 W_{eff} = Annual water consumed by showers with efficient equipment, 38,138 litres (10,073 gallons)
 W_{base}= Annual water consumed by showers with base equipment: 44,472 litres (11,746 gallons)

Effective Useful Life (EUL)	10 Years
Summit Blue (2008) suggests an EUL of 10 years based on a survey of fi other jurisdictions (California – two studies, New England, Vermont, Arka	
Base & Incremental Conservation Measure Equipment and O&M Costs	6\$
Incremental cost based on a survey of online retailers ¹¹ .	
Customer Payback Period (Natural Gas Only) ¹²	0.4 Years
Using a 5-year average commodity cost (avoided cost) ¹³ of $0.38 / m^3$ and distribution cost ¹⁴ of $0.14 / m^3$, the payback period for natural gas saving	d an average residential s is determined to be 0.4 years,

⁸ Ibid, based on data from: Resource Management Strategies, Inc., Regional Municipality of York Water Efficiency Master Plan Update, April 2007

⁹ Survey of participants, 116 from Enbridge, 111 from Union, Summit Blue (2008)

¹⁰ Relationship modeled as: Average shower length = 8.17 – 0.448 * as-used GPM. From Energy Center of Wisconsin Analysis of data from Resource Management Strategies, Inc., *Regional Municipality of York Water Efficiency Master Plan Update*, April 2007. Cited in Summit Blue (2008)

¹¹ Whedon Products 1.5 GPM Ultra Saver Showerhead. <u>http://www.antonline.com/p_USB3C-GP_398829.htm</u>

¹² Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

based on the following: Payback Period = Incremental cost / (natural gas savings x natural gas cost) = \$6/ (33 m³/year * \$0.52 / m³) = 0.4 years **Market Penetration** 65% Based on previous research conducted for the OPA, Navigant Consulting estimates penetration of lowflow showerheads of all flow rates across all sectors to be 65%¹⁵

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
U. S. Dept. of Energy, Federal Energy Management Program ¹⁶	108	10	N/A	N/A

Comments

Based on switching from a 2.2 GPM to a 1.5 GPM showerhead. Assumptions include: 10mins per shower, 2 showers per day, shower temperature of 106F, inlet water temp of 58F. Measure provides savings of 81% over 133 m³ required for heating water used with base equipment.

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
State of Iowa Utilities Board ¹⁷	71	10	US\$ 36	75%

Comments

Based on switching from a 4 GPM to a 2.5 GPM showerhead. Measure saves 13.9% of 514 m³ required for water heating.

¹³ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

¹⁴ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2). ¹⁵ Navigant Consulting, Inc. for the Ontario Power Authority, *Residential Rebate Program: Participation Forecast and Incentive* Bundling Strategy – Key Findings Summary, December 2008 ¹⁶ U.S Department of Energy, Federal Energy Management Program, *FEMP Designated Product: Showerheads*

http://www1.eere.energy.gov/femp/procurement/eep_showerhead.html

¹⁷ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Low-Flow Showerhead (1.25 Gpm, Residential, Enbridge TAPS)

Revision #	Description/Comment	Date Revised			
Efficient Equip	ment and Technologies Description				
Low-flow Showerhe	ad (1.25 Gpm) – Installed by Enbridge-designa	ited contractors.			
Base Equipme	t and Technologies Description				
Average existing st	ock within one of three ranges.				
Range mid-points u	sed as point estimates:				
 Scenario A – 2.0 GPM 					
 Scenario B – 2.25 GPM 					
 Scenario C – 3.0 GPM 					
When new showerh	eads are installed contractors use a bag-test to	o determine base equipment flow-rate.			

Decision Type	Target Market(s)	End Use
Retrofit	Residential (Existing)	Water heating

Ontario Building Code (2006)¹ requires shower heads to have a maximum flow of 2.5 GPM (9.5 L/min)

Resource Savings Table

[Electricity and Other Resource Savings			Equipment & O&M	Equipment & O&M Costs of
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
	A : 49		A: 8,817		
1	B: 62	0	B: 10,886	13	0
	C : 102		C: 17,168		
	A: 49		A: 8,817		
2	B: 62	0	B: 10,886	0	0
	C: 102		C: 17,168		
	A: 49		A: 8,817		
3	B: 62	0	B: 10,886	0	0
	C: 102		C: 17,168		
	A: 49		A: 8,817		
4	B: 62	0	B: 10,886	0	0
	C: 102		C: 17,168		
	A: 49		A: 8,817		
5	B: 62	0	B: 10,886	0	0
	C: 102		C: 17,168		
	A: 49		A: 8,817		
6	B: 62	0	B: 10,886	0	0
	C: 102		C: 17,168		
	A: 49		A: 8,817		
7	B: 62	0	B: 10,886	0	0
	C: 102		C: 17,168		
	A: 49		A: 8,817		
8	B: 62	0	B: 10,886	0	0
	C: 102		C: 17,168		
	A: 49		A: 8,817		
9	B: 62	0	B: 10,886	0	0
	C : 102		C: 17,168		
	A: 49		A: 8,817		
10	B: 62	0	B: 10,886	0	0
	C: 102		C: 17,168		
	A: 490		A: 88,170		
TOTALS	B: 620	0	B: 108,860	13	0
	C: 1,020		C: 171,680		

Resource Savings Assumptions

Annual Natural Gas Savings	A: 49 m ³ B: 62 m ³ C: 102 m ³			
Assumptions and inputs:				
 Average shower temperature with base equipment: 40 °C (104 °F)² 				
 Average shower temperature with efficient equipment: 41 °C (106 °F) 				

- Average water inlet temperature: 7.22 °C (45 °F)³ •
- Average water heater energy factor: 0.57⁴ •

Ontario Regulations 350/06, 2006 Building Code

² Although evidence for this increase in shower temperature remains anecdotal, Summit Blue suggest it is likely enough to include its effect in the analysis. Summit Blue (2008).

Chinnery, Glen. Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices, EPA, Energy Star for homes, March 2004

http://www.energystar.gov/ia/partners/bldrs lenders raters/downloads/Waste Water Heat Recovery Guidelines.pdf

Annual gas savings calculated as follows:

$$Savings = \left(W_{base} * (T_{out, base} - T_{in}) - W_{eff} * (T_{out, eff} - T_{in})\right) * 8.33 * \frac{1}{EF} * 10^{-6} * 27.8$$

Where:

$$\begin{split} W_{base} &= \text{annual water use with base equipment (gallons)} \\ W_{eff} &= \text{annual water use with efficient equipment (gallons)} \\ T_{out,base} &= \text{Shower temperature with base equipment (}^{\circ}F) \\ T_{out,new} &= \text{Shower temperature with efficient equipment (}^{\circ}F) \\ T_{in} &= \text{Water inlet temperature (}^{\circ}F) \\ 8.33 &= \text{Energy content of water (Btu/gallon/}^{\circ}F) \\ EF &= \text{Water heater energy factor.} \\ 10^{-6} &= \text{Factor to convert Btu to MMBtu.} \\ 27.8 &= \text{Factor to convert MMBtu to m}^{3}. \end{split}$$

Scenario **A:** Gas savings were determined to be 18% over base equipment: Scenario **B:** Gas savings were determined to be 23% over base equipment: Scenario **C:** Gas savings were determined to be 35% over base equipment:

Percent Savings =
$$\frac{(G_{base} - G_{eff})}{G_{base}}$$

Where:

G _{eff} = Annual natural gas use with efficient equipment,
Scenario A: 218 m ³
Scenario B: 222 m ³
Scenario C: 235 m ³
G _{base} = Annual natural gas use with base equipment,
Scenario A: 267 m ³
Scenario B: 284 m ³
Scenario C: 336 m ³

 Annual Electricity Savings
 0 kWh

 N/A
 A: 8,817 L

 Annual Water Savings
 A: 8,817 L

 B: 10,886 L
 C: 17,168 L

 Assumptions and inputs:
 • As-used flow rate with base equipment⁵:

 Scenario A: 1.78 GPM
 Scenario B: 1.91 GPM

 Scenario C: 2.32 GPM
 Scenario C: 2.32 GPM

⁴ Assumption of the Ministry of Energy of Ontario. See Table 4,

http://www.energy.gov.on.ca/index.cfm?fuseaction=conservation.guide13

⁵ As-used flow is calculated as a function of "full-on" or label flow: as-used flow = min{ 0.691+0.542*full-on flow, full-on flow}. Proctor, J. Gavelis, B. and Miller, B. Savings and Showers: It's All in the Head, (PGE) Home Energy Magazine, July/Aug 1994.

Proctor, J. Gavelis, B. and Miller, B. Savings and Snowers: It's All in the Head, (PGE) Home Energy Magazine, July/Aug 1994. Cited in Summit Blue (2008).

Summit Blue uses the equation without assuming that it is a min function, implicitly assuming that participants will have the expertise or desire to make minor adjustments to the house water pressure to compensate for reduced shower flow.

- Average household size: 3.1 persons⁶
- Showers per capita per day: 0.75⁷
- Proportion of showering affected by measure (i.e. percentage of the time the low-flow showerhead used) : 76%⁸
- Average showering time per capita per day with base equipment:

Scenario **A:** 7.37 minutes Scenario **B:** 7.31 minutes Scenario **C:** 7.13 minutes

Average showering time per capita per day with new technology: 7.61 minutes⁹

Annual water savings calculated as follows:

$$Savings = Ppl * Sh * 365 * \Pr(T_{base} * Fl_{base} - T_{eff} * Fl_{eff})$$

Where:

PpI = Number of people per household. Sh = Showers per capita per day. 365 = Days per year. T_{base} = Showering time with base equipment (minutes) T_{eff} = Showering time with efficient equipment (minutes). FI_{base} = As-used flow rate with base equipment (GPM) FI_{eff} = As-used flow rate with efficient equipment (GPM) Pr = Percentage of showers where efficient equipment used.

Scenario **A**: Water savings were determined to be 21% over base equipment Scenario **B**: Water savings were determined to be 24% over base equipment Scenario **C**: Water savings were determined to be 32% over base equipment

Percent Savings =
$$\frac{(W_{base} - W_{eff})}{W_{base}}$$

Where:

W _{eff} = Annual water consumed by showers with efficient equipment,
Scenario A: 33,349 litres (8,808 gallons)
Scneario B: 34,002 litres (8,980 gallons)
Scenario C: 35,986 litres (9,504 gallons)
W _{base} = Annual water consumed by showers with base equipment:
Scenario A: 42,166 litres (11,137 gallons)
Scenario B: 44,888 litres (11,856 gallons)
Scenario C: 53,154 litres (14,039 gallons)

⁶ Summit Blue (2008).

⁷ Ibid, based on data from: Resource Management Strategies, Inc., Regional Municipality of York Water Efficiency Master Plan Update, April 2007

⁸ Survey of participants, 116 from Enbridge, 111 from Union, Summit Blue (2008)

⁹ Relationship modeled as: Average shower length = 8.17 – 0.448 * as-used GPM. From Energy Center of Wisconsin Analysis of data from Resource Management Strategies, Inc., *Regional Municipality of York Water Efficiency Master Plan Update*, April 2007. Cited in Summit Blue (2008)

Other Input Assumptions

Effective Us	seful Life (EUL)	10 Years		
	2008) suggests an EUL of 10 years based on a survey of fivons (California – two studies, New England, Vermont, Arkar			
Base & Incremental Conservation Measure Equipment 13\$				
Incremental co	st based on a survey of online retailers ¹⁰ .			
Customer P	ayback Period (Natural Gas Only) ¹¹	A: 0.5 Years B: 0.4 Years C: 0.3 Years		
distribution cos	average commodity cost (avoided cost) ¹² of $0.38 / m^3$ and t^{13} of $0.14 / m^3$, the payback period for natural gas saving 0.4 years for Scenario B and 0.25 years for Scenario C, ba	s is determined to be 0.5 years		
Payback Perio	d = Incremental cost / (natural gas savings x natural gas co			
Payback Perior Scenario A	d = Incremental cost / (natural gas savings x natural gas co = \$13/ (49 m³/year * \$0.52 / m³) = 0.5 years			
•	= \$13/ (49 m ³ /year * \$0.52 / m ³)			
Scenario A	= \$13/ (49 m ³ /year * \$0.52 / m ³) = 0.5 years = \$13/ (62 m ³ /year * \$0.52 / m ³)			

¹⁰ Earth Massage Showerhead 1.25 GPM

http://cgi.ebay.com/Earth-Massage-Showerhead-Water-Saver-1-25-gpm-flow_W0QQitemZ130256063752QQihZ003QQcategoryZ71282QQcmdZViewItemQQ_trksidZp1742.m153.l1262
 ¹¹ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to

decrease when electricity and/or water savings are included. ¹² 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and ¹³ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and

Enbridge Gas websites (https://portal-

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2). ¹⁴ Navigant Consulting, Inc. for the Ontario Power Authority, *Residential Rebate Program: Participation Forecast and Incentive* Bundling Strategy – Key Findings Summary, December 2008

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
U. S. Dept. of Energy, Federal Energy Management Program ¹⁵	108	10	N/A	N/A

Comments

Based on switching from a 2.2 GPM to a 1.5 GPM showerhead. Assumptions include: 10mins per shower, 2 showers per day, shower temperature of 106F, inlet water temp of 58F. Measure provides savings of 81% over 133 m³ required for heating water used with base equipment.

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
State of Iowa Utilities Board ¹⁶	71	10	US\$ 36	75%
Comments				

Based on switching from a 4 GPM to a 2.5 GPM showerhead. Measure saves 13.9% of 514 m³ required for water heating.

¹⁵ U.S Department of Energy, Federal Energy Management Program, *FEMP Designated Product: Showerheads* <u>http://www1.eere.energy.gov/femp/procurement/eep_showerhead.html</u>
 ¹⁶ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Low-Flow Showerhead (1.25 Gpm, Residential, UG ESK)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Low-flow Showerhead (1.25 Gpm) – distributed to participants under Union Gas' ESK program.

Base Equipment and Technologies Description

Average existing stock (2.2 GPM)¹.

Decision Type	Target Market(s)	End Use
Retrofit	Residential (Existing)	Water heating

Codes, Standards, and Regulations

Ontario Building Code (2006)² requires shower heads to have a maximum flow of 2.5 GPM (9.5 L/min)

Resource Savings Table

	Electricity and Other Resource Savings			Equipment & O&M	Equipment & O&M Costs of
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	60	0	10,570	13	0
2	60	0	10,570	0	0
3	60	0	10,570	0	0
4	60	0	10,570	0	0
5	60	0	10,570	0	0
6	60	0	10,570	0	0
7	60	0	10,570	0	0
8	60	0	10,570	0	0
9	60	0	10,570	0	0
10	60	0	10,570	0	0
TOTALS	600	0	105,700	13	0

² Ontario Regulations 350/06, 2006 Building Code

¹ Shower-heads distributed under Union Gas's ESK program are installed by homeowners rather than Union contractors. No observation is made of the base equipment's GPM. It is therefore assumed to be the full-on flow rate corresponding to the asused flow from York Region monitoring study calculated using the equation cited below.
Region provide the provided the provided the provided to the provided to

Resource Management Strategies, Inc., Regional Municipality of York Water Efficiency Master Plan Update, April 2007. Cited by: Summit Blue, *Resource Savings Values in Selected Residential DSM Prescriptive Programs*, June 2008.

Resource Savings Assumptions

Annual Natural Gas Savings	60 m ³
 Assumptions and inputs: Average shower temperature with base equipment: 40 °C (104 °F) Average shower temperature with efficient equipment: 41 °C (106 Average water inlet temperature: 7.22 °C (45 °F)⁴ Average water heater energy factor: 0.57⁵ 	
Annual gas savings calculated as follows:	
$Savings = (W_{base} * (T_{out, base} - T_{in}) - W_{eff} * (T_{out, eff} - T_{in})) * 8.33 * \frac{1}{EF} * 10$	⁻⁶ * 27.8
Where:	
$W_{base} = annual water use with base equip$ $W_{eff} = annual water use with efficient equi$ $T_{out,base} = Shower temperature with base of$ $T_{out,new} = Shower temperature with efficient$ $T_{in} = Water inlet temperature (^{\circ}F)$ $8.33 = Energy content of water (Btu/gallo)$ $EF = Water heater energy factor$ $10^{-6} = Factor to convert Btu to MMBtu$ $27.8 = Factor to convert MMBtu to m^{3}$	pment (gallons) equipment (°F) nt equipment (°F)
Gas savings were determined to be 21% over base equipment:	
$Percent Savings = \frac{\left(G_{base} - G_{eff}\right)}{G_{base}}$	
Where:	
G _{eff} = Annual natural gas use with efficien G _{base} = Annual natural gas use with base	
Annual Electricity Savings	0 kWh
N/A	
Annual Water Savings	10,570 L
Assumptions and inputs:	
• As-used flow rate with base equipment: 1.89 GPM ⁶	
Average household size: 3.1 persons ⁷	

³ Although evidence for this increase in shower temperature remains anecdotal, Summit Blue suggest it is likely enough to include its effect in the analysis. Summit Blue (2008).

⁴ Chinnery, Glen. Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices, EPA, Energy Star for homes, March 2004

http://www.energystar.gov/ia/partners/bldrs lenders raters/downloads/Waste Water Heat Recovery Guidelines.pdf ⁵ Assumption of the Ministry of Energy of Ontario. See Table 4,

http://www.energy.gov.on.ca/index.cfm?fuseaction=conservation.guide13 ⁶ As-used flow is calculated as a function of "full-on" or label flow: as-used flow = min{ 0.691+0.542*full-on flow, full-on flow}. Proctor, J. Gavelis, B. and Miller, B. Savings and Showers: It's All in the Head, (PGE) Home Energy Magazine, July/Aug 1994. Cited in Summit Blue (2008). Summit Blue uses the equation without assuming that it is a min function, implicitly assuming that participants will have the expertise or desire to make minor adjustments to the house water pressure to compensate for reduced shower flow.

⁷ Summit Blue (2008).

• Showers per capita per day: 0.75⁸

- Proportion of showering affected by measure (i.e. percentage of the time the low-flow showerhead used) : 76%⁹
- Average showering time per capita per day with base equipment: 7.32 minutes
- Average showering time per capita per day with new technology: 7.61 minutes¹⁰

Annual water savings calculated as follows:

 $Savings = Ppl * Sh * 365 * \Pr(T_{base} * Fl_{base} - T_{eff} * Fl_{eff})$

Where:

 $\begin{array}{l} \mbox{Ppl} = \mbox{Number of people per household} \\ \mbox{Sh} = \mbox{Showers per capita per day} \\ \mbox{365} = \mbox{Days per year} \\ \mbox{T}_{base} = \mbox{Showering time with base equipment (minutes)} \\ \mbox{T}_{eff} = \mbox{Showering time with efficient equipment (minutes)} \\ \mbox{Fl}_{base} = \mbox{As-used flow rate with base equipment (GPM)} \\ \mbox{Fl}_{eff} = \mbox{As-used flow rate with efficient equipment (GPM)} \\ \mbox{Pr} = \mbox{Percentage of showers where efficient equipment used} \\ \end{array}$

Water savings were determined to be 24% over base equipment:

$$Percent Savings = \frac{\left(W_{base} - W_{eff}\right)}{W_{base}}$$

Where:

 W_{eff} = Annual water consumed by showers with efficient equipment, 33,902 litres (8,954 gallons)
 W_{base}= Annual water consumed by showers with base equipment: 44,472 litres (11,746 gallons)

Other Input Assumptions

Effective Useful Life (EUL)	10 Years			
Summit Blue (2008) suggests an EUL of 10 years based on a survey of fi other jurisdictions (California – two studies, New England, Vermont, Arka				
Base & Incremental Conservation Measure Equipment 13\$				
Incremental cost based on a survey of online retailers ¹¹ .				
Customer Payback Period (Natural Gas Only) ¹²	0.4 Years			
Using a 5-year average commodity cost (avoided cost) ¹³ of \$0.38 / m ³ and distribution cost ¹⁴ of \$0.14 / m ³ , the payback period for natural gas saving	d an average residential is is determined to be 0.4 years,			

⁸ Ibid, based on data from: Resource Management Strategies, Inc., Regional Municipality of York Water Efficiency Master Plan Update, April 2007

⁹ Survey of participants, 116 from Enbridge, 111 from Union, Summit Blue (2008)

¹⁰ Relationship modeled as: Average shower length = 8.17 – 0.448 * as-used GPM. From Energy Center of Wisconsin Analysis of data from Resource Management Strategies, Inc., *Regional Municipality of York Water Efficiency Master Plan Update*, April 2007. Cited in Summit Blue (2008)

¹¹ Earth Massage Showerhead 1.25 GPM <u>http://cgi.ebay.com/Earth-Massage-Showerhead-Water-Saver-1-25-gpm-</u> flow W0QQitemZ130256063752QQihZ003QQcategoryZ71282QQcmdZViewItemQQ_trksidZp1742.m153.l1262

¹² Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

based on the following:	
Payback Period = Incremental cost / (natural gas savings x natural gas cost) = \$13/ (60 m³/year * \$0.52 / m³) = 0.4 years)
Market Penetration	65%
Based on previous research conducted for the OPA, Navigant Consulting es flow showerheads of all flow rates across all sectors to be 65% ¹⁵ .	timates penetration of low-

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
U. S. Dept. of Energy, Federal Energy Management Program ¹⁶	108	10	N/A	N/A
Comments Based on switching from 2 showers per day, show 81% over 133 m ³ require	ver temperature of 10	06F, inlet water ter	np of 58F. Measur	lude: 10mins per shower, e provides savings of
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
State of Iowa Utilities Board ¹⁷	71	10	US\$ 36	75%
Comments				

Based on switching from a 4 GPM to a 2.5 GPM showerhead. Measure saves 13.9% of 514 m³ required for water heating.

¹³ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

¹⁴ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>https://portal-plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2</u>). ¹⁵ Navigant Consulting, Inc. for the Ontario Power Authority, *Residential Rebate Program: Participation Forecast and Incentive*

Bundling Strategy – Key Findings Summary, December 2008 ¹⁶ U.S Department of Energy, Federal Energy Management Program, *FEMP Designated Product: Showerheads*

http://www1.eere.energy.gov/femp/procurement/eep_showerhead.html

¹⁷ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Pipe Wrap (R-4)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Insulated hot water pipe for conventional gas storage tank-type hot water heater (R-4).

Base Equipment and Technologies Description

Conventional gas storage tank-type hot water heater without pipe wrap (R-1).

Decision Type	Target Market(s)	End Use
Retrofit	Residential (Existing)	Water heating

Codes, Standards, and Regulations

N/A

Resource Savings Table

	Electricity and Other Resource Savings			Equipment & O&M	Equipment & O&M Costs of
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	25	0	0	2	0
2	25	0	0	0	0
3	25	0	0	0	0
4	25	0	0	0	0
5	25	0	0	0	0
6	25	0	0	0	0
7	25	0	0	0	0
8	25	0	0	0	0
9	25	0	0	0	0
10	25	0	0	0	0
TOTALS	250	0	0	2	

Resource Savings Assumptions

Annual Natural Gas Sa	avings	25 m ³
Assumptions and inputs:		
Gas savings calculate	ted using method set out in 2006 Massachus	etts study ¹ except where noted.
	er energy factor: 0.57 ²	
Average household	size: 3.1 persons ³	
Assumed diameter of	f pipe to be wrapped: 0.75 inches	
Length of pipe to be	wrapped: 6 feet.	
Surface area of pipe	to be wrapped: 1.18 square feet.	
Ambient temperature	e around pipes: 16 °C (60 °F) ⁴	
Average water heater	er set point temperature: 54 °C (130 °F) ⁵	
Hot water temperatu	re in outlet pipe: 52 °C (125 °F) ⁶	
$Savings = \left(\frac{1}{R_{base}} - \frac{1}{R_{eff}}\right) *$	$Sa*(T_{pipe} - T_{amb})*24*365*\frac{1}{EF}*10^{-6}*2$	27.8
Where:		
	R _{base} = R-value of base equipment	
	R _{eff} = R-value of efficient equipment	
	Sa = Surface area of outlet pipe (ft^2)	
	T _{pipe} = Temperature of water in outlet pipe	
	T_{amb} = Ambient temperature around pipe	(°F)
	24 = Hours per day	
	365 = Days per year EF = Water heater energy factor	
	10^{-6} = Factor to convert Btu to MMBtu	
	27.8 = Factor to convert MMBtu to m3	
Gas savings were determine	d to be 75% over base measure	

$$Percent Savings = \frac{\left(G_{base} - G_{eff}\right)}{G_{base}}$$

Where:

 G_{eff} = Annual natural gas use with efficient equipment, 8 m³ G_{base} = Annual natural gas use with base equipment, 33 m³

² Assumption of the Ministry of Energy of Ontario. See Table 4,

¹ RLW Analytics, Final Market Potential Report Of Massachusetts Owner Occupied 1-4 Unit Dwellings, July 2006 http://www.cee1.org/eval/db_pdf/575.pdf

http://www.energy.gov.on.ca/index.cfm?fuseaction=conservation.guide13

³ Summit Blue, Resource Savings Values in Selected Residential DSM Prescriptive Programs, June 2008.

⁴ RLW Analytics (2006). Given geographic proximity, Massachusetts temperatures used unchanged for Ontario.

⁵ As suggested by NRCan: <u>http://oee.nrcan.gc.ca/residential/personal/new-homes/water-conservation.cfm?attr=4</u> ⁶ From source: "It is common to find a 5 - 10 F temperature drop from the water heater to the furthest fixtures in the house." Chinnery, G. Policy recommendations for the HERS Community to consider regarding HERS scoring credit due to enhanced effective energy factors of water heaters resulting from volumetric hot water savings due to conservation devices/strategies, EPA Energy Star for Homes, Sept 2006 http://www.energystar.gov/ia/partners/bldrs lenders raters/downloads/Volumetric Hot Water Savings Guidelines.pdf

Annual Electricity Savings	0 kWh	
N/A		
Annual Water Savings	0 L	
Navigant has assumed that adopting the measure would not affect the quantity of water consumed.		

Other Input Assumptions

Effective Useful Life (EUL)	10 Years			
Based on the estimated measure lifetimes used in four other jurisdictions Energy - 10 years, Efficiency Vermont – 10 years, and NYSERDA ⁷ – 10 y using an EUL of 10 years.	(Iowa - 15 years, Puget Sound vears) Navigant recommends			
Base & Incremental Conservation Measure Equipment and O&M Costs	2 \$			
Average equipment cost (for six feet of pipe wrap) based on communication	ion with local hardware stores.			
Customer Payback Period (Natural Gas Only) ⁸ 0.2 Years				
Using an 5-year average commodity cost (avoided cost) ⁹ of \$0.38 / m ³ ard istribution cost ¹⁰ of \$0.14 / m ³ , the payback period for natural gas saving based on the following:	nd an average residential s is determined to be 0.2 years,			
Payback Period = Incremental cost / (natural gas savings x natural gas co = \$2/ (25 m³/year * \$0.52 / m³) = 0.2 years	ost)			
Market Penetration	47%			
Based on previous research conducted for the OPA, Navigant Consulting measure to be 47% ¹¹ .	estimates penetration of this			

⁷ NYSERDA, New York Energy Smart Programs, *Deemed Savings Database*

⁸ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

⁹ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost. ¹⁰ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and

Average distribution cost taken calculated from both onlion Gas website (<u>http://www.dniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>https://portal-plumprod.cgc.enbridge.com/portal/server.pt?open=512&objlD=248&PageID=0&cached=true&mode=2&userID=2</u>).
 ¹¹ Navigant Consulting, Inc. for the Ontario Power Authority, *Residential Rebate Program: Participation Forecast and Incentive* Bundling Strategy – Key Findings Summary, December 2008

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
State of Iowa Utilities Board ¹²	21	15	113 US\$	52%
Comments For addition of R-4 insula water heating.	ation to previously ur	n-insulated pipes. I	Measure saves 4%	$_{\rm 0}$ of 514 m ³ required for
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Puget Sound Energy, 2007 ¹³	8	10	8 US\$	38%
Comments For addition of R-4 insula water heating.	ation to previously ur	n-insulated pipes. I	Measure saves 1%	o of 759 m ³ required for
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Midwest Energy Efficiency Alliance, 2003 ¹⁴	36	N/A	N/A	10.4%
Comments No indication given of pe	ercentage savings or	base natural gas o	consumption for wa	ater heating.
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Efficiency Vermont, 2006 ¹⁵	N/A	10	15 US\$	N/A
Comments Only electricity savings r specified. No indication g				

 ¹² Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2
 ¹³ Quantec *Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027)* Prepared for Puget Sound Energy
 ¹⁴ Midwest Energy Efficiency Alliance, *Illinois Residential Market Analysis, Final Report*, May 12, 2003.
 <u>http://www.cee1.org/eval/db_pdf/390.pdf</u>
 ¹⁵ Efficiency Vermont, *Technical Reference User Manual (TRM)*, February 2006

Solar Pool Heaters

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Swimming pools heated by solar heating systems

Base Equipment and Technologies Description

Swimming polls heated by conventional gas-fired heating systems (50% seasonal efficiency)

Decision Type	Target Market(s)	End Use
New/Replacement	Residential (New/Existing)	Water Heating

Codes, Standards, and Regulations

• Although currently there are no codes that define minimum values for the solar collector thermal efficiency, the following two standards define the thermal performance testing procedures applying to a single isolated collector: 1) CAN/CSA-F378-87 (R2004)¹, 2) Florida Solar Energy Centre (FSEC) standard test, FSEC-GP-5-80².

Resource Savings Table

[Electricity and Other Resource Savings		e Savings	Equipment & O&M Costs of	Equipment & O&M
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m³)	(kWh)	(L)	(\$)	(\$)
1	493	-57	0	3,450	2,000
2	493	-57	0	0	0
3	493	-57	0	0	0
4	493	-57	0	0	0
5	493	-57	0	0	0
6	493	-57	0	0	0
7	493	-57	0	0	0
8	493	-57	0	0	0
9	493	-57	0	0	0
10	493	-57	0	0	0
11	493	-57	0	0	0
12	493	-57	0	0	0
13	493	-57	0	0	0
14	493	-57	0	0	0
15	493	-57	0	0	0
16	493	-57	0	0	0
17	493	-57	0	0	0
18	493	-57	0	0	0
19	493	-57	0	0	0
20	493	-57	0	0	0
TOTALS	9,860	-1,140	0	3,450	2,000

¹ CAN/CSA Solar Collector Standard, <u>http://www.csa-intl.org/onlinestore/GetCatalogItemDetails.asp?mat=2000426&Parent=173</u>

² FSEC Solar Collector Standard, http://www.fsec.ucf.edu/en/industry/testing/STcollectors/standards/FSEC-GP-5-80.html

Resource Savings Assumptions

Annual Natural Gas Savings

493 m³

• Navigant Consulting used RETScreen® software³ to model the energy savings resulting from a solar pool heater for a typical residential swimming pool in Ontario. The following system characteristics are assumed for both London and Sudbury, representing typical Southern and Northern Ontario climate zones:

Variable Names	Value	Source
Collector type	Unglazed	NCI
Gross area of one collector	4.37 m ²	NCI
Aperture area of one collector	4.37 m ²	NCI
Fr (tau alpha) coefficient ⁽¹⁾	82%	NCI
Fr UL coefficient ⁽²⁾	15.76 (W/m ²)/ ^o C	NCI
Number of collectors	5	NCI
Heat exchanger/antifreeze protection	Yes	NCI
Heat exchanger effectiveness	80%	NCI
Pipe diameter	38 mm	NCI
Pumping power per collector area	3 W/m ²	NCI
Piping and solar tank losses	0.01%	NCI
Losses due to snow and/or dirt	0.03%	NCI
Horz. dist. from mech. room to collector	5 m	NCI
# of floors from mech. room to collector	2	NCI

Notes⁴:

(1) Fr (tau alpha) coefficient is a dimensionless parameter used to characterise the collector's optical efficiency.
 (2) Fr UL coefficient is a parameter used to characterize the collector's thermal losses [(W/m²)/^oC]

- The RETScreen® software takes into account the local weather data, annual solar radiation, annual average temperature, annual average wind speed, desired load temperature and other system characteristics specific for both the London and Sudbury area.
- The following table summarizes the output of the model and the weighted average natural gas savings is calculated by assigning 70% to London and 30% to Sudbury based on the customer population service territory used by Union Gas:

Annual Natural Gas Savings	Renewable Energy Delivered (GJ)	Natural Gas Displaced (m ³)	Weight	Weighted Average (m ³)
Northern Ontario (Sudbury)	16.4	442	30%	493
Southern Ontario (London)	19.1	515	70%	495

• Since the solar power replaces the need for natural gas, it is assumed that the percentage of natural gas savings is 100%.

Annual Electricity Savings

- 57 kWh

- The electricity required for pumping the water through the collector system is calculated to be 0.057 MWh/year (57 kWh) based on the assumptions presented above, i.e., pumping power per collector area of 3 W/m² and piping and solar tank losses of 0.01%. This amount of electricity is considered incremental in comparison to a conventional natural gas heater.
- Using the same weighted average for both London and Sudbury, the incremental electricity is summarized below:

³ NRCan, RETScreen ® <u>http://canmetenergy-canmetenergie.nrcan-rncan.gc.ca/eng/software_tools/retscreen.html</u>

⁴ NRCan, RETScreen ® Software Online User Manual, 2005

Anr	nual Electricity Consumption	Renewable Energy Delivered (MWh)	Weight	Weighted Average (kWh)	
Nor	rthern Ontario (Sudbury)	0.05	30%	57	
Sou	uthern Ontario (London)	0.06	70%	57	
Annua	I Water Savings	0 L			
N/A			_		

Other Input Assumptions

Effective Useful Life (EUL)	20 Years			
According to NRCan, solar pool heating systems are durable and last app Solar Energy Centre estimates an effective useful life of 15 years ⁶ conside heating season in Florida. Therefore, Navigant Consulting estimates an E heating system in Ontario.	ering the longer swimming			
Base & Incremental Conservation Measure Equipment and O&M Costs	\$1,450			
The cost of a solar pool heater is dependent on the size of the swimming pool. Based on communication with local contractors ⁷ , the average installed cost is \$69 per m ² . Given a medium-sized pool of 50 m ² , the installed cost is determined to be \$3,450. The average cost for a conventional residential pool gas-fired heating system is $$2,000^8$. Therefore, the incremental cost for solar pool heater is determined to be \$1,450.				
Customer Payback Period (Natural Gas Only) ⁹	5.7 Years			
Using a 5-year average commodity cost (avoided cost) ¹⁰ of $0.38 / m^3$ and an average residential distribution cost ¹¹ of $0.14 / m^3$, the payback period for natural gas savings is determined to be 5.7 years, based on the following:				
Payback Period = Incremental cost / (natural gas savings x natural gas cost) = \$1,450 / (493 m³/year x \$0.52 / m³) = 5.7 years				
Market Share ¹²	Medium			
Based on NRCan report ¹³ and communication with local contractors, appr pools are heated across Canada, most commonly by natural gas heaters pumps. Roughly 10% of heated pools currently use solar heaters. Therefore estimates the market share of solar pool heaters in Ontario to be medium	or electric air-source heat pre, Navigant Consulting			

⁵ NRCan, An Introduction to Solar Pool Heating Systems,

http://www.energyalternatives.ca/PDF/An%20Introduction%20to%20Solar%20Pool%20Heating%20Systems.pdf FESC, Q&A for Solar Pool Heating, http://www.fsec.ucf.edu/en/consumer/solar_hot_water/pools/g_and_a/index.htm#Long

⁷ For example, Ottawa Solar Power, http://ottawasolarpower.com/osp2008/poolheatingcost.html

⁸ NRCan, RETScreen ® Software Online User Manual, 2005

⁹ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹⁰ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost. ¹¹ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and

Enbridge Gas websites (https://portal-

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2). ¹² Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

¹³ NRCan, Residential Solar Pool Heating Systems: A Buyer's Guide, 2001.

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m ³)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Florida Solar Energy Centre (FSEC), 2008 ¹⁴	2,332	15	3,500	N/A
Comments Assuming a 470 ft ² collector located in central Florida and 12 months of swimming season (effectively 210 days of heating), the annual solar energy delivered is 87 MMBtu, which is equivalent to 2,332 m ³ natural gas savings. The effective useful life is estimated to be 15 years according to FSEC ¹⁵ .				

¹⁴ FSEC, Solar Swimming Pool Heating in Florida, <u>http://www.fsec.ucf.edu/en/consumer/solar_hot_water/pools/sizing.htm</u>
 ¹⁵ FESC, Q&A for Solar Pool Heating, <u>http://www.fsec.ucf.edu/en/consumer/solar_hot_water/pools/g_and_a/index.htm#Long</u>
 B-90

Tankless Gas Water Heater - Existing Residential

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Tankless Gas Water Heater (EF = 0.82)

Base Equipment and Technologies Description

Conventional gas 50 gallon storage tank water heater (EF = 0.575)

Decision Type	Target Market(s)	End Use
New	Residential (Existing)	Water heating

Codes, Standards, and Regulations

Ontario's Energy Efficiency Act¹ requires that gas-fired water storage heaters with nominal inputs of 75,000 Btu or less capable of storing between 20 and 100 US gallons have a minimum energy factor of 0.67 - (0.0019*X)

Where X is the capacity (in gallons) of the storage tank.

Resource Savings Table

	Electricity and Other Resource Savings		Equipment & O&M	Equipment & O&M Costs of	
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	137	0	0	\$1,500	\$750
2	137	0	0	0	0
3	137	0	0	0	0
4	137	0	0	0	0
5	137	0	0	0	0
6	137	0	0	0	0
7	137	0	0	0	0
8	137	0	0	0	0
9	137	0	0	0	0
10	137	0	0	0	0
11	137	0	0	0	0
12	137	0	0	0	0
13	137	0	0	0	0
14	137	0	0	0	0
15	137	0	0	0	0
16	137	0	0	0	0
17	137	0	0	0	0
18	137	0	0	0	0
TOTALS	2 ,412	0	0	\$1,500	\$750

¹ http://www.energy.gov.on.ca/english/pdf/conservation/2006%20-%20EEA%20Guide%20C%20-%20Water%20Heaters.pdf

Pasauraa Savings Assumptions

Annual Natural Gas S	Savings	137 m ³
Assumptions and inputs:		
Calculation Method Factor of tankless savings are calcula Adjusted energy fa Daily average hous Average water inle	ecommendation to the California Energy Comr I (ACM) be amended to recognise the disparity water heaters drawing less than 11 gallons and ted using an energy factor degraded by 8.8% ² ctor ³ : 0.77 schold hot water use: 179 litres (47 gallons) ⁴ t temperature: 7.22 C (45 F) ⁵ ter set point temperature: 54 C (130 F) ⁶	between the nominal Energy I the actual energy efficiency,
Annual gas savings calcula	ted as follows:	
$Savings = W * 8.33 * (T_{out})$	$(-T_{in}) * \left(\frac{1}{EF_{base}} - \frac{1}{EF_{eff}}\right) * 10^{-6} * 27.8$	
Where:		
	W = Annual hot water use (gallons)	
	8.33 = Energy content of water (Btu/gallo	
	T _{out} = Water heater set point temperature	e (°F)
	T _{in} = Water inlet temperature (°F)	
	EF _{base} = Energy factor of base equipmen	
	EF _{eff} = Adjusted energy factor of efficient	equipment
	10^{-6} = Factor to convert Btu to MMBtu	
	27.8 = Factor to convert MMBtu to metre	s cubed
Gas savings 23% over bas	e measure:	
Percent Savings = $\frac{(G_{base})}{G}$	$-G_{eff}$)	
Where:		
	G _{eff} = Annual natural gas use with efficier	nt equipment, 454 m ³
	G _{base} = Annual natural gas use with base	equipment, 594 m ³
Annual Electricity Sa	vings	0 kWh
N/A		
Annual Water Saving	S	0 L

² Davis Energy Group, Measure Information Template: Tankless Gas Water Heaters, April 2008 http://www.energy.ca.gov/title24/2008standards/prerulemaking/documents/2006-05-18 workshop/2006-05-11 GAS WATER.PDF

Exelon Services and Okaloosa Gas District, Performance Comparison of Residential Water Heating Systems, December 2002 ⁴ From sample of 150 Enbridge customers whose gas consumption is monitored by Enbridge. Correspondence with Enbridge.

³ It should be noted that an alternative study, by Exelon Services for Okaloosa Gas, conducted carefully controlled tests to determine the thermal efficiency of a tankless and a storage tank gas water heater. This study found that the listed energy factor underestimated the tankless water heater's true thermal efficiency. This result is not reflected in this substantiation sheet due to the more recent findings cited above, based on a larger sample than the Okaloosa study.

⁵ Chinnery, Glen. Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices, EPA, Energy Star for homes, March 2004

http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf ⁶ As suggested by NRCan: http://oee.nrcan.gc.ca/residential/personal/new-homes/water-conservation.cfm?attr=4

Navigant has assumed that adopting the measure would not affect the quantity of water consumed.

Other Input Assumptions

Effective Useful Life (EUL)	18 Years		
Navigant Consulting recommends using an EUL of 18 years, the mean of used two other jurisdictions (Iowa ⁷ , 20 years, and Puget Sound Energy ⁸ , academic paper ⁹ (20 years).	estimated measure lifetimes 13 years) and that quoted by an		
Base & Incremental Conservation Measure Equipment and O&M Costs	750 \$		
Cost of tankless water heater determined to be \$1,500 ¹⁰ . Average price for a 50 gallon conventional storage tank water heater \$75	0 ¹¹ .		
Customer Payback Period (Natural Gas Only) ¹²	10.5 Years		
Using a 5-year average commodity cost (avoided cost) ¹³ of \$0.38 / m ³ and an average residential distribution cost ¹⁴ of \$0.14 / m ³ , the payback period for natural gas savings is determined to be 10.5 years, based on the following:			
Payback Period = Incremental cost / (natural gas savings x natural gas co = \$750/ (137 m ³ /year * \$0.52 / m ³) = 10.5 years	ost)		
Market Penetration ¹⁵	Low		
Based on the observation of low penetration in two other jurisdictions (Wa 1%) and communications with local contractors, Navigant Consulting estin to be low.			

⁷ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

⁸ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy

⁹ Aguilar, C., White, D.J., and Ryan, David L. *Domestic Water Heating and Water Heater Energy Consumption in Canada*, April 2005

¹⁰ Based on online prices from Home Depot for a Paloma Whole Home 7.4 GPM, www.homedepot.ca

¹¹ Based on average prices from Home Depot, www.homedepot.ca

¹² Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹³ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

¹⁴ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>https://portal-</u>

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2).

¹⁵ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

¹⁶ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy

¹⁷ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Puget Sound Energy, 2007 ¹⁸	152	13	350 US\$	10%
Comments Assuming base equipment to be a conventional water tank with an EF=0.64. Measure saves 20% of 759 m ³ required for water heating.				
Source	Annual Natural Gas Savings (m3)Effective Useful Life (Years)Incremental Cost (\$)Penetration/Market Share			
State of Iowa Utilities Board ¹⁹	207	20	685 US\$	1%
Comments Assuming base equipment to be a conventional water tank with an EF = 0.59. Measure saves 40.2% of 514 m^3 required for water heating.				

 ¹⁸ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy
 ¹⁹ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Tankless Gas Water Heater - New Residential

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Tankless Water Heater (EF = 0.82)

Base Equipment and Technologies Description

Conventional gas 50 gallon storage tank water heater (EF = 0.575)

Decision Type	Target Market(s)	End Use
New	Residential (New)	Water heating

Codes, Standards, and Regulations

Ontario's Energy Efficiency Act¹ requires that gas-fired water storage heaters with nominal inputs of 75,000 Btu or less capable of storing between 20 and 100 US gallons have a minimum energy factor of 0.67 - (0.0019*X), where X is the capacity (in gallons) of the storage tank.

Resource Savings Table

	Electricity and Other Resource Savings		Electricity and Other		ce Savings	Equipment & O&M	Equipment & O&M Costs of
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure		
(EUL=)	(m³)	(kWh)	(L)	(\$)	(\$)		
1	137	0	0	1,500	750		
2	137	0	0	0	0		
3	137	0	0	0	0		
4	137	0	0	0	0		
5	137	0	0	0	0		
6	137	0	0	0	0		
7	137	0	0	0	0		
8	137	0	0	0	0		
9	137	0	0	0	0		
10	137	0	0	0	0		
11	137	0	0	0	0		
12	137	0	0	0	0		
13	137	0	0	0	0		
14	137	0	0	0	0		
15	137	0	0	0	0		
16	137	0	0	0	0		
17	137	0	0	0	0		
18	137	0	0	0	0		
TOTALS	2,412	0	0	1,500	750		

¹ http://www.energy.gov.on.ca/english/pdf/conservation/2006%20-%20EEA%20Guide%20C%20-%20Water%20Heaters.pdf

Resource Savings Assumptions

Annual Natural Gas Savings	137 m ³
Assumptions and inputs:	
 Following a 2006 recommendation to the California Energy Comm Calculation Method (ACM) be amended to recognise the disparity Factor of tankless water heaters drawing less than 11 gallons and savings are calculated using an energy factor degraded by 8.8%² Adjusted energy factor³: 0.77 Daily average household hot water use: 179 litres (47 gallons)⁴ Average water inlet temperature: 7.22 °C (45 °F)⁵ Average water heater set point temperature: 54 °C (130 °F)⁶ 	between the nominal Energy
Annual gas savings calculated as follows:	
Savings = W * 8.33 * $(T_{out} - T_{in}) * \left(\frac{1}{EF_{base}} - \frac{1}{EF_{eff}}\right) * 10^{-6} * 27.8$	
Where:	
W = Annual hot water use (gallons)	
8.33 = Energy content of water (Btu/gallo	,
T _{out} = Water heater set point temperature	(°F)
T _{in} = Water inlet temperature (°F)	
EF _{base} = Energy factor of base equipment EF _{eff} = Adjusted energy factor of efficient	
10^{-6} = Factor to convert Btu to MMBtu	equipment
27.8 = Factor to convert MMBtu to m ³	
Gas savings were determined to be 23% over base measure:	
$Percent Savings = \frac{\left(G_{base} - G_{eff}\right)}{G_{base}}$	
Where:	
G _{eff} = Annual natural gas use with efficier	
G _{base} = Annual natural gas use with base	equipment, 594 m ³
Annual Electricity Savings	0 kWh

N/A

⁴ From sample of 150 Enbridge customers whose gas consumption is monitored by Enbridge. Correspondence with Enbridge.

² Davis Energy Group, Measure Information Template: Tankless Gas Water Heaters, April 2008 http://www.energy.ca.gov/title24/2008standards/prerulemaking/documents/2006-05-18 workshop/2006-05-11 GAS WATER.PDF

³ It should be noted that an alternative study, by Exelon Services for Okaloosa Gas, conducted carefully controlled tests to determine the thermal efficiency of a tankless and a storage tank gas water heater. This study found that the listed energy factor underestimated the tankless water heater's true thermal efficiency. This result is not reflected in this substantiation sheet due to the more recent findings cited above, based on a larger sample than the Okaloosa study. Exelon Services and Okaloosa Gas District, Performance Comparison of Residential Water Heating Systems, December 2002

⁵ Chinnery, Glen. Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices, EPA, Energy Star for homes, March 2004

http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf

Annual Water Savings	0 L
Navigant has assumed that adopting the measure would not affect the g	antity of water consumed.

Other Input Assumptions

Effective Useful Life (EUL)	18 Years
Navigant Consulting recommends using an EUL of 18 years, the mean of used two other jurisdictions (Iowa ⁷ , 20 years, and Puget Sound Energy ⁸ , academic paper ⁹ (20 years).	
Base & Incremental Conservation Measure Equipment and O&M Costs	750 \$
Cost of tankless water heater determined to be \$1,500 ¹⁰ . Average price for a 50 gallon conventional storage tank water heater \$75	0 ¹¹ .
Customer Payback Period (Natural Gas Only) ¹²	10.5 Years
Using a 5-year average commodity cost (avoided cost) ¹³ of \$0.38 / m ³ and distribution cost ¹⁴ of \$0.14 / m ³ , the payback period for natural gas saving based on the following:	d an average residential s is determined to be 10.5 years,
Payback Period = Incremental cost / (natural gas savings x natural gas co = \$750/ (137 m³/year * \$0.52 / m³) = 10.5 years	ost)
Market Penetration ¹⁵	Low
Based on the observation of low penetration in two other jurisdictions (Wa 1%) and communications with local contractors, Navigant Consulting estit to be low.	

⁷ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

⁸ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy

⁹ Aguilar, C., White, D.J., and Ryan, David L. *Domestic Water Heating and Water Heater Energy Consumption in Canada*, April 2005,

¹⁰ Based on online price from Home Depot for a Paloma Whole Home 7.4 GPM tankless water heater, www.homedepot.ca

¹¹ Based on average prices from Home Depot, www.homedepot.ca

¹² Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹³ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

¹⁴ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>https://portal-</u>)

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2).

¹⁵ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

¹⁶ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy

¹⁷ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Puget Sound Energy, 2007 ¹⁸	224	13	450 US\$	10%
Comments Assuming base equipment to be a conventional water tank with an EF=0.64. Measure saves 25% of 898 m ³ required for water heating.				
Source	Annual Natural Effective Gas Savings (m3) (Years) Incremental Cost (\$) Penetration/Market Share			
State of Iowa Utilities Board ¹⁹	199	20	685 US\$	1%
Comments Assuming base equipme 495 m ³ required for wate	ent to be a convention	nal water tank with	n an EF = 0.59. Me	asure saves 40.2% of

 ¹⁸ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy
 ¹⁹ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

LOW INCOME SPACE HEATING

Programmable Thermostat (LIA)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description
Programmable thermostat.
Base Equipment and Technologies Description
Chandland the research

Standard thermostat.

Decision Type	Target Market(s)	End Use
Retrofit	Low income residential homes	Space Heating

Codes, Standards, and Regulations

- For a programmable thermostat to receive Energy Star® qualification, it must meet specific criteria such as having at least two different programming periods (for weekday and weekend programming), at least four possible temperature settings and allow for temporary overriding by the user.
- In Canada, applicable CSA standards can be found in CSA C828-99- CAN/CSA Performance Requirements for Thermostats used with Individual Room Electric Space Heating Devices.

Resource	Savings	Table
110000100	outingo	IUNIC

	Electricity and Other Resource Savings		Equipment & O&M Costs of	Equipment & O&M	
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m³)	(kWh)	(L)	(\$)	(\$)
1	146	182	0	25	0
2	146	182	0	0	0
3	146	182	0	0	0
4	146	182	0	0	0
5	146	182	0	0	0
6	146	182	0	0	0
7	146	182	0	0	0
8	146	182	0	0	0
9	146	182	0	0	0
10	146	182	0	0	0
11	146	182	0	0	0
12	146	182	0	0	0
13	146	182	0	0	0
14	146	182	0	0	0
15	146	182	0	0	0
TOTALS	2,190	2,730	0	25	0

Resource Savings A	ssumptions			
Annual Natural Gas Sa	vings			146 m ³
 Lacking any conclusive e same behavioural and ba Residential sector. Two utility studies¹ are us thermostats on natural gathermostats on natural gathermostate on the GasNet normalized for multivariate registry of total house natural gas save 1,253 ccf (3,54) 	empirical data to suggest ase/efficient equipment as sed to determine savings as consumptions. works study ² , 4,061 mail- temperature and the energy gression analysis. The stu- tehold annual natural gas vings based on a Non-Pro 8 m ³) natural gas. The Billing Analysis³ , 911 05. Enbridge determined tural gas. sing Technology (CCHT) avings ⁴ . The study was do mparison of changes in o C night setback. Idies, Navigant Consultin	ssumptions to the resulting from resulting from resulting from resulting from resulting from results we udy found that performed that perform	gant Consulting I ne Low-Income s residential progra bills were analyz re determined the orogrammable the orks is proposing ermostat annual ural gas consum ving of 159 m ³ for d a study in 2005 ical research hor ons in a home. If	has applied the ector as to the immable red. Results were rough a ermostat saved 6 75 ccf (212 m ³) consumption of ption was r a house using on programmable mes located in reports a 6.5%
Studies	Baseline Gas Consumption (m ³)	Gas Savings (m ³)	Gas Savings%	
GasNetworks (2007)	3,548	212	6.0%	
Enbridge (2005)	2,878	159	5.5%	
CCHT (2005)	-	-	6.5%	
	NCI Average		6.0%	
 The baseline natural gas consumption for Enbridge⁵ is 2,436 m³ for mid-efficiency furnaces, Therefore, NCI estimates for natural gas savings = 2,436 m³ x 6% = 146 m³ Annual Electricity Savings 182 kWh A side-by-side housing study conducted by the Canadian Centre for Housing Technology⁶ determined seasonal energy savings for a residential unit from a programmable thermostat as follows: 				
CAC**: Temp Set Back	Total Summer Furnace	Seasonal Savin	gs (%)	

Temp Set Back	Total Summer Furnace and CAC Electricity	Seasonal Savings (%)
	Consumption (kWh)	
None (22C)	3,099	0
25 C daytime set back	2,767	11
24 C daytime set back	2,376	23

¹ "Resource Savings Values in Selected Residential DSM Prescriptive Programs", Summit Blue Consulting, June 2008.

² RLW Analytics, Validating the impact of programmable thermostats: final report. Prepared for GasNetworks by RLW Analytics. Middletown, CT, January 2007.

³ "Resource Savings Values in Selected Residential DSM Prescriptive Programs", Summit Blue Consulting, June 2008.

⁴ The Effects of Thermostat Setting on Seasonal Energy Consumption at the CCHT Research Facility, Manning, Swinton, Szadkowski, Gusdorf, Ruest, February 14, 2005, <u>http://irc.nrc-cnrc.gc.ca/pubs/rr/rr191/pr191.pdf</u>

⁵ Enbridge Gas Customer Profiling Yearly Average End Use, November 23, 2004; based on Summit Blue Report, Navigant Consulting will use baseline consumption data provided by Enbridge for analysis.

⁶ Canadian Center for Housing Technologies, The Effects of Thermostat Set-back and Set-up on Seasonal Energy Consumption, Surface Temperatures and Recovery Times at the CCHT Twin House Facility, March 2007 http://irc.nrc-cnrc.gc.ca/pubs/fulltext/nrcc48361/nrcc48361.pdf

** 12 SEER , 2 ton capacity CAC, 362 cooling degree days (18C)

- A BC Hydro study⁷ reports savings between 10% and 15% for 4°C set back during night and unoccupied periods, Energy Star Calculator⁸ reports 3% saving per degree for heating season (8.25% for full set back). Using the CCHT study results from a full daytime and night-time set back of 4 degrees:
 - Approximate savings is expected for the winter season = 2,314 2,270 = 44 kWh/year
- Navigant Consulting is assuming a base CAC usage of 1,257 kWh/year based on the OPA's assumption using CAC rated at 8.7 SEER and 24,000 Btu/hr unit⁹. Using the CCHT study results, setting the thermostat 3 degrees higher would save 11%:
 - Based on CAC usage of 1,257 kWh/year, electricity savings = 1,257 x 11% = 138 kWh/year
- Therefore, assuming an average home has both space cooking using CAC and force air heating, the total electricity savings = 138 kWh/year + 44 kWh/year = 182 kWh/year.

Annual Water Savings	0 L
N/A	

Other Input Assumptions

Effective Useful Life (EUL)	15 Years		
Navigant Consulting is estimating 15 years as the effective useful life bas programmable thermostat from Energy Star ${\rm I\!R}$ website.	ed on the average lifetime of		
Base & Incremental Conservation Measure Equipment and O&M Costs	\$ 25		
Average incremental cost of programmable thermostats was determined to be \$25 based on average cost of non-programmable and programmable thermostats from Home Depot and Canadian Tire website in 2008.			
Customer Payback Period (Natural Gas Only) ¹⁰	0.3 Years		
Using an 5-year average commodity cost (avoided cost) ¹¹ of $0.38 / m^3$ and an average residential distribution cost ¹² of $0.14 / m^3$, the payback period for natural gas savings is determined to be 0.3 years, based on the following:			
Payback Period = Incremental cost / (natural gas savings x natural gas cost) = \$25/ (146 m ³ /year * \$0.52 / m ³) = 0.3 years			

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorProgrammableThermostat.xls

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2).

⁷ Marbek Resource Consultants, The Sheltair Group Inc , BC Hydro BC Hydro Conservation Potential Review 2002, Residential Sector Report (Base Year: Fiscal 2000/01) (Revision 1) Submitted to: BC Hydro, June 2003

⁸ US EPA (EPA Energy Star® Simple Savings Calculator – Programmable Thermostat),

⁹ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, referenced from: Heating, Refrigeration and Air Conditioning Institute of Canada (HRAI), 2006 Cool Savings Rebate Program, Prepared for the Ontario Power Authority, April 2007.

¹⁰ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹¹ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

¹² Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>https://portal-</u>

Market Penetration

65%

Due to the number of conservation programs in Ontario currently offering programmable thermostats and based on previous research conducted for the OPA¹³, Navigant Consulting estimates the penetration of programmable thermostats amongst single family residents in Ontario to be 65%.

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
State of Iowa Utilities Board ¹⁴	166	15	\$25	26% (Low income SF)
Comments				
Measure provides saving	gs of 11.5% over 1,4	46 m3 required for	space heating wit	h base equipment.
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Ontario Power Authority ¹⁵	182	15	\$140	N/A
Comments Based on gas savings from Canadian Centre for Housing Technology study for an 80% AFUE gas furnace using standard PCS motor and furnace size of 67,500 BTU/hr, using 4761 heating degree hours.				

 ¹³ Navigant Consulting, Inc. for the Ontario Power Authority, *Residential Rebate Program: Participation Forecast and Incentive Bundling Strategy – Key Findings Summary*, December 2008
 ¹⁴ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2
 ¹⁵ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008

Weatherization (LIA)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Weatherization includes: draft proofing (caulking and weather stripping) and increased insulation.

Base Equipment and Technologies Description

No weatherization.

Decision Type	Target Market(s)	End Use
Retrofit	Low-income Residential (Existing)	Space Heating

Codes, Standards, and Regulations

N/A

Resource Savings Table

	Electricity and Other Deserves Destruct				
	Electricity and Other Resource Savings		Equipment & O&M Costs of	Equipment & O&M	
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m³)	(kWh)	(L)	(\$)	(\$)
1	1,134	165	0	2,284	0
2	1,134	165	0	0	0
3	1,134	165	0	0	0
4	1,134	165	0	0	0
5	1,134	165	0	0	0
6	1,134	165	0	0	0
7	1,134	165	0	0	0
8	1,134	165	0	0	0
9	1,134	165	0	0	0
10	1,134	165	0	0	0
11	1,134	165	0	0	0
12	1,134	165	0	0	0
13	1,134	165	0	0	0
14	1,134	165	0	0	0
15	1,134	165	0	0	0
16	1,134	165	0	0	0
17	1,134	165	0	0	0
18	1,134	165	0	0	0
19	1,134	165	0	0	0
20	1,134	165	0	0	0
21	1,134	165	0	0	0
22	1,134	165	0	0	0
23	1,134	165	0	0	0
TOTALS	26.082	3,795	0	2,284	0

Resource Savings Assumptions

Annual Natural Gas Savings

1,134 m³

165 kWh

0 L

- According to a low income weatherization research report¹ prepared by Green\$aver on behalf of Enbridge Gas, a total of 61 homes were retrofitted in the 2007 Enbridge pilot program. Home audits were conducted.
- Audits were completed on selected homes (inspection of the attic, wall and foundation insulation, windows, heating systems, water heaters and ventilation systems). The air tightness of each home was measured using a Blower Door device.
- Potential retrofit upgrades were modeled and if the total feasible improvements were projected at 15% or more of their current energy use, the home was recommended for retrofit work (including draft proofing² and attic and/or wall insulation³).
- After completion of the energy retrofit work, a second audit was conducted followed by an inspection verifying that the completed work met the specifications provided, and allowing for full assessment of the project results.
- Based on program data supplied by Enbridge and audited by Green\$aver, program savings results are summarized below:

	Baseline NG	Retrofit NG		
	Consumption (m ³)	Consumption (m ³)	NG Savings (m ³)	
Total	310,168	247,804	62,364	
Average	5,639	4,506	1,134	

• Baseline estimates of natural gas consumption = 5,639 m³.

• Natural Gas Savings % = 1,134 m^3 / 5,639 m^3 = 20 %

Annual Electricity Savings

• Electricity savings are modelled using HOT2000 after retrofit.

• Assumptions and Inputs:

- Four occupants per house (2 adults, 2 children), occupied 50% of the time

- Temperature set-point of 21 °C for the main floor walls and 19 °C for the basement
- Consumption of 225 litres of DWH per day
- Electrical consumption (lights and appliances) of 24 kWh per day
- Weather data file is based on the analysis of periods from 1971 2000
- A/C is not factored into electrical savings
- Based on program data supplied by Enbridge and audited by Green\$aver, program savings results are summarized below:

	Baseline Electricity	Retrofit Electricity	Electricity Savings
	Consumption (kWh)	Consumption (kWh)	(kWh)
Total	512,822	502,773	10,050
Average	8,407	8,242	165

• Baseline estimates of electricity consumption = 8,407kWh.

Electricity Savings % = 165 kWh / 8407 kWh = 2 %

Annual Water Savings

N/A

¹ Green\$ave, Low Income Weatherization Research Summary, prepared for Enbridge Gas, December 2007.

² Draft proofing included: caulking and weather stripping around doors and door frames, around window casing, around headers and baseboards and attic hatches

³ Insulation included blowing cellulose insulation into wood framed wall cavities and crawlspaces, adding or blowing insulation into attics and crawlspaces and adding insulation to the whole length of basement walls

Other Input Assumptions

Effective Useful Life (EUL)	23 Years				
Based on average measure life of installed measures for 61 participant homes in Green\$aver study ⁴ . Measures included attic insulation, wall insulation, door and weather stripping and caulking.					
Base & Incremental Conservation Measure Equipment and O&M Costs	\$ 2,284				
Based on average actual cost (2007) for the 61 program participants in th	e pilot study⁵.				
Customer Payback Period (Natural Gas Only) ⁶	3.9 Years				
Using a 5-year average commodity cost (avoided cost) ⁷ of \$0.38 / m ³ and an average residential distribution cost ⁸ of \$0.14 / m ³ , the payback period for natural gas savings is determined to be 3.9 years based on the following: Payback Period = Incremental cost / (natural gas savings x natural gas cost) = \$2,284 / (1,134 m ³ /year * \$0.52 / m ³)					
= 3.9 years Market Penetration ⁹	Medium				
Based on communication with local contractors, the increased promotions available to homeowners, Navigant Consulting is estimating the market pro- be medium.					

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Iowa Sate Low-income Weatherization Program (2003) ¹⁰	767.3	1,031	5,064	N/A
Comments				

On average, the 1,813 participants in this program saved 1031 kWh of electricity and 276 therms (767.3 m³) of natural gas.

⁴ Green\$aver, Low Income Weatherization Research Summary, prepared for Enbridge Gas, December 2007.

⁵ Ibid.

⁶ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

⁷ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

⁸ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

¹⁰ http://www.dcaa.iowa.gov/bureau_weath/pdfs/CY03ExecSummary.pdf

LOW INCOME WATER HEATING

Faucet Aerator (Bathroom) (LIA)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Faucet Aerator (Bathroom) (1.5 GPM)

Base Equipment and Technologies Description

Average existing stock (2.2 GPM)¹

Decision Type	Target Market(s)	End Use	
Retrofit	Low-Income Residential (existing)	Water heating	

Codes, Standards, and Regulations

Ontario Building Code (2006)² requires bathroom and kitchen faucets to have a maximum flow of 2.2 GPM (8.35 L/min).

Resource Savings Table

	Electricity and Other Resource Savings			Equipment & O&M	Equipment & O&M Costs of
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	10	0	2,004	2	0
2	10	0	2,004	0	0
3	10	0	2,004	0	0
4	10	0	2,004	0	0
5	10	0	2,004	0	0
6	10	0	2,004	0	0
7	10	0	2,004	0	0
8	10	0	2,004	0	0
9	10	0	2,004	0	0
10	10	0	2,004	0	0
TOTALS	100	0	20,040	2	0

¹ From on-site audit data. Resource Management Strategies, Inc. Regional Municipality of York Water Efficiency Master Plan

Update, 2007. Cited in: Summit Blue, Resource Savings Values in Selected Residential DSM Prescriptive Programs, June 2008.

² Ontario Regulations 350/06, 2006 Building Code

Annual Natural Gas Savings	10 m ³
Assumptions and inputs:	
 Lacking any conclusive empirical data to suggest otherwise, Naviga same behavioural and base/efficient equipment assumptions to the Residential sector. 	
 Average faucet water temperature: 32 °C (90 °F)³ 	
 Average water inlet temperature: 7.22 °C (45 °F)⁴ 	
• Average water heater energy factor: 0.57 ⁵	
Annual gas savings calculated as follows:	
Savings = W * 8.33 * $(T_{out} - T_{in})$ * $\frac{1}{EF}$ * 10 ⁻⁶ * 27.8	
Vhere:	
W = Water savings (gallons)	
8.33 = Energy content of water (Btu/gallon/	°F)
T _{out} = Faucet water temperature (°F)	,
T_{in} = Water inlet temperature (°F)	
EF = Water heater energy factor	
10 ⁻⁶ = Factor to convert Btu to MMBtu	
27.8 = Factor to convert MMBtu to m^3	
Gas savings were determined to be 22% over base case:	
Percent Savings = $\frac{(G_{base} - G_{new})}{G_{base}}$	
Vhere:	
G _{eff} = Annual natural gas use with efficien G _{base} = Annual natural gas use with base e	• •
Annual Electricity Savings	0 kWh
V/A	
Annual Water Savings	2,004 L
Assumptions and inputs:	
 Average household size: 3.1 persons⁶ 	

• Bathroom faucet use as a percentage of total faucet use: 15%⁸

³ Average of findings in two studies. Mayer, P. W. et al, *Residential Indoor Water Conservation Study: Evaluation of High Efficiency Indoor Plumbing Fixture Retrofits in Single-Family Homes in East Bay Municipal Utility District Service Area, 2003 and Skeel, T. and Hill, S. Evaluation of Savings from Seattle's "Home Water Saver" Apartment/Condominium Program, 1994. Both cited in: Summit Blue (2008).*

⁴ Chinnery, Glen. *Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices*, EPA, Energy Star for homes, March 2004

⁵ <u>http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf</u> ⁵ Assumption of the Ministry of Energy of Ontario. See Table 4,

http://www.energy.gov.on.ca/index.cfm?fuseaction=conservation.guide13 ⁶ Summit Blue (2008).

⁷ Ibid.

⁸ DeOreo, W. and P. Mayer, *The End Uses of Hot Water in Snigle Family Homes from Flow Trace Analysis*, 1999 cited in Summit Blue (2008).

Point estimate of quantity of water that goes straight down the drain: 70%⁹

Annual water savings calculated as follows:

$$Savings = Fu * Ppl * 365 * Ba * \left((1 - Dr) - \left(1 - \frac{Fl_{base} - Fl_{eff}}{Fl_{base}} \right) * Dr \right)$$

Where:

Fu = Faucet use per capita (gallons)
Ppl = Number of people per household
365 = Days per year
Dr = Percentage of water that goes straight down the drain
Ba = Individual bathroom faucet use as a percentage of total faucet use
Fl_{base} = Flow rate of base equipment (GPM)
Fl_{eff} = Flow rate of efficient equipment (GPM)

Water savings was determined to be 22% over base case:

$$Percent Savings = \frac{\left(W_{base} - W_{eff}\right)}{W_{base}}$$

Where:

W_{eff} = Annual water use with efficient equipment: 6,993 litres (1,847 gallons)

 W_{base} = Annual water use with base equipment: 8,997 litres (2,376 gallons)

Other Input Assumptions

Effective Useful Life (EUL)	10 Years			
The U.S. DOE assumes a 10 year life for faucet aerators ¹⁰ .				
Base & Incremental Conservation Measure Equipment and O&M Costs	2 \$			
Average equipment cost based on communication with local hardware sto	ores.			
Customer Payback Period (Natural Gas Only) ¹¹	0.4 Years			
Using a 5-year average commodity cost (avoided cost) ¹² of \$0.38 / m ³ and an average residential distribution cost ¹³ of \$0.14 / m ³ , the payback period for natural gas savings is determined to be 0.4 years, based on the following:				
Payback Period = Incremental cost / (natural gas savings x natural gas co = \$2/ (10 m³/year * \$0.52 / m³)	ost)			

⁹ Summit Blue (2008).

¹⁰ U.S. Department of Energy, Federal Energy Management Program, *FEMP Designated Product: Lavatory Faucets* <u>http://www1.eere.energy.gov/femp/procurement/eep_faucets.html</u>

¹¹ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹² 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

¹³ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>https://portal-</u>

= 0.4 years	
Market Penetration ¹⁴	90%
Read on providue research conducted for the ORA. Novigent Consulting	actimates population of found

Based on previous research conducted for the OPA, Navigant Consulting estimates penetration of faucet aerators (bathroom and kitchen) across all sectors to be 90%¹⁵.

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
Puget Sound Energy ¹⁶	8	5	N/A	45%	
Comments For a switch from a 2.5 GPM to a 1.8 GPM aerator. Measure saves 1% of 759 m ³ required for water heating.					
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
State of Iowa Utilities Board ¹⁷	36	9	20 US\$	90%	
Comments For a switch from a 3.0 GPM to a 1.5 GPM aerator for the Low-Income sector. In neither study is any distinction made between kitchen and bathroom faucet use. Measure saves 6.2% of 584 m ³ required for water heating.					

 ¹⁴ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,
 ¹⁵ Navigant Consulting, Inc. for the Ontario Power Authority, *Residential Rebate Program: Participation Forecast and Incentive Bundling Strategy – Key Findings Summary*, December 2008
 ¹⁶ Quantec *Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027)* Prepared for Puget Sound Energy
 ¹⁷ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Faucet Aerator (Kitchen) (LIA)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Faucet Aerator (kitchen) (1.5 GPM)

Base Equipment and Technologies Description

Average existing stock (2.5 GPM)¹

Decision Type	Target Market(s)	End Use
Retrofit	Low-Income Residential (existing)	Water heating

Codes, Standards, and Regulations

Ontario Building Code (2006)² requires bathroom and kitchen faucets to have a maximum flow of 2.2 GPM (8.35 L/min).

	Electricity and Other Resource Savings			Equipment & O&M	Equipment & O&M Costs of
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	38	0	7,797	2	0
2	38	0	7,797	0	0
3	38	0	7,797	0	0
4	38	0	7,797	0	0
5	38	0	7,797	0	0
6	38	0	7,797	0	0
7	38	0	7,797	0	0
8	38	0	7,797	0	0
9	38	0	7,797	0	0
10	38	0	7,797	0	0
TOTALS	380	0	77,970	2	0

¹ From on-site audit data. Resource Management Strategies, Inc. Regional Municipality of York Water Efficiency Master Plan

Update, 2007. Cited in: Summit Blue, Resource Savings Values in Selected Residential DSM Prescriptive Programs, June 2008.

Annual Natural Gas Savings	38 m ³
Assumptions and inputs:	
 Lacking any conclusive empirical data to suggest otherwise, Navigal same behavioural and base/efficient equipment assumptions to the Residential sector. 	
 Average faucet water temperature: 32 °C (90 F)³ 	
 Average water inlet temperature: 7.22 °C (45 F)⁴ 	
• Average water heater energy factor: 0.57 ⁵	
Annual gas savings calculated as follows:	
Savings = W * 8.33* $(T_{out} - T_{in})$ * $\frac{1}{EF}$ *10 ⁻⁶ * 27.8	
Where:	
W = Water savings (gallons)	
8.33 = Energy content of water (Btu/gallon/	Ϋ́F)
T _{out} = Faucet water temperature (°F)	
T _{in} = Water inlet temperature (^o F)	
EF = Water heater energy factor	
10 ⁻⁶ = Factor to convert Btu to MMBtu	
27.8 = Factor to convert MMBtu to m^3	
Gas savings were determined to be 20% over base case:	
Percent Savings = $\frac{(G_{base} - G_{new})}{G_{base}}$	
Where:	
G_{eff} = Annual natural gas use with efficient G_{base} = Annual natural gas use with base equivalence of the second states of th	
Annual Electricity Savings	0 kWh
N/A	
Annual Water Savings	7,797 L
Assumptions and inputs:	
 Average household size: 3.1 persons⁶ 	

• Kitchen faucet use as a percentage of total faucet use: 65%⁸

³ Average of findings in two studies. Mayer, P. W. et al, *Residential Indoor Water Conservation Study: Evaluation of High Efficiency Indoor Plumbing Fixture Retrofits in Single-Family Homes in East Bay Municipal Utility District Service Area, 2003 and Skeel, T. and Hill, S. Evaluation of Savings from Seattle's "Home Water Saver" Apartment/Condominium Program, 1994. Both cited in: Summit Blue (2008).*

⁴ Chinnery, Glen. *Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices*, EPA, Energy Star for homes, March 2004

http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf ⁵ Assumption of the Ministry of Energy of Ontario. See Table 4,

http://www.energy.gov.on.ca/index.cfm?fuseaction=conservation.guide13 ⁶ Summit Blue (2008).

⁷ Ibid.

⁸ DeOreo, W. and P. Mayer, *The End Uses of Hot Water in Snigle Family Homes from Flow Trace Analysis*, 1999 cited in Summit Blue (2008).

Point estimate of quantity of water that goes straight down the drain: 50%⁹

Annual water savings calculated as follows:

$$Savings = Fu * Ppl * 365 * Ki * \left((1 - Dr) - \left(1 - \frac{Fl_{base} - Fl_{eff}}{Fl_{base}} \right) * Dr \right)$$

Where:

Fu = Faucet use per capita (gallons)
Ppl = Number of people per household
365 = Days per year
Dr = Percentage of water that goes straight down the drain
Ki = Kitchen faucet use as a percentage of total faucet use
Fl_{base} = Flow rate of base equipment (GPM)
Fl_{eff} = Flow rate of efficient equipment (GPM)

Water savings was determined to be 20% over base case:

$$Percent Savings = \frac{\left(W_{base} - W_{eff}\right)}{W_{base}}$$

Where:

- W_{eff} = Annual water use with efficient equipment: 38,986 litres (10,297 gallons)
 W_{base}= Annual water use with base equipment: 31,188 litres (8,237
- gallons)

Other Input Assumptions

Effective Useful Life (EUL)	10 Years			
The U.S. DOE assumes a 10 year life for faucet aerators ¹⁰ .				
Base & Incremental Conservation Measure Equipment and O&M Costs	2 \$			
Average equipment cost based on communication with local hardware sto	pres.			
Customer Payback Period (Natural Gas Only) ¹¹	0.1 Years			
Using a 5-year average commodity cost (avoided cost) ¹² of \$0.38 / m ³ and an average residential distribution cost ¹³ of \$0.14 / m ³ , the payback period for natural gas savings is determined to be 0.1 years, based on the following:				
Payback Period = Incremental cost / (natural gas savings x natural gas co	ost)			

⁹Summit Blue (2008).

¹⁰ U.S. Department of Energy, Federal Energy Management Program, *FEMP Designated Product: Lavatory Faucets* <u>http://www1.eere.energy.gov/femp/procurement/eep_faucets.html</u>

¹¹ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹² 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

¹³ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>https://portal-</u>

= \$2/ (38 m³/year * \$0.52 / m³)

= 0.1 years

Market Penetration	90%
Based on previous research conducted for the OPA, Navigant Consulting	estimates penetration of faucet

aerators (bathroom and kitchen) across all sectors to be 90%¹⁴.

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share			
Puget Sound Energy ¹⁵	Puget Sound Energy ¹⁵ 8 5 N/A 45%						
Comments							
For a switch from a 2.5 GPM to a 1.8 GPM aerator. Measure saves 1% of 759 m ³ required for water heating.							
Source	Annual Natural Gas Savings	Effective	Incremental	Penetration/Market			

Source	Gas Savings (m3)	Useful Life (Years)	Cost (\$)	Share		
State of Iowa Utilities Board ¹⁶	36	9	20 US\$	90%		
Comments						

For a switch from a 3.0 GPM to a 1.5 GPM aerator for the Low-Income sector.

In neither study is any distinction made between kitchen and bathroom faucet use. Measure saves 6.2% of 584 m³ required for water heating.

 ¹⁴ Navigant Consulting, Inc. for the Ontario Power Authority, *Residential Rebate Program: Participation Forecast and Incentive Bundling Strategy – Key Findings Summary*, December 2008
 ¹⁵ Quantec *Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027)* Prepared for Puget Sound Energy
 ¹⁶ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Low-Flow Showerhead (1.5 Gpm, UG ESK) (LIA)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Low-flow Showerhead (1.5 Gpm) – distributed to participants under Union Gas' ESK program.

Base Equipment and Technologies Description

Average existing stock (2.2 GPM)¹.

Decision Type	Target Market(s)	End Use
Retrofit	Low-Income Residential (Existing)	Water heating

Codes, Standards, and Regulations

Ontario Building Code (2006)² requires shower heads to have a maximum flow of 2.5 GPM (9.5 L/min)

	Electricity	and Other Resourc	e Savings	Equipment & O&M	Equipment & O&M Costs of
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	33	0	6,334	6	0
2	33	0	6,334	0	0
3	33	0	6,334	0	0
4	33	0	6,334	0	0
5	33	0	6,334	0	0
6	33	0	6,334	0	0
7	33	0	6,334	0	0
8	33	0	6,334	0	0
9	33	0	6,334	0	0
10	33	0	6,334	0	0
TOTALS	330	0	63,340	6	

¹ Shower-heads distributed under Union Gas's ESK program are installed by homeowners rather than Union contractors. No observation is made of the base equipment's GPM. It is therefore assumed to be the full-on flow rate corresponding to the asused flow from York Region monitoring study calculated using the equation cited below.
Personance Management Strategies, Inc., Personance Municipality of York Water Efficiency Mactor Plan Undate, April 2007, Cited Inc., 2007.

Resource Management Strategies, Inc., Regional Municipality of York Water Efficiency Master Plan Update, April 2007. Cited by: Summit Blue, *Resource Savings Values in Selected Residential DSM Prescriptive Programs*, June 2008.

² Ontario Regulations 350/06, 2006 Building Code

Annual Natural Gas Savings	33 m ³
Assumptions and inputs:	
 Lacking any conclusive empirical data to suggest otherwise, Navig same behavioural and base/efficient equipment assumptions to the Residential sector. Average shower temperature with base equipment: 40 °C (104 °F Average shower temperature with efficient equipment: 41 °C (106 Average water inlet temperature: 7.22 °C (45 °F)⁴ 	ie Low-Income sector as to the $)^3$
 Average water heater energy factor: 0.57⁵ 	
Annual gas savings calculated as follows:	
$Savings = (W_{base} * (T_{out, base} - T_{in}) - W_{eff} * (T_{out, eff} - T_{in})) * 8.33 * \frac{1}{EF} * 10$	⁻⁶ *27.8
Where:	
W _{base} = annual water use with base equip	ment (gallons)
W _{eff} = annual water use with efficient equ	ipment (gallons)
T _{out,base} = Shower temperature with base	
T _{out,new} = Shower temperature with efficie	nt equipment (°F)
T _{in} = Water inlet temperature (^o F)	
8.33 = Energy content of water (Btu/gallo	n/ºF)
EF = Water heater energy factor.	
10 ⁻⁶ = Factor to convert Btu to MMBtu.	
27.8 = Factor to convert MMBtu to metre	s cubed
Gas savings were determined to be 12% over base equipment:	
$Percent Savings = \frac{\left(G_{base} - G_{eff}\right)}{G_{base}}$	
Where:	
G _{eff} = Annual natural gas use with efficier G _{base} = Annual natural gas use with base	
Annual Electricity Savings	0 kWh
N/A	
Annual Water Savings	6,334 L
Assumptions and inputs:	
• As-used flow rate with base equipment: 1.89 GPM ⁶	

³ Although evidence for this change in behaviour remains anecdotal, Summit Blue suggest it is likely enough to include its effect in the analysis. Summit Blue (2008).

⁴ Chinnery, Glen. Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices,EPA, Energy Star for homes, March 2004 http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf

⁵ Assumption of the Ministry of Energy of Ontario. See Table 4,

http://www.energy.gov.on.ca/index.cfm?fuseaction=conservation.guide13
 ⁶ As-used flow is calculated as a function of "full-on" or label flow: as-used flow = min{ 0.691+0.542*full-on flow, full-on flow}. Proctor, J. Gavelis, B. and Miller, B. Savings and Showers: It's All in the Head, (PGE) Home Energy Magazine, July/Aug 1994. Cited in Summit Blue (2008). Summit Blue uses the equation without assuming that it is a min function, implicitly assuming that

- Average household size: 3.1 persons⁷
- Showers per capita per day: 0.75⁸
- Proportion of showering affected by measure (i.e. percentage of the time the low-flow showerhead used) : 76%⁹
- Average showering time per capita per day with base equipment: 7.32 minutes
- Average showering time per capita per day with new technology: 7.5 minutes¹⁰

Annual water savings calculated as follows:

$$Savings = Ppl * Sh * 365 * \Pr(T_{base} * Fl_{base} - T_{eff} * Fl_{eff})$$

Where:

 $\begin{array}{l} \mathsf{Ppl} = \mathsf{Number of people per household} \\ \mathsf{Sh} = \mathsf{Showers per capita per day} \\ \mathsf{365} = \mathsf{Days per year} \\ \mathsf{T}_{\mathsf{base}} = \mathsf{Showering time with base equipment (minutes)} \\ \mathsf{T}_{\mathsf{eff}} = \mathsf{Showering time with efficient equipment (minutes)} \\ \mathsf{Fl}_{\mathsf{base}} = \mathsf{As}\text{-used flow rate with base equipment (GPM)} \\ \mathsf{Fl}_{\mathsf{eff}} = \mathsf{As}\text{-used flow rate with efficient equipment (GPM)} \\ \mathsf{Pr} = \mathsf{Percentage of showers where efficient equipment used} \end{array}$

Water savings were determined to be 14% over base technology:

Percent Savings =
$$\frac{(W_{base} - W_{eff})}{W_{base}}$$

Where:

 W_{eff} = Annual water consumed by showers with efficient equipment, 38,138 litres (10,073 gallons)
 W_{base}= Annual water consumed by showers with base equipment: 44,472 litres (11,746 gallons)

Other Input Assumptions

Effective Useful Life (EUL)	10 Years
Summit Blue (2008) suggests an EUL of 10 years based on a survey of fi other jurisdictions (California – two studies, New England, Vermont, Arka	
Base & Incremental Conservation Measure Equipment and O&M Costs	6\$
Incremental cost based on a survey of online retailers ¹¹ .	
Customer Payback Period (Natural Gas Only) ¹²	0.4 Years

participants will have the expertise or desire to make minor adjustments to the house water pressure to compensate for reduced shower flow.

⁷ Summit Blue (2008).

⁸ Ibid, based on data from: Resource Management Strategies, Inc., Regional Municipality of York Water Efficiency Master Plan Update, April 2007

⁹Survey of participants, 116 from Enbridge, 111 from Union, Summit Blue (2008)

¹⁰ Relationship modeled as: Average shower length = 8.17 – 0.448 * as-used GPM. From Energy Center of Wisconsin Analysis of data from Resource Management Strategies, Inc., *Regional Municipality of York Water Efficiency Master Plan Update*, April 2007. Cited in Summit Blue (2008)

Using a 5-year average commodity cost (avoided cost)¹³ of \$0.38 / m³ and an average residential distribution cost¹⁴ of \$0.14 / m³, the payback period for natural gas savings is determined to be 0.4 years, based on the following: Payback Period = Incremental cost / (natural gas savings x natural gas cost) = \$6/ (33 m³/year * \$0.52 / m³) = 0.4 years **Market Penetration** 65%

Based on previous research conducted for the OPA, Navigant Consulting estimates penetration of lowflow showerheads of all flow rates across all sectors to be 65%¹⁵

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
U. S. Dept. of Energy, Federal Energy Management Program ¹⁶ .	108	10	N/A	N/A

Comments

Based on switching from a 2.2 GPM to a 1.5 GPM showerhead. Assumptions include: 10mins per shower, 2 showers per day, shower temperature of 106F, inlet water temp of 58F. Measure provides savings of 81% over 133 m³ required for heating water used with base equipment.

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
State of Iowa Utilities Board ¹⁷	81	10	US\$ 36	75%

Comments

Based on switching from a 4 GPM to a 2.5 GPM showerhead. Measure saves 13.9% of 584 m³ required for water heating.

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2). ¹⁵ Navigant Consulting, Inc. for the Ontario Power Authority, *Residential Rebate Program: Participation Forecast and Incentive*

¹¹ Whedon Products 1.5 GPM Ultra Saver Showerhead.http://www.antonline.com/p USB3C-GP 398829.htm

¹² Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹³ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

¹⁴ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

Bundling Strategy – Key Findings Summary, December 2008 ¹⁶ U.S Department of Energy, Federal Energy Management Program, *FEMP Designated Product: Showerheads*

http://www1.eere.energy.gov/femp/procurement/eep_showerhead.html

¹⁷ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Low-Flow Showerhead (1.25 Gpm, Enbridge TAPS) (LIA)

Revision #	Description/Comment	Date Revised
Efficient	Equipment and Technologies Description	
Low-flow Sh	howerhead (1.25 Gpm) – Installed by Enbridge-designate	ed contractors.
Base Equ	uipment and Technologies Description	
Average exi	isting stock within one of three ranges.	
Range mid-	-points used as point estimates:	
• Sce	enario A – 2.0 GPM	
• Sce	enario B – 2.25 GPM	
• Sce	enario C – 3.0 GPM	
When new s	showerheads are installed contractors use a bag-test to c	determine base equipment flow-rate.

Decision Type	Target Market(s)	End Use
Retrofit	Low-Income Residential (Existing)	Water heating

Ontario Building Code (2006)¹ requires shower heads to have a maximum flow of 2.5 GPM (9.5 L/min)

	Electricity	and Other Resour	ce Savings	Equipment & O&M	Equipment & O&M Costs of
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m³)	(kWh)	(L)	(\$)	(\$)
	A: 49		A: 8,817		
1	B: 62	0	B: 10,886	13	0
	C : 102		C: 17,168		
	A: 49		A: 8,817		
2	B: 62	0	B: 10,886	0	0
	C : 102		C: 17,168		
	A: 49		A: 8,817		
3	B: 62	0	B: 10,886	0	0
	C: 102		C: 17,168		
	A: 49		A: 8,817		
4	B: 62	0	B: 10,886	0	0
	C : 102		C: 17,168		
	A: 49		A: 8,817		
5	B: 62	0	B: 10,886	0	0
	C : 102		C: 17,168		
	A: 49		A: 8,817		
6	B: 62	0	B: 10,886	0	0
	C: 102		C: 17,168		
	A: 49		A: 8,817		
7	B: 62	0	B: 10,886	0	0
	C: 102		C: 17,168		
	A: 49		A: 8,817		
8	B: 62	0	B: 10,886	0	0
	C: 102		C: 17,168		
	A: 49		A: 8,817		
9	B: 62	0	B: 10,886	0	0
	C: 102		C: 17,168		
	A: 49		A: 8,817		
10	B: 62	0	B: 10,886	0	0
	C: 102 C: 17,168				
	A: 490		A: 88,170		
TOTALS	B: 620	0	B: 108,860	13	0
	C: 1,020		C: 171,680		

¹ Ontario Regulations 350/06, 2006 Building Code

Assumptions and inputs: • Lacking any conclusive empirical data to suggest otherwise, Navigant Consulting has applied the same behavioural and base/efficient equipment assumptions to the Low-Income sector as t the Residential sector. • Average shower temperature with base equipment: 40 °C (104 °F) ² • Average water inlet temperature with folicient equipment: 41 °C (106 °F) • Average water inlet temperature: 7.22 °C (45 °F) ³ • Average water heater energy factor: 0.57 ⁴ Annual gas savings calculated as follows: Savings = $(W_{base} * (T_{out,base} - T_{in}) - W_{eff} * (T_{out,eff} - T_{in}))$ *8.33 * $\frac{1}{EF}$ *10 ⁻⁶ *27.8 Where: Where: Wusse = annual water use with base equipment (gallons) Worf = annual water use with efficient equipment (gallons) Tootbase = Shower temperature with base equipment (gallons) Tootbase = Shower temperature with base equipment (°F) Tootbase = Shower temperature with base equipment (°F) 8.33 = Energy content of water (Btu/gallon/°F) EF = Water inlet temperature (°F) 8.33 = Energy content of water (Btu/gallon/°F) EF = Water heater energy factor 10 ⁶ = Factor to convert Btu to MMBtu 27.8 = Factor to convert MMBtu to m ³ Scenario A: Gas savings were determined to be 18% over base equipment: Scenario C: Gas savings were determined to be 35% over base equipment: Percent Savings = $\frac{(G_{base} - G_{eff})}{G_{base}}$ Where: Getfing = Annual natural gas use with efficient equipment, Scenario C: Gas savings were determined to be 35% over base equipment: Scenario C: 325 m ³ Genare = Annual natural gas use with efficient equipment, Scenario A: 218 m ³ Scenario C: 325 m ³ Scenario C: 325 m ³ Scenario C: 326 m ³	Annual Natural Gas Savings	A: 49 m ³ B: 62 m ³ C: 102 m ³
the same behavioural and base/efficient equipment assumptions to the Low-Income sector as the Residential sector. • Average shower temperature with base equipment: 40 °C (104 °F) ² • Average water inlet temperature: 7.22 °C (45 °F) ³ • Average water heater energy factor: 0.57 ⁴ Annual gas savings calculated as follows: Savings = $(W_{have} * (T_{out,have} - T_{in}) - W_{eff} * (T_{out,eff} - T_{in})) * 8.33 * \frac{1}{EF} * 10^{-6} * 27.8$ Where: $W_{base} = annual water use with base equipment (gallons)$ $W_{eff} = annual water use with efficient equipment (gallons)$ $W_{eff} = annual water use with efficient equipment (gallons)$ $W_{eff} = annual water use with efficient equipment (gallons)$ $T_{out,base} = Shower temperature with base equipment (°F)$ $T_{nat,new} = Shower temperature with efficient equipment (°F)$ $T_{att,ew} = F Shower temperature with efficient equipment (°F)$ $T_{att,ew} = F Shower temperature with efficient equipment (°F)$ $T_{att,ew} = Shower temperature with efficient equipment (°F)$ EF = Water heater energy factor $10^{\circ} = Factor to convert MMBtu to m^3$ Scenario A : Gas savings were determined to be 18% over base equipment: Scenario C : Gas savings were determined to be 35% over base equipment: $Percent Savings = \frac{(G_{bave} - G_{eff})}{G_{bave}}$ Where: $G_{eff} = Annual natural gas use with efficient equipment, Scenario B: 222 m3 Scenario B: 221 m3 Scenario B: 224 m3 Scenario B: 224 m3$	Assumptions and inputs:	
• Average shower temperature with efficient equipment: 41 °C (106 °F) • Average water inlet temperature: 7.22 °C (45 °F) ³ • Average water heater energy factor: 0.57 ⁴ Annual gas savings calculated as follows: $Savings = \left(W_{base} * (T_{out, base} - T_{in}) - W_{eff} * (T_{out, eff} - T_{in}) \right) * 8.33 * \frac{1}{EF} * 10^{-6} * 27.8$ Where: $W_{base} = \text{annual water use with base equipment (gallons)}$ $W_{eff} = \text{annual water use with base equipment (gallons)}$ $W_{eff} = \text{annual water use with flicient equipment (gallons)}$ $T_{out, base} = \text{Shower temperature with base equipment (GF)}$ $T_{out, base} = \text{Shower temperature with efficient equipment (°F)}$ $T_{in} = \text{Water inlet temperature (°F)}$ $8.33 = \text{Energy content of water (Btu/gallon/°F)}$ $EF = \text{Vater heater energy factor}$ $10^{\circ} = \text{Factor to convert Btu to MMBtu}$ $27.8 = \text{Factor to convert Btu to MMBtu}$ $27.8 = \text{Factor to be 35\% over base equipment:}$ Scenario A : Gas savings were determined to be 18% over base equipment: Scenario C : Gas savings were determined to be 35\% over base equipment: Scenario C : Gas savings were determined to be 35\% over base equipment: Percent Savings = $\frac{(G_{base} - G_{eff})}{G_{base}}$ Where: $G_{eff} = \text{Annual natural gas use with efficient equipment,}$ $Scenario A: 218 m3$ $Scenario C: 235 m3$ $G_{base} = \text{Annual natural gas use with base equipment,}$ $Scenario A: 244 m3$	the same behavioural and base/efficient equipment assumptions the Residential sector.	to the Low-Income sector as to
Annual gas savings calculated as follows: $Savings = \left(W_{base} * (T_{out,base} - T_{in}) - W_{eff} * (T_{out,eff} - T_{in})\right) * 8.33 * \frac{1}{EF} * 10^{-6} * 27.8$ Where: $W_{base} = \text{annual water use with base equipment (gallons)}$ $W_{eff} = \text{annual water use with base equipment (gallons)}$ $T_{out,base} = \text{Shower temperature with base equipment (°F)}$ $T_{out,base} = \text{Shower temperature with efficient equipment (°F)}$ $T_{out,base} = \text{Shower temperature with efficient equipment (°F)}$ $T_{in} = \text{Water inlet temperature (°F)}$ $8.33 = \text{Energy content of water (Btu/gallon/°F)}$ $EF = \text{Water heater energy factor}$ $10^{-6} = \text{Factor to convert Btu to MMBtu}$ $27.8 = \text{Factor to convert Btu to MMBtu}$ $27.8 = \text{Factor to convert Btu to MMBtu}$ $27.8 = \text{Factor to be 35\% over base equipment:}$ Scenario B : Gas savings were determined to be 35\% over base equipment: Scenario C : Gas savings were determined to be 35\% over base equipment: Scenario C : Gas savings were determined to be 23\% over base equipment: Scenario C : Gas savings were determined to be 23\% over base equipment: Scenario C : Gas savings were determined to be 35\% over base equipment: Scenario C : Gas savings were determined to be 23\% over base equipment: Scenario C : Gas savings = $\frac{(G_{baxe} - G_{eff})}{G_{baxe}}$ Where: $G_{eff} = Annual natural gas use with efficient equipment, Scenario B: 222 m3 Scenario B: 222 m3 Scenario B: 222 m3 Scenario C: 235 m3 Scenario A: 248 m3 Scenario B: 284 m3$	 Average shower temperature with efficient equipment: 41 °C (106 Average water inlet temperature: 7.22 °C (45 °F)³ 	
Where: Where: W _{base} = annual water use with base equipment (gallons) W _{eff} = annual water use with efficient equipment (⁹ F) T _{outbase} = Shower temperature with base equipment (⁹ F) T _{outbase} = Shower temperature (⁹ F) 8.33 = Energy content of water (Btu/gallon/ ⁹ F) EF = Water heater energy factor 10 ⁻⁶ = Factor to convert Btu to MMBtu 27.8 = Factor to convert Btu to MMBtu 27.8 = Factor to convert MMBtu to m ³ Scenario A : Gas savings were determined to be 18% over base equipment: Scenario C : Gas savings were determined to be 35% over base equipment: Scenario C : Gas savings were determined to be 35% over base equipment: Percent Savings = $\frac{(G_{base} - G_{eff})}{G_{base}}$ Where: G _{eff} = Annual natural gas use with efficient equipment, Scenario R : 218 m ³ Scenario R : 225 m ³ G _{base} = Annual natural gas use with base equipment, Scenario R : 228 m ³	Annual gas savings calculated as follows:	
Where: Where: W _{base} = annual water use with base equipment (gallons) W _{eff} = annual water use with efficient equipment (⁹ F) T _{outbase} = Shower temperature with base equipment (⁹ F) T _{outbase} = Shower temperature (⁹ F) 8.33 = Energy content of water (Btu/gallon/ ⁹ F) EF = Water heater energy factor 10 ⁻⁶ = Factor to convert Btu to MMBtu 27.8 = Factor to convert Btu to MMBtu 27.8 = Factor to convert MMBtu to m ³ Scenario A : Gas savings were determined to be 18% over base equipment: Scenario C : Gas savings were determined to be 35% over base equipment: Scenario C : Gas savings were determined to be 35% over base equipment: Percent Savings = $\frac{(G_{base} - G_{eff})}{G_{base}}$ Where: G _{eff} = Annual natural gas use with efficient equipment, Scenario R : 218 m ³ Scenario R : 225 m ³ G _{base} = Annual natural gas use with base equipment, Scenario R : 228 m ³		
$W_{base} = \text{ annual water use with base equipment (gallons)}$ $W_{eff} = \text{ annual water use with efficient equipment (gallons)}$ $T_{out,base} = \text{Shower temperature with base equipment (}^{\circ}\text{F}\text{)}$ $T_{out,new} = \text{Shower temperature with efficient equipment (}^{\circ}\text{F}\text{)}$ $T_{in} = \text{ Water inlet temperature (}^{\circ}\text{F}\text{)}$ $B. 33 = \text{Energy content of water (Btu/gallon/}^{\circ}\text{F})$ $EF = \text{Water heater energy factor}$ $10^{-6} = \text{Factor to convert Btu to MMBtu}$ $27.8 = \text{Factor to convert Btu to MMBtu}$ $27.8 = \text{Factor to convert MMBtu to m}^{3}$ Scenario A : Gas savings were determined to be 18% over base equipment: Scenario B : Gas savings were determined to be 23% over base equipment: Scenario C : Gas savings were determined to be 35% over base equipment: Scenario C : Gas savings were determined to be 35% over base equipment: Mhere: $Percent Savings = \frac{(G_{base} - G_{eff})}{G_{base}}$ Where: $G_{eff} = \text{Annual natural gas use with efficient equipment, Scenario A: 218 m^3 Scenario B: 222 m^3 Scenario C: 235 m^3$ $G_{base} = Annual natural gas use with base equipment, Scenario A: 267 m^3 Scenario A: 267 m^3 Scenario B: 284 m^3$	$Savings = (W_{base} * (T_{out, base} - T_{in}) - W_{eff} * (T_{out, eff} - T_{in})) * 8.33 * \frac{1}{EF} * 10$) ⁻⁶ *27.8
$W_{eff} = \text{annual water use with efficient equipment (gallons)}$ $T_{out,base} = \text{Shower temperature with base equipment (}^{\circ}\text{F}\text{)}$ $T_{out,new} = \text{Shower temperature with efficient equipment (}^{\circ}\text{F}\text{)}$ $T_{in} = Water inlet temperature (}^{\circ}\text{F}\text{)}$ $8.33 = \text{Energy content of water (Btu/gallon/}^{\circ}\text{F})$ $EF = Water heater energy factor$ $10^{\circ 6} = \text{Factor to convert Btu to MMBtu}$ $27.8 = \text{Factor to convert MMBtu to m}^{3}$ Scenario A : Gas savings were determined to be 18% over base equipment: Scenario B : Gas savings were determined to be 23% over base equipment: Scenario C : Gas savings were determined to be 35% over base equipment: Scenario C : Gas savings were determined to be 35% over base equipment: Mhere: $Percent Savings = \frac{(G_{base} - G_{eff})}{G_{base}}$ Where: $G_{eff} = \text{Annual natural gas use with efficient equipment,}$ $Scenario R: 228 m^{3}$ $Scenario C: 235 m^{3}$ $G_{base} = \text{Annual natural gas use with base equipment,}$ $Scenario R: 227 m^{3}$ $Scenario R: 228 m^{3}$ $Scenario R: 284 m^{3}$		
$T_{out,hase} = Shower temperature with base equipment (^{o}F)$ $T_{out,new} = Shower temperature with efficient equipment (^{o}F)$ $T_{in} = Water inlet temperature (^{P}F)$ $8.33 = Energy content of water (Btu/gallon/^{o}F)$ $EF = Water heater energy factor$ $10^{-6} = Factor to convert Btu to MMBtu$ $27.8 = Factor to convert MMBtu to m^{3}$ Scenario A : Gas savings were determined to be 18% over base equipment: Scenario C : Gas savings were determined to be 23% over base equipment: Scenario C : Gas savings were determined to be 35% over base equipment: Scenario C : Gas savings were determined to be 35% over base equipment: Scenario C : Gas savings were determined to be 35% over base equipment: Mere: $Percent Savings = \frac{(G_{base} - G_{eff})}{G_{base}}$ Where: $G_{eff} = Annual natural gas use with efficient equipment, Scenario B: 222 m3 Scenario C: 235 m3$ $G_{base} = Annual natural gas use with base equipment, Scenario G: 235 m3$		
$T_{out,new} = \text{Shower temperature with efficient equipment (}^{0}\text{F}\text{)}$ $T_{in} = \text{Water inlet temperature (}^{0}\text{F}\text{)}$ $8.33 = \text{Energy content of water (Btu/gallon/}^{0}\text{F}\text{)}$ $EF = \text{Water heater energy factor}$ $10^{-6} = \text{Factor to convert Btu to MMBtu}$ $27.8 = \text{Factor to convert Btu to MMBtu}$ $27.8 = \text{Factor to convert MMBtu to m}^{3}$ Scenario A : Gas savings were determined to be 18% over base equipment: Scenario B : Gas savings were determined to be 23% over base equipment: Scenario C : Gas savings were determined to be 35% over base equipment: Scenario C : Gas savings were determined to be 35% over base equipment: $Percent Savings = \frac{(G_{base} - G_{eff})}{G_{base}}$ Where: $G_{eff} = \text{Annual natural gas use with efficient equipment,}$ $Scenario A: 218 m^{3}$ $Scenario B: 222 m^{3}$ $Scenario C: 235 m^{3}$ $G_{base} = \text{Annual natural gas use with base equipment,}$ $Scenario A: 267 m^{3}$ $Scenario B: 284 m^{3}$	•	
$T_{in} = Water inlet temperature (°F)$ 8.33 = Energy content of water (Btu/gallon/°F) EF = Water heater energy factor 10 ⁻⁶ = Factor to convert Btu to MMBtu 27.8 = Factor to convert MMBtu to m ³ Scenario A : Gas savings were determined to be 18% over base equipment: Scenario C : Gas savings were determined to be 35% over base equipment: Scenario C : Gas savings were determined to be 35% over base equipment: Percent Savings = $\frac{(G_{base} - G_{eff})}{G_{base}}$ Where: G_{eff} = Annual natural gas use with efficient equipment, Scenario A : 218 m ³ Scenario B : 222 m ³ Scenario C : 235 m ³ G_{base} = Annual natural gas use with base equipment, Scenario A : 267 m ³ Scenario B : 284 m ³	• • • • • •	••••
$8.33 = \text{Energy content of water (Btu/gallon/oF)}$ $EF = \text{Water heater energy factor}$ $10^{-6} = \text{Factor to convert Btu to MMBtu}$ $27.8 = \text{Factor to convert MMBtu to m^{3}}$ Scenario A : Gas savings were determined to be 18% over base equipment: Scenario B : Gas savings were determined to be 23% over base equipment: Scenario C : Gas savings were determined to be 35% over base equipment: Scenario C : Gas savings were determined to be 35% over base equipment: $Percent Savings = \frac{\left(G_{base} - G_{eff}\right)}{G_{base}}$ Where: $G_{eff} = \text{Annual natural gas use with efficient equipment,}$ $Scenario A: 218 m^{3}$ $Scenario B: 222 m^{3}$ $Scenario C: 235 m^{3}$ $G_{base} = \text{Annual natural gas use with base equipment,}$ $Scenario B: 284 m^{3}$	• • • • •	ent equipment (°F)
$FF = Water heater energy factor 10^{-6} = Factor to convert Btu to MMBtu 27.8 = Factor to convert MMBtu to m3$ Scenario A: Gas savings were determined to be 18% over base equipment: Scenario B: Gas savings were determined to be 23% over base equipment: Scenario C: Gas savings were determined to be 35% over base equipment: $Percent Savings = \frac{(G_{base} - G_{eff})}{G_{base}}$ Where: $G_{eff} = Annual natural gas use with efficient equipment, Scenario A: 218 m3Scenario B: 222 m3Scenario C: 235 m3}$ $G_{base} = Annual natural gas use with base equipment, Scenario A: 267 m3Scenario B: 284 m3$		>> / ⁰ ⊑)
$10^{-6} = Factor to convert Btu to MMBtu 27.8 = Factor to convert MMBtu to m^{3}$ Scenario A: Gas savings were determined to be 18% over base equipment: Scenario B: Gas savings were determined to be 23% over base equipment: Scenario C: Gas savings were determined to be 35% over base equipment: $Percent Savings = \frac{\left(G_{base} - G_{eff}\right)}{G_{base}}$ Where: $G_{eff} = Annual natural gas use with efficient equipment, Scenario A: 218 m^{3} Scenario B: 222 m^{3} Scenario C: 235 m^{3}}$ $G_{base} = Annual natural gas use with base equipment, Scenario C: 235 m^{3} Scenario C: 224 m^{3} Sc$		ли г)
$27.8 = \text{Factor to convert MMBtu to m}^{3}$ Scenario A : Gas savings were determined to be 18% over base equipment: Scenario B : Gas savings were determined to be 23% over base equipment: Scenario C : Gas savings were determined to be 35% over base equipment: $Percent Savings = \frac{\left(G_{base} - G_{eff}\right)}{G_{base}}$ Where: G _{eff} = Annual natural gas use with efficient equipment, Scenario A : 218 m ³ Scenario B : 222 m ³ Scenario C : 235 m ³ G _{base} = Annual natural gas use with base equipment, Scenario A : 267 m ³ Scenario B : 284 m ³		
Scenario B: Gas savings were determined to be 23% over base equipment: Scenario C: Gas savings were determined to be 35% over base equipment: $Percent Savings = \frac{\left(G_{base} - G_{eff}\right)}{G_{base}}$ Where: G _{eff} = Annual natural gas use with efficient equipment, Scenario A: 218 m ³ Scenario B: 222 m ³ Scenario C: 235 m ³ G _{base} = Annual natural gas use with base equipment, Scenario A: 267 m ³ Scenario B: 284 m ³		
Scenario C : Gas savings were determined to be 35% over base equipment: $Percent Savings = \frac{(G_{base} - G_{eff})}{G_{base}}$ Where: $G_{eff} = Annual natural gas use with efficient equipment, Scenario A: 218 m3 Scenario B: 222 m3 Scenario C: 235 m3 Gbase = Annual natural gas use with base equipment, Scenario A: 267 m3 Scenario B: 284 m3$	Scenario A: Gas savings were determined to be 18% over base equipme	nt:
$Percent Savings = \frac{(G_{base} - G_{eff})}{G_{base}}$ Where: $G_{eff} = Annual natural gas use with efficient equipment, Scenario A: 218 m3 Scenario B: 222 m3 Scenario C: 235 m3 G_{base} = Annual natural gas use with base equipment, Scenario A: 267 m3 Scenario B: 284 m3$	Scenario B: Gas savings were determined to be 23% over base equipme	nt:
Where: $G_{eff} = Annual natural gas use with efficient equipment, Scenario A: 218 m3 Scenario B: 222 m3 Scenario C: 235 m3 G_{base} = Annual natural gas use with base equipment, Scenario A: 267 m3 Scenario B: 284 m3$	Scenario C: Gas savings were determined to be 35% over base equipme	nt:
Where: $G_{eff} = Annual natural gas use with efficient equipment, Scenario A: 218 m3 Scenario B: 222 m3 Scenario C: 235 m3 G_{base} = Annual natural gas use with base equipment, Scenario A: 267 m3 Scenario B: 284 m3$	$\begin{pmatrix} G_1 & -G_n \end{pmatrix}$	
G_{eff} = Annual natural gas use with efficient equipment, Scenario A: 218 m ³ Scenario B: 222 m ³ Scenario C: 235 m ³ G_{base} = Annual natural gas use with base equipment, Scenario A: 267 m ³ Scenario B: 284 m ³	Percent Savings = $\frac{(G_{base} - G_{eff})}{G_{base}}$	
Scenario A : 218 m ³ Scenario B : 222 m ³ Scenario C : 235 m ³ G_{base} = Annual natural gas use with base equipment, Scenario A : 267 m ³ Scenario B : 284 m ³	Where:	
Scenario B: 222 m ³ Scenario C: 235 m ³ G _{base} = Annual natural gas use with base equipment, Scenario A: 267 m ³ Scenario B: 284 m ³	G _{eff} = Annual natural gas use with efficient	ent equipment,
Scenario C: 235 m ³ G _{base} = Annual natural gas use with base equipment, Scenario A: 267 m ³ Scenario B: 284 m ³		
G _{base} = Annual natural gas use with base equipment, Scenario A: 267 m ³ Scenario B: 284 m ³		
Scenario A: 267 m ³ Scenario B: 284 m ³		
Scenario B: 284 m ³		e equipment,
Scenario C: 336 m [°]		
	Scenario C: 336 m ³	

 ³ Chinnery, Glen. Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices, EPA, Energy Star for homes, March 2004
 <u>http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf</u>

Annual Electricity	Savings	0 kWh
N/A		
Annual Water Savi	ngs	A: 8,817 L
		B: 10,886 L
		C: 17,168 L
ssumptions and inputs	:	·
 As-used flow rat 	te with base equipment⁵:	
	Scenario A: 1.78 GPM	
	Scenario B: 1.91 GPM	
	Scenario C: 2.32 GPM	
 Average househ 	nold size: 3.1 persons ⁶	
 Showers per cap 	pita per day: 0.75 ⁷	
 Proportion of showerhead use 	owering affected by measure (i.e. percentage of ted) :76% ⁸	the time the low-flow
 Average shower 	ring time per capita per day with base equipment:	
	Scenario A: 7.37 minutes	
	Scenario B: 7.31 minutes	
	Scenario C: 7.13 minutes	
Average shower	ring time per capita per day with new technology:	7.61 minutes ⁹
nnual water savings ca	alculated as follows:	
Savings = Ppl * Sh * 3	$65*\Pr*\left(T_{base}*Fl_{base}-T_{eff}*Fl_{eff}\right)$	
Where:		
	Ppl = Number of people per household	
	Sh = Showers per capita per day	
	365 = Days per year	
	T_{base} = Showering time with base equipm	ent (minutes)
	T_{eff} = Showering time with efficient equip	· · ·
	Fl _{base} = As-used flow rate with base equi	
	Fl _{eff} = As-used flow rate with efficient equ	
	Pr = Percentage of showers where efficient	,
Poonaria A. Matar actin	a_{2} were determined to be 21% ever base equips	aant
	ngs were determined to be 21% over base equipn	
	ngs were determined to be 24% over base equipn ngs were determined to be 32% over base equipn	
Scenario C. Water Savin	igs were determined to be 32 % over base equipti	

⁴ Assumption of the Ministry of Energy of Ontario. See Table 4,

 <u>http://www.energy.gov.on.ca/index.cfm?fuseaction=conservation.guide13</u>
 ⁵ As-used flow is calculated as a function of "full-on" or label flow: as-used flow = min{ 0.691+0.542*full-on flow, full-on flow}. Proctor, J. Gavelis, B. and Miller, B. Savings and Showers: It's All in the Head, (PGE) Home Energy Magazine, July/Aug 1994. Cited in Summit Blue (2008). Summit Blue uses the equation without assuming that it is a min function, implicitly assuming that participants will have the expertise or desire to make minor adjustments to the house water pressure to compensate for reduced shower flow.

⁶ Summit Blue (2008).

⁷ Ibid, based on data from: Resource Management Strategies, Inc., Regional Municipality of York Water Efficiency Master Plan Update, April 2007

⁸ Survey of participants, 116 from Enbridge, 111 from Union, Summit Blue (2008)

⁹ Relationship modeled as: Average shower length = 8.17 – 0.448 * as-used GPM. From Energy Center of Wisconsin Analysis of data from Resource Management Strategies, Inc., Regional Municipality of York Water Efficiency Master Plan Update, April 2007. Cited in Summit Blue (2008)

	$\left(\frac{W_{base} - W_{eff}}{W_{base}}\right)$
Where:	
	W _{eff} = Annual water consumed by showers with efficient equipment,
	Scenario A: 33,349 litres (8,808 gallons)
	Scneario B: 34,002 litres (8,980 gallons)
	Scenario C: 35,986 litres (9,504 gallons)
	W _{base} = Annual water consumed by showers with base equipment:
	Scenario A: 42,166 litres (11,137 gallons)
	Scenario B: 44,888 litres (11,856 gallons)
	Scenario C: 53,154 litres (14,039 gallons)

Other Input Assumptions

Effective U	seful Life (EUL)	10 Years	
Summit Blue (2008) suggests an EUL of 10 years based on a survey of five studies of showerheads in other jurisdictions (California – two studies, New England, Vermont, Arkansas).			
Base & Inc and O&M (remental Conservation Measure Equipment Costs	13\$	
Incremental c	ost based on a survey of online retailers ¹⁰ .		
Customer	Payback Period (Natural Gas Only) ¹¹	A: 0.5 Years B: 0.4 Years C: 0.3 Years	
distribution co	Ir average commodity cost (avoided cost) ¹² of \$0.38 / m ³ an ost ¹³ of \$0.14 / m ³ , the payback period for natural gas saving nario A, 0.4 years for Scenario B and 0.25 years for Scenari	s is determined to be 0.51	
Payback Peri	od = Incremental cost / (natural gas savings x natural gas co	ost)	
Scenario A	= \$13/ (49 m ³ /year * \$0.52 / m ³) = 0.5 years		
Scenario B	= \$13/ (62 m³/year * \$0.52 / m³) = 0.4 years		
Scenario C	= \$13/ (102 m³/year * \$0.52 / m³) = 0.3 years		
Market Per	netration	65%	
	vious research conducted for the OPA, Navigant Consulting eads of all flow rates across all sectors to be 65% ¹⁴ .	estimates penetration of low-	

¹⁰ Earth Massage Showerhead 1.25 GPM http://cgi.ebay.com/Earth-Massage-Showerhead-Water-Saver-1-25-gpm-flow_W0QQitemZ130256063752QQihZ003QQcategoryZ71282QQcmdZViewItemQQ_trksidZp1742.m153.l1262

¹¹ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included. ¹² 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and

weather sensitive avoided gas cost.

¹³ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and

Average distribution cost taken calculated non both onlight calculated non both onligh Bundling Strategy – Key Findings Summary, December 2008

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
U. S. Dept. of Energy, Federal Energy Management Program ¹⁵	108	10	N/A	N/A	
Comments					
shower, 2 showers per d	Based on switching from a 2.2 GPM to a 1.5 GPM showerhead. Assumptions include: 10mins per shower, 2 showers per day, shower temperature of 106F, inlet water temp of 58F. Measure provides savings of 81% over 133 m ³ required for heating water used with base equipment.				
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
State of Iowa Utilities Board ¹⁶	81	10	US\$ 36	75%	
Comments					
Based on switching from a 4 GPM to a 2.5 GPM showerhead. Measure saves 13.9% of 584 m ³ required for water heating.					

 ¹⁵ U.S Department of Energy, Federal Energy Management Program, *FEMP Designated Product: Showerheads* <u>http://www1.eere.energy.gov/femp/procurement/eep_showerhead.html</u>
 ¹⁶ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Low-Flow Showerhead (1.25 Gpm, UG ESK) (LIA)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Low-flow Showerhead (1.25 Gpm) – distributed to participants under Union Gas' ESK program.

Base Equipment and Technologies Description

Average existing stock (2.2 GPM)¹.

Decision Type	Target Market(s)	End Use
Retrofit	Low-Income Residential (Existing)	Water heating

Codes, Standards, and Regulations

Ontario Building Code (2006)² requires shower heads to have a maximum flow of 2.5 GPM (9.5 L/min)

Resource Savings Table

	Electricity and Other Resource Savings				
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	60	0	10,570	13	0
2	60	0	10,570	0	0
3	60	0	10,570	0	0
4	60	0	10,570	0	0
5	60	0	10,570	0	0
6	60	0	10,570	0	0
7	60	0	10,570	0	0
8	60	0	10,570	0	0
9	60	0	10,570	0	0
10	60	0	10,570	0	0
TOTALS	600	0	105,700	13	

² Ontario Regulations 350/06, 2006 Building Code

¹ Shower-heads distributed under Union Gas's ESK program are installed by homeowners rather than Union contractors. No observation is made of the base equipment's GPM. It is therefore assumed to be the full-on flow rate corresponding to the asused flow from York Region monitoring study calculated using the equation cited below.
Region provide the provided the provided the provided to the provided to

Resource Management Strategies, Inc., Regional Municipality of York Water Efficiency Master Plan Update, April 2007. Cited by: Summit Blue, *Resource Savings Values in Selected Residential DSM Prescriptive Programs*, June 2008.

Annual Natural Gas Savings	60 m ³
Assumptions and inputs:	
 Lacking any conclusive empirical data to suggest otherwise, Navi same behavioural and base/efficient equipment assumptions to the Residential sector. 	
• Average shower temperature with base equipment: 40 °C (104 °F	$)^{3}$
• Average shower temperature with efficient equipment: 41 °C (106	°F)
 Average water inlet temperature: 7.22 °C (45 °F)⁴ 	
• Average water heater energy factor: 0.57 ⁵	
Annual gas savings calculated as follows:	
$Savings = (W_{base} * (T_{out, base} - T_{in}) - W_{eff} * (T_{out, eff} - T_{in})) * 8.33 * \frac{1}{EF} *$	$10^{-6} * 27.8$
Where:	
W _{base} = annual water use with base equip	(-)
W _{eff} = annual water use with efficient equ	
$T_{out,base}$ = Shower temperature with base	••••
$T_{out,new}$ = Shower temperature with efficie	nt equipment (°F)
T_{in} = Water inlet temperature (°F)	~ ^{/0} L)
8.33 = Energy content of water (Btu/gallo EF = Water heater energy factor	n/ F)
10^{-6} = Factor to convert Btu to MMBtu	
27.8 = Factor to convert MMBtu to m ³	
Gas savings were determined to be 21% over base equipment:	
$Percent Savings = \frac{(G_{base} - G_{eff})}{G_{table}}$	
G_{base}	
Where:	_
G _{eff} = Annual natural gas use with efficier	
G _{base} = Annual natural gas use with base	
Annual Electricity Savings	0 kWh
N/A	10 EZO 1
Annual Water Savings	10,570 L
Assumptions and inputs:	
• As-used flow rate with base equipment: 1.89 GPM ⁶	

³ Although evidence for this increase in shower temperature remains anecdotal, Summit Blue suggest it is likely enough to include its effect in the analysis. Summit Blue (2008). 4

Chinnery, Glen. Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices,EPA, Energy Star for homes, March 2004 http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf

⁵ Assumption of the Ministry of Energy of Ontario. See Table 4,

 ⁶ As-used flow is calculated as a function of "full-on" or label flow: as-used flow = min{ 0.691+0.542*full-on flow, full-on flow}.
 ⁶ Proctor, J. Gavelis, B. and Miller, B. Savings and Showers: It's All in the Head, (PGE) Home Energy Magazine, July/Aug 1994. Cited in Summit Blue (2008). Summit Blue uses the equation without assuming that it is a min function, implicitly assuming that

- Average household size: 3.1 persons⁷
- Showers per capita per day: 0.75⁸
- Proportion of showering affected by measure (i.e. percentage of the time the low-flow showerhead used) : 76%⁹
- Average showering time per capita per day with base equipment: 7.32 minutes
- Average showering time per capita per day with new technology: 7.61 minutes¹⁰

Annual water savings calculated as follows:

$$Savings = Ppl * Sh * 365 * \Pr(T_{base} * Fl_{base} - T_{eff} * Fl_{eff})$$

Where:

 $\begin{array}{l} \mathsf{Ppl} = \mathsf{Number of people per household} \\ \mathsf{Sh} = \mathsf{Showers per capita per day} \\ \mathsf{365} = \mathsf{Days per year} \\ \mathsf{T_{base}} = \mathsf{Showering time with base equipment (minutes)} \\ \mathsf{T_{eff}} = \mathsf{Showering time with efficient equipment (minutes)} \\ \mathsf{Fl_{base}} = \mathsf{As}\text{-used flow rate with base equipment (GPM)} \\ \mathsf{Fl_{eff}} = \mathsf{As}\text{-used flow rate with efficient equipment (GPM)} \\ \mathsf{Pr} = \mathsf{Percentage of showers where efficient equipment used} \end{array}$

Water savings were determined to be 24% over base equipment:

Percent Savings =
$$\frac{(W_{base} - W_{eff})}{W_{base}}$$

Where:

 W_{eff} = Annual water consumed by showers with efficient equipment, 33,902 litres (8,954 gallons)
 W_{base}= Annual water consumed by showers with base equipment: 44,472 litres (11,746 gallons)

Other Input Assumptions

Effective Useful Life (EUL)	10 Years		
Summit Blue (2008) suggests an EUL of 10 years based on a survey of five studies of showerheads other jurisdictions (California – two studies, New England, Vermont, Arkansas).			
Base & Incremental Conservation Measure Equipment and O&M Costs	13\$		
Incremental cost based on a survey of online retailers ¹¹ .			
Customer Payback Period (Natural Gas Only) ¹²	0.4 Years		

participants will have the expertise or desire to make minor adjustments to the house water pressure to compensate for reduced shower flow.

⁷ Summit Blue (2008).

⁸ Ibid, based on data from: Resource Management Strategies, Inc., Regional Municipality of York Water Efficiency Master Plan Update, April 2007

⁹Survey of participants, 116 from Enbridge, 111 from Union, Summit Blue (2008)

¹⁰ Relationship modeled as: Average shower length = 8.17 – 0.448 * as-used GPM. From Energy Center of Wisconsin Analysis of data from Resource Management Strategies, Inc., *Regional Municipality of York Water Efficiency Master Plan Update*, April 2007. Cited in Summit Blue (2008)

¹¹ Earth Massage Showerhead 1.25 GPM <u>http://cgi.ebay.com/Earth-Massage-Showerhead-Water-Saver-1-25-gpm-</u> <u>flow_W0QQitemZ130256063752QQihZ003QQcategoryZ71282QQcmdZViewItemQQ_trksidZp1742.m153.l1262</u>

Using a 5-year average commodity cost (avoided cost) ¹³ of \$0.38 / m ³ and distribution cost ¹⁴ of \$0.14 / m ³ , the payback period for natural gas savings based on the following:	l an average residential s is determined to be 0.42 years,
Payback Period = Incremental cost / (natural gas savings x natural gas cos = \$13/ (60 m³/year * \$0.52 / m³) = 0.42 years	st)
Market Penetration	65%
Based on previous research conducted for the OPA, Navigant Consulting flow showerheads of all flow rates across all sectors to be 65% ¹⁵ .	estimates penetration of low-

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
U. S. Dept. of Energy, Federal Energy Management Program ¹⁶ .	108	10	N/A	N/A	
Based on switching from 2 showers per day, show	Comments Based on switching from a 2.2 GPM to a 1.5 GPM showerhead. Assumptions include: 10mins per shower, 2 showers per day, shower temperature of 106F, inlet water temp of 58F. Measure provides savings of 81% over 133 m ³ required for heating water used with base equipment.				
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
State of Iowa Utilities Board ¹⁷	81	10	US\$ 36	75%	
Comments Based on switching from a 4 GPM to a 2.5 GPM showerhead for the Low-Income sector. Measure saves 13.9% of 584 m ³ required for water heating.					

¹² Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹³ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost. ¹⁴ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and

Enbridge Gas websites (<u>https://portal-plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2</u>). ¹⁵ Navigant Consulting, Inc. for the Ontario Power Authority, *Residential Rebate Program: Participation Forecast and Incentive*

Bundling Strategy – Key Findings Summary, December 2008
 ¹⁶ U.S Department of Energy, Federal Energy Management Program, FEMP Designated Product: Showerheads

 <u>http://www1.eere.energy.gov/femp/procurement/eep_showerhead.html</u>
 ¹⁷ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Pipe Wrap – R4 (LIA)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Insulated hot water pipe for conventional gas storage tank-type hot water heater (R-4).

Base Equipment and Technologies Description

Conventional gas storage tank-type hot water heater without pipe wrap (R-1).

Decision Type	Target Market(s)	End Use
Retrofit	Low-Income Residential (Existing)	Water heating

Codes, Standards, and Regulations

N/A

	Electricity and Other Resource Savings		Equipment & O&M	Equipment & O&M Costs of	
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	25	0	0	2	0
2	25	0	0	0	0
3	25	0	0	0	0
4	25	0	0	0	0
5	25	0	0	0	0
6	25	0	0	0	0
7	25	0	0	0	0
8	25	0	0	0	0
9	25	0	0	0	0
10	25	0	0	0	0
TOTALS	250	0	0	2	0

aguraa Savinga Aggumption

Annual Natural Gas Savings	25 m ³				
Assumptions and inputs:					
 Lacking any conclusive empirical data to suggest otherwise, Navi the same behavioural and base/efficient equipment assumptions the Residential sector. 					
 Gas savings calculated using method set out in 2006 Massachuse noted. 	etts study ¹ except where				
 Average water heater energy factor: 0.57² 					
 Average household size: 3.1 persons³ 					
Assumed diameter of pipe to be wrapped: 0.75 inches					
Length of pipe to be wrapped: 6 feet.					
 Surface area of pipe to be wrapped: 1.18 square feet. 					
 Ambient temperature around pipes: 16 °C (60 °F)⁴ 					
 Average water heater set point temperature: 54 °C (130 °F)⁵ 					
 Hot water temperature in outlet pipe: 52 °C (125 °F)⁶ 					
Annual gas savings calculated as follows:					
$Savings = \left(\frac{1}{R_{base}} - \frac{1}{R_{eff}}\right) * Sa * \left(T_{pipe} - T_{amb}\right) * 24 * 365 * \frac{1}{EF} * 10^{-6} * 26$	27.8				

Where:

R_{base} = R-value of base equipment R_{eff} = R-value of efficient equipment Sa = Surface area of outlet pipe (ft^2) T_{pipe} = Temperature of water in outlet pipe (°F) T_{amb} = Ambient temperature around pipe (^oF) 24 = Hours per day 365 = Days per year EF = Water heater energy factor 10^{-6} = Factor to convert Btu to MMBtu 27.8 = Factor to convert MMBtu to m^3

Gas savings were determined to be 75% over base measure

Percent Savings =
$$\frac{(G_{base} - G_{eff})}{G_{base}}$$

Where:

G_{eff} = Annual natural gas use with efficient equipment, 8 m³ G_{base} = Annual natural gas use with base equipment, 33 m³

¹ RLW Analytics, Final Market Potential Report Of Massachusetts Owner Occupied 1-4 Unit Dwellings, July 2006 http://www.cee1.org/eval/db_pdf/575.pdf

² Assumption of the Ministry of Energy of Ontario. See Table 4,

http://www.energy.gov.on.ca/index.cfm?fuseaction=conservation.guide13 ³ Summit Blue, Resource Savings Values in Selected Residential DSM Prescriptive Programs, June 2008.

⁴ RLW Analytics (2006). Given geographic proximity, Massachusetts temperatures used unchanged for Ontario.

⁵ As suggested by NRCan: <u>http://oee.nrcan.gc.ca/residential/personal/new-homes/water-conservation.cfm?attr=4</u>

Annual Electricity Savings	0 kWh		
N/A			
Annual Water Savings	0 L		
Navigant has assumed that adopting the measure would not affect the quantity of water consumed.			

Other Input Assumptions

Effective Useful Life (EUL)	10 Years			
Based on the estimated measure lifetimes used in four other jurisdictions Energy - 10 years, Efficiency Vermont – 10 years, and NYSERDA ⁷ – 10 y using an EUL of 10 years.	(Iowa - 15 years, Puget Sound ears) Navigant recommends			
Base & Incremental Conservation Measure Equipment and O&M Costs	2 \$			
Average equipment cost (for six feet of pipe wrap) based on communication	on with local hardware stores.			
Customer Payback Period (Natural Gas Only) ⁸ 0.2 Years				
Using an 5-year average commodity cost (avoided cost) ⁹ of \$0.38 / m ³ ar distribution cost ¹⁰ of \$0.14 / m ³ , the payback period for natural gas saving years, based on the following:	nd an average residential is is determined to be 0.2			
Payback Period = Incremental cost / (natural gas savings x natural gas co = \$2/ (25 m³/year * \$0.52 / m³) = 0.2 years	ost)			
Market Penetration	47%			
Based on previous research conducted for the OPA, Navigant Consulting penetration of this measure to be 47% ¹¹ .	estimates the market			

⁶ From source: "It is common to find a 5 - 10 F temperature drop from the water heater to the furthest fixtures in the house." Chinnery, G. Policy recommendations for the HERS Community to consider regarding HERS scoring credit due to enhanced effective energy factors of water heaters resulting from volumetric hot water savings due to conservation devices/strategies, EPA Energy Star for Homes, Sept 2006

http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Volumetric_Hot_Water_Savings_Guidelines.pdf

⁷ NYSERDA, New York Energy Smart Programs, *Deemed Savings Database*

⁸ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

⁹ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

¹⁰ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>https://portal-</u>

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objlD=248&PageID=0&cached=true&mode=2&userID=2).
 ¹¹ Navigant Consulting, Inc. for the Ontario Power Authority, *Residential Rebate Program: Participation Forecast and Incentive Bundling Strategy – Key Findings Summary*, December 2008

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share		
State of Iowa Utilities Board ¹²	23	15	115 US\$	41%		
Comments For addition of R-4 insulation to previously un-insulated pipes in the Low-Income sector. Measure saves 4% of 584 m ³ required for water heating.						
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share		
Puget Sound Energy, 2007 ¹³	8	10	8 US\$	38%		
Comments For addition of R-4 insulation to previously un-insulated pipes. Measure saves 1% of 759 m ³ required for water heating.						
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share		
Midwest Energy Efficiency Alliance, 2003 ¹⁴	36	N/A	N/A	10.4%		
Comments No indication given of percentage savings or base natural gas consumption for water heating.						
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share		
Efficiency Vermont, 2006 ¹⁵	N/A	10	15 US\$	N/A		
Comments Only electricity savings reported (33 kWh) for an electric hot water system. Insulation upgrade not specified. No indication given of percentage savings or base natural gas consumption for water heating.						

 ¹² Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2
 ¹³ Quantec *Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027)* Prepared for Puget Sound Energy
 ¹⁴ Midwest Energy Efficiency Alliance, *Illinois Residential Market Analysis, Final Report*, May 12, 2003.
 <u>http://www.cee1.org/eval/db_pdf/390.pdf</u>
 ¹⁵ Efficiency Vermont, *Technical Reference User Manual (TRM)*, February 2006

COMMERCIAL COOKING

Energy Star Commercial Fryer

Revision #	Description/Comment	Date Revised

Efficie	nt Equipment and Technologies Description
Energy St	tar commercial fryer (50% cooking efficiency ¹)
Base E	Equipment and Technologies Description
Standard	commercial fryer (35% cooking efficiency)

Decision Type	Target Market(s)	End Use
New/Replacement	New/Existing Commercial buildings (Restaurant)	Cooking

Codes, Standards, and Regulations

In order to be a certified Energy Star deep fryer, the fryer must have a minimum cooking efficiency of 50%, and a maximum idle energy rate of 9,000 Btu/hr². NRCan's Office of Energy Efficiency does not regulate commercial fryers.

	Electricity	and Other Resource	ce Savings	Equipment & O&M Costs of	Equipment & O&M
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m³/Btu/hour)	(kWh)	(L)	(\$/kBtu/hour)	(\$)
1	1,099	0	0	\$5,750	\$2,500
2	1,099	0	0	0	0
3	1,099	0	0	0	0
4	1,099	0	0	0	0
5	1,099	0	0	0	0
6	1,099	0	0	0	0
7	1,099	0	0	0	0
8	1,099	0	0	0	0
9	1,099	0	0	0	0
10	1,099	0	0	0	0
11	1,099	0	0	0	0
12	1,099	0	0	0	0
TOTALS	13,188	0	0	\$5,750	\$2,500

¹ Cooking energy efficiency is defined as the quantity of energy input to the food products expressed as a percentage of the quantity of energy input to the appliance.

² Energy Star, Commercial Fryers, <u>http://www.energystar.gov/index.cfm?c=fryers.pr_fryers</u>

Resource Saving	•		
Annual Natural Gas	Savings	1,099 m ³	
Assumptions and inputs	used by Energy Star to calculate savings ³ :		
day. The Flex Yo	savings calculator for this measure assumes the our Power (FYP) website states that commercial fr In calculating gas savings, Navigant Consulting h YP, 10 hours.	yers are typically used for 8 to	
 The fryer is used per day. 	365 days per year to cook 150 pounds of food pe	er day and is pre-heated once	
Both efficient and	d base equipment must be pre-heated for 15 minu	ites before daily use.	
Base equipment per day.	has an idle energy rate of 14,000 Btu/hr and is or	n average idle for 7.25 hours	
 Efficient equipment has an idle energy rate of 9,000 Btu/hr and is on average idle for 7.4 hours per day. 			
heat energy. Bas	s calculated as the total gas required for cooking ed on the assumptions above the Energy Star sa for base and efficient equipment.		
(16	oking energy (2,479 m³/year) + Idle energy (1,030 52 m³/year) 571 m³/year	0 m ³ /year) + Pre-heat energy	
, j	= Cooking energy (1,735 m³/year) + Idle energy (6 energy (157 m³/year) = 2,572 m³/year	880 m³/year) + Pre-heat	
Gas savings were de	termined to be 1,099 m ³ or 30% over the base eq	juipment.	
Annual Electricity S	Savings	0 kWh	
N/A			
Annual Water Savir	igs	0 L	

N/A

Other Input Assumptions

Effective Useful Life (EUL)	12 Years		
The Minnesota Department of Commerce ⁵ and Puget Sound Energy ⁶ both estimate the EUL of this measure to be 15 years. The Consortium for Energy Efficiency ⁷ and the State of Iowa Utilities Board ⁸ both estimate the EUL of this measure to be 8 years. Given the range of estimates, and given Energy Star's estimate of an EUL of 12 years for this measure, Navigant Consulting also estimates the EUL of this measure to be 12 years.			
Base & Incremental Conservation Measure Equipment and O&M Costs	\$3,250		

³ Energy Star Savings Calculator for commercial gas fryers. Unless otherwise noted all assumptions and inputs that follow are drawn from this source. <u>http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Commercial_Gas_Fryers.xls</u>

⁴ FYP is California's energy efficiency marketing program with funding approved by the California Public Utilities Commission <u>http://www.fypower.org/inst/tools/products_results.html?id=100171</u>

⁵ Minnesota Department of Commerce, *Minnesota Deemed Savings Database*, Docket No. E,999/CIP-08-272 https://www.edockets.state.mn.us/EFiling/ShowFile.do?DocNumber=4991781

https://www.edockets.state.mn.us/EFiling/ShowFile.do?DocNumber=4991781 ⁶ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy

⁷ Erickson, K. et al, Cooking Up a New Approach for Program Design II: A Recipe for Success, Consortium for Energy Efficiency, 2008 <u>http://www.cee1.org/com/com-kit/files/CookingUpaNewApproachII.pdf</u>

⁸ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

The incremental cost for an Energy Star fryer purchased from Garland Canada⁹ is \$5,000. The Consortium for Energy Efficiency reports an incremental cost¹⁰ of \$1,240, the Energy Star savings calculator reports and incremental cost of \$4,700 and the Minnesota Department of Commerce reports an incremental cost of \$2,125. Navigant Consulting estimates the incremental cost to be the mean of the four prices reported for other jurisdictions, or approximately \$3,250.

Customer Payback Period (Natural Gas Only) ¹¹	5.9 Years
Using a 5-year average commodity cost (avoided cost) ¹² of \$0.38 / m	3 and an average commercial

distribution cost¹³ of \$0.12 / m³, the payback period for natural gas savings is determined to be 5.9 years, based on the following:

Payback Period = Incremental cost / (natural gas savings x natural gas cost)

- = \$3,250 / (1,099 m³/year * \$0.5 / m³)
- = 5.9 years

Market Penetration¹⁴

Medium

Based on the observation of medium penetration in two other jurisdictions (Washington State $^{15} - 15\%$, Iowa¹⁶ – 35%) and communication with a local distributor, Navigant Consulting estimates the penetration in Ontario to be medium.

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m ³)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share		
State of Iowa Utilities Board ¹⁷	0.3 per ft ² (restaurant)	8	\$2,300	35%		
Comments Energy Star fryer wit Measure saves 6.2%	Comments Energy Star fryer with 50% cooking efficiency replacing base equipment with 35% cooking efficiency. Measure saves 6.2% of 4.8 m ³ (1.73 therms) of gas per ft ² required for cooking.					
Annual Natural Gas Savings (m³)Effective Useful Life (Years)Incremental Cost (\$)Penetration/Market Share						
Puget Sound Energy ¹⁸	0.103 per ft ² (restaurant)	15	\$0.79 per ft ²	15%		
Comments Efficient equipment is a "power burner" fryer. No indication of base or efficient equipment cooking efficiencies is provided. Measure saves 4% of 2.6 m ³ (0.93 therms) of gas per ft ² required for cooking.						

http://www.enodisusa.com/docs/uploaded/eno/ca/price_lists/Frymaster%20PL%202008.pdf

Where incremental cost was reported in U.S. dollars it has been converted to Canadian dollars using the exchange rate from February 2, 2009, or 1.24 Canadian dollars to the U.S. dollar.

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2).

Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

⁹ Energy Star fryer: FPH-55, \$7,500, Base equipment: GF14, \$2,500

¹¹ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹² 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost. ¹³ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and

Enbridge Gas websites (https://portal-

¹⁵ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy

¹⁶ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

¹⁷ Ibid.

¹⁸ Quantec, Comprehensive Demand-Side Management Resource Assessment, Prepared for Puget Sound Energy, May 2007 B-137

Source	Annual Natural Gas Savings (m ³)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
Minnesota Department of Commerce ¹⁹	1,004	15	\$1,714	N/A	
Comments The deemed savings database reports a standard fryer (122,000 BTUH) using 291.28 MMBtu/year and energy efficient fryer as using 255.16 MMBtu/year, equating to 36.12 MMBtu/year, or 1,004 m ³ .					

¹⁹ Minnesota Department of Commerce, *Minnesota Deemed Savings Database*, Docket No. E,999/CIP-08-272 <u>https://www.edockets.state.mn.us/EFiling/ShowFile.do?DocNumber=4991781</u>

High Efficiency Commercial Griddle

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description		
High efficiency commercial griddle (40% cooking efficiency with heavy load ¹)		
Base Equipment and Technologies Description		
Standard commercial griddle (32% cooking efficiency)		

Decision TypeTarget Market(s)End UseRetrofit/NewNew/Existing Commercial buildings
(Restaurant)Cooking

Codes, Standards, and Regulations

An Energy Star specification for commercial griddles is due to be launched in April 2009². NRCan's Office of Energy Efficiency does not regulate commercial griddles.

	Electricity	and Other Resour	ce Savings	Equipment & O&M Costs of	Equipment & O&M	
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure	
(EUL=)	(m³/Btu/hour)	(kWh)	(L)	(\$/kBtu/hour)	(\$)	
1	503	0	0	\$8,570	\$7,000	
2	503	0	0			
3	503	0	0			
4	503	0	0			
5	503	0	0			
6	503	0	0			
7	503	0	0			
8	503	0	0			
9	503	0	0			
10	503	0	0			
11	503	0	0			
12	503	0	0			
TOTALS	6,036	0	0	\$8,570	\$7,000	

¹ Cooking energy efficiency is defined as the quantity of energy input to the food products expressed as a percentage of the quantity of energy input to the appliance.

² EPA update on Draft 1 Development , Nov 19, 2008, <u>http://www.energystar.gov/ia/partners/prod_development/new_specs/downloads/comm_griddles/Griddle_Draft1_Status_Update.p_df</u>

N/A

Resource Savings Assumptions		
Annual Natural Gas Savings	503 m ³	
Assumptions and inputs used by Pacific Gas and Electric's (PG&E) Food \$ (FSTC) to calculate savings ³ :	Service Technology Center	
 The FSTC calculator's default assumption is that the griddle is use Star⁴ and the Federal Energy Management Program (FEMP)⁵ both operation per day. An FSTC report on a specific model of griddle, production-test kitchen serving two meals per day the griddle was eight hours per day⁶. To account for restaurants operating with exi (griddle-prepared) meals per day, Navigant Consulting has assum both reported values) of operation per day. 	n also assume that 12 hours of however, found that in a in operation an average of tended hours or serving three	
 The FSTC calculator assumes a production capacity of 25 lbs/hou lbs/hour for the high efficiency griddle. Navigant Consulting has th production capacity to match that of the high efficiency griddle to r use. 	erefore modified the base	
 The base equipment is assumed to have an idle energy rate of 18,000 Btu/hr and a pre-heat energy rate of 20,000 Btu/hr (FSTC and Energy Star default assumption). The efficient equipment is assumed to adhere to FEMP guidelines and have an idle energy rate of 16,000 Btu/hr and a pre-heat energy rate of 15,000 Btu/hr. 		
Natural gas use with base equipment, given assumptions and inputs d (1,101 therms).	letailed above: 3,061 m ³	
Natural gas use with efficient equipment, given assumptions and input (920 therms).	s detailed above: 2,558 m ³	
Annual gas savings were determined to be 503 m ³ or approximately 1	6% over the base equipment.	
Annual Electricity Savings	0 kWh	
N/A	-	
Annual Water Savings	0 L	

⁵ U.S. DOE, FEMP, *FEMP designated product: Griddles* http://www1.eere.energy.gov/femp/procurement/eep_gas_griddles.html#buyertips

³ Gas Griddle Life-Cycle Cost Calculator, default assumptions are used except where otherwise noted. <u>http://www.foodservicetechnologycenter.com/saveenergy/tools/calculators/gqridcalc.php</u> Note that the savings calculated for the two default (base and high efficiency) cases are identical to those presented in the Energy Star Commercial Food Service – Energy and Water Performance Upgrades available in the Commercial Best Practices section of the Energy Star web-site, <u>http://www.energystar.gov/ia/products/commercial food_service/CFS_Full_Service.xls</u>

the Energy Star web-site, http://www.energystar.gov/ia/products/commercial_food_service/CFS_Full_Service.xls
 ⁴ Energy Star Commercial Food Service – Energy and Water Performance Upgrades available in the Commercial Best Practices section of the Energy Star web-site, http://www.energystar.gov/ia/products/commercial_food_service/CFS_Full_Service.xls

 ⁶ Cadotte, B. and D. Zabrowski, *Toastmaster Accu-Miser Model AM36SS Electric Griddle: In-Kitchen Appliance Performance Report*, Food Service Technology Center, January 1999.
 <u>http://www.fishnick.com/publications/appliancereports/griddles/Toastmaster_AM36SS_Griddle_in_kitch_en.pdf</u>

Other Input Accumptions

Other Input Assumptions				
Effective Useful Life (EUL)	12 Years			
The Minnesota Department of Commerce ⁷ estimates the EUL of this measure to be 15 years. The State of Iowa Utilities Board ⁸ , Energy Star and FEMP all estimate the EUL of this measure to be 12 years. Given that the majority of the agencies recommend using 12 years and given their relative expertise, Navigant Consulting also estimates the EUL of this measure to be 12 years.				
Base & Incremental Conservation Measure Equipment and O&M Costs	\$1,570			
Energy Star ⁹ estimates the cost of base equipment to be \$2,480 (\$US 2,000) and the cost of the efficient equipment to be $3,925$ (\$US 3,165) ¹⁰ for an incremental cost of $1,445$. The Garland CG-36R 01 (heavy-load cooking efficiency- 40.7%, production capacity – 46.2 lbs/hour, rated input – 90 kBtu/hour) has a dealer-recommended price of $9,490^{11}$. The FSTC assessment of a Lang griddle (heavy-load cooking efficiency – 31.7%, production capacity – 43.2 lbs/hour, rated input – 81kBtu/hour) does not specify a model number, however the specifications listed appear to match those of the Lang 236T which has a suggested price of of $7,795$ (\$US 6,286) ¹² . This implies an incremental cost of \$1,695. Navigant Consulting estimates the incremental price as the average of these figures, or \$1,570				
Customer Payback Period (Natural Gas Only) ¹³ 6.2 Years				
Using a 5-year average commodity cost (avoided cost) ¹⁴ of $0.38 / m^3$ and an average commercial distribution cost ¹⁵ of $0.12 / m^3$, the payback period for natural gas savings is determined to be 6.2 years, based on the following: Payback Period = Incremental cost / (natural gas savings x natural gas cost) = $1.570 / (503 m^3/year * 0.5 / m^3)$ = 6.2 years				
Market Penetration ¹⁶	Medium			
Based on the observation of medium penetration in another jurisdiction ($Iowa^{17} - 25\%$) and on the observation that a large percentage of griddles tested by the FSTC are high efficiency, Navigant Consulting estimates the penetration in Ontario to be medium.				

⁷ Minnesota Department of Commerce, *Minnesota Deemed Savings Database*, Docket No. E,999/CIP-08-272

https://www.edockets.state.mn.us/EFiling/ShowFile.do?DocNumber=4991781

⁸ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2 ⁹ Energy Star Commercial Food Service – Energy and Water Performance Upgrades available in the Commercial Best Practices section of the Energy Star web-site, <u>http://www.energystar.gov/ia/products/commercial_food_service/CFS_Full_Service.xls</u>¹⁰ Cowen, D. and D. Zabrowski, *Garland CG-36R Gas Griddle Performance Test*, Food Service Technology Center, 2002.

http://www.fishnick.com/publications/appliancereports/griddles/Garland CG-36R Griddle.pdf ¹¹Garland, Price List Canada, 2008

http://www.enodisusa.com/docs/uploaded/eno/ca/price_lists/Gar%20USRange%20PL%202008.pdf

¹² Lang, 2009 Price List, <u>http://www.langworld.com/Content/PriceLists/PriceListLangComm2009.pdf</u>

¹³ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included. ¹⁴ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and

weather sensitive avoided gas cost. ¹⁵ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and

Enbridge Gas websites (https://portal-

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2). ¹⁶ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

¹⁷ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m³)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
State of Iowa Utilities Board ¹⁸	0.024 per ft ² (restaurant)	12	\$2,538	25%
Comments High efficiency gridd efficiency. Measure	le with 40% cooking saves 0.5% of 4.8 r	g efficiency repla m ³ (1.73 therms)	cing base equipmo of gas per ft ² requ	ent with 32% cooking ired for cooking.
Source	Annual Natural Gas Savings (m ³)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Energy Star Commercial Best Practices ¹⁹	170	12	\$1,444	N/A
Comments High efficiency gridd efficiency.	le with 40% cooking	g efficiency repla	cing base equipme	ent with 32% cooking
Source	Annual Natural Gas Savings (m ³)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
New York Energy \$mart – Deemed Savings Database ²⁰	806	10	\$1,240	N/A
Comments High efficiency griddle with 45% cooking efficiency replacing base equipment with 30% cooking efficiency.				

 ¹⁸ Ibid.
 ¹⁹ Energy Star Commercial Food Service – Energy and Water Performance Upgrades, <u>http://www.energystar.gov/ia/products/commercial_food_service/CFS_Full_Service.xls</u>
 ²⁰ NYSERDA Deemed Savings Database, revision 12, 2008.

COMMERCIAL SPACE HEATING

Air Curtains – Single Door (8' x 6')

Revision #	Description/Comment	Date Revised	

Efficient Equipment and Technologies Description

Air curtains in retail, office and institutional buildings are used to reduce infiltration of cold outside air through doorways. A reduction in air infiltration means a reduction in natural gas heating during heating season and a reduction in air conditioning during the summer season.

Base Equipment and Technologies Description

Retail, office and institutional buildings without air curtains.

Decision Type	Target Market(s)	End Use
Retrofit	Retail, Office and Institutional Buildings	Space Heating

Codes, Standards, and Regulations

N/A

	Electricity	and Other Resour	ce Savings	Equipment & O&M Costs of	Equipment & O&M
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m³)	(kWh)	(L)	(\$)	(\$)
1	2,191	172	0	1,650	0
2	2,191	172	0	0	0
3	2,191	172	0	0	0
4	2,191	172	0	0	0
5	2,191	172	0	0	0
6	2,191	172	0	0	0
7	2,191	172	0	0	0
8	2,191	172	0	0	0
9	2,191	172	0	0	0
10	2,191	172	0	0	0
11	2,191	172	0	0	0
12	2,191	172	0	0	0
13	2,191	172	0	0	0
14	2,191	172	0	0	0
15	2,191	172	0	0	0
TOTALS	32,865	2,580	0	1,650	0

Annual Natural Gas Savings

2,191 m³

Natural gas savings reflect reduced heating load; less outside cold air passes through doors. Savings are estimated based on the following assumptions:

Variable Names	Symbol	Value	Source
Inside Temperature for heating season	Τ _{ΙΗ}	68 °F	NCI estimate
Inside Temperature for cooling season	T _{IC}	72 °F	NCI estimate
Average outside temperature in heating season	Т _{он}	29.27 °F	NCI estimate
Average outside temperature in cooling season	T _{oc}	77.00 °F	NCI estimate
Hours per day that door is open	HR	1 hour	NCI estimate
Days per week that door is in use	DPW	7 Days	NCI estimate
Door Height	Н	8 feet	NCI estimate
Door Width	W	2 x 6 feet	NCI estimate
Total horsepower of air curtain	HP	0.5 hp	NCI estimate
Air curtain cfm at nozzle	Q_0	1005 cfm	NCI estimate
Air curtain nozzle depth	NZ	2.75 inches	NCI estimate
Door coefficient	DC	0.3	NCI estimate
Days per heating season	DPS _H	120 Days	NCI estimate
Days per cooling season	DPS _C	100 Days	NCI estimate
Average wind velocity for heating season	V _{WH}	10.0 mph	NCI estimate
Average wind velocity for cooling season	V _{WC}	8.3 mph	NCI estimate
Energy Efficiency Ratio for A/C Unit	EER	12 Btu/Watt-hour	NCI estimate

During Heating Season

Doorway Calculations Without Air Curtain for Heating Season:

- Air entering doorway due to wind¹, $Q_W = V_{WH} x H x W x 88$ fpm/mph = 12,672 cfm
- Air entering doorway due to inside/outside temperature difference, QTD = [68.094+0.4256(T_i T_{0H})] x H x W x $\sqrt{H(T_i T_{0H})}/(T_i + 460)$ = 3,110 cfm
- Total air entering doorway, $Q_T = Q_W + Q_{TD} = 15,782$ cfm
- Heat lost at doorway without air curtain $q_D = 1.1 \times Q_T \times (T_i T_{0H}) = 672,357 \text{ Btu/hr}$

Doorway Calculations With Air Curtain for Heating Season:

- Total air flow rate at the door, Q_{E} = 0.4704 $Q_{0}\left(\sqrt{H/NZ}\right)-Q_{0}$ = 1,788 cfm
- Heat lost at doorway using air curtain, $\mathbf{q}_{AC} = 1.1 \times Q_E \times (T_i T_{0H}) = 76,183 \text{ Btu/hr}$

Heat Loss Prevented Per Year Using Air Curtain for Heating Season:

- $q_s = (q_D q_{AC}) \times HR \times DPS_H \times (DPW/7) = 77.50 \text{ MMBtu} = 2,191 \text{ m}^3 \text{ natural gas.}$
- Baseline estimates of natural gas consumption: heat lost at doorway without air curtains = $q_D x HR x DPS_H x (DPW/7) = 87.41 MMBtu = 2470 m^3$.
- Natural Gas Savings % = 88.7%

Annual Electricity Savings

172 kWh

- Electricity savings are a result of the following factors:
 - Reduced AC load
 - Increased electricity use to operate air curtain.
- Based on the Enbridge 2007 DSM program Air Door projects for various small commercial sites,

ASHRAE Handbook 2001 Fundamentals Ch.26

electricity savings were calculated using Agviro Air Door Calculator.	Based on their reported results,
the average savings is determined to be 172 kWh.	
Annual Water Savings	01

N/A

Other Input Assumptions

Effective Useful Life (EUL)	15 Years
This EUL was developed in conjunction with equipment manufacturers by confirmed by SEED Program Guidelines ² .	v Union Gas. It is also
Base & Incremental Conservation Measure Equipment and O&M Costs	\$ 1,650
This O&M cost was developed with conjunction with equipment manufact	urers by Union Gas.
Customer Payback Period (Natural Gas Only) ³	1.5 Years
Using a 5-year average commodity cost (avoided cost) ⁴ of \$0.38 / m ³ and distribution cost ⁵ of \$0.12 / m ³ , the payback period for natural gas savings based on the following: Payback Period = Incremental cost / (natural gas savings x natural gas co	s is determined to be 1.5 years,
= \$1,650/ (2,191 m ³ /year * $0.5 / m^3$) = 1.5 years	55()
Market Penetration ⁶	Medium
Based on communication with local contractors, Navigant Consulting esti- penetration in Ontario.	mates a medium market

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Berner Energy Calculator ⁷ .	2,092	N/A	2,000	N/A
Comments This is a typical application during winter months. Based on the same assumptions stated above in the Annual Electricity Savings table, the saved annual natural gas is 74 MMBtu, which is equivalent to 2,092 m ³ .				

² Cost Effectiveness Analysis, SEED Program Guidelines. <u>http://www.oregon.gov/ENERGY/CONS/SEED/docs/AppendixJ.pdf</u>

³ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

⁴ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

⁵ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2). ⁶ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

⁷ Berner Calculator, http://www.berner.com/sales/energy.php5

Air Curtains – Double Door (2 x 8' x 6')

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Air curtains in retail, office and institutional buildings are used to reduce infiltration of cold outside air through doorways. A reduction in air infiltration means a reduction in natural gas heating during heating season and a reduction in air conditioning during the summer season.

Base Equipment and Technologies Description

Retail, office and institutional buildings without air curtains.

Decision Type	Target Market(s)	End Use
Retrofit	Retail, Office and Institutional Buildings	Space Heating

Codes, Standards, and Regulations

N/A

	Electricity and Other Resource Savings		Equipment & O&M Costs of	Equipment & O&M	
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m³)	(kWh)	(L)	(\$)	(\$)
1	4,661	1,023	0	2,500	0
2	4,661	1,023	0	0	0
3	4,661	1,023	0	0	0
4	4,661	1,023	0	0	0
5	4,661	1,023	0	0	0
6	4,661	1,023	0	0	0
7	4,661	1,023	0	0	0
8	4,661	1,023	0	0	0
9	4,661	1,023	0	0	0
10	4,661	1,023	0	0	0
11	4,661	1,023	0	0	0
12	4,661	1,023	0	0	0
13	4,661	1,023	0	0	0
14	4,661	1,023	0	0	0
15	4,661	1,023	0	0	0
TOTALS	69,914	15,345	0	2,500	0

Annual Natural Gas Savings

4,661 m³

Natural gas savings reflect reduced heating load; less outside cold air passes through. Savings are estimated based on the following assumptions:

Variable Names	Symbol	Value	Source
Inside Temperature for heating season	T _{IH}	68 °F	NCI estimate
Inside Temperature for cooling season	T _{IC}	72 °F	NCI estimate
Average outside temperature in heating season	Т _{он}	29.27 °F	NCI estimate
Average outside temperature in cooling season	T _{oc}	77.00 °F	NCI estimate
Hours per day that door is open	HR	1 hour	NCI estimate
Days per week that door is in use	DPW	7 Days	NCI estimate
Door Height	Н	8 '	NCI estimate
Door Width	W	2 x 6 '	NCI estimate
Total horsepower of air curtain	HP	0.5 hp	NCI estimate
Air curtain cfm at nozzle	Q_0	1005 cfm	NCI estimate
Air curtain nozzle depth	NZ	2.75 "	NCI estimate
Door coefficient	DC	0.3	NCI estimate
Days per heating season	DPS _H	120 Days	NCI estimate
Days per cooling season	DPS _C	100 Days	NCI estimate
Average wind velocity for heating season	V _{WH}	10.0 mph	NCI estimate
Average wind velocity for cooling season	V _{WC}	8.3 mph	NCI estimate
Energy Efficiency Ratio for A/C Unit	EER	12 Btu/Watt-hour	NCI estimate

During Heating Season

Doorway Calculations Without Air Curtain for Heating Season:

- Air entering doorway due to wind¹, $Q_W = V_{WH} x H x W x 88$ fpm/mph = 25,344 cfm
- Air entering doorway due to inside/outside temperature difference, QTD = [68.094+0.4256($T_{IH} T_{OH}$)] x H x W x $\sqrt{H(T_{IH} T_{OH})}/(T_{IH} + 460)$ = 6,220 cfm
- Total air entering doorway, $Q_T = Q_W + Q_{TD} = 31,564$ cfm
- Heat lost at doorway without air curtain \mathbf{q}_{D} = 1.1 x Q_{T} x $(T_{IH} T_{0H})$ = 1,344,713 Btu/hr

Doorway Calculations With Air Curtain for Heating Season:

- Total air flow rate at the door, Q_{E} = 0.4704 Q_{0} ($\sqrt{H/NZ})-Q_{0}$ = 1,788 cfm
- Heat lost at doorway using air curtain, $\mathbf{q}_{AC} = 1.1 \times Q_E \times (T_{IH} T_{0H}) = 76,183 \text{ Btu/hr}$

Heat Loss Prevented Per Year Using Air Curtain for Heating Season:

- $q_s = (q_D q_{AC}) \times HR \times DPS_H \times (DPW/7) = 164.91 \text{ MMBtu} = 4,661 \text{ m}^3 \text{ natural gas.}$
- Baseline estimates of natural gas consumption: heat lost at doorway without air curtains = $q_D x HR x DPS_H x (DPW/7) = 174.81 MMBtu = 4,941 m^3$.
- Natural Gas Savings % = $4,661m^3 / 4,941m^3 = 94.3\%$

Annual Electricity Savings

1,023 kWh

- Electricity savings are a result of the following factors:
 - Reduced AC load
 - Increased electricity use to operate air curtain.
- Based on the Enbridge 2007 DSM program Air Door projects at various small commercial sites,

¹ ASHRAE Handbook 2001 Fundamentals Ch.26

electricity savings were calculated using Agviro air door calculator. The to be 1,023 kWh.	ne average result is estimated
Annual Water Savings	0 L

N/A

Other Input Assumptions

Effective Useful Life (EUL)	15 Years	
This EUL was developed in conjunction with equipment manufacturers by confirmed by SEED Program Guidelines ² .	v Union Gas. It is also	
Base & Incremental Conservation Measure Equipment and O&M Costs	\$ 2,500	
This O&M cost was developed in conjunction with equipment manufacture	ers by Union Gas.	
Customer Payback Period (Natural Gas Only) ³	1.1 Years	
Using a 5-year average commodity cost (avoided cost) ⁴ of \$0.38 / m ³ and distribution cost ⁵ of \$0.12 / m ³ , the payback period for natural gas savings based on the following:	s is determined to be 1.1 years,	
Payback Period = Incremental cost / (natural gas savings x natural gas cost) = \$2500/ (4,661 m ³ /year * \$0.5 / m ³) = 1.1 years		
Market Penetration ⁶	Medium	
Based on communication with local contractors, Navigant Consulting esti- penetration in Ontario.	mates a medium market	

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Berner Energy Calculator ⁷	4,946	N/A	2,500	N/A
Comments Based on the same assumptions used above, for a typical application during the winter season, the annual natural gas savings are determined to be 175 MMBtu, or 4,946 m ³ .				

² Cost Effectiveness Analysis, SEED Program Guidelines. <u>http://www.oregon.gov/ENERGY/CONS/SEED/docs/AppendixJ.pdf</u>

³ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

⁴ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

⁵ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2). ⁶ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

⁷ Berner Calculator, http://www.berner.com/sales/energy.php5

Condensing Boilers (m³/Btu/hour)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description
Condensing boiler with 88% estimated seasonal efficiency
Base Equipment and Technologies Description
Non-condensing boiler with 76% estimated seasonal efficiency

Decision Type	Target Market(s)	End Use
Retrofit	Existing Commercial buildings	Space Heating

Codes, Standards, and Regulations

- ASHRAE Standard 155P: test and calculation procedures result in an application-specific seasonal efficiency of commercial space heating boiler systems.
- ASHRAE Standard 90.1-2004: minimum boiler efficiencies for buildings except low-rise residential buildings.

	Electricity and Other Resource Savings		Equipment & O&M Costs of	Equipment & O&M	
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m³/Btu/hour)	(kWh)	(L)	(\$/kBtu/hour)	(\$)
1	0.01	0	0	12	0
2	0.01	0	0	0	0
3	0.01	0	0	0	0
4	0.01	0	0	0	0
5	0.01	0	0	0	0
6	0.01	0	0	0	0
7	0.01	0	0	0	0
8	0.01	0	0	0	0
9	0.01	0	0	0	0
10	0.01	0	0	0	0
11	0.01	0	0	0	0
12	0.01	0	0	0	0
13	0.01	0	0	0	0
14	0.01	0	0	0	0
15	0.01	0	0	0	0
16	0.01	0	0	0	0
17	0.01	0	0	0	0
18	0.01	0	0	0	0
19	0.01	0	0	0	0
20	0.01	0	0	0	0
21	0.01	0	0	0	0
22	0.01	0	0	0	0
23	0.01	0	0	0	0
24	0.01	0	0	0	0
25	0.01	0	0	0	0
TOTALS	0.25	0	0	12	0

Resource outrings Assum					
Annual Natural Gas Savings			0.0104 m³/Btu/hr		
 The natural gas savings are based on the reduction in space heating gas consumption from using a condensing boiler instead of a non-condensing boiler. 					
 For condensing and non-condens efficiency / Natural Gas Low Heat 			ign Heat Loss (Btu/year) / Boiler		
 Estimated seasonal efficiency is 7 	'6% for non-	-condensing boilers and 8	38% for condensing boilers ² .		
 Design Heat Loss is calculated using degree days analysis (full year) for London, ON and Sudbury, ON. The single saving number is weighted average of Union Gas South (London, 70%) and Union Gas North (Sudbury, 30%) based on the customer population of Union Gas service territories. <i>Example: a 300,000 Btu/hr condensing boiler located in London or Sudbury</i> 					
Assuming the following sp		for a condensing boller i	ocated in London, ON		
Variables	Values				
Boiler Input (Btu/hr)	300,000 1.2				
Oversizing Boiler Operating Factor					
· · · · ·] erating Eactor) / Oversizir	a - 225 000 Btu/br		
 Heat Loss = (Boiler Input x Boiler Operating Factor) / Oversizing = 225,000 Btu/hr In general, Natural Gas Low Heating Value = 35,310 Btu/m³ 					
 In general, Natural Gas Low Heating Value = 35,310 Btu/m² Historically, London experiences 42 hours/year at -5°F. Design Heat Loss per Year at this 					
temperature = 225,000 Bi			Theat Loss per Tear at this		
•	76% efficier	ncy), natural gas consum	ption at -5°F = 9,450,000 Btu /		

- For condensing boilers (88% efficiency), natural gas consumption at -5°F = 9,450,000 Btu / 76% / Natural Gas Low Heating Value = 304 m³/year.
- Design Heat Losses at different temperatures (t) are extrapolated based on assumed linear relationship with 225,000 Btu/hr (@-5°F) using 225,000 Btu/hr x (65-t)/[65-(-5)]
- The following tables are constructed to calculate the natural gas consumptions at all temperatures for a whole year.

¹ Natural gas lower heating value – the lower heating value (also known as net calorific value, net CV, or LHV) of a fuel is defined as the amount of heat released by combusting a specified quantity (initially at 25 °C or another reference state) and returning the temperature of the combustion products to 150 °C, given as 35,310 Btu/m³.

² Seasonal efficiencies are estimates based on "Boiler System Efficiency", Thomas H. Durkin, ASHRAE Journal, July 2006

					Fuel Cons	umption
Temperature	emperature Intervals London Design Heat Loss		n Heat Loss	Conventional Boiler	Condensing Boiler	
Temp (*F)	Range	Hours	Btu/hr	Btu/year	m³/yr	m³/yr
-20	-15	4				
-15	-10	8				
-10	-5	17				
-5	0	42	225,000	9,450,000	352	304
0	5	87	208,929	18,176,786	677	585
5	10	152	192,857	29,314,286	1,092	943
10	15	281	176,786	49,676,786	1,851	1,599
15	20	337	160,714	54,160,714	2,018	1,743
20	25	435	144,643	62,919,643	2,345	2,025
25	30	584	128,571	75,085,714	2,798	2,416
30	35	948	112,500	106,650,000	3,974	3,432
35	40	735	96,429	70,875,000	2,641	2,281
40	45	634	80,357	50,946,429	1,898	1,640
45	50	622	64,286	39,985,714	1,490	1,287
50	55	643	48,214	31,001,786	1,155	998
55	60		32,143	0	0	0
60	65		16,071	0	0	0
			Total	598,242,857	22,293	19,253

- The operating hours for boilers in London are based on the Union Gas program record.

- Natural Gas savings for condensing boilers in London = 22,293 m³ – 19,253 m³ = 3,040 m³

- The same calculation is repeated for a 300,000 Btu/hr boiler in Sudbury as below:

					Fuel Cons	umption
Temperature Intervals		Sudbury	Design Heat Loss		Conventional Boiler	Condensing Boiler
Temp (*F)	Range	Hours	Btu/hr	Btu/year	m³/yr	m³/yr
-35	-30	2			-	
-30	-25	7				
-25	-20	20				
-20	-15	46	225000	10350000	386	333
-15	-10	99	211765	20964705.88	781	675
-10	-5	159	198529	31566176.47	1176	1016
-5	0	221	185,294	40,950,000	1,526	1,318
0	5	272	172,059	46,800,000	1,744	1,506
5	10	345	158,824	54,794,118	2,042	1,763
10	15	380	145,588	55,323,529	2,062	1,780
15	20	437	132,353	57,838,235	2,155	1,861
20	25	502	119,118	59,797,059	2,228	1,924
25	30	658	105,882	69,670,588	2,596	2,242
30	35	748	92,647	69,300,000	2,582	2,230
35	40	584	79,412	46,376,471	1,728	1,493
40	45	537	66,176	35,536,765	1,324	1,144
45	50	605	52,941	32,029,412	1,194	1,031
50	55	665	39,706	26,404,412	984	850
55	60		26,471	0	0	0
60	65		13,235	0	0	0
	-	-	Total	657,701,471	24,509	21,166

- Natural Gas savings for condensing boilers in Sudbury = $24,509 \text{ m}^3 - 21,166 \text{ m}^3 = 3,342 \text{ m}^3$

 Based on 70% (London) and 30% (Sudbury) mix, the weighted average of natural gas savings = 70% x 3040 + 30% x 3342 = 3,131 m³.

- Therefore, the natural gas savings = 3,131 m³

On a per Btu/hour basis, NG savings = $3,131 \text{ m}^3 / 300,000 \text{ Btu/hour} = 0.0104 \text{ m}^3/\text{Btu/hour}$.

• Baseline conventional boiler consumption = 70% x 22,293 + 30% x 24,509 = 22,958 m³.

• Natural Gas Savings % = $3,131 \text{ m}^3 / 22,958 \text{ m}^3 = 13.6 \%$

Annual Electricity Savings	0 kWh
N/A	
Annual Water Savings	0 L
N/A	

Other Input Assumptions

Effective Useful Life (EUL)	25 Years				
Condensing boilers have an estimated service life of 25 years ³ .					
Base & Incremental Conservation Measure Equipment and O&M Costs	\$ 12 / kBtu / hr				
A generic incremental cost of \$14,000 per million Btu / hr (adjusted for the US/CDN exchange by a factor of 1.10) was used based on information recently published in the ASHRAE Journal ⁴ . Local Canadian manufactures reported \$9,800 for 230,000 Btu/hour condensing boilers ⁵ , which is \$43 / kBtu/hour. Baseline cost (conventional boilers) is \$31/kBtu/hr. Incremental cost is \$12 kBtu/hour.					
Customer Payback Period (Natural Gas Only) ⁶	2.3 Years				
Using a 5-year average commodity cost (avoided cost) ⁷ of \$0.38 / m ³ and an average commercial distribution cost ⁸ of \$0.12 / m ³ , the payback period for natural gas savings is determined to be 2.3 years, based on the following:					
On a per Btu/hr basis, Payback Period = Incremental cost / (natural gas savings x natural gas cost) = \$0.012 / (0.0104 m ³ /year * \$0.5 / m ³) = 2.3 years					
Market Share ⁹	High				
Based on conversations with local contractors and the number of condensing boilers on the market, Navigant Consulting has determined that condensing boilers have a high market share in Ontario.					

Source	Annual Natural Gas Savings (m ³)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
State of Iowa Utilities Board ¹⁰	0.156 per ft ²	20	\$35.80 (Large Office)	N/A	
Comments Base equipment has an 80% seasonal efficiency, efficient equipment has an 89% seasonal efficiency.					

³ ASHRAE Applications Handbook – 2003, Chapter 36 – Owning and Operating Costs, Table 3

⁴ "Boiler System Efficiency", Thomas H. Durkin, ASHRAE Journal – July 2006

⁵ Veissmann Group, <u>http://www.viessmann.ca/en</u>

⁶ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

⁷ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

⁸ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

⁹ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%, ¹⁰ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Baseline usage reported on a square footage basis (eg 0.57 therms/sq.ft.for large offices). Estimated 10.2% savings over the baseline. Incremental costs are based on per 1,000 ft² basis. Equivalent natural gas savings is 10.2% x 0.57 therms/sq.ft. = 0.058 therms = 0.156 m³ / ft².

Annual Natural Gas Savings (m ³)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
0.063 per ft ²	20	\$0.10 (offices)	N/A
	Gas Savings (m³)	Gas Savings Useful Life (m ³) (Years)	Gas Savings Useful Life Cost (\$)

Comments

Base equipment is a standard central boiler with 75% seasonal efficiency and efficient equipment is a condensing boiler with 85% seasonal efficiency. Baseline usage reported on a square footage basis (eg 0.19 therms/sq.ft. for offices). Estimated 12% savings over the baseline. Incremental costs are based on per sqft basis. Equivalent natural gas savings is 12% x 0.19 therms/sq.ft. = 0.0228 therms = 0.063 m³ / ft².

¹¹ Quantec, Comprehensive Demand-Side Management Resource Assessment, Prepared for Puget Sound Energy, May 2007

Demand Control Kitchen Ventilation (DCKV – 5000 CFM)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Kitchen ventilation with DCKV hood exhaust (5000 CFM). Demand ventilation uses temperature and/or smoke sensing to adjust ventilation rates. This saves energy comparing with the traditional 100% on/off kitchen ventilation system.

Base Equipment and Technologies Description

Kitchen ventilation without DCKV.

Decision Type	Target Market(s)	End Use
Retrofit	Existing Commercial (Restaurants)	Space Heating

Codes, Standards, and Regulations

N/A

	Electricity	and Other Resourc	e Savings	Equipment & O&M Costs of	Equipment & O&M
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	4,801	13,521	0	10,000	0
2	4,801	13,521	0	0	0
3	4,801	13,521	0	0	0
4	4,801	13,521	0	0	0
5	4,801	13,521	0	0	0
6	4,801	13,521	0	0	0
7	4,801	13,521	0	0	0
8	4,801	13,521	0	0	0
9	4,801	13,521	0	0	0
10	4,801	13,521	0	0	0
TOTALS	48,010	135,210	0	10,000	0

Annual Natural Gas Savings 4,801 m³

- The demand control kitchen ventilation savings were determined using the method described in the Melink Detailed Energy Savings Report¹.
- Assuming the DCKV system is operating 16 hours/day, 7 days/week, 52 weeks/year, at 80% heating efficiency.
- Using design weather data from the Outdoor Airload Calculator², baseline net heating loads for an exhaust volume of 5,000 CFM were determined for two locations: London (Union South) and North Bay (Union North): London = 624,111 KBtu; and North Bay = 803,266 KBtu.
- Heating savings for both locations (London and North Bay) were calculated by multiplying the individual baseline heating loads with (*1 estimated average make-up air RPM factor*), which represents the percent savings when using Demand Control Kitchen Ventilation.
- Weighted average natural gas savings is calculated by assigning 70% to Union Gas South consumption and 30% to Union Gas North consumption based on the customer population of Union Gas service territories.

		Base Case Heating	Demand Ventilation	Heating Savings
NG Savings	Weight	Load (kBTu)	Heating Load (kBTu)	(m ³)
Union South (London)	70%	624,111	464,963	4,421
Union North (North Bay)	30%	803,266	598,433	5,690
Weighted Average		677,858	505,004	4,801

• Baseline estimates of natural gas consumption = 677,858 kBtu = 18,829 m³

• Natural Gas Savings % = 4801 m³ / 677858 m³ = 26 %

Annual Electricity Savings

13,521 kWh

- Electricity savings consists two parts: fan motor savings and cooling load savings.
- Main assumption include: Motor capacity is 5 HP at 90% efficiency level, Cooling system COP = 3.
- Total Operating Time per Year (G) = 16 hrs/day x 7 days/week x 52 weeks/year = 5,824 hours
- Baseline fan motor electricity consumption = 0.746 kW/HP x G / 0.9 = 4,827.4 kWh/HP
- DCKV fan motor electricity consumption is calculated as below:

¹ Detailed Energy Savings Report, Melink Corporation, <u>http://www.melinkcorp.com/Intellihood/Energy_Analysis.pdf</u>

² This freeware is available at <u>www.archenergy.com/ckv/oac/default.htm</u>.

% Rated	% Run	Time	Output	System	Input	KWHR/	
RPM				Effic.	KW/HP	HP/YR	
H		J=Gxl	K	L	M=K/L	<u>N=JxM</u>	
100	5	291.2	0.746	0.9	0.829	241	
90	20	1164.8	0.544	0.9	0.604	704	
80	25	1456	0.382	0.9	0.424	618	
70	25	1456	0.256	0.9	0.284	414	
60	15	873.6	0.161	0.9	0.179	156	
50	10	582.4	0.093	0.9	0.103	60	
40	0	0	0.048	0.9	0.053	0	
30	0	0	0.020	0.9	0.022	0	
20	0	0	0.015	0.9	0.017	0	
10	0	0	0.010	0.90	0.011	0	
O Total KWH/HP/YR (Total of Column N) 2,194 kWh/HP							

• The fan motor electricity savings = 5HP x (4,827.4 - 2,194) kWh/HP = 13,167.2 kWh.

• Cooling load savings are calculated using the same method as for heating load savings analysis. Baseline net cooling loads for London and North Bay are obtained using Outdoor Airload Calculator:

- London = 17,801 kBtu; and
- North Bay = 5,832 kBtu.
- Multiplying the baseline cooling loads by (1 estimated average make-up air RPM factor), and then assigning 70% weight to London and 30% weight to North Bay, cooling load savings are calculated and shown below:

		Base Case Cooling		Cooling Savings
Cooling Electricity Consumption	Weight	(kWh)	DCKV Cooling (kWh)	(kWh)
Union South (London)	70%	1,739	1,296	443
Union North (North Bay)	30%	570	424	145
Weighted Average		1,388	1,034	354

• Total electricity savings are calculated by combining the two components of electricity usages:

Total Electricity Savings	Weight	Cooling Savings (kWh)	Exhaust Fan Motor Electricity Savings (kWh)	Total Savings (kWh)
Union South (London)	70%	443	13,167	13,611
Union North (North Bay)	30%	145	13,167	13,313
Weighted Average		354	13,167	13,521

• Baseline estimates of electricity consumption = 5HP x 4,827.4 kWh/HP + 1,388 kWh = 25,526 kWh.

• Electricity Savings % = 13,521 kWh / 25,526 kWh = 53 %

Annual Water Savings

N/A

0 L

Other Input Assumptions

Effective Useful Life (EUL)	10 Years
DCKV has an estimated service life of 10 years because the useful life of be in excess of 10 years. Energy savings related to this measure will pers sensor remains calibrated ³ .	
Base & Incremental Conservation Measure Equipment and O&M Costs	\$ 10,000
Typical costing information was obtained from Melink Canada ⁴ .	
Customer Payback Period (Natural Gas Only) ⁵	4.2 Years
Using a 5-year average commodity cost (avoided cost) ⁶ of \$0.38 / m ³ and distribution cost ⁷ of \$0.12 / m ³ , the payback period for natural gas savings based on the following:	an average commercial is determined to be 4.2 years,
Payback Period = Incremental cost / (natural gas savings x natural gas co = \$10,000/ (4,801 m³/year * \$0.5 / m³) = 4.2 years	ost)
Market Penetration ⁸	Low
Based on the penetration rates in another jurisdiction (5% for Puget Soun with local contractors, Navigant Consulting estimates a low market penetr	

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Puget Sound Energy ⁹	0.0385 per ft ²	15	0.28	5%
Comments Baseline therm reported savings for new energy of Incremental costs are als therms/sq.ft. = 0.014 the	efficient technology is so based on per sqft	s reported as a per basis. Equivalent	cent saving over t	he baseline.

³ Pacific Gas and Electric Co, Heschong Mahone Group,, Demand Control Ventilation Measure Description, http://www.energy.ca.gov/title24/2005standards/archive/documents/measures/14/14_2002-03_DEMND_PGE_MAHONE.PDF ⁴Melink Canada, <u>http://melinkcanada.com/</u>

⁵ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

⁶ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

⁷ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2). ⁸ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

⁹ Quantec, Comprehensive Demand-Side Management Resource Assessment, Prepared for Puget Sound Energy, May 2007

Demand Control Kitchen Ventilation (DCKV – 10000 CFM)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Kitchen ventilation with DCKV hood exhaust (10000 CFM). Demand ventilation uses temperature and/or smoke sensing to adjust ventilation rates. This saves energy comparing with the traditional 100% on/off kitchen ventilation system.

Base Equipment and Technologies Description

Kitchen ventilation without DCKV.

Decision Type	Target Market(s)	End Use
Retrofit	Existing Commercial (Restaurants)	Space Heating

Codes, Standards, and Regulations

N/A

	Electricity	and Other Resourc	e Savings	Equipment & O&M Costs of	Equipment & O&M
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	11,486	30,901	0	15,000	0
2	11,486	30,901	0	0	0
3	11,486	30,901	0	0	0
4	11,486	30,901	0	0	0
5	11,486	30,901	0	0	0
6	11,486	30,901	0	0	0
7	11,486	30,901	0	0	0
8	11,486	30,901	0	0	0
9	11,486	30,901	0	0	0
10	11,486	30,901	0	0	0
TOTALS	114,860	309,010	0	15,000	0

Annual Natural Gas Savings 11,486 m³

- The demand control kitchen ventilation savings were determined using the methodology described in the Melink Detailed Energy Savings Report¹.
- Assuming the DCKV system is operating 16 hours/day, 7 days/week, 52 weeks/year, at 80% heating efficiency.
- Using design weather data from the Outdoor Airload Calculator², baseline net heating loads for a exhaust volume of 10,000 CFM were determined for London (Union South) and North Bay (Union North). London:1,248,221 KBtu, North Bay: 1,660,531 KBtu
- Heating savings for London and North Bay are calculated by multiplying the individual baseline heating loads with (*1 estimated average make-up air RPM factor*), which represents the savings% when using Demand Control Kitchen Ventilation.
- Weighted average natural gas savings is calculated by assigning 70% to Union Gas South consumption and 30% to Union Gas North consumption based on the customer population of Union Gas service territories.

		Base Case Heating	Demand Ventilation	Heating Savings
NG Savings	Weight	Load (kBTu)	Heating Load (kBTu)	(m ³)
Union South (London)	70%	1,248,221	867,514	10,575
Union North (North Bay)	30%	1,606,531	1,116,539	13,611
Weighted Average		1,355,714	942,221	11,486

- Baseline estimates of natural gas consumption = 1,355,714 kBtu = 37,659 m³
- Natural Gas Savings % = $11,486 \text{ m}^3 / 37,659 \text{ m}^3 = 31 \%$

Annual Electricity Savings

30,901 kWh

- Electricity savings consists two parts: fan motor savings and cooling load savings.
- Assuming the motor capacity is 10 HP at 90% efficiency level, cooling system COP = 3.
- Total Operating Time per Year (G) = 16 hrs/day x 7 days/week x 52 weeks/year = 5,824 hours
- Baseline fan motor electricity consumption = 0.746 kW/HP x G / 0.9 = 4,827.4 kWh/HP
- DCKV fan motor electricity consumption is calculated as below:

¹ Detailed Energy Savings Report, Melink Corporation, <u>http://www.melinkcorp.com/Intellihood/Energy_Analysis.pdf</u>

² This freeware is available at <u>www.archenergy.com/ckv/oac/default.htm</u>.

% Rated RPM	% Run Time	Time HRS/YR	Output KW/HP	System Effic.	Input KW/HP	KWHR/ HP/YR	
<u> </u>	I	J=GxI	K	L	<u>M=K/L</u>	<u>N=JxM</u>	
100	5	291.2	0.746	0.9	0.829	241	
90	10	582.4	0.544	0.9	0.604	352	
80	20	1164.8	0.382	0.9	0.424	494	
70	20	1164.8	0.256	0.9	0.284	331	
60	30	1747.2	0.161	0.9	0.179	313	
50	15	873.6	0.093	0.9	0.103	90	
40	о	0	0.048	0.9	0.053	0	
30	о	0	0.020	0.9	0.022	0	
20	0	0	0.015	0.9	0.017	0	
10	0	0	0.010	0.90	0.011	0	
O Total KWH/HP/YR (Total of Column N) 1,822 kWh/HP							

• The fan motor electricity savings = 10HP x (4,827.4 - 1,822) kWh/HP = 30,054 kWh.

• Cooling load savings are calculated using the same method as for heating load savings analysis. Baseline net cooling loads for London and North Bay are obtained using Outdoor Airload Calculator:

- London = 35,603 kBtu
- North Bay = 11,663 kBtu.

• Multiplying the baseline cooling loads by (1 – estimated average make-up air RPM factor), and then assigning 70% weight to London and 30% weight to North Bay, cooling load savings are calculated.

		Base Case Cooling		Cooling Savings
Cooling Electricity Consumption	Weight	(kWh)	DCKV Cooling (kWh)	(kWh)
Union South (London)	70%	3,478	2,417	1,061
Union North (North Bay)	30%	1,139	792	348
Weighted Average		2,777	1,930	847

• Total electricity savings are calculated by combining the two components of electricity usages:

Total Electricity Savings	Weight	Cooling Savings (kWh)	Exhaust Fan Motor Electricity Savings (kWh)	Total Savings (kWh)
Union South (London)	70%	1,061	30,054	31,115
Union North (North Bay)	30%	348	30,054	30,402
Weighted Average		847	30,054	30,901

• Baseline estimates of electricity consumption = 10HP x 4,817.4kWh/HP + 2,777 kWh = 51,051 kWh.

• Electricity Savings % = 30,901 kWh / 51,051 kWh = 61 %

Annual Water Savings

N/A

0 L

Other Input Assumptions

• • • • • • • • • • • • • • • • • • • •						
Effective Useful Life (EUL) 10 Years						
DCKV has an estimated service life of 10 years because the useful life of be in excess of 10 years. Energy savings related to this measure will pers sensor remains calibrated ³ .						
Base & Incremental Conservation Measure Equipment and O&M Costs	\$ 15,000					
Typical costing information was provided by Melink Canada ⁴ .						
Customer Payback Period (Natural Gas Only) ⁵	Customer Payback Period (Natural Gas Only) ⁵ 2.6 Years					
Using a 5-year average commodity cost (avoided cost) ⁶ of \$0.38 / m ³ and an average commercial distribution cost ⁷ of \$0.12 / m ³ , the payback period for natural gas savings is determined to be 2.6 years, based on the following:						
Payback Period = Incremental cost / (natural gas savings x natural gas cost) = \$15,000/ (11,486 m³/year * \$0.5 / m³) = 2.6 years						
Market Penetration ⁸ Low						
Based on the penetration rate in another jurisdiction (5% for Puget Sound Energy) and communication with local contractors, Navigant Consulting estimates a low market penetration in Ontario.						

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share		
Puget Sound Energy ⁹	0.0385 / sqft	15	0.28	5%		
Comments Baseline therm reported on a square footage basis (eg 0.14 therms/sq.ft. for restaurant). Estimated 10% savings for new energy efficient technology is reported as a percent saving over the baseline. Incremental costs are based on per sqft basis. Equivalent natural gas savings is 10% x 0.14 therms/sq.ft = 0.014 therms/sq.ft = 0.0385 m ³ /sq.ft						

³ Pacific Gas and Electric Co, Heschong Mahone Group,, Demand Control Ventilation Measure Description, http://www.energy.ca.gov/title24/2005standards/archive/documents/measures/14/14_2002-03_DEMND_PGE_MAHONE.PDF Melink Canada, http://melinkcanada.com/

⁵ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

⁶ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

⁷ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2). ⁸ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

⁹ Quantec, Comprehensive Demand-Side Management Resource Assessment, Prepared for Puget Sound Energy, May 2007

Demand Control Kitchen Ventilation (DCKV – 15000 CFM)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Kitchen ventilation with DCKV hood exhaust (15000 CFM). Demand ventilation uses temperature and/or smoke sensing to adjust ventilation rates. This saves energy comparing with the traditional 100% on/off kitchen ventilation system.

Base Equipment and Technologies Description

Kitchen ventilation without DCKV.

Decision Type	Target Market(s)	End Use
Retrofit	Existing Commercial (Restaurants)	Space Heating

Codes, Standards, and Regulations

N/A

	Electricity and Other Resource Savings		Equipment & O&M Costs of	Equipment & O&M	
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	18,924	49,102	0	20,000	0
2	18,924	49,102	0	0	0
3	18,924	49,102	0	0	0
4	18,924	49,102	0	0	0
5	18,924	49,102	0	0	0
6	18,924	49,102	0	0	0
7	18,924	49,102	0	0	0
8	18,924	49,102	0	0	0
9	18,924	49,102	0	0	0
10	18,924	49,102	0	0	0
TOTALS	189,240	491,020	0	20,000	0

Annual Natural Gas Savings 18,924 m³

- The demand control kitchen ventilation savings were determined using the method described in the Melink Detailed Energy Savings Report¹.
- Assuming the DCKV system is operating 16 hours/day, 7 days/week, 52 weeks/year, at 80% heating efficiency.
- Using design weather data from the Outdoor Airload Calculator², baseline net heating loads for London (Union South) and North Bay (Union North) at 15000 CFM exhaust volume are obtained. They are 1,872,332 kBtu and 2,409,797 kBtu respectively.
- Heating savings for London and North Bay are calculated by multiplying the individual baseline heating loads with (*1 estimated average make-up air RPM factor*), which represents the savings% when using Demand Control Kitchen Ventilation.
- Weighted average natural gas savings is calculated by assigning 70% to Union Gas South consumption and 30% to Union Gas North consumption based on the customer population of Union Gas service territories.

	Base Case Heating Demand Ventilation		Demand Ventilation	Heating Savings
NG Savings	Weight	Load (kBTu)	Heating Load (kBTu)	(m ³)
Union South (London)	70%	1,872,332	1,245,101	17,423
Union North (North Bay)	30%	2,409,797	1,602,515	22,424
Weighted Average		2,033,572	1,352,325	18,924

• Baseline estimates of natural gas consumption = 2,033,572 kBtu = 56,488 m³

• Natural Gas Savings % = 18,924 m³ / 56,488 m³ = 34 %

Annual Electricity Savings

49.102 kWh

- Electricity savings consists two parts: fan motor savings and cooling load savings.
- Assuming the motor capacity is 15 HP at 90% efficiency level, cooling system COP = 3.
- Total Operating Time per Year (G) = 16 hrs/day x 7 days/week x 52 weeks/year = 5,824 hours
- Baseline fan motor electricity consumption = 0.746 kW/HP x G / 0.9 = 4,827.4 kWh/HP
- DCKV fan motor electricity consumption is calculated as below:

¹ Detailed Energy Savings Report, Melink Corporation, <u>http://www.melinkcorp.com/Intellihood/Energy_Analysis.pdf</u>

² This freeware is available at <u>www.archenergy.com/ckv/oac/default.htm</u>.

% Rated RPM			Output KW/HP	System Effic.	Input KW/HP	KWHR/ HP/YR
H	I	J=GxI	K	L	M=K/L	N=JxM
100	5	291.2	0.746	0.9	0.829	241
90	5	291.2	0.544	0.9	0.604	176
80	20	1164.8	0.382	0.9	0.424	494
70	20	1164.8	0.256	0.9	0.284	331
60	30	1747.2	0.161	0.9	0.179	313
50	10	582.4	0.093	0.9	0.103	60
40	10	582.4	0.048	0.9	0.053	31
30	0	0	0.020	0.9	0.022	0
20	0	0	0.015	0.9	0.017	0
10	0	0	0.010	0.90	0.011	0
O Total	KWH/HP/YR	(Total of Col	umn N)			1,647 kWh/HP

• The fan motor electricity savings = 15HP x (4,827.4 - 1,647) kWh/HP = 47,707 kWh.

• Cooling load savings are calculated using the same method as for heating load savings analysis. Baseline net cooling loads for London and North Bay are obtained using Outdoor Airload Calculator:

o London = 53,404 kBtu

• North Bay = 17,495 kBtu

• Multiplying the baseline cooling loads by (1 – estimated average make-up air RPM factor), and then assigning 70% weight to London and 30% weight to North Bay, cooling load savings are calculated.

Cooling Electricity Consumption	Weight	Base Case Cooling (kWh)	DCKV Cooling (kWh)	Cooling Savings (kWh)
Union South (London)	70%	5,217	3,469	1,748
Union North (North Bay)	30%	1,709	1,137	573
Weighted Average		4,165	2,770	1,395

• Total electricity savings are calculated by combining the two components of electricity usages:

Total Electricity Savings	Weight	Cooling Savings (kWh)	Exhaust Fan Motor Electricity Savings (kWh)	Total Savings (kWh)
Union South (London)	70%	1,748	47,707	49,455
Union North (North Bay)	30%	573	47,707	48,279
Weighted Average		1,395	47,707	49,102

• Baseline estimates of electricity consumption = 15HP x 4,827.4kWh/HP + 4,165 kWh = 76,577 kWh.

• Electricity Savings % = 49,102 kWh / 76,577 kWh = 64 %

Annual Water Savings 0 L

Other Input Assumptions

Effective Useful Life (EUL) 10 Years							
DCKV has an estimated service life of 10 years because the useful life of a CO ₂ sensor is expected to be in excess of 10 years. Energy savings related to this measure will persist indefinitely as long as the sensor remains calibrated ³ .							
Base & Incremental Conservation Measure Equipment and O&M Costs	\$ 20,000						
Typical costing information was provided by Melink Corp.							
Customer Payback Period (Natural Gas Only) ⁴ 2.1 Years							
Using a 5-year average commodity cost (avoided cost) ⁵ of \$0.38 / m ³ and an average commercial distribution cost ⁶ of \$0.12 / m ³ , the payback period for natural gas savings is determined to be 2.1 years, based on the following:							
Payback Period = Incremental cost / (natural gas savings x natural gas cost) = \$20,000/ (18,924 m³/year * \$0.5 / m³) = 2.1 years							
Market Penetration ⁷ Low							
Based on the penetration rate in another jurisdiction (5% for Puget Sound Energy) and communication with local contractors, Navigant Consulting estimates a low market penetration in Ontario.							

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share		
Puget Sound Energy ⁸	0.0385 per ft ²	15	0.28	5%		
Comments Baseline therm reported on a square footage basis (eg 0.14 therms/sq.ft. for restaurant). Estimated 10% savings for new energy efficient technology is reported as a percent saving over the baseline. Incremental costs are based on per sqft basis. Equivalent natural gas savings is 10% x 0.14 therms/sq.ft. = 0.014 therms / sqft = 0.0385 m ³ / sqft						

³ Pacific Gas and Electric Co, Heschong Mahone Group,, Demand Control Ventilation Measure Description,

http://www.energy.ca.gov/title24/2005standards/archive/documents/measures/14/14_2002-03_DEMND_PGE_MAHONE.PDF ⁴ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

⁵ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

⁶ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2). ⁷ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

⁸ Quantec, Comprehensive Demand-Side Management Resource Assessment, Prepared for Puget Sound Energy, May 2007

Destratification Fan

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Destratification Fan. For fans of with minimum diameter of 20' located in warehousing, manufacturing, industrial or retail buildings¹ with forced air space heating, including unit heaters.

Base Equipment and Technologies Description

No destratification fan.

Decision Type	Target Market(s)	End Use
New, Replacement	Commercial (New or Existing)	Space Heating

Codes, Standards, and Regulations

N/A

	Electricity	and Other Resource	ce Savings	Equipment & O&M Costs of	Equipment & O&M
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	6,129	-511	0	7,021	0
2	6,129	-511	0	0	0
3	6,129	-511	0	0	0
4	6,129	-511	0	0	0
5	6,129	-511	0	0	0
6	6,129	-511	0	0	0
7	6,129	-511	0	0	0
8	6,129	-511	0	0	0
9	6,129	-511	0	0	0
10	6,129	-511	0	0	0
11	6,129	-511	0	0	0
12	6,129	-511	0	0	0
13	6,129	-511	0	0	0
14	6,129	-511	0	0	0
15	6,129	-511	0	0	0
TOTALS	91,935	-7,665	0	7,021	0

¹ Buildings with a minimum of 25" ceilings.

Annual Natural Gas Savings	6,129 m ³
	,

• Natural gas savings for destratification fans are calculated based on the assumptions summarized in the below table.

	Fan Sizes		
Variable Names and Symbols	Unit	24' diameter	20' diameter
A = Average indoor air temperature before destratification	°F	75	75
B = Heating average outside air temperature	°F	37	37
C = Thermostat setpoint temperature	°F	70	70

• Variables A, B, C are NCI estimates.

- Total Heating = Internal Heating² + Space Heating³ = 72,547 kBtu + 891, 706 kBtu = 964,254 kBtu
- Assuming seasonal heating efficiency = 70%, reduction in heating input = Total Heating x (A C) / (A B) / 70%, the reduction in heating for both sizes of fans are calculated as:

		Fan Sizes		
Results	Unit	24' diameter	20' diameter	
Reduction in Heating Input	kBTu	245,343	170,378	
Natural Gas Savings	m ³ /year	6,815	4,733	

* Conversion between kBtu and m^3 /year is 1 m^3 = 0.036 MMBtu

 Market share information for these two sizes of fans was obtained from Envira-North Systems Ltd⁴. The actual natural gas consumption data was based on Union Gas billing data⁵.

		Fan Sizes		
Results	Unit	24' diameter	20' diameter	
Space Heating Gas Usage	m ³ /year	51,579	35,819	
Estimated Market Shares	%	55	27	

• The weighted average of natural gas baseline consumption and savings are calculated based on 55% and 27% market share for the two types of fans. The results are summarized as below:

	Weighted Average
Natural Gas Savings (m ³)	6,129
Baseline NG Consumption (m3)	46,389
Natural Gas Savings %	13.2%

- Baseline estimate of Natural Gas consumption = 46,389 (m³)
- Natural Gas Savings % = Natural Gas Savings / Baseline Natural Gas Consumption = 13.2 %

Annu	al Electri	-511 k\				
• El	Electricity use = Fan motor power x 8,760 hours/year					
		Fan Motor Power (W)	Operating Hours	Fan (kWł	Electricity Use	
	24' Fan	60	8,760		525.6	
	20' Fan	55	8,760		481.8	
		Weighted Average (Based on market share)			511	

² The internal heating includes heat from other sources inside the building (e.g. lighting, people, machinery/plug) for each building type taken from DOE modelling files adjusted for Union service territories. Space heating is central furnace or boiler heating and is estimated based on a heating degree days analysis by Union Gas.

³ Both internal heating and space heating are estimated by Union Gas based on its destratification fan program record.

⁴ Envira-North Systems Ltd, <u>http://www.enviranorth.com/</u>

⁵ Union Gas Commercial Quasi-Prescriptive Destratification Fan Savings Screening Tool

Other Input Assumptions

penetration is steadily growing.

Effective Useful Life (EUL)					15 Years	
	quipment life for de-stratificat lists the service life for prope			alue is a	also supported by	
	Base & Incremental Conservation Measure Equipment and O&M Costs					
The weighted ave	erage costs are based on ma	rket shares descr	ibed above	e and co	ost data ⁸ .	
	[Sizes			
	Results	24' diameter	20' dian	neter		
l l	Incremental Cost for 1 Fan	\$7,088	\$6,88			
	Market Share	55%	27%	6		
	Weighted Average Cost	\$7,0				
price for a de-stra 20' fan with 1' dro	ira-North (a local Canadian n atification fan with a 2' drop fr op, 1 HP and a stellar blade, f	om the ceiling, 2 l the price is \$5,200	HP and ste		de is \$6,000. For the	
Customer Payback Period (Natural Gas Only)92.3Years						
Using a 5-year average commodity cost (avoided cost) ¹⁰ of \$0.38 / m ³ and an average commercial distribution cost ¹¹ of \$0.12 / m ³ , the payback period for natural gas savings is determined to be 2.3 years, based on the following: Payback Period = Incremental cost / (natural gas savings x natural gas cost) = \$7,021 / (6,129 m ³ /year * \$0.5 / m ³) = 2.3 years						
Market Penetration ¹² Low						
than 5% of building	sations with suppliers of dest ngs in Ontario capable of inst considered to be low market p	alling the technological	ogy curren	tly have	them installed.	

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
N/A	N/A	N/A	N/A	N/A
Comments N/A	·			

⁶_SEED Program Guideline, J-20, December 2004, <u>http://www.oregon.gov/ENERGY/CONS/SEED/docs/AppendixJ.pdf</u>

⁷ ASHRAE Handbook, HVAC Applications SI Edition. Chapter 36 – Table 4. Pg.36.3, 2007.

⁸ Targeted Market Study. HVLS Fans on Wisconsin Dairy Farms. State of Wisconsin Department of Administration Division of Energy. June 12, 2006., RSMeans. Mechanical Cost Data – 29th Annual Edition. 2006, and communications with Manufactures.

⁹ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included. ¹⁰ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and

weather sensitive avoided gas cost.

¹¹ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2).

¹² Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

Energy Recovery Ventilator (ERV)

Revision #	Description/Comment	Date Revised

Ventilation with Energy Recovery Ventilator (ERV)

Base Equipment and Technologies Description

Ventilation without Energy Recovery Ventilator (ERV)

Decision Type	Target Market(s)	End Use
Replacement	Existing Commercial	Space Heating

Codes, Standards, and Regulations

N/A

Electricity and O		and Other Resour	ce Savings	Equipment & O&M Costs of	Equipment & O&M
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m ³ /CFM)	(kWh)	(L)	(\$/CFM)	(\$)
1	3.95	0	0	3	0
2	3.95	0	0	0	0
3	3.95	0	0	0	0
4	3.95	0	0	0	0
5	3.95	0	0	0	0
6	3.95	0	0	0	0
7	3.95	0	0	0	0
8	3.95	0	0	0	0
9	3.95	0	0	0	0
10	3.95	0	0	0	0
11	3.95	0	0	0	0
12	3.95	0	0	0	0
13	3.95	0	0	0	0
14	3.95	0	0	0	0
15	3.95	0	0	0	0
16	3.95	0	0	0	0
17	3.95	0	0	0	0
18	3.95	0	0	0	0
19	3.95	0	0	0	0
20	3.95	0	0	0	0
TOTALS	59.25	0	0	3	0

Annual Natural Gas Savings 3.95 m ³ /CFI					
 Natural gas savings are determined from engineering calculations utilizing inputs such as air flow, indoor/outdoor temperatures, indoor/outdoor and relative humidity. 					
 For example, input assumptions for a typical Ontario retail store are: 					
Symbols	Variable Names	Values	Source		
А	Supply air flow (cfm)	500	UG⁺		
В	Exhaust air flow (cfm)	500	UG		
С	Average indoor air temperature (°F)	70	UG		
D	Average indoor relative humidity (%)	30	UG		
Е	Average outside air temperature (°F)	31.5	UG		
F	Average outdoor relative humidity (%)	70	NCl [∆]		
G	Atmospheric pressure (psia)	14.3	UG		
Н	No. of hours in heating season (hrs)	4,800	UG		
l1	Demand Controlled Ventilation	no	UG		
12	No. of hours of operation per week (hrs/wk)	108	UG		
J	Make and Model of Heat Recovery Equipment	Eng A, HRW-2100	UG		
K	Effectiveness of Heat Recovery Equipment (%)	60	NCI		
L	Sensible Heat Recovery Only	no	UG		
М	Enthalpy (Btu/lba) & Humidity Ratio (lbw/lba) of INLET exhaust air	22.0	UG		
Ν	Enthalpy (Btu/lba) & Humidity Ratio (lbw/lba) of INLET supply air	10.4	UG		
0	Enthalpy (Btu/lba) & Humidity Ratio (Ibw/lba) of OUTLET supply air	17.3	UG		
Р	Average Temperature of OUTLET supply air (°F)	55	UG		
Q	Average Hourly Moisture Addition (lb/hr)	2.6	UG		
R	Defrost Control Derating Factor (%)	5	UG		
S	Average Hourly Heat Recovery (MBH)	14.7	UG		
Т	Seasonal Efficiency of Gas-Fired Equipment (%)	82	UG		
U	Average annual gas reduction (m ³)	1,571	UG		
V	Incremental natural gas rate (\$/m ³)	0.3	UG		
W	Average annual gas savings (\$)	471.3	UG		

[△]NCI: Navigant Consulting, Inc

- NG Savings = # of Hours in Heating Season x (operating hours/168) x Average Hourly Heat Recovery / (35.3 m³/MJ) / (Seasonal Efficiency / 100%) (A)
 - 168 hour = 7 days/week x 24hours/day
 - Average Hourly Heat Recovery = Supply air flow x 60 x (Supply air flow Inlet supply air)/Specific Supply Air Conditions Volume x (1 Defrost Control De-rating Factor¹ %) (B)
- Operating hours for each sectors being considered are as the following

	•
Building Occupancy	Typical Hrs of Operation per week
Hotel	168
Restaurant	108
Retail	108
Office	60
School	84
Health Care	168

¹ From Union Gas, all air-to-air heat recovery equipment requires frost control in colder climates to prevent freeze-up of exhaust air condensate on heat exchange components. Depending on the defrost control system, annual heat recovery estimates should be reduced by 5 to 15 %. Equipment manufacturers and suppliers can provide an estimated defrost derating factor given the operating conditions of the equipment.

gs.			Existin	g Buildings	
Mark	et Segment	ERV Capacity (CFM)	NG Savings (m ³)	NG Savings per CFM (m ³ /CFM)	
Hotel		500	2,569	5.14	
Restau	rant	500	1,652	3.30	
Retail		500	1,652	3.30	
Office		500	918	1.84	
School		500	1,285	2.57	
Health	Care	500	2,569	5.14	
Nursing	g Home	500	2,569	5.14	
Wareh	ouse	500	2,569	5.14	
Averaç	je (m ³ /CFM)			3.95	
-					
Electricity	Savings				0 kWh

Other Input Assumptions

Effective Useful Life (EUL)	20 Years			
ERVs have an estimated service life of 15 years based on Jacques White Puget Sound ⁴ both report 20 years as an ERV's effective useful life. Navig years as an effective useful life for ERVs.	ord study ² . Questar Gas ³ and gant Consulting estimates 20			
Base & Incremental Conservation Measure Equipment and O&M Costs	\$3/CFM			
The incremental costs are based on relative scaling of incremental costs communication with local contractors, the incremental costs are \$3/CFM.	\$2,500 / 1000 CFM⁵. Based on			
Customer Payback Period (Natural Gas Only) ⁶ 1.5 Years				
Using a 5-year average commodity cost (avoided cost) ⁷ of \$0.38 / m ³ and distribution cost ⁸ of \$0.12 / m ³ , the payback period for natural gas savings based on the following: On a per CFM basis, Payback Period = Incremental cost / (natural gas savings x natural gas co = \$3 / (3.95 m ³ /year * \$0.5 / m ³)	s is determined to be 1.5 years,			
= 1.5 years Market Penetration ⁹	Low			
Based on Jacques Whitford report ¹⁰ (less than 5% market penetration) an contractors, Navigant Consulting estimates the market penetration of ERV				

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
Puget Sound Energy, 2007 ¹¹	0.105 per sqft	20	1	N/A	
Comments Baseline therm reported on a square footage basis (e.g. 0.19 therms/sq.ft. for offices). Estimated 20% savings over the baseline. Incremental cost is reported on a per square footage basis. Equivalent savings is 0.19 therms/sq.ft x 2.75 m ³ /therms x 20% = 0.105 m ³ / sq.ft					

² "Prescriptive Incentives for Selected Natural Gas Technologies", Prepared for Enbridge Consumers Gas and Union Gas Ltd., by Jacques Whitford Environment Limited, Agviro Inc., and Engineering Interface Ltd., September 27, 2000.

³ Questar Gas, DSM Market Characterization Report, by Nexant, August 9, 2006

⁴ Quantec — Puget Sound Energy Demand-Side Management Resource Assessment

⁵ "Prescriptive Incentives for Selected Natural Gas Technologies", Prepared for Enbridge Consumers Gas and Union Gas Ltd., by Jacques Whitford Environment Limited, Agviro Inc., and Engineering Interface Ltd., September 27, 2000.

⁶ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

⁷ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

⁸ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>https://portal-</u>)

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2).

⁹ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

¹⁰ "Prescriptive Incentives for Selected Natural Gas Technologies", Prepared for Enbridge Consumers Gas and Union Gas Ltd., by Jacques Whitford Environment Limited, Agviro Inc., and Engineering Interface Ltd., September 27, 2000.

¹¹ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy

Energy Recovery Ventilator (ERV)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description	
Ventilation with ERV	
Base Equipment and Technologies Description	

Ventilation without ERV

Decision Type	Target Market(s)	End Use
New	New Commercial	Space Heating

Codes, Standards, and Regulations

- 1) Restriction for new building construction: This measure is not applicable to system ≥5,000 CFM with ≥70% OA ratio because energy recovery is required by Ontario Building Code 2006.
- 2) Restriction for new building construction: This measure is not applicable to systems serving health care spaces indicated in **Table 1** because heat recovery is required by CSA Z317.2-01

Table 1 - Health Care Spaces Not Eligible			
Anaesthetic gas scavenging	Cart and can washers	Areas using hazardous gases	
Animal facilities	Chemical storage	Isolation rooms	
Autopsy suite	Cooking facilities	Perchloric hoods	
Biohazard and fume hoods	Ethylene oxide	Radioisotope hoods	

	Electricity and Other Resource Savings		Equipment & O&M Costs of	Equipment & O&M	
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m ³ /CFM)	(kWh)	(L)	(\$/CFM)	(\$)
1	3.75	0	0	3	0
2	3.75	0	0	0	0
3	3.75	0	0	0	0
4	3.75	0	0	0	0
5	3.75	0	0	0	0
6	3.75	0	0	0	0
7	3.75	0	0	0	0
8	3.75	0	0	0	0
9	3.75	0	0	0	0
10	3.75	0	0	0	0
11	3.75	0	0	0	0
12	3.75	0	0	0	0
13	3.75	0	0	0	0
14	3.75	0	0	0	0
15	3.75	0	0	0	0
16	3.75	0	0	0	0
17	3.75	0	0	0	0
18	3.75	0	0	0	0
19	3.75	0	0	0	0
20	3.75	0	0	0	0
TOTALS	75	0	0	3	0

nnual Na	atural Gas Savings	3.75 m ³ /CFM	
 Natural gas savings are determined from engineering calculations utilizing inputs such as air flow, indoor/outdoor temperatures, indoor/outdoor and relative humidity. 			
	nple, input assumptions for a typical Ontario retail store are:		
Symbols	Variable Names	Values	Source
А	Supply air flow (cfm)	500	UG⁺
В	Exhaust air flow (cfm)	500	UG
С	Average indoor air temperature (°F)	70	UG
D	Average indoor relative humidity (%)	30	UG
Е	Average outside air temperature (°F)	31.5	UG
F	Average outdoor relative humidity (%)	70	NCI [∆]
G	Atmospheric pressure (psia)	14.3	UG
Н	No. of hours in heating season (hrs)	4,800	UG
l1	Demand Controlled Ventilation	no	UG
12	No. of hours of operation per week (hrs/wk)	108	UG
J	Make and Model of Heat Recovery Equipment	Eng A, HRW-2100	UG
K	Effectiveness of Heat Recovery Equipment (%)	60	NCI
L	Sensible Heat Recovery Only	no	UG
Μ	Enthalpy (Btu/lba) & Humidity Ratio (lbw/lba) of INLET exhaust air	22.0	UG
Ν	Enthalpy (Btu/lba) & Humidity Ratio (lbw/lba) of INLET supply air	10.4	UG
0	Enthalpy (Btu/lba) & Humidity Ratio (lbw/lba) of OUTLET supply air	17.3	UG
Р	Average Temperature of OUTLET supply air (°F)	55	UG
Q	Average Hourly Moisture Addition (lb/hr)	2.6	UG
R	Defrost Control Derating Factor (%)	5	UG
S	Average Hourly Heat Recovery (MBH)	14.7	UG
Т	Seasonal Efficiency of Gas-Fired Equipment (%)	82	UG
U	Average annual gas reduction (m ³)	1,571	UG
V	Incremental natural gas rate (\$/m ³)	0.3	UG
W	Average annual gas savings (\$)	471.3	UG

[†]UG: Union Gas

^ANCI: Navigant Consulting, Inc

NG Savings = # of Hours in Heating Season x (operating hours/168) x Average Hourly Heat Recovery / (35.3 m³/MJ) / (Seasonal Efficiency / 100%) **(A)**

- 168 hour = 7 days/week x 24hours/day

Average Hourly Heat Recovery = Supply air flow x 60 x (Supply air flow – Inlet supply air)/Specific Supply Air Conditions Volume x (1 - Defrost Control De-rating Factor¹ %) (B)

• Operating hours for each sectors being considered are as the following

Building Occupancy	Typical Hrs of Operation per week
Hotel	168
Restaurant	108
Retail	108
Office	60
School	84
Health Care	168
Nursing Home	168

¹ From Union Gas, all air-to-air heat recovery equipment requires frost control in colder climates to prevent freeze-up of exhaust air condensate on heat exchange components. Depending on the defrost control system, annual heat recovery estimates should be reduced by 5 to 15 %. Equipment manufacturers and suppliers can provide an estimated defrost derating factor given the operating conditions of the equipment.

Warehouse	168
-----------	-----

- New buildings and existing buildings mainly differ in the enthalpy (BTU/LBa) that is used to calculate the Specific Supply Air Conditions Volume in formula (B).
- Based on the NG Savings formula (A) and input assumptions above, the natural gas savings for each of the commercial sectors are calculated, and a simple average is taken to be the general savings.

		New	Buildings
Market Segment	ERV Capacity	NG Savings	NG Savings per
	(CFM)	(m ³)	CFM (m ³ /CFM)
Hotel	500	2,444	4.89
Restaurant	500	1,571	3.14
Retail	500	1,571	3.14
Office	500	873	1.75
School	500	1,222	2.44
Health Care	500	2,444	4.89
Nursing Home	500	2,444	4.89
Warehouse	500	2,444	4.89
Average (m ³ /CFM)		,	3.75

Annual Electricity Savings	0 kWh
N/A	
Annual Water Savings	0 L
N/A	

Other Input Assumptions

Effective Useful Life (EUL)	20 Years	
ERVs have an estimated service life of 15 years based on Jacques Whitfe Puget Sound ⁴ both report 20 years as an ERV's effective useful life. Navig years as an effective useful life for ERVs.	ord study ² . Questar Gas ³ and gant Consulting estimates 20	
Base & Incremental Conservation Measure Equipment and O&M Costs	\$3 / CFM	
The incremental costs are based on relative scaling of incremental costs \$2,500 / 1000 CFM ⁵ . Based on communication with local contractors, the incremental costs are \$3/CFM.		
Customer Payback Period (Natural Gas Only) ⁶	1.6 Years	
Using an 5-year average commodity cost (avoided cost) ⁷ of \$0.38 / m ³ ar distribution cost ⁸ of \$0.12 / m ³ , the payback period for natural gas savings based on the following:	nd an average commercial is is determined to be 1.6 years,	

² "Prescriptive Incentives for Selected Natural Gas Technologies", Prepared for Enbridge Consumers Gas and Union Gas Ltd., by Jacques Whitford Environment Limited, Agviro Inc., and Engineering Interface Ltd., September 27, 2000.

Questar Gas, DSM Market Characterization Report, by Nexant, August 9, 2006

⁴ Quantec — Puget Sound Energy Demand-Side Management Resource Assessment

⁵ Ibid.

⁶ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

⁷ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

⁸ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2).

On a per CFM basis, Payback Period = Incremental cost / (natural gas savings x natural gas co = \$3 / (3.75 m ³ /year * \$0.5 / m ³) = 1.6 years	ost)
Market Penetration ⁹	Low
Based on Jacques Whitford report ¹⁰ (less than 5% market penetration) and contractors, Navigant Consulting estimates the market penetration of ERV	

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Puget Sound Energy, 2007 ¹¹	0.105 per sqft	20	1	N/A
Comments Baseline therm reported on a square footage basis (eg 0.19 therms/sq.ft. for offices). Estimated 20% savings over the baseline. Incremental cost is reported on a per square footage basis. Equivalent savings is 0.19 therms/sq.ft x 2.75 m ³ /therms x 20% = 0.105 m ³ / sq.ft				

 ⁹ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,
 ¹⁰ Prescriptive Incentives for Selected Natural Gas Technologies", Prepared for Enbridge Consumers Gas and Union Gas Ltd., by Jacques Whitford Environment Limited, Agviro Inc., and Engineering Interface Ltd., September 27, 2000.
 ¹¹ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy

B-177

Enhanced Furnace (Electronically Commutated Motor) – Existing Commercial

Description/Comment	Date Revised
	Description/Comment

Efficient Equipment and Technologies Description

Gas furnace equipped with an electronically commutated motor (ECM)

Base Equipment and Technologies Description

Gas furnace with a permanent split capacitor (PSC) motor

Decision Type	Target Market(s)	End Use
Replace	Commercial Existing Buildings	Space Heating

Codes, Standards, and Regulations

- Under Ontario's building code, all gas furnaces installed in new residential constructions must meet a minimum condensing efficiency level effective January 1, 2007.¹
- There is no minimum energy performance standard restricting the electricity consumption of furnace fan blowers.
- NRCan proposes to increase the minimum performance level, the Annual Fuel Utilization Efficiency (AFUE), for gas-fired furnaces with an input rate not exceeding 65.92 kW (225,000 Btu/h) to 90% for December 31, 2009².

¹ Ministry of Energy, "Heating and Cooling your Home: A Conservation Guide", Reproduced with the permission of Natural Resource Canada, 2004. <u>http://www.energy.gov.on.ca/english/pdf/conservation/heating_and_cooling_your_home.pdf</u>

² Office of Energy Efficiency, Canada's Energy Efficiency Regulations, Proposed Regulations Bulletin, March 2007. <u>http://www.oee.nrcan.gc.ca/regulations/bulletin/gas-furnace-mar2007.cfm?Text=N&PrintView=N</u>

Resource Savings Table (for 2 different cases)

	Electricity and Other Resource Savings			Equipment & O&M	Equipment & O&M Costs of
Year (EUL=)	Natural Gas	Electricity (kWh/kBtu/h)	Water (L)	Costs of Conservation Measure (\$)	Base Measure ³ (\$)
	(m³/kBtu/h)				
1	-2.7	20.5	0	960	0
2	-2.7	20.5	0	0	0
3	-2.7	20.5	0	0	0
4	-2.7	20.5	0	0	0
5	-2.7	20.5	0	0	0
6	-2.7	20.5	0	0	0
7	-2.7	20.5	0	0	0
8	-2.7	20.5	0	0	0
9	-2.7	20.5	0	0	0
10	-2.7	20.5	0	0	0
11	-2.7	20.5	0	0	0
12	-2.7	20.5	0	0	0
13	-2.7	20.5	0	0	0
14	-2.7	20.5	0	0	0
15	-2.7	20.5	0	0	0
TOTALS	-40.7	308.2	0	960	0

Continuous Fan Usage

Resource Savings Assumptions

Annual Natural Gas Savings

 -2.7 m^3 / kBtu / h

Continuous fan usage and non-continuous fan usage is estimated to be 26% and 74%, respectively, based on Ontario customer survey results⁴. Navigant Consulting is assuming the same mix of furnace fan usage for commercial application.

A study conducted by the Canadian Center for Housing Technologies determined that the annual gas use of a typical existing home with a continuous ECM actually *increases* by 180m³ for high efficiency furnaces (AFUE 92) and 202 m³ for mid-efficiency furnaces (AFUE 82)⁵. The increase in natural gas consumption is a result of the reduction of heat added to the home from the decrease in electricity usage by the furnace motor. NCI assumes that 12% of new furnaces are mid-efficiency and 88% of furnaces are high efficiency based on recent survey results for residential furnaces⁶ (also assuming same mix for commercial application), resulting in an average increase of 183 m³.

The CCHT study gives a baseline gas usage as 2,769 m³ for high efficiency furnaces and 3,107m³ for mid-efficiency furnaces⁷. Using the same mix of high-efficiency and mid-efficiency furnaces as above, a typical home with a PSC motor is expected to use 2,810 m³. Using an energy efficient motor (ECM), a typical home is expected to use 2,993 m³ of natural gas (2,810 + 183), or an increase of 6.5% over the baseline.

According to the CCHT report⁸, the residential furnace capacity is 67,500 Btu/h. Assuming savings for an ECM used for commercial applications do not significantly differ from a residential furnace, the natural gas savings on a kBTU/h basis is -183 m³ / 67.5 kBtu/h = -2.7m³/kBtu/h.

³ US DOE Energy Star Furnace Calculator, "Assumptions" tab.

 http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_Furnaces.xls
 ⁴ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, based on Navigant Consulting, Evaluation Report: 2007 Hot and Cool Savings Programs, prepared for the Ontario Power Authority (OPA), July 2008. ⁵ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and

Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf ⁶ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, based on Navigant

Consulting, Evaluation Report: 2007 Hot and Cool Savings Programs, prepared for the Ontario Power Authority (OPA), July 2008.

Annual Electricity Savings

20.5 kWh / kBtu / h

Based on the Ontario Power Authority's 2009 OPA Measure and Assumptions Lists⁹, the electricity savings for an existing home using an ECM are estimated to be 1.387 kWh/year for continuous furnace fan usage. This represents a saving of 72% over a conventional PSC motor.

These results are based on the same CCHT study, which determined that annual electricity savings for an existing home using a gas furnace with a continuous ECM for heating only are 1,535 kWh for high efficiency furnaces (AFUE 92) and 1.545 kWh for mid-efficiency furnaces (AFUE 82)¹⁰. Since it is unlikely that the furnace fan will run continuously during the shoulder season, the OPA assumes that during the shoulder season the same electricity savings from a non-continuous ECM are applicable. Navigant Consulting is assuming the same electricity savings for residential furnaces are applicable for commercial applications.

According to the CCHT report¹¹, the residential furnace capacity is 67,500 Btu/h. Assuming savings for an ECM used for commercial applications do not significantly differ from a residential furnace, the electricity savings on a kBTU/h basis are estimated to be 1,387 / 67.5 kBtu/h = 20.5 kWh/kBtu/h

Annual Water Savings	0 L
N/A	

Non-Continuous Fan Usage

		and Other Resource	ce Savings	Equipment & O&M	Equipment & O&M Costs of
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure ¹²
(EUL=)	(m³/kBtu/h)	(kWh/kBtu/h)	(L)	(\$)	(\$)
1	-0.4	4.8	0	960	0
2	-0.4	4.8	0	0	0
3	-0.4	4.8	0	0	0
4	-0.4	4.8	0	0	0
5	-0.4	4.8	0	0	0
6	-0.4	4.8	0	0	0
7	-0.4	4.8	0	0	0
8	-0.4	4.8	0	0	0
9	-0.4	4.8	0	0	0
10	-0.4	4.8	0	0	0
11	-0.4	4.8	0	0	0
12	-0.4	4.8	0	0	0
13	-0.4	4.8	0	0	0
14	-0.4	4.8	0	0	0
15	-0.4	4.8	0	0	0
TOTALS	-5.3	72	0	960	0

Resource Savings Assumptions

⁷ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf 8 Ibid.

⁹ Ontario Power Authority, 2009 OPA Measures and Assumptions List (Mass Market), November 2008.

¹⁰ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf ¹¹ Ibid. ¹² US DOE Energy Star Furnace Calculator, "Assumptions" tab.

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_Furnaces.xls

Annual Natural Gas Savings	-0.4 m ³ / kBtu / h			
Continuous fan usage and non-continuous fan usage is estimated to be 26% and 74%, respectively, based on Ontario customer survey results ¹³ . Navigant Consulting is assuming the same mix of furnace fan usage for commercial application.				
A study conducted by the Canadian Center for Housing Technologies det use of a typical existing home with a non-continuous ECM actually <i>increa</i> furnaces (AFUE 92) and 29 m ³ for mid-efficiency furnaces (AFUE 82) ¹⁴ consumption is a result of the reduction of heat added to the home from the by the furnace motor. NCI assumes that 12% of new furnaces are mid-eff are high efficiency based on recent survey results for residential furnaces increase of 26.4 m ³ .	the increase in natural gas he decrease in electricity usage ficiency and 88% of furnaces			
The CCHT study gives a baseline gas usage as 2,953 m ³ for high efficient mid-efficiency furnaces ¹⁶ . Using the same mix of high-efficiency and mid-typical home with a PSC motor is expected to use 2,996 m ³ . Using an energy typical home is expected to use 3,022 m ³ of natural gas (2,996 + 26), or a baseline.	-efficiency furnaces as above, a ergy efficient motor (ECM), a			
According to the CCHT report ¹⁷ , the residential furnace capacity is 67,500 an ECM used for commercial applications do not significantly differ from a natural gas savings on a kBTU/h basis is -26.4 m ³ / 67.5 kBtu/h = -0.4 m ³	a residential furnace, the			
Annual Electricity Savings	4.8 kWh / kBtu / h			
Based on the Ontario Power Authority's 2009 OPA Measure and Assumptions List ¹⁸ , the electricity savings for a new home using an ECM are estimated to be 324 kWh/year for non-continuous furnace fan use. This represents a saving of 40% over a conventional PSC motor.				
These results are based on the same CCHT study, which determined that new home using a gas furnace with an ECM for heating only are 324 kWh furnaces (AFUE 92) mid-efficiency furnaces (AFUE 82) ¹⁹ . Navigant Cons electricity savings for residential furnaces are applicable for commercial a	h for both high efficiency sulting is assuming the same			
According to the CCHT report ²⁰ , the residential furnace capacity is 67,500 an ECM used for commercial applications do not significantly differ from a electricity savings on a kBTU/h basis is estimated to be 324 / 67.5 kBtu/h	a residential furnace, the			
Annual Water Savings	0 L			
N/A				

¹³ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, based on Navigant Consulting, Evaluation Report: 2007 Hot and Cool Savings Programs, prepared for the Ontario Power Authority (OPA), July 2008. ¹⁴ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and

Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf ¹⁵ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, based on Navigant Consulting, Evaluation Report: 2007 Hot and Cool Savings Programs, prepared for the Ontario Power Authority (OPA), July 2008. ¹⁶ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and

Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf 17 Ibid. ¹⁸ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008. ¹⁸ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008.

¹⁹ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf 20 Ibid.

Other Input Assumptions

Other input Assumptions	
Effective Useful Life (EUL)	15 Years
An OPA commissioned study by Seeline Group Inc. suggests a useful life June 2007 study by GDS Associates, Inc. ²¹ for New England State Progra also suggests 15 years. Finally, Iowa Utilities ²² also uses 15 years as an e	am Working Group (SPWG)
Base & Incremental Conservation Measure Equipment and O&M Costs	\$960
Based on the average of a survey of prices from HVAC contractors in Onf residential ECM's are estimated to be \$960. This incremental cost is assu commercial furnaces. Incremental costs were confirmed through commun contractors.	med to be the same for
Customer Payback Period (Natural Gas Only) ²⁴	Continuous = 14 years Non-Continuous = 31 year
Since natural gas usage increases with an ECM, Navigant Consulting has electricity savings to calculate the customer payback period.	s used both natural gas and
For Natural Gas Usage: Combining a 5-year average commodity cost (avoided cost) ²⁵ of 0.38 / m distribution cost ²⁶ of 0.12 / m ³ , the total cost of natural gas for typical condetermined to be 0.50 .	
<i>For Electricity Savings:</i> An average commodity and distribution cost of \$0.09 / kWh is assumed fo	or commercial customers.
For customer payback calculations, Navigant Consulting is assuming a co double the size of a residential furnace, or 135 kBtu/h (67,500 Btu/h x 2 = kBTU/hr).	
The payback period incorporating both natural gas usage and electricity s years for continuous usage and 31 years for non-continuous furnace fan u	
Payback Period = Incremental cost / [(natural gas savings x natural gas co electricity cost)]	ost) + (electricity savings x
Continuous Fan Usage: = \$960 / [135 kBtu/hr x ((-2.7 m ³ / kBtu/h / year * \$0.50 / r * \$0.09 / kWh))] = 14 years	n ³) + (20.5 kWh / kBtu/h / yea
Non-Continuous Fan Usage:	

= \$960 / [135 kBtu/hr x ((-0.4 m³/ kBtu/h / year * \$0.50 / m³) + (4.8 kWh / kBtu/h / year *

plumprod.cac.enbridge.com/portal/server.pt?open=512&obilD=248&PageID=0&cached=true&mode=2&userID=2).

²¹ GDS Associates Inc, Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for The New England State Program Working Group (SPWG) For use as an Energy Efficiency Measures/Programs Reference Document for the ISO Forward Capacity Market (FCM), June 2007.
 ²² Joint Assessment Study, MidAmerican Energy Company, Appendix C. State of Iowa Utilities Board Docket No. EEP-08-2, 2008,

C-131 ²³ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, based on Navigant

Consulting, Evaluation Report: 2007 Hot and Cool Savings Programs, prepared for the Ontario Power Authority (OPA), July 2008. ²⁴ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

²⁵ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

²⁶ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

\$0.09 / kWh)]	
= 31 years	
Market Share ²⁷	Low
Although the benefits of electronically commutated motors are increasinglindustry, the overall market share still remains low in the commercial retrojurisdiction (lowa reports a 5% market penetration for commercial building Consulting estimates the market share in Ontario to be low.	fit market, as seen in another

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/ Market Share
2009 OPA Measures and Assumptions List ²⁹	-80.1m ³ (continuous) 22.6m ³ (non- continuous)	15	\$960	N/A
Comments				

Assumptions made in the OPA Measures and Assumptions List are the same assumptions that are made in the above tables.

 ²⁷ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,
 ²⁸ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2
 ²⁹ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008.

Enhanced Furnace (Electronically Commutated Motor) – New Commercial

[Revision #	Description/Comment	Date Revised
ľ			

Efficient Equipment and Technologies Description

Gas furnace equipped with an electronically commutated motor (ECM)

Base Equipment and Technologies Description

Gas furnace with a permanent split capacitor (PSC) motor

Decision Type	Target Market(s)	End Use
New	Commercial New Construction	Space Heating

Codes, Standards, and Regulations

- Under Ontario's building code, all gas furnaces installed in new residential constructions must meet a minimum condensing efficiency level effective January 1, 2007.¹
- There is no minimum energy performance standard restricting the electricity consumption of furnace fan blowers.
- NRCan proposes to increase the minimum performance level, the Annual Fuel Utilization Efficiency (AFUE), for gas-fired furnaces with an input rate not exceeding 65.92 kW (225,000 Btu/h) to 90% for December 31, 2009.²

Resource Savings Table (for 2 different cases)

	Electricity	and Other Resource	e Savings	Equipment & O&M	Equipment & O&M Costs of
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m³/kBtu/h)	(kWh/kBtu/h)	(L)	(\$)	(\$)
1	-2.5	20.8	0	960	0
2	-2.5	20.8	0	0	0
3	-2.5	20.8	0	0	0
4	-2.5	20.8	0	0	0
5	-2.5	20.8	0	0	0
6	-2.5	20.8	0	0	0
7	-2.5	20.8	0	0	0
8	-2.5	20.8	0	0	0
9	-2.5	20.8	0	0	0
10	-2.5	20.8	0	0	0
11	-2.5	20.8	0	0	0
12	-2.5	20.8	0	0	0
13	-2.5	20.8	0	0	0
14	-2.5	20.8	0	0	0
15	-2.5	20.8	0	0	0
TOTALS	-36.9	311.8	0	960	0

Continuous Fan Usage

¹ Ministry of Energy, "Heating and Cooling your Home: A Conservation Guide." Reproduced with the permission of Natural Resource Canada, 2004. <u>http://www.energy.gov.on.ca/english/pdf/conservation/heating_and_cooling_your_home.pdf</u>

² Office of Energy Efficiency, Canada's Energy Efficiency Regulations, Proposed Regulations Bulletin, March 2007. <u>http://www.oee.nrcan.gc.ca/regulations/bulletin/gas-furnace-mar2007.cfm?Text=N&PrintView=N</u>

Annual Natural Gas Savings

-2.5 m³/ kBtu / h

Continuous fan usage and non-continuous fan usage is estimated to be 26% and 74%, respectively, based on Ontario customer survey results³. Navigant Consulting is assuming the same mix of furnace fan usage for commercial application.

A study conducted by the Canadian Center for Housing Technologies determined that a the annual gas use of a typical new home with a continuous ECM actually *increases* by 164m³ for high efficiency furnaces (AFUE 92) and 184m³ for mid-efficiency furnaces (AFUE 82)⁴. The increase in natural gas consumption is a result of the reduction of heat added to the home from the decrease in electricity usage by the furnace motor. NCI assumes that 12% of new furnaces are mid-efficiency and 88% of furnaces are high efficiency based on recent survey results for residential furnaces⁵, resulting in an average increase of 166.4m³. Navigant Consulting is assuming the same mix of furnace fan usage for commercial application.

The CCHT study gives a baseline gas usage as $1,744 \text{ m}^3$ for high efficiency furnaces and $1,957 \text{ m}^3$ for mid-efficiency furnaces⁶. Using the same mix of high-efficiency and mid-efficiency furnaces as above, a typical furnace with a PSC motor is expected to use $1,770 \text{ m}^3$. Using an energy efficient motor (ECM), a typical home is expected to use $1,936 \text{ m}^3$ of natural gas (1,770 + 166), or an increase of 9.4 % over the baseline.

According to the CCHT report⁷, the residential furnace capacity is 67,500 Btu/h. Assuming savings for an ECM used for commercial applications do not significantly differ from a residential furnace, the natural gas savings on a kBTU/h basis is -166 m³ / 67.5 kBtu/h = -2.5 m³/kBtu/h.

³ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, based on Navigant

Consulting, Evaluation Report: 2007 Hot and Cool Savings Programs, prepared for the Ontario Power Authority (OPA), July 2008. ⁴ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and Consulta from the COLL Descente Facility and Design and Programs, prepared as a low by full that the consultance and the Coll of t

Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf
 ⁵ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, based on Navigant Consulting, Evaluation Report: 2007 Hot and Cool Savings Programs, prepared for the Ontario Power Authority (OPA), July 2008.

⁶ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf 7 lbid.

Annual Electricity Savings

20.8 kWh / kBtu / h

Based on the Ontario Power Authority's 2009 OPA Measure and Assumptions Lists⁸, the electricity savings for a new home using an ECM are estimated to be 1,403 kWh/year for continuous furnace fan use. This represents a savings of 78% over a conventional PSC motor.

These results are based on the same CCHT study, which determined that annual electricity savings for a new home using a gas furnace with an ECM for heating only are 1,569 kWh for high efficiency furnaces (AFUE 92) and 1,571 kWh for mid-efficiency furnaces (AFUE 82)⁹ Since it is unlikely that the furnace fan will run continuously during the shoulder season, the OPA assumes that during the shoulder season the same electricity savings from a non-continuous ECM are applicable. Navigant Consulting is assuming the same electricity savings for residential furnaces are applicable for commercial applications.

According to the CCHT report¹⁰, the residential furnace capacity is 67,500 Btu/h. Assuming savings for an ECM used for commercial applications do not significantly differ from a residential furnace, the electricity savings on a kBTU/h basis are estimated to be 1,403 / 67.5 kBtu/h = 20.8 kWh/kBtu/h.

Annual Water Savings	0 L
N/A	

Non-Continuous Fan Usage

	Electricity	and Other Resource			Equipment & O&M Costs of	
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure ¹¹	
(EUL=)	(m³/kBtu/h)	(kWh/kBtu/h)	(L)	(\$)	(\$) ¹²	
1	-0.3	3.1	0	960	0	
2	-0.3	3.1	0	0	0	
3	-0.3	3.1	0	0	0	
4	-0.3	3.1	0	0	0	
5	-0.3	3.1	0	0	0	
6	-0.3	3.1	0	0	0	
7	-0.3	3.1	0	0	0	
8	-0.3	3.1	0	0	0	
9	-0.3	3.1	0	0	0	
10	-0.3	3.1	0	0	0	
11	-0.3	3.1	0	0	0	
12	-0.3	3.1	0	0	0	
13	-0.3	3.1	0	0	0	
14	-0.3	3.1	0	0	0	
15	-0.3	3.1	0	0	0	
TOTALS	-4.5	46	0	960	0	

Resource Savings Assumptions

Annual Natural Gas Savings

-0.3 m³/ kBtu / h

Continuous fan usage and non-continuous fan usage is estimated to be 26% and 74%, respectively, based on Ontario customer survey results¹³. Navigant Consulting is assuming the same mix of furnace fan usage for commercial application.

⁹ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf 10 lbid.

⁸ Ontario Power Authority, 2009 OPA Measures and Assumptions List (Mass Market), November 2008.

¹¹ USDOE Energy Star Furnace Calculator, "Assumptions" tab.

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_Furnaces.xls

¹² The 2007 average exchange rate from US dollar to Canadian dollar is US\$1 = CA\$1.07. This rate is used to convert USDOE base furnace cost to Canadian dollars. <u>http://www.x-rates.com/d/CAD/USD/hist2007.html</u>

¹³ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, based on Navigant Consulting, Evaluation Report: 2007 Hot and Cool Savings Programs, prepared for the Ontario Power Authority (OPA), July 2008.

A study conducted by the Canadian Center for Housing Technologies determined that a the annual gas use of a typical new home with a non-continuous ECM actually *increases* by 18 m³ for high efficiency furnaces (AFUE 92) and 20 m³ for mid-efficiency furnaces (AFUE 82)¹⁴ The increase in natural gas consumption is a result of the reduction of heat added to the home from the decrease in electricity usage by the furnace motor. NCI assumes that 12% of new furnaces are mid-efficiency and 88% of furnaces are high efficiency on recent survey results for residential furnaces¹⁵, resulting in an average increase of 18.2 m³. Navigant Consulting is assuming the same mix of furnace fan usage for commercial application.

The CCHT study gives a baseline gas usage as 1,907 m³ for high efficiency furnaces and 2,140 m³ for mid-efficiency furnaces¹⁶. Using the same mix of high-efficiency and mid-efficiency furnaces as above, a typical home with a PSC motor is expected to use 1,935 m³. Using an energy efficient motor (ECM), a typical home is expected to use 1,953 m³ of natural gas (1,935 + 18), or an increase of 0.9% over the baseline.

According to the CCHT report¹⁷, the residential furnace capacity is 67,500 Btu/h. Assuming savings for an ECM used for commercial applications do not significantly differ from a residential furnace, the natural gas savings on a kBTU/h basis is $-18.2 \text{ m}^3 / 67.5 \text{ kBtu/h} = -0.3 \text{ m}^3/\text{kBtu/h}$.

Annual Electricity Savings

3.1 kWh / kBtu / h

Based on the Ontario Power Authority's 2009 OPA Measure and Assumptions List¹⁸, the electricity savings for a new home using an ECM are estimated to be 207 kWh/year for non-continuous furnace fan use. This represents a savings of 40% over a conventional PSC motor.

These results are based on the same CCHT study, which determined that annual electricity savings for a new home using a gas furnace with an ECM for heating only are 207 kWh for both high efficiency furnaces (AFUE 92) mid-efficiency furnaces (AFUE 82)¹⁹. Navigant Consulting is assuming the same electricity savings for residential furnaces are applicable for commercial applications.

According to the CCHT report²⁰, the residential furnace capacity is 67,500 Btu/h. Assuming savings for an ECM used for commercial applications do not significantly differ from a residential furnace, the electricity savings on a kBTU/h basis is estimated to be 207 / 67.5 kBtu/h =3.1 kWh/kBtu/h.

Annual Water Savings	0 L
N/A	

Other Input Assumptions

Effective Useful Life (EUL)	15 Years
An OPA commissioned study by Seeline Group Inc. suggests a useful life June 2007 study by GDS Associates, Inc. ²¹ for New England State Progra	
also suggests 15 years. Finally, Iowa Utilities ²² also uses 15 years as an	

¹⁴ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf ¹⁵ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, based on Navigant

Consulting, Evaluation Report: 2007 Hot and Cool Savings Programs, prepared for the Ontario Power Authority (OPA), July 2008. ¹⁶ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf

¹⁷ Ibid.

¹⁸ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008.

¹⁹ The Canadian Center for Housing Technologies, "Final Report on the Effects of ECM Furnace Motors on Electricity and Gas Use: Results from the CCHT Research Facility and Projections" http://irc.nrccnrc.gc.ca/pubs/fulltext/nrcc38500/nrcc38500.pdf ²⁰ Ibid.
²¹ GDS Associates Inc. Measure Life Depart: Depidential and Comparison of Compa

²¹ GDS Associates Inc, Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for The New England State Program Working Group (SPWG) For use as an Energy Efficiency Measures/Programs Reference Document for the ISO Forward Capacity Market (FCM), June 2007.

²² Joint Assessment Study, MidAmerican Energy Company, Appendix C. State of Iowa Utilities Board Docket No. EEP-08-2, 2008, C-131

Base & Incremental Conservation Measure Equipment and O&M Costs	\$960			
Based on the average of a survey of prices from HVAC contractors in Ontario ²³ , the incremental cost is estimated to be \$960. Incremental costs were confirmed through communication with additional HVAC contractors.				
Customer Payback Period (Natural Gas and Electricity)	Continuous = 11 years Non-Continuous = 55 years			
Since natural gas usage increases with an ECM, Navigant Consulting has electricity savings to calculate the customer payback period.	s used both natural gas and			
For Natural Gas Usage: Combining a 5-year average commodity cost (avoided cost) ²⁴ of $0.38 / m^3$ and an average commercial distribution cost ²⁵ of $0.12 / m^3$, the total cost of natural gas for typical commercial customers is determined to be 0.50 .				
<i>For Electricity Savings:</i> An average commodity and distribution cost of \$0.09 / kWh is assumed for	or commercial customers.			
For customer payback calculations, Navigant Consulting is assuming a contract the size of a residential furnace, or 135 kBtu/h (67,500 Btu/h x 2 = 135,00				
The payback period incorporating both natural gas usage and electricity s years for continuous usage and 55 years for non-continuous furnace fan				
Payback Period = Incremental cost / [(natural gas savings x natural gas c electricity cost)]	ost) + (electricity savings x			
Continuous Fan Usage: = \$960 / [135 kBtu/hr x ((-2.5 m ³ / kBtu/h / year * \$0.50 / n * \$0.09 / kWh))] = 11 years	m ³) + (20.8 kWh / kBtu/h / year			
Non-Continuous Fan Usage: = \$960 / [135 kBtu/hr x ((-0.3 m ³ / kBtu/h / year * \$0.50 / n \$0.09 / kWh)] = 55 years	m ³) + (3.1 kWh / kBtu/h / year *			
Market Share ²⁶	Low			
Although the benefits of electronically commutated motors are increasing industry, the overall market share still remains low in the commercial retro jurisdictions (lowa reports a 5% market penetration for commercial building).	ofit market, as seen in another			

Consulting estimates the market share in Ontario to be low.

 ²³ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008, based on Navigant Consulting, Evaluation Report: 2007 Hot and Cool Savings Programs, prepared for the Ontario Power Authority (OPA), July 2008.
 ²⁴ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and

weather sensitive avoided gas cost. ²⁵ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and ²⁶ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,
 ²⁷ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/ Market Share	
Efficiency Vermont Technical Resources ²⁸	0	18	\$200 (USD)		
Comments A furnace meeting minimum Federal efficiency standards using a low-efficiency permanent split capacitor (PSC) fan motor is replaced with a high efficiency an ENERGY STAR® qualified furnace with a high-efficiency ECM. Vermont suggests electricity savings of 393 kWh/yr for space heating.					
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/ Market Share	
2009 OPA Measures and Assumptions List29-66.8m³ (continuos usage) 30.6m³ (non-continuos)15\$960					
Comments Assumptions made in the OPA Measures and Assumptions Lists are the same assumptions that are made in the above tables.					

 ²⁸ Efficiency Vermont. Residential Master Technical Reference Manual. Number 2005-37 Measure Savings Algorithms and Cost Assumptions. February 2006.
 ²⁹ Ontario Power Authority, 2009 OPA Measures and Assumptions Lists (Mass Market), November 2008.

Heat Recovery Ventilator (HRV) – Existing Commercial

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description
Ventilation with HRV
Base Equipment and Technologies Description
Ventilation without HRV

Decision Type	Target Market(s)	End Use
Retrofit	Existing Commercial	Space Heating

Codes, Standards, and Regulations

N/A

Resource Savings Table

[Electricity and Other Resource Savings		Equipment & O&M Costs of	Equipment & O&M		
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure	
(EUL=)	(m³/CFM)	(kWh)	(L)	(\$/CFM)	(\$)	
1	3.77	0	0	3.4	0	
2	3.77	0	0	0	0	
3	3.77	0	0	0	0	
4	3.77	0	0	0	0	
5	3.77	0	0	0	0	
6	3.77	0	0	0	0	
7	3.77	0	0	0	0	
8	3.77	0	0	0	0	
9	3.77	0	0	0	0	
10	3.77	0	0	0	0	
11	3.77	0	0	0	0	
12	3.77	0	0	0	0	
13	3.77	0	0	0	0	
14	3.77	0	0	0	0	
15	3.77	0	0	0	0	
16	3.77	0	0	0	0	
17	3.77	0	0	0	0	
18	3.77	0	0	0	0	
19	3.77	0	0	0	0	
20	3.77	0	0	0	0	
TOTALS	75.4	0	0	3.4	0	

Annual	Natural Gas Savings	3.77 m ³ / C	CFM
indoo	al gas savings are determined from engineering calculations utiliz r/outdoor temperatures, indoor/outdoor and relative humidity.	ing inputs such as a	air flow,
• For ex	kample, input assumptions for a typical Ontario retail store are: Variable Names	Values	Source
A	Supply air flow (cfm)	500	UG⁺
B	Exhaust air flow (cfm)	500	UG
C	Average indoor air temperature (°F)	70	UG
D	Average indoor relative humidity (%)	30	UG
E	Average outside air temperature (°F)	31.5	UG
F	Average outdoor relative humidity (%)	70	NCI [∆]
G	Atmospheric pressure (psia)	14.3	UG
Ĥ	No. of hours in heating season (hrs)	4,800	UG
11	Demand Controlled Ventilation	no	ŬĠ
12	No. of hours of operation per week (hrs/wk)	108	UG
J	Make and Model of Heat Recovery Equipment	Eng A, HRW-2100	UG
К	Effectiveness of Heat Recovery Equipment (%)	70	NCI
L	Sensible Heat Recovery Only	yes	UG
М	Enthalpy (Btu/lba) & Humidity Ratio (lbw/lba) of INLET exhaust air	22.0	UG
Ν	Enthalpy (Btu/lba) & Humidity Ratio (lbw/lba) of INLET supply air	10.4	UG
0	Enthalpy (Btu/lba) & Humidity Ratio (lbw/lba) of OUTLET supply air	16.9	UG
Р	Average Temperature of OUTLET supply air (°F)	58	UG
Q	Average Hourly Moisture Addition (lb/hr)	0.0	UG
R	Defrost Control Derating Factor (%)	5	UG
S	Average Hourly Heat Recovery (MBH)	13.7	UG
Т	Seasonal Efficiency of Gas-Fired Equipment (%)	82	UG
U	Average annual gas reduction (m ³)	1,461	UG
V	Incremental natural gas rate (\$/m ³)	0.3	UG
W	Average annual gas savings (\$)	438.4	UG

[†]UG: Union Gas

^ΔNCI: Navigant Consulting, Inc

- NG Savings = # of Hours in Heating Season x (operating hours/168) x Average Hourly Heat Recovery / (35.3 m³/MJ) / (Seasonal Efficiency / 100%) (A)
 - 168 hour = 7 days/week x 24hours/day
 - Average Hourly Heat Recovery = Supply air flow x 60 x (Supply air flow Inlet supply air)/Specific Supply Air Conditions Volume x (1 Defrost Control De-rating Factor¹ %) (B)
- · Operating hours for each sectors being considered are as the following

Building Occupancy	Typical Hrs of Operation per week	
Hotel	168	
Restaurant	108	
Retail	108	
Office	60	
School	84	
Health Care	168	
Nursing Home	168	
Warehouse	168	
New buildings and existing buildings mainly		

• New buildings and existing buildings mainly differ in enthalpy (BTU/LBa) that is used to calculate the

¹ From Union Gas, all air-to-air heat recovery equipment requires frost control in colder climates to prevent freeze-up of exhaust air condensate on heat exchange components. Depending on the defrost control system, annual heat recovery estimates should be reduced by 5 to 15 %. Equipment manufacturers and suppliers can provide an estimated defrost derating factor given the operating conditions of the equipment.

Specific Supply Air Conditions Volume in formula (B).

• Based on the NG Savings formula (A) and input assumptions above, the natural gas savings for each of the commercial sectors are calculated, and a simple average is taken to be the general savings.

J-			Existin	g Buildings	
	Market Segment	HRV Capacity (CFM)	NG Savings (m ³)	NG Savings per CFM (m ³ /CFM)	
	Hotel	500	2,452	4.90	
	Restaurant	500	1,576	3.15	
	Retail	500	1,576	3.15	
	Office	500	876	1.75	
	School	500	1,226	2.45	
	Health Care	500	2,452	4.90	
	Nursing Home	500	2,452	4.90	
	Warehouse	500	2,452	4.90	
	Average (m ³ /CFM)			3.77	
Annual Elec	ctricity Savings				0 kWh
N/A					
Annual Wat	er Savings				0 L / CFM
N/A					

Other Input Assumptions

Effective Useful Life (EUL)	20 Years		
HRVs have an estimated service life of 15 years based on Jacques White and Puget Sound ⁴ both report 20 years as its effective useful life, Navigar 20 years.	ord study ² . Since Questar Gas ³ at also estimates the EUL to be		
Base & Incremental Conservation Measure Equipment and O&M Costs	\$3.4 / CFM		
The incremental costs are based on relative scaling of incremental costs	\$1,700 / 500 CFM⁵.		
Customer Payback Period (Natural Gas Only) ⁶ 1.8 Years			
Using an 5-year average commodity cost (avoided cost) ⁷ of $0.38 / m^3$ ard distribution cost ⁸ of $0.12 / m^3$, the payback period for natural gas savings based on the following:	nd an average commercial is determined to be 1.8 years,		
On a per CFM basis, Payback Period = Incremental cost / (natural gas savings x natural gas co = \$3.4 / (3.77 m ³ /year * \$0.5 / m ³) = 1.8 years	ost)		

² "Prescriptive Incentives for Selected Natural Gas Technologies", Prepared for Enbridge Consumers Gas and Union Gas Ltd., by Jacques Whitford Environment Limited, Agviro Inc., and Engineering Interface Ltd., September 27, 2000.

³ Questar Gas, DSM Market Characterization Report, by Nexant, August 9, 2006

⁴ Quantec — Puget Sound Energy Demand-Side Management Resource Assessment

⁵ "Prescriptive Incentives for Selected Natural Gas Technologies", Prepared for Enbridge Consumers Gas and Union Gas Ltd., by Jacques Whitford Environment Limited, Agviro Inc., and Engineering Interface Ltd., September 27, 2000.

⁶ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

⁷ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

⁸ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2).

Market Penetration ⁹	Low
Based on Jacques Whitford report ¹⁰ (less than 5% market penetration) and contractors, Navigant Consulting estimates the market penetration of HRV	

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Questar Gas ¹¹	670	20	1,785	N/A
Comments Specifications for HRVs	are not provided in th	ne report, nor the t	baseline assumption	ons.
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Puget Sound Energy ¹²	0.1045 per ft ²	20	1	N/A
Comments Baseline therm reported on a square footage basis (eg 0.19 therms/sq.ft. for offices). Estimated 20% savings for new energy efficient technology is reported as a percent saving over the baseline. Incremental cost is reported on a per square footage basis. Equivalent savings is 0.19 therms/sq.ft. x 2.75 m^3 /therms x 20% = 0.1045 m ³				

 ⁹ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,
 ¹⁰ "Prescriptive Incentives for Selected Natural Gas Technologies", Prepared for Enbridge Consumers Gas and Union Gas Ltd., by Jacques Whitford Environment Limited, Agviro Inc., and Engineering Interface Ltd., September 27, 2000.
 ¹¹ Questar Gas, DSM Market Characterization Report, by Nexant, August 9, 2006
 ¹² Quantec, Comprehensive Demand-Side Management Resource Assessment, Prepared for Puget Sound Energy, May 2007

Heat Recovery Ventilator (HRV) – New Commercial

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description	
Ventilation with HRV	
Base Equipment and Technologies Description	
Ventilation without HRV	

Decision Type	Target Market(s)	End Use
New	Commercial	Space Heating

Codes, Standards, and Regulations

- Restriction for New Building Construction: This measure is not applicable to system ≥5,000 CFM with ≥70% OA ratio because energy recovery is required by Ontario Building Code 2006.
- Restriction for New Building Construction: This measure is not applicable to systems serving health care spaces indicated in **Table 1** because heat recovery is required by CSA Z317.2-01

Table 1 - Health Care Spaces Not Eligible				
Anaesthetic gas scavenging Cart and can washers Areas using hazardous gases				
Animal facilities	Chemical storage	Isolation rooms		
Autopsy suite	Cooking facilities	Perchloric hoods		
Biohazard and fume hoods Ethylene oxide Radioisotope hoods				

Resource Savings Table

	Electricity	and Other Resour	ce Savings	Equipment & O&M Costs of	Equipment & O&M
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m³/CFM)	(kWh)	(L)	(\$/CFM)	(\$)
1	3.49	0	0	3.4	0
2	3.49	0	0	0	0
3	3.49	0	0	0	0
4	3.49	0	0	0	0
5	3.49	0	0	0	0
6	3.49	0	0	0	0
7	3.49	0	0	0	0
8	3.49	0	0	0	0
9	3.49	0	0	0	0
10	3.49	0	0	0	0
11	3.49	0	0	0	0
12	3.49	0	0	0	0
13	3.49	0	0	0	0
14	3.49	0	0	0	0
15	3.49	0	0	0	0
16	3.49	0	0	0	0
17	3.49	0	0	0	0
18	3.49	0	0	0	0
19	3.49	0	0	0	0
20	3.49	0	0	0	0
TOTALS	69.8	0	0	3.4	0

Annual	Natural Gas Savings	3.49 m ³ /C	FM			
indoo	 Natural gas savings are determined from engineering calculations utilizing inputs such as air flow, indoor/outdoor temperatures, indoor/outdoor and relative humidity. For example, input assumptions for a typical Ontario retail store are: 					
Symbols		Values	Source			
А	Supply air flow (cfm)	500	UG⁺			
В	Exhaust air flow (cfm)	500	UG			
С	Average indoor air temperature (°F)	70	UG			
D	Average indoor relative humidity (%)	30	UG			
E	Average outside air temperature (°F)	31.5	UG			
F	Average outdoor relative humidity (%)	70	NCI [∆]			
G	Atmospheric pressure (psia)	14.3	UG			
н	No. of hours in heating season (hrs)	4,800	UG			
1	Demand Controlled Ventilation	no	UG			
12	No. of hours of operation per week (hrs/wk)	108	UG			
J	Make and Model of Heat Recovery Equipment	Eng A, HRW-2100	UG			
K	Effectiveness of Heat Recovery Equipment (%)	70	NCI			
L	Sensible Heat Recovery Only	yes	UG			
М	Enthalpy (Btu/lba) & Humidity Ratio (lbw/lba) of INLET exhaust air	22.0	UG			
Ν	Enthalpy (Btu/lba) & Humidity Ratio (lbw/lba) of INLET supply air	10.4	UG			
0	Enthalpy (Btu/lba) & Humidity Ratio (lbw/lba) of OUTLET supply air	16.9	UG			
Р	Average Temperature of OUTLET supply air (°F)	58	UG			
Q	Average Hourly Moisture Addition (lb/hr)	0.0	UG			
R	Defrost Control Derating Factor (%)	5	UG			
S	Average Hourly Heat Recovery (MBH)	13.7	UG			
Т	Seasonal Efficiency of Gas-Fired Equipment (%)	82	UG			
U	Average annual gas reduction (m ³)	1,461	UG			
V	Incremental natural gas rate (\$/m ³)	0.3	UG			
W	Average annual gas savings (\$)	438.4	UG			

[†]UG: Union Gas

^ΔNCI: Navigant Consulting, Inc

- NG Savings = # of Hours in Heating Season x (operating hours/168) x Average Hourly Heat Recovery / (35.3 m³/MJ) / (Seasonal Efficiency / 100%) (A)
 - 168 hour = 7 days/week x 24hours/day
 - Average Hourly Heat Recovery = Supply air flow x 60 x (Supply air flow Inlet supply air)/Specific Supply Air Conditions Volume x (1 Defrost Control De-rating Factor¹ %) (B)
- · Operating hours for each sectors being considered are as the following

Building Occupancy	Typical Hrs of Operation per week	
Hotel	168	
Restaurant	108	
Retail	108	
Office	60	
School	84	
Health Care	168	
Nursing Home	168	
Warehouse 168		
New buildings and existing buildings main		

• New buildings and existing buildings mainly differ in enthalpy (BTU/LBa) that is used to calculate the

¹ From Union Gas, all air-to-air heat recovery equipment requires frost control in colder climates to prevent freeze-up of exhaust air condensate on heat exchange components. Depending on the defrost control system, annual heat recovery estimates should be reduced by 5 to 15 %. Equipment manufacturers and suppliers can provide an estimated defrost derating factor given the operating conditions of the equipment.

Specific Supply Air Conditions Volume in formula (B).

• Based on the NG Savings formula (A) and input assumptions above, the natural gas savings for each of the commercial sectors are calculated, and a simple average is taken to be the general savings.

			New	Buildings
		HRV Capacity	NG Savings	NG Savings per
	Market Segment	(CFM)	(m ³)	CFM (m ³ /CFM)
		, , ,	、 <i>,</i>	· · · ·
	Hotel	500	2,273	4.55
	Restaurant	500	1,461	2.92
	Retail	500	1,461	2.92
	Office	500	812	1.62
	School	500	1,137	2.27
	Health Care	500	2,273	4.55
	Nursing Home	500	2,273	4.55
	Warehouse	500	2,273	4.55
	Average (m ³ /CFM)			3.49
nnual Ele	ectricity Savings			
/A				
nnual Wa	ter Savings			
/A				

Other Input Assumptions

N

N

• • •				
Effective Useful Life (EUL)	20 Years			
HRVs have an estimated service life of 15 years based on Jacques Whitford study ² . Since Questar Gas and Puget Sound ⁴ both report 20 years as its effective useful life, Navigant also estimates the EUL to be 20 years.				
Base & Incremental Conservation Measure Equipment and O&M Costs	\$3.4 / CFM			
The incremental costs are based on relative scaling of incremental costs	\$1,700 / 500 CFM⁵.			
Customer Payback Period (Natural Gas Only) ⁶	2 Years			
Using an 5-year average commodity cost (avoided cost) ⁷ of \$0.38 / m ³ and an average commercial distribution cost ⁸ of \$0.12 / m ³ , the payback period for natural gas savings is determined to be 2 years, based on the following:				
On a per CFM basis, Payback Period = Incremental cost / (natural gas savings x natural gas co = \$3.4 / (3.49 m ³ /year * \$0.5 / m ³) = 2 years	ist)			

² "Prescriptive Incentives for Selected Natural Gas Technologies", Prepared for Enbridge Consumers Gas and Union Gas Ltd., by Jacques Whitford Environment Limited, Agviro Inc., and Engineering Interface Ltd., September 27, 2000. ³ Questar Gas, DSM Market Characterization Report, by Nexant, August 9, 2006

⁴ Quantec — Puget Sound Energy Demand-Side Management Resource Assessment

⁵ "Prescriptive Incentives for Selected Natural Gas Technologies", Prepared for Enbridge Consumers Gas and Union Gas Ltd., by Jacques Whitford Environment Limited, Agviro Inc., and Engineering Interface Ltd., September 27, 2000.

Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

⁷ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

⁸ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2).

Market Penetration ⁹	Low
Based on Jacques Whitford report ¹⁰ (less than 5% market penetration) and contractors, Navigant Consulting is estimating the market penetration of H	

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Questar Gas ¹¹	670	20	1,785	N/A
Comments Specifications for HRVs	are not provided in th	ne report, nor the t	baseline assumptio	ons.
Source	Annual Natural Gas Savings (m3) (Years) Incremental Cost (\$)		Penetration/Market Share	
Puget Sound Energy ¹²	0.1045 per ft ²	20	1	N/A
Comments Baseline therm reported on a square footage basis (eg 0.19 therms/sq.ft. for offices). Estimated 20% savings for new energy efficient technology is reported as a percent saving over the baseline. Incremental cost is reported on a per square footage basis. Equivalent savings is 0.19 therms/sq.ft. x 2.75 m^3 /therms x 20% = 0.1045 m ³				

 ⁹ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,
 ¹⁰ "Prescriptive Incentives for Selected Natural Gas Technologies", Prepared for Enbridge Consumers Gas and Union Gas Ltd., by Jacques Whitford Environment Limited, Agviro Inc., and Engineering Interface Ltd., September 27, 2000.
 ¹¹ Questar Gas, DSM Market Characterization Report, by Nexant, August 9, 2006
 ¹² Quantec, Comprehensive Demand-Side Management Resource Assessment, Prepared for Puget Sound Energy, May 2007

B-197

High Efficiency (Condensing) Furnace - Commercial

Revision #

Date Revised

Efficient Equipment and Technologies Description

High-efficiency condensing furnace with regular PSC motor - AFUE 90, 92 and 96.

Description/Comment

Base Equipment and Technologies Description

Mid-efficiency furnace AFUE 80.1

Decision Type	Target Market(s)	End Use
New, Retrofit	Commercial office buildings	Space Heating

Codes, Standards, and Regulations

- Under Ontario's building code, all gas furnaces installed in new residential construction must meet a minimum condensing efficiency level effective January 1, 2007.²
- NRCan proposes to increase the minimum performance level, the Annual Fuel Utilization Efficiency (AFUE), for gas-fired furnaces with an input rate not exceeding 65.92 kW (225,000 Btu/h) to 90% for December 31, 2009.³

Resource Savings Table (for 3 different cases)

	Electricity	Electricity and Other Resource Savings		Equipment & O&M	Equipment & O&M Costs of	
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure	
(EUL=)	(m³/kBtu/h)	(kWh)	(L)	(\$)	(\$)	
1	3.6	0	0	2,900	2,233	
2	3.6	0	0	0	0	
3	3.6	0	0	0	0	
4	3.6	0	0	0	0	
5	3.6	0	0	0	0	
6	3.6	0	0	0	0	
7	3.6	0	0	0	0	
8	3.6	0	0	0	0	
9	3.6	0	0	0	0	
10	3.6	0	0	0	0	
11	3.6	0	0	0	0	
12	3.6	0	0	0	0	
13	3.6	0	0	0	0	
14	3.6	0	0	0	0	
15	3.6	0	0	0	0	
16	3.6	0	0	0	0	
17	3.6	0	0	0	0	
18	3.6	0	0	0	0	
TOTALS	64.7	0	0	2,900	2,233	

AFUE 90

¹ The federal baseline is AFUE 78, but very few are sold below 80. *Powerful Priorities: Updating Energy Efficiency Standards for Residential Furnaces, Commercial Air Conditioners, and Distribution Transformers.* ACEEE, September 2004, Page 9.

² Ministry of Energy, "Heating and Cooling your Home: A Conservation Guide." Reproduced with the permission of Natural Resource Canada, 2004. <u>http://www.energy.gov.on.ca/english/pdf/conservation/heating_and_cooling_your_home.pdf</u>

³ Office of Energy Efficiency, Canada's Energy Efficiency Regulations, Proposed Regulations Bulletin, March 2007. http://www.oee.nrcan.gc.ca/regulations/bulletin/gas-furnace-mar2007.cfm?Text=N&PrintView=N

Gas savings associated with upgrading from a mid-efficiency furna	ce to a high efficiency furnace	
are based on the following formula:	ce to a night enictency fullidoe	
 Annual Savings = 1 – Base Technology AFUE / Efficient Equipmer = 1 – 80/90 	nt AFUE	
■ = 11.1%		
 The US DOE reports an 11.7% gas savings for an AFUE 90 furnad baseline).⁴ 	e (based on an AFUE 80	
 Natural gas savings are based on Enbridge research⁵ indicating the for a residential mid-efficiency furnace⁶ is 2,436 m³. 	at the average consumption	
 Using the calculated percent savings (11.1%) multiplied by the base energy consumption (2,436 m³) the annual gas savings are estimated to be 270.4m³. 		
 Assuming a typical commercial furnace input of 75,000 BTU/h, natural gas savings on a per thousand BTU/h basis are 270.4m³ / 75 kBtu/h = 3.6 kBtu/h 		
Annual Electricity Savings	0 kWh	
lectricity savings resulting from high efficiency furnaces are assumed to b	e negligible.	
Annual Water Savings	0 L	
//A		

Effective Useful Life (EUL)18 YearsACEEE⁷ and State of Iowa⁸ both estimate an effective useful life of 18 years. Puget Sound Energy⁹ and
New England State Program Working Group (SPWG)¹⁰ also suggest 18 years for high efficiency
furnaces.Base & Incremental Conservation Measure Equipment
and O&M CostsAverage incremental cost is based on communication with local HVAC contractors. Navigant Consulting

Average incremental cost is based on communication with local HVAC contractors. Navigant Consulting is assuming that the ratio of the incremental cost between a commercial AFUE 80 furnace and a commercial AFUE 90 furnace is the same as for the residential market. Therefore, assuming 30% increase over a baseline commercial AFUE 80 furnace (\$3,000), the incremental cost would be \$900 for a 135,000 Btu/hr furnace, or \$6.7/kBtu/hr.

Customer Payback Period (Natural Gas Only)¹¹

Using an 5-year average commodity cost (avoided cost)¹² of \$0.38/m³ and an average commercial distribution $cost^{13}$ of \$0.12 / m³, the payback period for natural gas savings is determined to be 3.7 years, based on the following:

Quantec, Comprehensive Demand-Side Management Resource Assessment, Prepared for Puget Sound Energy, May 2007

¹⁰ GDS Associates, Inc., Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for The New England State Program Working Group (SPWG), For use as an Energy Efficiency Measures/Programs Reference Document for the ISO Forward Capacity Market (FCM), June 2007

3.7 Years

⁴ US DOE Residential Furnaces and Boilers Technical Support Document Analytical Tools. Life Cycle Cost Results for Non-Weatherized Gas Furnaces. <u>http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_nwgf_gt6000hdd.xls</u>

⁵ Based on information provided by Enbridge Gas, based on Decision for the Enbridge 2006 DSM Plan (EB2005-0001).
⁶ Average commercial baseline consumption for a mid-efficiency furnace was not available from either of the Ontario gas utilities,

therefore, residential baseline furnace consumption will be used and computed on a per thousand Btu/h basis.
 ⁷ Powerful Priorities: Updating Energy Efficiency Standards for Residential Furnaces, Commercial Air Conditioners, and Distribution

⁷ Powerful Priorities: Updating Energy Efficiency Standards for Residential Furnaces, Commercial Air Conditioners, and Distribution Transformers. ACEEE, September 2004.

⁸ Joint Assessment Study, MidAmerican Energy Company, Appendix C. State of Iowa Utilities Board Docket No. EEP-08-2, 2008, C-131

¹¹ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹² 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

Payback Period = Incremental cost / (natural gas savings x natural gas cost)

= \$6.7/kBtu/hr / (3.6m³/kBtu/hr/year* \$0.50 / m³)

= 3.7 years

Market Share¹⁴

Medium

Based on market share information for residential furnaces¹⁵, Navigant Consulting is assuming a similar trend for the commercial sector. Therefore, Navigant Consulting estimates the market share in Ontario to be medium.

AFUE 92

	Electricity	and Other Resour	ce Savings	Equipment & O&M	Equipment & O&M Costs of
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m³/kBtu/h)	(kWh)	(L)	(\$)	(\$)
1	4.2	0	0	3,300	2,233
2	4.2	0	0	0	0
3	4.2	0	0	0	0
4	4.2	0	0	0	0
5	4.2	0	0	0	0
6	4.2	0	0	0	0
7	4.2	0	0	0	0
8	4.2	0	0	0	0
9	4.2	0	0	0	0
10	4.2	0	0	0	0
11	4.2	0	0	0	0
12	4.2	0	0	0	0
13	4.2	0	0	0	0
14	4.2	0	0	0	0
15	4.2	0	0	0	0
16	4.2	0	0	0	0
17	4.2	0	0	0	0
18	4.2	0	0	0	0
TOTALS	75.8	0	0	3611	2,233

¹³ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

 ¹⁴ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,
 ¹⁵ NRCan, Office of Energy Efficiency, Comprehensive Energy Use Database: Table 22: Single detached heating system stock by heating system type, <u>http://oee.nrcan.gc.ca/corporate/statistics/neud/dpa/trends_res_on.cfm</u>, updated September 2008.

Annual Natural Gas Savings	4.2 m ³ / kBtu / h
 Gas savings associated with upgrading from a mid-efficiency furn are based on the following formula: 	ace to a high efficiency furnace
 Annual Savings = 1 – Base Technology AFUE / Efficient Equipme = 1 – 80/92 = 13.0% 	ent AFUE
 The US DOE reports a 12.9% gas savings for an AFUE 92 furned baseline).¹⁶ 	e (based on an AFUE 80
 Natural gas savings are based on Enbridge research¹⁷ indicating for a mid-efficiency furnace¹⁸ is 2,436 m³. 	that the average consumption
 Using the calculated percent savings (13.0%) multiplied by the bam³) the annual gas savings are estimated to be 316.7 m³. 	se energy consumption (2,436
 Assuming a typical commercial furnace input of 75,000 BTU/h, na thousand BTU/h basis are 316.7 m³ / 75 kBtu/h = 4.2 kBtu/h 	atural gas savings on a per
Annual Electricity Savings	0 kWh
Electricity savings resulting from high efficiency furnaces are negligible.	
Annual Water Savings	0 L
N/A	
Other Input Assumptions	
Effective Useful Life (EUL)	18 Years
ACEEE ¹⁹ and State of Iowa ²⁰ both estimate an effective useful life of 18 y	Durat Cound Energy 21

ACEEE ¹⁹ and State of Iowa ²⁰ both estimate an effective useful life of 18 y and New England State Program Working Group (SPWG) ²² also suggest furnaces.	ears. Puget Sound Energy ²¹ 18 years for high efficiency
Base & Incremental Conservation Measure Equipment and O&M Costs	\$11 / kBtu / hr

Average incremental cost is based on communication with local HVAC contractors. Navigant Consulting is assuming that the ratio of the incremental cost between a commercial AFUE 80 furnace and a commercial AFUE 92 furnace is the same as for residential market. Therefore, assuming 47% increase over a baseline commercial AFUE 80 furnace (\$3,000), the incremental cost would be \$1,500 for a 135.00 Btu/hr furnace. or \$11/kBtu/hr.

Using an 5-year average commodity cost (avoided cost)²⁴ of \$0.38/ m³ and an average commercial distribution cost²⁵ of \$0.12 / m³, the payback period for natural gas savings is determined to be 5.2 years, based on the following:

²¹ Quantec, Comprehensive Demand-Side Management Resource Assessment, Prepared for Puget Sound Energy, May 2007

²² GDS Associates, Inc., Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for The New England State Program Working Group (SPWG), For use as an Energy Efficiency Measures/Programs Reference Document for the ISO Forward Capacity Market (FCM), June 2007

¹⁶ US DOE Residential Furnaces and Boilers Technical Support Document Analytical Tools. Life Cycle Cost Results for Non-Weatherized Gas Furnaces. http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_nwgf_gt6000hdd.xls ¹⁷ Based on information provided by Enbridge Gas, based on Decision for the Enbridge 2006 DSM Plan (EB2005-0001).

¹⁸ Average commercial baseline consumption for a mid-efficiency furnace was not available from either of the Ontario gas utilities, therefore, residential baseline furnace consumption will be used and computed on a per thousand Btu/h basis.

Powerful Priorities: Updating Energy Efficiency Standards for Residential Furnaces, Commercial Air Conditioners, and Distribution Transformers. ACEEE, September 2004.

²⁰ Joint Assessment Study, MidAmerican Energy Company, Appendix C. State of Iowa Utilities Board Docket No. EEP-08-2, 2008, C-131

²³ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

²⁴ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

Payback Period = Incremental cost / (natural gas savings x natural gas cost)

= \$11/kBtu/hr / (4.2m³/kBtu/hr/year* \$0.50 / m³)

= 5.2 Years

Market Share²⁶

Based on market share information for residential furnaces²⁷, Navigant Consulting is assuming a similar trend for the commercial sector. Therefore, Navigant Consulting estimates the market share in Ontario to be medium.

Medium

AFUE 96

Electricity and Other Resource Savings Equipment & O&M		Equipment & O&M Costs of			
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m³/kBtu/h)	(kWh)	(L)	(\$)	(\$)
1	5.4	0	0	4,667	2,233
2	5.4	0	0	0	0
3	5.4	0	0	0	0
4	5.4	0	0	0	0
5	5.4	0	0	0	0
6	5.4	0	0	0	0
7	5.4	0	0	0	0
8	5.4	0	0	0	0
9	5.4	0	0	0	0
10	5.4	0	0	0	0
11	5.4	0	0	0	0
12	5.4	0	0	0	0
13	5.4	0	0	0	0
14	5.4	0	0	0	0
15	5.4	0	0	0	0
16	5.4	0	0	0	0
17	5.4	0	0	0	0
18	5.4	0	0	0	0
TOTALS	97.4	0	0	4,667	2,233

²⁵ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

²⁶ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,
 ²⁷ NRCan, Office of Energy Efficiency, Comprehensive Energy Use Database: Table 22: Single detached heating system stock by heating system type, <u>http://oee.nrcan.gc.ca/corporate/statistics/neud/dpa/trends_res_on.cfm</u>, updated September 2008.

Annual Natural Gas Savings	5.4 m³ / kBtu / h
 Gas savings associated with upgrading from a mid-efficiency furr are based on the following formula: 	ace to a high efficiency furnace
 Annual Savings = 1 – Base Technology AFUE / Efficient Equipment = 1 – 80/96 	ent AFUE
 = 16.7% The US DOE reports a 16.1% gas savings for an AFUE 96 furnation baseline).²⁸ 	ce (based on an AFUE 80
 Natural gas savings are based on Enbridge research²⁹ indicates mid-efficiency furnace³⁰ is 2,436 m³. 	the average consumption for a
 Using the calculated percent savings (16.7%) multiplied by the bam³) the annual gas savings are estimated to be 406.8 m³. 	ase energy consumption (2,436
 Assuming a typical commercial furnace input of 75,000 BTU/h, na thousand BTU/h basis are 406.8 m³ / 75 kBtu/h = 5.4 kBtu/h 	atural gas savings on a per
Annual Electricity Savings	0 kWh
Electricity savings resulting from high efficiency furnaces are negligible.	
Annual Water Savings	0 L
N/A	
Other Input Assumptions	
Effective Useful Life (EUL)	18 Years
ACEEE ³¹ and State of Iowa ³² both estimate an effective useful life of 18 y	- Durat Cound Energy 33

ACEEE³¹ and State of Iowa³² both estimate an effective useful life of 18 years. Puget Sound Energy³ and New England State Program Working Group (SPWG)³⁴ also suggest 18 years for high efficiency furnaces.

Base & Incremental Conservation Measure Equipment	\$18.5 / kBtu / h
and O&M Costs	φ10.37 KDlu7 Π

Average incremental cost is based on communication with local HVAC contractors. Navigant Consulting is assuming that the ratio of the incremental cost between a commercial AFUE 80 furnace and a commercial AFUE 96 furnace is the same as for residential market. Therefore, assuming 85% increase over a baseline commercial AFUE 80 furnace (\$3,000), the incremental cost would be \$2,500 for a 135.000 Btu/hr furnace. or \$18.5/kBtu/hr.

Customer Payback Period (Natural Gas Only) ³⁵ 8.1 Years
--

Using an 5-year average commodity cost (avoided cost)³⁶ of \$0.36/m³ and an average commercial distribution cost³⁷ of \$0.14 / m³, the payback period for natural gas savings is determined to be 8.1 years, based on the following:

³³ Quantec, Comprehensive Demand-Side Management Resource Assessment, Prepared for Puget Sound Energy, May 2007

³⁴ GDS Associates, Inc., Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, Prepared for The New England State Program Working Group (SPWG), For use as an Energy Efficiency Measures/Programs Reference Document for the ISO Forward Capacity Market (FCM), June 2007

²⁸ US DOE Residential Furnaces and Boilers Technical Support Document Analytical Tools. Life Cycle Cost Results for Non-Weatherized Gas Furnaces. http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_nwgf_gt6000hdd.xls ²⁹ Based on information provided by Enbridge Gas, based on Decision for the Enbridge 2006 DSM Plan (EB2005-0001).

³⁰ Average commercial baseline consumption for a mid-efficiency furnace was not available from either of the Ontario gas utilities, therefore, residential baseline furnace consumption will be used and computed on a per thousand Btu/h basis.

³¹ Powerful Priorities: Updating Energy Efficiency Standards for Residential Furnaces, Commercial Air Conditioners, and Distribution Transformers. ACEEE, September 2004.

³² Joint Assessment Study, MidAmerican Energy Company, Appendix C. State of Iowa Utilities Board Docket No. EEP-08-2, 2008, C-131

³⁵ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

³⁶ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

Payback Period = Incremental cost / (natural gas savings x natural gas cost)

= \$22/kBtu/hr / (5.4m³/kBtu/hr/year* \$0.50 / m³)

= 8.1 Years

Market Share³⁸

Medium

Based on market share information for residential furnaces³⁹, Navigant Consulting is assuming a similar trend for the commercial sector. Therefore, Navigant Consulting estimates the market share in Ontario to be medium.

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Questar Gas, 2006 ⁴⁰	841.5	20	487.5	N/A
Comments Questar Gas reported 30).6 DTH annual natu	ral gas savings,	which translates to	9 841.5 m ³ .
Puget Sound Energy ⁴¹	0.0396 m ³ /sq.ft.	20	\$0.1/sq.ft.	N/A
Comments Puget Sound reports 12% savings based on a baseline gas furnace of AFUE 75 and energy efficient furnace of AFUE 85. Baseline usage is 0.12 therms/sq.ft., therefore savings is 12% x 0.12 therms/sq.ft. x 2.75 m ³ /therm = 0.0396 m ³ /sq.ft.				

³⁷ Average distribution cost taken calculated from both Union Gas website (http://www.uniongas.com/residential/rates/) and Average distribution cost taken calculated non both childred to the fore notice to the state (<u>https://portal-plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2)</u>. ³⁸ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

³⁹ NRCan, Office of Energy Efficiency, Comprehensive Energy Use Database: Table 22: Single detached heating system stock by heating system type, http://oee.nrcan.gc.ca/corporate/statistics/neud/dpa/trends_res_on.cfm, updated September 2008. ⁴⁰ Nexant, Questar Gas DSM Market Characterization Report, 2006

⁴¹ Quantec, Comprehensive Demand-Side Management Resource Assessment, Prepared for Puget Sound Energy, May 2007

Infrared Heaters

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description
Infrared heater (up to 300,000 Btu/hour)
Base Equipment and Technologies Description
Regular unit heater

Decision Type	Target Market(s)	End Use
New/Retrofit	New/Existing Commercial buildings	Space Heating

Codes, Standards, and Regulations

The old code CAN 1-2.16-M81 (R1996) has been withdrawn.

Resource Savings Table

	Electricity and Other Resource Savings		e Savings	Equipment & O&M Costs of	Equipment & O&M
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m ³ /Btu/hour)	(kWh)	(L)	(\$/Btu/hour)	(\$)
1	0.015	245 ~ 870	0	0.0122	0
2	0.015	245 ~ 870	0	0	0
3	0.015	245 ~ 870	0	0	0
4	0.015	245 ~ 870	0	0	0
5	0.015	245 ~ 870	0	0	0
6	0.015	245 ~ 870	0	0	0
7	0.015	245 ~ 870	0	0	0
8	0.015	245 ~ 870	0	0	0
9	0.015	245 ~ 870	0	0	0
10	0.015	245 ~ 870	0	0	0
11	0.015	245 ~ 870	0	0	0
12	0.015	245 ~ 870	0	0	0
13	0.015	245 ~ 870	0	0	0
14	0.015	245 ~ 870	0	0	0
15	0.015	245 ~ 870	0	0	0
16	0.015	245 ~ 870	0	0	0
17	0.015	245 ~ 870	0	0	0
18	0.015	245 ~ 870	0	0	0
19	0.015	245 ~ 870	0	0	0
20	0.015	245 ~ 870	0	0	0
TOTALS	0.3	4,900 ~ 17,400	0	0.0122	0

Annual Natural Gas Savings

0.015 m³ / Btu/ h

• The infrared heater gas savings were based on the analysis procedures previously created by Agviro Inc. for Union Gas¹. The analysis was supplemented by adding 20% oversizing factor for the equipment, based on recommendations by Union Gas.

Location	Heater Range	Annual Gas Savings (m ³ /year)			
	(Btu/h)	Single Stage	2-Stage	High Intensity	
London	0 - 75,000	898	1,508	898	
	76,000 - 150,000	1,786	3,017	1,786	
	151,000 - 300,000	3,591	6,033	3,591	
	0 - 75,000	971	1,631	971	
Sudbury	76,000 - 150,000	1,942	3,262	1,942	
	151,000 - 300,000	3,883	6,524	3,883	

• An average rate of savings of 0.015 m³/Btu/hour was determined by taking a weighted average of the savings from both locations: 70% of Union Gas South (London) and 30% of Union Gas North (Sudbury) based on customer population distribution in Union Gas service territories.

Weighted Average							
Heater Range Single Stage (Btu/h) (m ³ /year)		2-Stage (m ³ /year)	High Intensity (m ³ /year)	Average (m ³ /year)			
0 - 75,000	920	1,545	920	1,128			
76,000 - 150,000	1,833	3,091	1,833	2,252			
151,000 - 300,000	3,679	6,180	3,679	4,513			
Heater Range (Btu/h)	Single Stage (m ³ /Btu/hr/year)	2-Stage (m ³ /Btu/hr/year)	High Intensity (m ³ /Btu/hr/year)	Average (m ³ /Btu/h/year)			
0 - 75,000	0.0123	0.0206	0.0123	0.015			
76,000 - 150,000	0.0122	0.0206	0.0122	0.015			
151,000 - 300,000	0.0123	0.0206	0.0123	0.015			

• Baseline estimates of natural gas consumption²:

Heater Range (Btu/h)	Annual Gas Use (m³/year)
0 - 75,000	6,131
76,000 - 150,000	12,262
151,000 - 300,000	24,525

• Percentage of natural gas savings = Average Savings / Baseline Gas Consumption = 18.4%

Annual Electricity Savings

245 ~ 870 kWh

• Electricity savings are determined by taking the difference in electricity consumption for infrared

¹Assessment of Average Infrared Heater Savings, Agviro, December 1, 2004

 ² "Prescriptive Incentives for Selected Natural Gas Technologies", Prepared for Enbridge Consumers Gas and Union Gas Ltd., Prepared by: Jacques Whitford Environment Limited, Agviro Inc., and Engineering Interface Ltd., September 27, 2000.

heater and a comparable unit heater.

• Electricity savings are based on Solaronics models that use a 1/24 hp motor³.

	Capacities		Operating Hours				
Capacity	Unit Heater (kW)	Infrared (kW)	Unit Heater	Infrared	Electricity Savings (kWh)	Baseline Consumption (kWh)	Savings%
< 50,000 Btu/hr	0.124	0.031	2,509	2,133	245	311	79%
<165,000 Btu/hr	0.249	0.031	2,509	2,133	559	625	89%
>165,000 Btu/hr	0.373	0.031	2,509	2,133	870	936	93%

- Electricity savings = Unit heater capacity x operating hours Infrared Capacity x operating hours, the savings are summarised above for three ranges of capacities.
- Electricity savings % = Electricity savings (kWh) / Baseline Consumption (kWh)

Annual Water Savings 0 L

Other Input Assumptions

Effective Useful Life (EUL)	20 Years				
Infrared heaters have an estimated service life of 20 years ⁴ .					
Base & Incremental Conservation Measure Equipment and O&M Costs	\$ 0.0122 / Btu / h				
An incremental cost of \$350 was used based on past input assumptions f reported an average of \$0.009 / Btu/hr incremental cost. Navigant Consul average of \$0.0122 / Btu/hour.					
Customer Payback Period (Natural Gas Only) ⁶	1.6 Years				
Using an 5-year average commodity cost (avoided $cost$) ⁷ of $0.38 / m^3$ and an average commercial distribution $cost^8$ of $0.12 / m^3$, the payback period for natural gas savings is determined to be 1.6 years, based on the following:					
On a per Btu/hour basis, Payback Period = Incremental cost / (natural gas savings x natural gas co = \$0.0122/ (0.015 m ³ /year * \$0.5 / m ³) = 1.6 years	ost)				

³ Solaronics specification sheet, <u>http://solaronics.thomasnet.com/Asset/SSTG-SSTU-GB_200010_Spec_Sheet.pdf</u>

⁴ "Prescriptive Incentives for Selected Natural Gas Technologies", Prepared for Enbridge Consumers Gas and Union Gas Ltd., Prepared by: Jacques Whitford Environment Limited, Agviro Inc., and Engineering Interface Ltd., September 27, 2000.

⁵ EB-2005-0211, Union Gas Settlement Agreement, April 7, 2005

⁶ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

⁷ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

⁸ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>https://portal-</u>

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2).

Market Penetration⁹

Medium

Based on communication with local contractors, Navigant Consulting is estimating a medium market penetration in Ontario. Infrared systems are currently used in approximately 5% of existing heating applications and 10% and 25% of new space heating applications¹⁰.

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share			
Questar Gas ¹¹	32.64	17	1,391	N/A			
Comments Specifications for infrared heaters are not provided in the report or the baseline assumptions.							

 ⁹ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,
 ¹⁰ "Prescriptive Incentives for Selected Natural Gas Technologies", Prepared for Enbridge Consumers Gas and Union Gas Ltd.,

Prepared by: Jacques Whitford Environment Limited, Agviro Inc., and Engineering Interface Ltd., September 27, 2000. Union Gas Heating Product Database.

¹¹ Questar Gas, DSM Market Characterization Report, by Nexant, August 9, 2006

Gas-fired Rooftop Unit

	Revision #	Description/Comment	Date Revised
ľ			
l			

Efficient Equipment and Technologies Description	
Two-stage rooftop units (5 ton per unit)	
Base Equipment and Technologies Description	
Single-stage rooftop units (5 ton per unit)	

Decision Type	Target Market(s)	End Use
New	Commercial buildings	Space Heating

Codes, Standards, and Regulations

- Residential gas furnaces are prescribed as regulated products under Canada's Energy Efficiency Regulations¹
- NRCan proposes to increase the minimum performance level, Annual Fuel Utilization Efficiency (AFUE), for gas-fired furnaces with an input rate not exceeding 65.92 kW (225 000 Btu/h) to 90%. The amendment is intended to introduce new MEPS and associated reporting and compliance requirements for Commercial and industrial gas unit heaters.
- DOE currently has no regulation on AFUE level for commercial gas-fired rooftop units².

Resource Savings Table

	Electricity and Other Resource Savings		Equipment & O&M Costs of	Equipment & O&M	
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m³)	(kWh)	(L)	(\$)	(\$)
1	255	0	0	375	0
2	255	0	0	0	0
3	255	0	0	0	0
4	255	0	0	0	0
5	255	0	0	0	0
6	255	0	0	0	0
7	255	0	0	0	0
8	255	0	0	0	0
9	255	0	0	0	0
10	255	0	0	0	0
11	255	0	0	0	0
12	255	0	0	0	0
13	255	0	0	0	0
14	255	0	0	0	0
15	255	0	0	0	0
TOTALS	3,825	0	0	375	0

¹ Canada's Energy Efficiency Regulations (OEE), http://oee.nrcan.gc.ca/regulations/bulletin/gas-furnace-jan2008.cfm?attr=0

² U.S. Department of Energy, http://www1.eere.energy.gov/buildings/appliance_standards/commercial/ac_hp.html

Annual Natural Gas Savings	255 m ³	
Annual Natural Oas Oavings	255 11	

- Baseline reference case is for a typical new 10,000 sq ft office building, occupant density of 200 sq ft per person. Ventilation is through the five 5 ton rooftop HVAC units using the unit fans³.
- Energy efficiency option is five 5 ton units with 2 stage burners in the heating section.
- Baseline estimates of natural gas consumption = 25,500 m³.
- Natural Gas Savings % = $1,275 \text{ m}^3 / 25,500 \text{ m}^3 = 5\%$
- OBC 2006 does not have more stringent efficiency requirements than OBC 1997 for the furnace section of rooftop units, so the energy savings from the Jacques Whitford study⁴ were not modified.

Equipment Description	Incremental Cost Estimate	Efficie ncy	Gas Consumption (m ³ /year)
Single stage units	\$0	80%	25,500
2-stage heating (5)	\$1,250	85%	24,225
Savings			1,275

• Therefore, one 5 ton unit with 2 stage burners is estimated to save 1,275 m³ / 5 units = 255 m³.

Annual Electricity Savings	0 kWh
N/A	
Annual Water Savings	0 L
N/A	

Other Input Assumptions

Effective Useful Life (EUL)	15 Years
Estimated equipment life is 15 years ⁵ .	
Base & Incremental Conservation Measure Equipment and O&M Costs	\$ 375
The incremental cost of two-stage rooftop units compared single-stage unwhich equates to \$250 per 5 ton unit ⁶ . Local Canadian manufacturer discl for 2-stage rooftop units comparing with single stage rooftop units. Theref assumed.	osed incremental cost of \$500
Customer Payback Period (Natural Gas Only) ⁷	2.9 Years
Using an 5-year average commodity cost (avoided cost) ⁸ of \$0.38 / m ³ ar distribution cost ⁹ of \$0.12 / m ³ , the payback period for natural gas savings based on the following:	nd an average commercial is determined to be 2.9 years,

³ "Prescriptive Incentives for Selected Natural Gas Technologies", Prepared for Enbridge Consumers Gas and Union Gas Ltd., Prepared by: Jacques Whitford Environment Limited, Agviro Inc., and Engineering Interface Ltd., September 27, 2000. A survey of manufacturers and distributors was conducted to solicit updated information as per Union Gas' Heating Product Database. Detailed lists were developed for each technology and integrated with the Heating Products Database.

⁴ Ibid.

⁵ ASHRAE Handbook, 2008

⁶ "Prescriptive Incentives for Selected Natural Gas Technologies", Prepared for Enbridge Consumers Gas and Union Gas Ltd., Prepared by: Jacques Whitford Environment Limited, Agviro Inc., and Engineering Interface Ltd., September 27, 2000. A survey of manufacturers and distributors was conducted to solicit updated information as per Union Gas' Heating Product Database. Detailed lists were developed for each technology and integrated with the Heating Products Database.

⁷ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

⁸ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

⁹ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>https://portal-</u>

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2).

Payback Period = Incremental cost / (natural gas savings x natural gas cost)

Market Penetration¹⁰

Medium

Based on communication with local contractors and manufacturers, 2-stage rooftop units are popular and more efficient technology for space heating. Therefore, Navigant Consulting is estimating a medium market penetration in Ontario.

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)		Penetration/ Share		
Emerging Technologies & Practice, ACEEE ¹¹	770	15	1,000)	N/A		
Comments 28 MMBtu/year is approximately equal to 770 m ³ natural gas.							
Equipment Description		Incremental Cost Estimate	Efficiency		Consumption Btu/year)		
10 ton gas-fired rooftop unit		\$0	0.80	178.5	5		
10 ton gas-fired conde	nsing rooftop unit	\$1,000	0.95	150.3	3		

 ¹⁰ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,
 ¹¹ ACEEE, High Efficiency Gas-fired Rooftop Units, <u>www.aceee.org/pubs/a042_h16.pdf</u>

Programmable Thermostat - Commercial

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description	
Programmable thermostat.	
Base Equipment and Technologies Description	
Standard thermostat.	

Decision TypeTarget Market(s)End UseRetrofitCommercial buildingsSpace Heating

Codes, Standards, and Regulations

- For a programmable thermostat to receive Energy Star® qualification, it must meet specific criteria such as having at least two different programming periods (for weekday and weekend programming), at least four possible temperature settings and allow for temporary overriding by the user.
- In Canada, applicable CSA standards can be found in CSA C828-99- CAN/CSA Performance Requirements for Thermostats used with Individual Room Electric Space Heating Devices.

Resource	Savings	Table
NESOUICE	Javinya	Iable

	Electricity	Electricity and Other Resource Savings		Equipment & O&M Costs of	Equipment & O&M
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	239	251	0	110	0
2	239	251	0	0	0
3	239	251	0	0	0
4	239	251	0	0	0
5	239	251	0	0	0
6	239	251	0	0	0
7	239	251	0	0	0
8	239	251	0	0	0
9	239	251	0	0	0
10	239	251	0	0	0
11	239	251	0	0	0
12	239	251	0	0	0
13	239	251	0	0	0
14	239	251	0	0	0
15	239	251	0	0	0
TOTALS	3,585	3,765	0	110	0

Resource Sa	vings As	sump	otion	S								
Annual Natura	I Gas Sav	ings								239	m³	
• The natural gas savings are based on average space heating gas consumption for office buildings in the Union Gas franchise area.												
Normalized average natural gas use per customer are summarized below:												
Natural Gas (m ³)	Jan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Office Total	1,693 2,274	1,782	1,235	750	367	246	208	240	325	798	1,143	11,061
Baseload	4 420 2 000		070	405	402		65		60	500	070	
Savings	1,428 2,009	•	970	485	102	-	-	-	60	533		7,980
 Baseload consumption (e.g., non-space heating gas usage) is assumed to be the average consumption between June and September Monthly Natural Gas Savings = Monthly Office Total – Monthly Baseload Consumption According to the Puget Sound report¹, a programmable thermostat results in 2% annual natural gas savings in commercial settings. According to the State of Iowa Utilities Board², a programmable thermostat results in 3% annual natural gas savings in commercial settings. Navigant Consulting uses 3% savings because of the comparable weather conditions between Iowa and Ontario. Therefore, natural gas savings = 3% x 7,980 m³ = 239 m³ for using programmable thermostat. Baseline estimates of natural gas consumption = 7,980 m³ Natural Gas Savings percentage = 3% 												
Annual Electri	city Savin	gs							2	251.1	kWh	
 Navigant Consulting is assuming the space cooling to space heating ratio for residential is the same as for commercial applications. From HOT2000 residential simulations, the ratio of space cooling to space heating was found to be 1.05 kWh / m³. Applying this ratio to the space heating gas consumption result, the annual electricity consumption for space cooling is estimated to be 8,370 kWh (7,980 m³ x 1.05 kWh / m³). According to the State of Iowa Utilities Board³, a programmable thermostat results in 3% annual saving in electricity for commercial space cooling needs. Therefore, electricity savings = 3% x 8,370 m³ = 251.1 m³ for using programmable thermostat. Baseline estimates of electricity consumption = 8,370 kWh. Natural Gas Savings % = 3 % 												
Annual Water	Savings									0	L	
N/A												
Other Innut A												

Other Input Assumptions

Effective Useful Life (EUL)	15 Years				
Navigant Consulting is estimating 15 years as the effective useful life bas programmable thermostat from Energy Star ® website.	ed on the average lifetime of				
Base & Incremental Conservation Measure Equipment	A 440				
and O&M Costs	\$ 110				

¹ Quantec, Comprehensive Demand-Side Management Resource Assessment, Prepared for Puget Sound Energy, May 2007 ² Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2 ³ Ibid.

thermostat is \$110.	
Natural Gas Payback Period	0.9 Years
Using an 5-year average commodity cost (avoided cost) ⁵ of \$0.38 / m ³ ar distribution cost ⁶ of \$0.12 / m ³ , the payback period for natural gas savings based on the following:	nd an average commercial is determined to be 0.9 years,
Payback Period = Incremental cost / (natural gas savings x natural gas co = \$110/ (239 m³/year * \$0.5 / m³) = 0.9 years	ost)
Market Penetration ⁷	Medium
Based on the observation of medium penetration in one jurisdiction (e.g., penetration in another (e.g., lowa) and communication with local retailers	

Measure Assumptions Used by Other Jurisdictions

the penetration in Ontario to be medium.

Source	Annual Natural Gas Savings (m ³)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
Puget Sound Energy ⁸	0.01045 per ft ²	10	\$0.01 per ft ² - (Office)	48%	
Comments Base equipment is a non-programmable thermostat. Baseline consumption is reported on a per square footage basis (e.g. 0.19 therms per ft ² for office). Estimated 2% savings for programmable thermostats are reported as a percent saving over the baseline. Equivalent natural gas savings is 2% x 0.19 therms/sq.ft. x 2.75 m ³ /therm = 0.01045 m ³					
Source	Penetration/Market Share				
State of Iowa Utilities Board ⁹	0.03383	15	\$0.017 per ft ² (Large Office) - \$0.034 per ft ² (Small Office)	13% (large office) 13% (small office)	
Comments Base equipment is a non-programmable thermostat. Baseline consumption is reported on a square					

Base equipment is a non-programmable thermostat. Baseline consumption is reported on a square footage basis (e.g.0.35 therms/sqft for large office, and 0.41 therms/sqft for small office). Estimated 3% savings for a programmable thermostat is reported as a percent saving over the baseline. Equivalent natural gas savings is $3\% \times 0.41$ therms/sq.ft. x 2.75 m³/therm = 0.3383 m³

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2).

⁴ Ibid.

⁵ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

⁶ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>https://portal-</u>

⁷ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

⁸ Quantec, Comprehensive Demand-Side Management Resource Assessment, Prepared for Puget Sound Energy, May 2007

⁹ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Prescriptive Schools – Elementary

Revision # Description/Comment		Date Revised		

Efficient Equipment and Technologies Description
Space heating, hydronic boiler with combustion efficiency of 83% or higher.
Base Equipment and Technologies Description
Space heating, hydronic boiler with combustion efficiency of 80% to 82%.

Decision TypeTarget Market(s)End UseReplacementInstitutional BuildingsSpace Heating

Codes, Standards, and Regulations

- ASHRAE Standard 155P: test and calculation procedures result in an application-specific seasonal efficiency of commercial space heating boiler systems¹.
- ASHRAE Standard 90.1-2004: minimum boiler efficiencies for buildings except low-rise residential buildings².

Resource Savings Table

	Electricity	Electricity and Other Resource Savings		Equipment & O&M Costs of	Equipment & O&M	
Year	Year Natural Gas		Water	Conservation Measure	Costs of Base Measure	
(EUL=)	(m³)	(kWh)	(L)	(\$)	(\$)	
1	10,830	0	0	5,646	0	
2	10,830	0	0	0	0	
3	10,830	0	0	0	0	
4	10,830	0	0	0	0	
5	10,830	0	0	0	0	
6	10,830	0	0	0	0	
7	10,830	0	0	0	0	
8	10,830	0	0	0	0	
9	10,830	0	0	0	0	
10	10,830	0	0	0	0	
11	10,830	0	0	0	0	
12	10,830	0	0	0	0	
13	10,830	0	0	0	0	
14	10,830	0	0	0	0	
15	10,830	0	0	0	0	
16	10,830	0	0	0	0	
17	10,830	0	0	0	0	
18	10,830	0	0	0	0	
19	10,830	0	0	0	0	
20	10,830	0	0	0	0	
21	10,830	0	0	0	0	
22	10,830	0	0	0	0	
23	10,830	0	0	0	0	
24	10,830	0	0	0	0	
25	10,830	0	0	0	0	
TOTALS	270,750	0	0	5,646	0	

¹Boiler System Efficiency, ASHRAE Journal, July 2006

² Ibid.

Annual Natural Gas Savings	10,830 m ³
 The Agviro study³ analyzed the gas usage of 859 elementary school I The analysis determined: 	based on 2006 billing record.
- The consumption and size of an average elementary school	

- The size of boiler required to heat the typical elementary school
- The manufacturer's suggested retail price for boilers based on the determined size
- The savings of higher efficiency boilers versus a base case of 80 to 82% efficiency
- Incremental cost associated with the higher efficiency boiler
- Based on Enbridge project records⁴ the study found that 2 smaller boilers are typically installed (2 x 400 MBH boilers) for elementary schools. Also, based on project records, the study found that boiler upgrades will be weighted 89% towards the efficiency range of 85% to 88% and 11% towards boilers with combustion efficiencies ranging from 83% to 84%.

	Estimated Annual Gas Consumption (m ³)	Estimated Annual Gas Savings (m ³)	Weighted Average NG Savings (m ³)	
Base Case (81%)	51,753			
Mid Efficiency (83.5%)	44,073	7,680	10,920	
High Efficiency (86.5%)	40,534	11,219	- 10,830	

- Baseline estimates of natural gas consumption = 51,753 m³.
- Natural Gas Savings % = 10,830 m³ / 51,753 m³ = 21%

Annual Electricity Savings	0 kWh
N/A	
Annual Water Savings	0 L
N/A	

Other Input Assumptions

Effective Useful Life (EUL)				25 Years	
Boilers have an estimated service life of 25 years according to ASHRAE ⁵ .					
Base & Incremental Conservation Measure Equipment and O&M Costs			\$ 5,646		
	Average N				
	Combustion Efficiency	Average MSRP	Incremental Cost		
	80 - 82 % [Base Case]	2 x \$5,500 = \$11,000			
	83 - 84% [Mid Efficiency]	2 x \$7,700 = \$15,400			
	85 - 88% [High Efficiency]	2 x \$8,400 = \$16,800			
 Incremental costs are based on the weighted average of boiler types as noted above⁶. 					
Customer Payback Period (Natural Gas Only) 1.0 Years					
Using an 5-year average commodity cost (avoided cost) ⁷ of \$0.38 / m ³ and an average commercial					

Using an 5-year average commodity cost (avoided cost)' of \$0.38 / m³ and an average commercial distribution cost⁸ of \$0.12 / m³, the payback period for natural gas savings is determined to be 1.0 years, based on the following:

³ Agviro Inc, Elementary Schools Prescriptive Savings Analysis, November 23, 2007

⁴ Ibid.

⁵ ASHRAE Applications Handbook – 2003, Chapter 36 – Owning and Operating Costs, Table 3

⁶ Agviro Inc, Elementary Schools Prescriptive Savings Analysis, November 23, 2007

Payback Period = Incremental cost / (natural gas savings x natural gas cost)

= \$5,646/ (10,830 m³/year * \$0.5 / m³)

= 1.0 years

Market Penetration⁹

Based on communication with local contractors and other jurisdiction penetration rates, the market penetration for high efficiency boilers in schools is low. Therefore, Navigant Consulting is estimating a low market penetration.

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
Iowa State Utility Board Assessment Study ¹⁰	0.077 per ft ²	20	24.589 per ft ²	5%	
Comments Greater than 300 kBTUh, upgrade from 80% thermal baseline efficiency to 85% thermal efficiency. Baseline Therm reported on a square footage basis (eg 0.50 therms/sq.ft.for education sector). Estimated 5.6% savings for new energy efficient technology is reported as a percent saving over the baseline. Equivalent natural gas savings is 5.6% x 0.50 therms/sq.ft.= 0.028 therms = 0.077 m ³					
Iowa State Utility Board Assessment 0.135 per ft^3 20 30.182 per ft^2 5%Study11					
Comments Greater than 300 kBTUh, upgrade from 80% thermal baseline efficiency to 89% thermal efficiency. y, Baseline Therm reported on a square footage basis (eg 0.50 therms/sq.ft.for education sector). Estimated 5.6% savings for new energy efficient technology is reported as a percent saving over the baseline. Equivalent natural gas savings is 9.8% x 0.50 therms/sq.ft. =0.049 therms = 0.135 m ³					

Low

⁷ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

⁸ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2). Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

¹⁰ Joint Assessment Study, MidAmerican Energy Company, Appendix C. State of Iowa Utilities Board Docket No. EEP-08-2, 2008, C-131

¹¹ Ibid.

Prescriptive Schools – Secondary

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technolog	ies Description
-----------------------------------	-----------------

Space heating, hydronic boiler with combustion efficiency of 83% or higher.

Base Equipment and Technologies Description

Space heating, hydronic boiler with combustion efficiency of 80% to 82%.

Decision Type	Target Market(s)	End Use
Retrofit	Institutional Buildings	Space Heating

Codes, Standards, and Regulations

- ASHRAE Standard 155P: test and calculation procedures result in an application-specific seasonal efficiency of commercial space heating boiler systems¹.
- ASHRAE Standard 90.1-2004: minimum boiler efficiencies for buildings except low-rise residential buildings².

Resource Savings Table

[Electricity and Other Resource Savings		Equipment & O&M Costs of	Equipment & O&M	
Year	Natural Gas	Electricity	Water	Conservation Measure	Costs of Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	43,859	0	0	8,470	0
2	43,859	0	0	0	0
3	43,859	0	0	0	0
4	43,859	0	0	0	0
5	43,859	0	0	0	0
6	43,859	0	0	0	0
7	43,859	0	0	0	0
8	43,859	0	0	0	0
9	43,859	0	0	0	0
10	43,859	0	0	0	0
11	43,859	0	0	0	0
12	43,859	0	0	0	0
13	43,859	0	0	0	0
14	43,859	0	0	0	0
15	43,859	0	0	0	0
16	43,859	0	0	0	0
17	43,859	0	0	0	0
18	43,859	0	0	0	0
19	43,859	0	0	0	0
20	43,859	0	0	0	0
21	43,859	0	0	0	0
22	43,859	0	0	0	0
23	43,859	0	0	0	0
24	43,859	0	0	0	0
25	43,859	0	0	0	0
TOTALS	1,096,475	0	0	8,470	0

¹ Boiler System Efficiency, ASHRAE Journal, July 2006

² Ibid.

Annual Natural Gas Savings	43,859 m ³
• The Agviro study ³ analyzed the gas usage of 147 elementary sch	ool based on 2006 billing
record. The analysis determined:	

- The consumption and size of an average elementary school
- The size of boiler required to heat the typical elementary school
- The manufacturer's suggested retail price for boilers based on the determined size
- The savings of higher efficiency boilers versus a base case of 80 to 82% efficiency
- Incremental cost associated with the higher efficiency boiler
- Based on Enbridge project records the study found that 2 smaller boilers are typically installed (2 x 1500 MBH boilers for elementary schools). Also, based on project records, the study found that boiler upgrades will be weighted 89% towards the efficiency range of 85% to 88% and 11% towards boilers with combustion efficiencies ranging from 83% to 84%.
- Baseline estimates of natural gas consumption = 209,596 m³.

	Estimated Annual Gas Consumption (m ³)	Estimated Annual Gas Savings (m ³)	Weighted Average NG Savings (m ³)
Base Case (81%)	209,596		
Mid Efficiency (83.5%)	178,494	31,102	42.850
High Efficiency (86.5%)	164,160	45,436	43,859

• Natural Gas Savings % = 43,859 m³ / 209,596 m³ = 21%

Annual Electricity Savings	0 kWh
N/A	
Annual Water Savings	0 L
N/A	

Other Input Assumptions

	Effective Useful Life (EUL)			25 Years
Boilers have an estimated service life of 25 years according to ASHRAE ⁴ .				
Base & Incremental Conservation Measure Equipment and O&M Costs				\$ 8,470
Average MSRP for 2x400 MBH Boiler				
Combustion Efficiency	Combustion Efficiency Average MSRP Incremental Cost			
80 - 82 % [Base Case]	80 - 82 % [Base Case] 2 x \$18,100 = \$36,200			
83 - 84% [Mid Efficiency] 2 x \$21,000 = \$42,000 \$8,470				
85 - 88% [High Efficiency] 2 x \$22,500 = \$45,000				

Customer Payback Period (Natural Gas Only)⁶

Using an 5-year average commodity cost (avoided cost)⁷ of $0.38 / m^3$ and an average commercial distribution cost⁸ of $0.12 / m^3$, the payback period for natural gas savings is determined to be 0.4 years, based on the following:

0.4 Years

³ Agviro Inc, Secondary Schools Prescriptive Savings Analysis, November 23, 2007

⁴ ASHRAE Applications Handbook – 2003, Chapter 36 – Owning and Operating Costs, Table 3

⁵ Agviro Inc, Secondary Schools Prescriptive Savings Analysis, November 23, 2007

⁶ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

Payback Period = Incremental cost / (natural gas savings x natural gas cost)

= \$8,470/ (43,859 m³/year * \$0.5 / m³)

= 0.4 years

Market Penetration⁹

Based on communication with local contractors and other jurisdiction penetration rates, the market penetration for high efficiency boilers in schools is low. Therefore, Navigant Consulting is estimating a low market penetration.

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m ³)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
Iowa State Utility Board Assessment Study ¹⁰	0.077 per ft ²	20	24.589 per ft ²	5%	
Comments Greater than 300 kBTUh, upgrade from 80% thermal baseline efficiency to 85% thermal efficiency. Baseline Therm reported on a square footage basis (eg 0.50 therms/sq.ft.for education sector). Estimated 5.6% savings for new energy efficient technology is reported as a percent saving over the baseline. Equivalent natural gas savings is 5.6% x 0.50 therms/sq.ft. = 0.28 therms = 0.077 m ³					
Iowa State Utility Board Assessment 0.135 per ft^2 20 30.182 per ft^2 5%Study11					
Comments Greater than 300 kBTUh, upgrade from 80% thermal baseline efficiency to 89% thermal efficiency. Baseline Therm reported on a square footage basis (eg 0.50 therms/sq.ft.for education sector). Estimated 5.6% savings for new energy efficient technology is reported as a percent saving over the baseline. Equivalent natural gas savings is 9.8% x 0.50 therms/sq.ft = 0.049 therms = 0.135 m ³					

Low

⁷ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

⁸ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2). Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

¹⁰ Joint Assessment Study, MidAmerican Energy Company, Appendix C. State of Iowa Utilities Board Docket No. EEP-08-2, 2008, C-131

¹¹ Ibid.

COMMERCIAL WATER HEATING

Condensing Gas Water Heater - Commercial

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Condensing Gas Water Heater¹ (95% thermal efficiency), 50 gallons.

Due to the variability in energy savings for commercial buildings resulting from the quantity of daily water use, resource savings were calculated for three scenarios of daily hot water use²:

Scenario A: 100 gallons (378 litres) Scenario B: 500 gallons (1,893 litres)

Scenario C: 1,000 gallons (3,786 litres)

Base Equipment and Technologies Description

Conventional storage tank gas water heater³ (thermal efficiency⁴=80%), 91 gallons.

Decision Type	Target Market(s)	End Use
New/Retrofit	Commercial (New/Existing)	Water heating

Codes, Standards, and Regulations

Ontario's Energy Efficiency Act⁵ applies only to water heaters with an input rating of less than 75,000 Btu/hr.

¹ Locally available commercial condensing gas water heater, trade name: Polaris, model #: PC 199-50 http://www.johnwoodwaterheaters.com/pdfs/GSW_PolarisSpecSheet.pdf

² One of the input assumptions required for calculating resource savings for this measure is the stand-by heat loss of storage tank water heaters. Hourly stand-by losses are treated as constant using values drawn from GAMA's *Consumer Directory* (see citation below). This means that marginal percentage gas savings will fall as hot water use rises.

³ Locally available commercial conventional (non-condensing) gas water heater with the same input rating as the Polaris. Manufacturer: Rheem, model #: G91-200.

⁴ Although the required minimum thermal efficiency to be in compliance with ASHRAE 90.1 is 78%, <u>http://www.energycodes.gov/comcheck/pdfs/404text.pdf</u>, only an very small percentage of commercial gas water heaters listed in the GAMA *Consumer's Directory of Certified Efficiency Ratings* had a thermal efficiency of less than 80%. <u>http://www.neo.ne.gov/neg_online/july2006/commgaswtrhtr.pdf</u>

⁵ http://www.energy.gov.on.ca/english/pdf/conservation/2006%20-%20EEA%20Guide%20C%20-%20Water%20Heaters.pdf

Resource Savings Table

	Electricity and Other Resource Savings		Equipment & O&M	Equipment & O&M Costs of	
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	A : 338 B : 905 C : 1,614	0	0	5,880	3,650
2	A : 338 B : 905 C : 1,614	0	0	0	0
3	A : 338 B : 905 C : 1,614	0	0	0	0
4	A : 338 B : 905 C : 1,614	0	0	0	0
5	A : 338 B : 905 C : 1,614	0	0	0	0
6	A : 338 B : 905 C : 1,614	0	0	0	0
7	A: 338 B: 905 C: 1,614	0	0	0	0
8	A : 338 B : 905 C : 1,614	0	0	0	0
9	A : 338 B : 905 C : 1,614	0	0	0	0
10	A : 338 B : 905 C : 1,614	0	0	0	0
11	A : 338 B : 905 C : 1,614	0	0	0	0
12	A : 338 B : 905 C : 1,614	0	0	0	0
13	A : 338 B : 905 C : 1,614	0	0	0	0
TOTALS	A : 4,395 B : 11,769 C : 20,985	0	0	5,880	3,650

Resource Savings Assumptions

Annual Natural Gas Savings	A: 338 m ³ B: 905 m ³ C: 1,614 m ³
Assumptions and inputs:	
Daily hot water draw:	
Scenario A: 100 gallons (378 litres)	
Scenario B: 500 gallons (1,893 litres)	
Scenario C: 1,000 gallons (3,786 litres)	
 Input rating for efficient and base equipment: 199,000 Btu. 	

- Average water inlet temperature: 7.22 °C (45 °F)⁶
- Average water heater set point temperature: 54 °C (130 °F)⁷
- Stand-by loss of (condensing) Polaris PC 199-50 3NV: 244 Btu/hr⁸.
- Stand-by loss of (non-condensing) Rheem G91-200: 1,050 Btu/hr⁹.

Annual gas savings calculated as follows:

$$Savings = \left[W * 8.33 * (T_{out} - T_{in}) * \left(\frac{1}{Eff_{base}} - \frac{1}{Eff_{eff}}\right) + (Stby_{base} - Stby_{eff}) * 24 * 365\right] * 10^{-6} * 27.8$$

Where:

W = Annual hot water use (gallons) 8.33 = Energy content of water (Btu/gallon/ $^{\circ}$ F) T_{out} = Water heater set point temperature ($^{\circ}$ F) T_{in} = Water inlet temperature ($^{\circ}$ F) Eff_{base} = Thermal efficiency of base equipment Eff_{eff} = Thermal efficiency of efficient equipment 10⁻⁶ = Factor to convert Btu to MMBtu Stby_{base} = Stand-by loss per hour for base equipment (Btu) Stby_{eff} = Stand-by loss per hour for efficient equipment (Btu) 24 = Hours per day 365 = Days per year 27.8 = Factor to convert MMBtu to m³

Scenario A: Gas savings were determined to be 29% over base measure Scenario B: Gas savings were determined to be 19% over base measure Scenario C: Gas savings were determined to be 17% over base measure

Percent Savings =
$$\frac{(G_{base} - G_{eff})}{G_{base}}$$

 G_{eff} = Annual natural gas use with efficient equipment, Scenario A: 816 m³ Scenario B: 3,841 m³ Scenario C: 7,622 m³ G_{base} = Annual natural gas use with base equipment, Scenario A: 1,154 m³ Scenario B: 4,746 m³ Scenario C: 9,236 m³

http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf 7 As suggested by NRCan: http://oee.nrcan.gc.ca/residential/personal/new-homes/water-conservation.cfm?attr=4

⁶ Chinnery, Glen. *Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices*, EPA, Energy Star for homes, March 2004

⁸ Consumer's Directory of Certified Efficiency Ratings <u>http://www.neo.ne.gov/neg_online/july2006/commgaswtrhtr.pdf</u> In this case stand-by losses are constant. Recalculating gas savings using the WHAM algorithm, in which stand-by losses are a function of water draw, results in less than 3% variation over the figures presented above. Lutz, J.D., C.D. Whitehead, A.B. Lekov, G.J. Rosenquist., and D.W. Winiarski. 1999. *WHAM: Simplified tool for calculating water heater energy use*. ASHRAE Transactions 105 (1): 1005-1015.

⁹ Consumer's Directory of Certified Efficiency Ratings http://www.neo.ne.gov/neg_online/july2006/commgaswtrhtr.pdf.

Annual Electricity Savings	0 kWh	
N/A		
Annual Water Savings	0 L	
Navigant has assumed that adopting the measure would not affect the quantity of water consumed.		

Other Input Assumptions

Effective U	seful Life (EUL)	13 Years			
Studies conducted in two different jurisdictions (Iowa ¹⁰ and Washington State ¹¹) use an EUL of 13 years, whereas one conducted for Enbridge and Union in 2000 ¹² uses an EUL of 15 years. Given that the two most recent studies both use 13 years, Navigant Consulting also recommends adopting 13 years.					
Base & Inc and O&M C	remental Conservation Measure Equipment	2,230 \$			
Incremental co	ost determined from communication with local distributor ¹³				
Customer I	Customer Payback Period (Natural Gas Only) ¹⁴ A: 13 Years B: 5 Years C: 2.8 Years				
Using a 5-year average commodity cost (avoided cost) ¹⁵ of \$0.38 / m ³ and an average commercial distribution cost ¹⁶ of \$0.12 / m ³ , the payback period for natural gas savings is determined to be 13 years for Scenario A, 5 years for Scenario B and 2.8 years for Scenario C, based on the following:					
Payback Peric	od = Incremental cost / (natural gas savings x natural gas co	ost)			
Scenario A	= \$2,230/ (338 m³/year * \$0.5 / m³) = 13 years				
Scenario B	= \$2,230/ (905 m³/year * \$0.5 / m³) = 5 years				
Scenario C	= \$2,230/ (1,614 m³/year * \$0.5 / m³) = 2.8 years				
Market Pen	etration ¹⁷	Low			
Based on the observation of low penetration in another jurisdiction (Washington State ¹⁸ – 5%), the paucity of distributors in Ontario and of the relatively high incremental cost, Navigant Consulting					

estimates the penetration in Ontario to be low.

¹⁰ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

¹¹ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy

¹² Jacques Whitford Environment Ltd, *Prescriptive Incentives for Select Natural Gas Technologies*, Sept 2000

¹³ Rheem G91-200: \$3,650

Polaris PC 199-50: \$5,880

¹⁴ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included. ¹⁵ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and

weather sensitive avoided gas cost.

¹⁶ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Average distribution cost taken calculated from both online Gas website (<u>http://www.dnongas.com/residential/rates</u>) and Enbridge Gas websites (<u>https://portal-plumprod.cgc.enbridge.com/portal/server.pt?open=512&objlD=248&PageID=0&cached=true&mode=2&userID=2</u>).
 ¹⁷ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,
 ¹⁸ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share		
Pacific Gas & Electric, April 2007 ¹⁹	2,107	N/A	N/A	N/A		
Average daily hot water 95%, thermal efficiency	Comments Average daily hot water use 2,083 gallons per day, thermal efficiency of new technology (60 gallon tank), 95%, thermal efficiency of base measure (standard efficiency tankless water heater), 82%. Measure provides savings of 28% over 7,496 m ³ required for heating water used with base equipment.					
SourceAnnual Natural Gas Savings (m3)Effective Useful Life (Years)Incremental Cost (\$)Penetration/Market Share						
Puget Sound Energy, 2007 ²⁰	0.78 per ft ² .	13	N/A	5%		
Comments Savings calculated for an existing restaurant. Measure saves 34% of 2.28 m ³ per square foot required for water heating.						

¹⁹ Karras, A. and D. Fisher, Energy Efficiency Potential of Gas-Fired Water Heating Systems in a Quick Service Restaurant. Pacific Gas & Electric, April 2007

http://www.fishnick.com/publications/appliancereports/special/Commercial Water Heating Systems.pdf

²⁰ Quantec *Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027)* Prepared for Puget Sound Energy B-226

Pre-Rinse Spray Nozzle (1.6 GPM)

Revision #	Description/Comment	Date Revised		
Efficient Equi	oment and Technologies Description			
Enicient Equi	Sment and Technologies Description			
Low-flow pre-rinse spray nozzle/valve (1.6 GPM)				
Base Equipme	nt and Technologies Description			
Standard pre-rinse	spray nozzle/valve (3.0 GPM)			

Decision Type	Target Market(s)	End Use
Retrofit	Commercial (existing)	Water heating

Codes, Standards, and Regulations

N/A

Resource Savings Table

	Electricity	and Other Resour	ce Savings	Equipment & O&M	Equipment & O&M Costs of
Year (EUL=)	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
	(m ³ /hour of daily use)	(kWh)	(L)	(\$)	(\$)
1	387	0	116,086	41	0
2	387	0	116,086	0	0
3	387	0	116,086	0	0
4	387	0	116,086	0	0
5	387	0	116,086	0	0
TOTALS	1,934	0	580,430	41	0

Annual Natural Gas Sav	•	387 m ³ / hour daily use
Assumptions and inputs: • Average water inlet ter	mperature: 7.22 °C (45 °F) ¹ set point temperature: 54 °C (130 °F) ² efficiency: 0.78 ³	
Annual gas savings calculated	as follows:	
Savings = Ws * Phot * 8.33 *	$(T_{out} - T_{in}) * \frac{1}{Eff} * 10^{-6} * 27.8$	
Where:	Ws = Water savings (gallons) Phot = Percentage of water used that is T_{out} = Water heater set point temperature T_{in} = Water inlet temperature (°F) Eff = Water heater thermal efficiency 8.33 = Energy content of water (Btu/gallo 10 ⁻⁶ = Factor to convert Btu to MMBtu 27.8 = Factor to convert MMBtu to m ³	e (°F)
Gas savings were determined t	o be 47% over base equipment:	
Percent Savings = $\frac{(G_{base} - G_{base})}{(G_{base})}$	e _{eff})	
Where:	G _{eff} = Annual natural gas use with efficie G _{base} = Annual natural gas use with base	
Annual Electricity Savin	gs	0 kWh
N/A		
Annual Water Savings		116,086 L /hour daily use
Assumptions and inputs:		
 Water use for one nozz 	le can vary enormously depending on the	type of establishment using it.

The U.S. DOE Federal Energy Management Program⁵ calculates savings based on four hours of use per day for prisons and military bases. A 2008 Calgary study by Veritec⁶ focuses on grocery

¹ Chinnery, Glen. Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices, EPA, Energy Star for homes, March 2004

http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf As suggested by NRCan: http://oee.nrcan.gc.ca/residential/personal/new-homes/water-conservation.cfm?attr=4

³ Minimum thermal efficiency for compliance with ASHRAE 90.1 standard.

⁴ Empirical finding of:

Veritec Consulting & Canadian Meter Installation Services, Inc. City of Calgary Pre-Rinse Spray Valve Replacement Program, June 2008

http://www.calgary.ca/docgallery/bu/water services/conservation/indoor/calgary pre rinse report.pdf ⁵ U.S. DOE, Federal Energy Management Program, *How to Buy a Low-Flow Pre-Rinse Spray Valve*

http://www1.eere.energy.gov/femp/pdfs/prerinsenozzle.pdf

⁶ Veritec Consulting (2008)

stores and fast-food restaurants and finds that average use is 47 minutes per day. Due to the variability of the establishments and the daily water use, savings were determined based on an hour of use per day.

• Veritec's 2008 Calgary Study found a 6% increase in average daily use after the introduction of a low-flow valve, but did not test the significance of this change. Navigant Consulting is therefore assuming that daily water use remains the same after the introduction of the efficient equipment.

Annual water savings calculated as follows:

$$Savings = (Fl_{base} - Fl_{eff}) * 60 * Hr * 365$$

Where:

Fl_{base} = Flow rate of base equipment (GPM) Fl_{eff} = Flow rate of efficient equipment (GPM) 60 = Minutes per hour Hr = Hours used per day 365 = Days per year

Water savings were determined to be 47% over base equipment:

$$Percent Savings = \frac{\left(W_{base} - W_{eff}\right)}{W_{base}}$$

Where:

W_{eff} = Annual water consumed with efficient equipment, 132,670 litres (35,040 gallons)
 W_{base}= Annual water consumed by showers with base equipment:

248,756 litres (65,700 gallons)

Other Input Assumptions

• •			
Effective Useful Life (EUL)	5 Years		
Studies conducted for the City of Calgary ⁷ , the U.S. DOE's FEMP ⁸ and by Puget Sound Energy ⁹ all giv EUL for this measure as five years.			
Base & Incremental Conservation Measure Equipment and O&M Costs	41 \$		
Incremental cost based on a survey of online retailers ¹⁰ .			
Customer Payback Period (Natural Gas Only) ¹¹ 0.2 Years			
Using a 5-year average commodity cost (avoided cost) ¹² of \$0.38 / m ³ and an average commercial distribution cost ¹³ of \$0.12 / m ³ , the payback period for natural gas savings is determined to be 0.2 years,			

based on the following:

⁷ Ibid.

⁸ U.S. DOE, Federal Energy Management Program, *How to Buy a Low-Flow Pre-Rinse Spray Valve* <u>http://www1.eere.energy.gov/femp/pdfs/prerinsenozzle.pdf</u>

⁹ Quantec *Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027)* Prepared for Puget Sound Energy ¹⁰ Niagara 1.6 GPM Pre-rinse Spray Valve N2180

http://www.conservationmart.com/p-301-niagara-16-gpm-prerinse-spray-valve-n2180.aspx

¹¹ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹² 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

Payback Period = Incremental cost / (natural gas savings x natural gas cost) = \$41/ (387 m ³ /year * \$0.50 / m ³) = 0.2 years				
Market Penetration ¹⁴	Medium			
Based on the observation of high penetration in one jurisdiction (Washing penetration in another (Iowa ¹⁶ – 45%) and of the relatively low cost/beneficestimates the penetration in Ontario to be medium.	ton State ¹⁵ – 70%), of medium it ratio, Navigant Consulting			

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
City of Calgary, 2008 ¹⁷	469	5	0 (City installed)	N/A	
Comments Daily mean use estimated to be 47 minutes before measure installed and 50 minutes with the efficient measure installed. On-site water use data reveal an even mix of hot and cold water used. Average flow rate of base equipment was found to be 3 GPM, while the average flow rate after efficient equipment installed was found to be 1.1 GPM. No indication given of percentage savings or base natural gas consumption for water heating.					
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
U.S. Department of Energy, Federal 2,021 5 N/A N/A Program ¹⁸				N/A	
Comments Assumptions: four hours of use per day, switch from a 3.0 GPM pre-rinse spray valve to a 1.6 GPM pre- rinse spray valve.					
Measure provides savings of 47% over 4,340 m3 required for heating water used with base equipment.					

¹³ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>https://portal-plumprod.cgc.enbridge.com/portal/server.pt?open=512&objlD=248&PageID=0&cached=true&mode=2&userID=2</u>). ¹⁴ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

http://www.calgary.ca/docgallery/bu/water services/conservation/indoor/calgary pre rinse report.pdf

¹⁸ U.S. DOE, Federal Energy Management Program, How to Buy a Low-Flow Pre-Rinse Spray Valve http://www1.eere.energy.gov/femp/pdfs/prerinsenozzle.pdf

¹⁵ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy

¹⁶ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2 ¹⁷ Veritec Consulting (2008)

Pre-Rinse Spray Nozzle (1.24 GPM)

Revision #	Description/Comment	Date Revised		
Efficient Equipment and Technologies Description				

Low-flow pre-rinse spray nozzle/valve (1.24 GPM)

Base Equipment and Technologies Description

Standard pre-rinse spray nozzle/valve (3.0 GPM)

Decision Type	Target Market(s)	End Use
Retrofit	Commercial (existing)	Water heating

Codes, Standards, and Regulations

N/A

Resource Savings Table

	Electricity and Other Resource Savings			Equipment & O&M	Equipment & O&M Costs of
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³ /hour of daily use)	(kWh)	(L)	(\$)	(\$)
1	486	0	145,937	60	0
2	486	0	145,937	0	0
3	486	0	145,937	0	0
4	486	0	145,937	0	0
5	486	0	145,937	0	0
TOTALS	2,431	0	729,683	60	0

Annual Natural Gas Sav	ings	486 m ³ / hour daily use
Assumptions and inputs: • Average water inlet te	mperature: 7.22 °C (45 °F) ¹ set point temperature: 54 °C (130 °F) ² efficiency: 0.78 ³	`
Annual gas savings calculated	as follows:	
Savings = Ws * Phot * 8.33 *	$(T_{out} - T_{in}) * \frac{1}{Eff} * 10^{-6} * 27.8$	
Where:	Ws = Water savings (gallons) Phot = Percentage of water used that is T_{out} = Water heater set point temperature T_{in} = Water inlet temperature (°F) Eff = Water heater thermal efficiency 8.33 = Energy content of water (Btu/gallo 10 ⁻⁶ = Factor to convert Btu to MMBtu 27.8 = Factor to convert MMBtu to m ³	e (°F)
Gas savings were determined	to be 59% over base equipment:	
Percent Savings = $\frac{(G_{base} - G_{base})}{(G_{base})}$	F_{eff})	
Where:	G _{eff} = Annual natural gas use with efficie G _{base} = Annual natural gas use with base	
Annual Electricity Savin	gs	0 kWh
N/A		
Annual Water Savings		145,937 L /hour daily use
Assumptions and inputs:		
	zle can vary enormously depending on the Energy Management Program ⁵ calculates	

 Water use for one nozzle can vary enormously depending on the type of establishment using it. The U.S. DOE Federal Energy Management Program⁵ calculates savings based on four hours of use per day for prisons and military bases. A 2008 Calgary study by Veritec⁶ focuses on grocery stores and fast-food restaurants and finds that average use is 47 minutes per day. Due to the

¹ Chinnery, Glen. *Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices*, EPA, Energy Star for homes, March 2004

http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf As suggested by NRCan: http://oee.nrcan.gc.ca/residential/personal/new-homes/water-conservation.cfm?attr=4

³ Minimum thermal efficiency for compliance with ASHRAE 90.1 standard.

⁴ Empirical finding of:

Veritec Consulting & Canadian Meter Installation Services, Inc. City of Calgary *Pre-Rinse Spray Valve Replacement Program*, June 2008 <u>http://www.calgary.ca/docgallery/bu/water_services/conservation/indoor/calgary_pre-rinse_report.pdf</u>

⁵ U.S. DOE, Federal Energy Management Program, *How to Buy a Low-Flow Pre-Rinse Spray Valve* <u>http://www1.eere.energy.gov/femp/pdfs/prerinsenozzle.pdf</u>

⁶ Veritec Consulting (2008)

variability of the establishments and the daily water use, savings were determined based on an hour of use per day.

• Veritec's 2008 Calgary Study found a 6% increase in average daily use after the introduction of a low-flow valve, but did not test the significance of this change. Navigant Consulting is therefore assuming that daily water use remains the same after the introduction of the efficient equipment.

Annual water savings calculated as follows:

$$Savings = (Fl_{base} - Fl_{eff}) * 60 * Hr * 365$$

Where:

Fl_{base} = Flow rate of base equipment (GPM)
Fl_{eff} = Flow rate of efficient equipment (GPM)
60 = Minutes per hour
Hr = Hours used per day
365 = Days per year

Water savings were determined to be 59% over base equipment:

$$Percent Savings = \frac{\left(W_{base} - W_{eff}\right)}{W_{base}}$$

Where:

- W_{eff} = Annual water consumed with efficient equipment, 102,819 litres (27,196 gallons)
- W_{base}= Annual water consumed by showers with base equipment: 248,756 litres (65,700 gallons)

Other Input Assumptions

Effective Useful Life (EUL)	5 Years		
Studies conducted for the City of Calgary ⁷ , the U.S. DOE's FEMP ⁸ and by Puget Sound Energy ⁹ all give EUL for this measure as five years.			
Base & Incremental Conservation Measure Equipment and O&M Costs	60 \$		
Incremental cost based on a survey of online retailers ¹⁰ .			
Customer Payback Period (Natural Gas Only) ¹¹	0.3 Years		
Using a 5-year average commodity cost (avoided cost) ¹² of \$0.38 / m ³ and an average commercial distribution cost ¹³ of \$0.12 / m ³ , the payback period for natural gas savings is determined to be 0.3 years,			

7 Ibid.

based on the following:

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2).

⁸ U.S. DOE, Federal Energy Management Program, *How to Buy a Low-Flow Pre-Rinse Spray Valve* http://www1.eere.energy.gov/femp/pdfs/prerinsenozzle.pdf

 ⁹ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy
 ¹⁰ T & S Brass (B-0107-C35) - JetSpray 1.24 GPM low flow spray valve <u>http://www.foodservicewarehouse.com/t-s-brass/b-0107-C35/p345921.aspx?source=googleps</u>

¹¹ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹² 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

¹³ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>http://portal-</u>

Payback Period = Incremental cost / (natural gas savings x natural gas cost) = \$60/ (486 m³/year * \$0.50 / m³) = 0.3 years		
Market Penetration ¹⁴	Low	
Although 1.6 GPM spray nozzles have a high penetration in one jurisdiction (Washington State ¹⁵ – 70%) and a medium penetration in another (Iowa ¹⁶ – 45%), no figures were uncovered for 1.24 GPM spray nozzles. Given the relative novelty of this newer, lower flow rate spray nozzle, Navigant Consulting estimates the penetration in Ontario to be low.		

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
City of Calgary, 2008 ¹⁷	469	5	0 (City installed)	N/A	
Comments Daily mean use estimated to be 47 minutes before measure installed and 50 minutes with the efficient measure installed. On-site water use data reveal an even mix of hot and cold water used. Average flow rate of base equipment was found to be 3 GPM, while the average flow rate after efficient equipment installed was found to be 1.1 GPM. No indication given of percentage savings or base natural gas consumption for water heating.					
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
U.S. Department of Energy, Federal Energy Management Program ¹⁸	2,021	5	N/A	N/A	
Comments Assumptions: four hours of use per day, switch from a 3.0 GPM pre-rinse spray valve to a 1.6 GPM pre- rinse spray valve. Measure provides savings of 47% over 4,340 m3 required for heating water used with base equipment.					

 ¹⁴ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,
 ¹⁵ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy

¹⁶ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

¹⁷ Veritec Consulting (2008) <u>http://www.calgary.ca/docgallery/bu/water_services/conservation/indoor/calgary_pre_rinse_report.pdf</u> ¹⁸ U.S. DOE, Federal Energy Management Program, How to Buy a Low-Flow Pre-Rinse Spray Valve

http://www1.eere.energy.gov/femp/pdfs/prerinsenozzle.pdf

Tankless Water Heater - Commercial

Revision # Description/Comment	Date Revised		
Efficient Equipment and Technologies Description			
Gas Tankless Water Heater (Thermal efficiency = 84%).			
Due to the variability in energy savings for commercial buildings result	ing from the quantity of daily water		
use, resource savings were calculated for three scenarios of daily hot water use ¹ :			
Scenario A: 100 gallons (378 litres)			
Scenario B: 500 gallons (1,893 litres)			
Scenario C: 1,000 gallons (3,786 litres)			
Base Equipment and Technologies Description			
Conventional storage tank gas water heater (Thermal efficiency ² = 80°	%), 91 gallons		

Decision Type	Target Market(s)	End Use
New	Commercial (New)	Water heating.

Codes, Standards, and Regulations

Ontario's Energy Efficiency Act³ applies only to water heaters with an input rating of less than 75,000 Btu/hr.

¹ One of the input assumptions required for calculating resource savings for this measure is the stand-by heat loss of storage tank water heaters. Hourly stand-by losses are treated as constant using values drawn from GAMA's *Consumer Directory* (see citation below). This means that marginal percentage gas savings will fall as hot water use rises.

² Although the required minimum thermal efficiency to be in compliance with ASHRAE 90.1 is 78%, <u>http://www.energycodes.gov/comcheck/pdfs/404text.pdf</u>, only an very small percentage of commercial gas water heaters listed in the GAMA *Consumer's Directory of Certified Efficiency Ratings* had a thermal efficiency of less than 80%. http://www.pac.gov/comcheck/pdfs/404text.pdf

http://www.neo.ne.gov/neg_online/july2006/commgaswtrhtr.pdf. http://www.energy.gov.on.ca/english/pdf/conservation/2006%20-%20EEA%20Guide%20C%20-%20Water%20Heaters.pdf

Resource Savings Table

Electricity and Other Resource Savings		Equipment & O&M	Equipment & O&M Costs of		
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	A: 215 B: 57 C: -142	0	0	A: \$2,080 B: \$4,160 C: \$6,240	\$3,650
2	A: 215 B: 57 C: -142	0	0	0	0
3	A: 215 B: 57 C: -142	0	0	0	0
4	A: 215 B: 57 C: -142	0	0	0	0
5	A: 215 B: 57 C: -142	0	0	0	0
6	A: 215 B: 57 C: -142	0	0	0	0
7	A: 215 B: 57 C: -142	0	0	0	0
8	A: 215 B: 57 C: -142	0	0	0	0
9	A: 215 B: 57 C: -142	0	0	0	0
10	A: 215 B: 57 C: -142	0	0	0	0
11	A: 215 B: 57 C: -142	0	0	0	0
12	A: 215 B: 57 C: -142	0	0	0	0
13	A: 215 B: 57 C: -142	0	0	0	0
14	A: 215 B: 57 C: -142	0	0	0	0
15	A: 215 B: 57 C: -142	0	0	0	0
16	A: 215 B: 57 C: -142	0	0	0	0
17	A: 215 B: 57 C: -142	0	0	0	0
18	A: 215 B: 57 C: -142	0	0	0	0
TOTALS	A: 3,870 B: 1,026 C: -2,556	0	0	A: \$2,080 B: \$4,160 C: \$6,240	\$3,650

Resource ouvings Assumptions				
Annual Natural Gas Savings	A: 215 m ³ B: 57 m ³ C: -142 m ³			
Assumptions and inputs:				
 Following a recommendation made in 2006 to the California Energy Alternative Calculation Method (ACM) be amended to recognise the recovery efficiency of tankless water heaters drawing less than 11 efficiency, savings are calculated using an thermal efficiency degree Adjusted thermal efficiency⁵: 0.77. 	he disparity between the nominal gallons and the actual energy			
 Input rating for new technology and base equipment: 199,000 Btu 				
 Stand-by loss of Rheem G91-200: 1,050 Btu/hr⁶. 				
 Daily hot water draw: 				
Scenario A: 100 gallons (378 litres)				
Scenario B: 500 gallons (1,893 gallons)				
Scenario C: 1,000 gallons (3,786 litres)				
 Average water inlet temperature: 7.22 °C (45 °F)⁷ 				
 Average water heater set point temperature: 54 °C (130 °F)⁸ 				
Annual gas savings calculated as follows:				
$Savings = \left[W * 8.33 * (T_{out} - T_{in}) * \left(\frac{1}{Eff_{base}} - \frac{1}{Eff_{eff}}\right) + \left(Stby_{base} - Stb_{base}\right)\right]$	$(y_{eff}) \approx 24 \approx 365 = 10^{-6} \approx 27.8$			
Where:				
W = Annual hot water use (gallons)				
8.33 = Energy content of water (Btu/gallo	n/°F)			
T _{out} = Water heater set point temperature	(°F)			
T _{in} = Water inlet temperature (°F)				
Eff _{base} = Thermal efficiency of base equip				
Eff _{eff} = Adjusted thermal efficiency of efficient equipment				
10^{-6} = Factor to convert Btu to MMBtu				
Stby _{base} = Stand-by loss per hour for base				
Stby _{eff} = Stand-by loss per hour for efficie	ini equipment (biu)			
24 = Hours per day 365 = Days per year				
27.8 = Factor to convert MMBtu to m3				

Scenario A: Gas savings were determined to be 18% over base measure

⁶ Consumer's Directory of Certified Efficiency Ratings <u>http://www.neo.ne.gov/neg_online/july2006/commgaswtrhtr.pdf</u>

⁴ Davis Energy Group, *Measure Information Template: Tankless Gas Water Heaters*, April 2008 <u>http://www.energy.ca.gov/title24/2008standards/prerulemaking/documents/2006-05-18_workshop/2006-05-11_GAS_WATER.PDF</u>

⁵ It should be noted that an alternative study, by Exelon Services for Okaloosa Gas, conducted carefully controlled tests to determine the thermal efficiency of a tankless and a storage tank gas water heater. This study found that, in fact, the listed energy factor *underestimated* the tankless water heater's true thermal efficiency. This result is not reflected in this substantiation sheet due to the more recent findings cited above, arrived at with a larger sample than the Okaloosa study. Exelon Services and Okaloosa Gas District, Performance Comparison of Residential Water Heating Systems, December 2002

⁷ Chinnery, Glen. *Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices*, EPA, Energy Star for homes, March 2004

http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf * As suggested by NRCan: http://oee.nrcan.gc.ca/residential/personal/new-homes/water-conservation.cfm?attr=4

Scenario B: Gas savings were determined to be 1% over base measure Scenario C: Gas savings were determined to be -2% over base measure		
Percent Savings = $\frac{(G_{base} - G_{eff})}{G_{base}}$		
Where:		
G _{eff} = Annual natural gas use with efficien	nt equipment,	
Scenario A: 938 m ³		
Scenario B: 4,689 m ³		
Scenario C: 9,378 m ³		
G _{base} = Annual natural gas use with base equipment,		
Scenario A: 1,154 m ³		
Scenario B: 4,746 m ³		
Scenario C: 9,236 m ³		
Annual Electricity Savings	0 kWh	
N/A		
Annual Water Savings	0 L	
Navigant has assumed that adopting the measure would not affect the qu	antity of water consumed.	

Other Input Assumptions

Effective Useful Life (EUL)	18 Years			
Navigant Consulting recommends using an EUL of 18 years, the mean of estimated measure lifetimes used two other jurisdictions (Iowa ⁹ , 20 years, and Puget Sound Energy ¹⁰ , 13 years) and that quoted by an academic paper ¹¹ (20 years).				
Base & Incremental Conservation Measure Equipment	A: -1,570 \$			
and O&M Costs	B: 510 \$			
	C: 2,590 \$			
several tankless water heaters to replace a single storage tank. The tankless model cited has a maximum flow rate of 4.7 – 7.4 GPM depending on temperature rise required. Any large commercial enterprise would likely require 2 – 3 tankless units to accommodate peak demand ¹² .				
Costs for the two systems were determined to be:				
• WaiWela PH28CIFS tankless water heater and installation kit = \$2,080 ea ¹³ .				
 Rheem G91-200 storage tank water heater = \$3,650¹⁴. 				
Customer Payback Period (Natural Gas Only) ¹⁵	A: 0			
	B: 18 Years			
	C: N/A			

⁹ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

¹⁰ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy ¹¹Aguilar, C., White, D.J., and Ryan, David L. Domestic Water Heating and Water Heater Energy Consumption in Canada, April 2005,

¹² A study for Pacific Gas and Electric of a chain casual dining restaurant found peak water draws of up to 20 GPM.

Wallace, C. and D. Fisher, Energy Efficiency Potential of Gas-Fired Commercial Hot Water Heating Systems in Restaurants.April 2007 ¹³ <u>http://www.tanklesswaterheaters.ca/waiwelaph28ci.html</u> ¹⁴ From correspondence with local distributor.

¹⁵ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

distribution co for Scenario A	Using a 5-year average commodity cost (avoided cost) ¹⁶ of \$0.38 / m ³ and an average commercial distribution cost ¹⁷ of \$0.12 / m ³ , the payback period for natural gas savings is determined to be immediate for Scenario A and 17 years for Scenario B.				
For Scenario	C, natural gas use increases, no natural gas payback is dete	ermined.			
Payback Perio	od = Incremental cost / (natural gas savings x natural gas co	ost)			
Scenario A	equipment costs less than base equipment.				
Scenario B	Scenario B = $\frac{510}{57 \text{ m}^3}$ = $\frac{510}{57 \text{ m}^3}$				
	= 18 years				
Market Per	Market Penetration ¹⁸ Low				
Based on the observation of low penetration in two other jurisdictions (Washington State ¹⁹ – 5%, Iowa ²⁰ – 0%), communications with local contractors and the logistical requirements for large commercial installations, Navigant Consulting estimates the penetration in Ontario to be low.					

¹⁶ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and

 ¹⁷ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>https://portal-plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2</u>).
 ¹⁸ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,
 ¹⁹ Quantec *Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027)* Prepared for Puget Sound Energy
 ²⁰ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Puget Sound Energy, 2007 ²¹	0.09 per ft ² (school)	15	N/A	5%
Comments				
assumptions change fro	Assuming base equipment to be a conventional water tank with an EF=0.64. No indication that efficiency assumptions change from residential to commercial. Measure saves 27% of 0.33 m ³ per square foot required for water heating.			
Source	ource Annual Natural Effective Gas Savings (m3) (Years) Incremental Cost (\$) Penetration/Market Share			
State of Iowa Utilities Board ²²	0.017 per ft ³ (school)	20	9,167 US\$	0%
Comments				
Compare a tankless water heater with an EF = 0.82 against a conventional storage tank water heater with 80% thermal efficiency. Measure saves 30% of 0.56 m^3 per square foot required for water heating.				

 ²¹ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy
 ²² Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

MULTI-FAMILY WATER HEATING

Energy Star Front-Loading Clothes Washer

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Energy Star high efficiency front load washers for application in the Multi-Family sector ($MEF^{1}=1.72$, $WF^{2}=8.0$, tub size = 2.8 ft³)

Base Equipment and Technologies Description

Conventional top loading vertical axis washers (MEF = 1.26, WF=9.5, tub size = 2.8 ft³)

Decision Type	Target Market(s)	End Use
New/Replacement	Multi-Family	Water heating

Codes, Standards, and Regulations

NRCan Federal Energy Efficiency Regulations require:

- Top loading washers are required to have a minimum MEF of 1.26 and a maximum tub size of 3.5 cubic feet.
- Front loading washers are required to have a minimum MEF of 1.26 and a maximum tub size of 4 cubic feet.

Resource Savings Table

	Electricity and Other Resource Savings		ce Savings	Equipment & O&M	Equipment & O&M Costs of
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	79	201	19,814	\$1,000	\$850
2	79	201	19,814	0	0
3	79	201	19,814	0	0
4	79	201	19,814	0	0
5	79	201	19,814	0	0
6	79	201	19,814	0	0
7	79	201	19,814	0	0
8	79	201	19,814	0	0
9	79	201	19,814	0	0
10	79	201	19,814	0	0
11	79	201	19,814	0	0
TOTALS	869	2,211	217,954	\$1,000	\$850

¹ Modified Energy Factor.

² Water Factor: the number of gallons per load cycle per cubic foot that the clothes washer uses. The lower the water factor, the more efficient the washer is.

Annual Natural Gas Savings	79 m ³
Assumptions and inputs:	
Descente and affinistence of the theory of an investigation to this is the transformed	470/

- Percentage of water used by base equipment which is hot water: 17%.
- Percentage of water used by efficient equipment which is hot water: 10%³
- Average water inlet temperature: 7.22 °C (45 °F)⁴
- Average water heater set point temperature: 54 °C (130 °F)⁵
- Water heater thermal efficiency: 0.78⁶
- Gas use per cycle⁷ for commercial gas dryer with base equipment: 0.138 m³
- Gas use per cycle for commercial gas dryer with Energy Star clothes washer: 0.117 m³
- Gas dryer penetration in Ontario Multi-Family market: 25.5%⁸
- Annual gas savings from reduced dryer use: 7 m³
- Annual gas savings from reduced hot water use: 73 m³

Annual gas savings calculated as follows:

$$Savings = \left[\left(W_{base} * Hot_{base} - W_{eff} * Hot_{eff} \right) * 8.33 * \frac{1}{Eff} * \left(T_{out} - T_{in} \right) + \left(Dr_{base} - Dr_{eff} \right) * Pene \right] * 10^{-6} * 27.8$$

Where:

$$\begin{split} W_{base} &= \text{Annual water use with base equipment (gallons)} \\ W_{eff} &= \text{Annual water use with efficient equipment (gallons)} \\ \text{Hot}_{base} &= \text{Percentage of water used that's hot with base equipment} \\ \text{Hot}_{eff} &= \text{Percentage of water used that's hot with efficient equipment} \\ \text{8.33} &= \text{Energy content of water (Btu/gallon/°F)} \\ \text{Eff} &= \text{Eff} &= \text{Water heater thermal efficiency} \\ \text{T}_{out} &= \text{Water heater set point temperature (°F)} \\ \text{T}_{in} &= \text{Water inlet temperature (°F)} \\ \text{Dr}_{base} &= \text{Annual dryer gas use with base equipment (Btu)} \\ \text{Dr}_{eff} &= \text{Annual dryer gas use with efficient equipment (Btu)} \\ \text{Pene} &= \text{Penetration rate of natural gas powered clothes dryers in Ontario} \\ 10^{-6} &= \text{Factor to convert MMBtu to m}^{3} \\ \end{split}$$

Gas savings were determined to be 43% over base equipment.

Percent Savings =
$$\frac{(G_{base} - G_{eff})}{G_{base}}$$

Where:

 G_{eff} = Annual natural gas use with efficient equipment, 110 m³ G_{base} = Annual natural gas use with base equipment, 182 m³

³ Base equipment uses 4.4 gallons of hot water per cycle, efficient equipment uses 2.3 gallons of hot water per cycle. U.S. DOE Federal Energy Management Program, Life-Cycle and Cost and Payback Period spreadsheet, http://www1.eere.energy.gov/buildings/appliance_standards/commercial/clothes_washers.html

⁴ Chinnery, Glen. Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices, EPA, Energy Star for homes, March 2004

http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf

⁵ As suggested by NRCan: <u>http://oee.nrcan.gc.ca/residential/personal/new-homes/water-conservation.cfm?attr=4</u>

Annual Electricity Savings

201 kWh

Assumptions and inputs:

- Water heated by natural gas (see above).
- Washer electricity use per cycle, base equipment: 0.13 kWh⁹.
- Washer electricity use per cycle, efficient equipment: 0.11 kWh.
- Dryer electricity use per cycle, base equipment: 1.3 kWh.
- Dryer electricity use per cycle, efficient equipment: 1.11 kWh.
- Average number of cycles per year for clothes washer serving Multi-Family: 1246 cycles¹⁰.

Annual electricity savings calculated as follows:

$$Savings = \left[\left(Wa_{base} - Wa_{eff} \right) + \left(Dr_{base} - Dr_{eff} \right) * \left(1 - Pene \right) \right] * Cyc$$

Where:

Wa_{base} = Washer electricity use per cycle, base equipment (kWh) Wa_{eff} = Washer electricity use per cycle, efficient equipment (kWh) Dr_{base} = Dryer electricity use per cycle, base equipment (kWh) Dr_{eff} = Dry electricity use per cycle, efficient equipment (kWh) Pene = Penetration rate of natural gas powered clothes dryers in Ontario Cyc = Average number of cycles per year machine is used

Electricity savings were determined to be 15% over base equipment:

Percent Savings =
$$\frac{(Elec_{base} - Elec_{new})}{Elec_{base}}$$

Where:

Elec_{eff} = Annual natural gas use with efficient equipment, 1,167 kWh Elec_{base} = Annual natural gas use with base equipment, 1,369 kWh

Annual Water Savings	19,814 L
Assumptions and inputs:	

- Water use per cycle, base equipment: 101 litres (26.6 gallons).
- Water use per cycle, new technology: 85 litres (22.4 gallons).
- Average number of cycles per year for clothes washer serving Multi-Family: 1,246 cycles¹¹

Annual water savings calculated as follows:

⁸ Average residential penetration rate of gas dryers in Union and Enbridge territories. The commercial/Multi-Family clothes dryers is likely to be slightly higher. Enbridge Gas Distribution, *Enbridge Gas Distribution to the Ontario Power Authority in the matter of the province's energy supply mix*, August 26, 2005. <u>http://www.energy.gov.on.ca/opareport/Part%205%20-</u> %20Submissions%20and%20Presentations/5.1%20Written%20Submissions%20to%20the%20Supply%20Mix%20Project/Enbrid

⁶ Minimum thermal efficiency for compliance with ASHRAE 90.1 standard.

⁷ U.S. DOE Federal Energy Management Program, National Energy Savings and Shipments spreadsheet <u>http://www1.eere.energy.gov/buildings/appliance_standards/commercial/clothes_washers.html</u>

ge Gas Distribution Supply Mix Submission Aug 26 2005.pdf ⁹ U.S. DOE Federal Energy Management Program, Life-Cycle and Cost and Payback Period spreadsheet, http://www.d.eoro.apargy.gov/buildings/oppliance.atandordo/commercial/databas.washere.html

 http://www1.eere.energy.gov/buildings/appliance_standards/commercial/clothes_washers.html
 ¹⁰ U.S. DOE Federal Energy Management Program, National Energy Savings and Shipments spreadsheet

http://www1.eere.energy.gov/buildings/appliance_standards/commercial/clothes_washers.html

¹¹ Ibid.

$$Savings = (W_{base} - W_{eff}) * Cyc$$

Where:

 W_{base} = Annual water use with base equipment (gallons or litres) W_{eff} = Annual water use with efficient equipment (gallons or litres) Cyc = Average number of cycles per year machine is used

Water savings were determined to be 16% over base measure:

Percent Savings =
$$\frac{(W_{base} - W_{eff})}{W_{base}}$$

Where:

- W_{eff} = Annual water consumed with efficient equipment, 105,675 litres (27,910 gallons).
- W_{base}= Annual water consumed by showers with base equipment: 125,489 litres (33,144 gallons).

Other Input Assumptions

Effective Useful Life (EUL)	11 Years
The U.S. DOE's Federal Energy Management Program has determined the clothes washers have an average EUL of 11.25 years ¹² . Navigant Consul EUL of 11 years.	nat commercial/Multi-Family ting recommends adopting an
Base & Incremental Conservation Measure Equipment and O&M Costs	150 \$
Incremental cost based on prices offered online by a local retailer ¹³ .	
Customer Payback Period (Natural Gas Only) ¹⁴	3.8 Years
Using a 5-year average commodity cost (avoided cost) ¹⁵ of \$0.38 / m ³ an distribution cost ¹⁶ of \$0.12 / m ³ , the payback period for natural gas saving based on the following: Payback Period = Incremental cost / (natural gas savings x natural gas co = \$150/ (79 m ³ /year * \$0.50 / m ³) = 3.8 years	s is determined to be 3.8 years,
Market Share ¹⁷	High
Based on the observation of high market penetration in two other jurisdict $lowa^{19} - 72\%$) and of the fact that the majority of clothes washers offered major retailer are Energy Star, Navigant Consulting estimates the penetration	for sale on the website of a

¹² Ibid.

New technology (3.5 cu/ft front loader, LG): \$1,000

¹⁶ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (<u>https://portal-</u>

¹³ Base measure (3.5 cu/ft top loader, GE): \$850

www.homedepot.ca. Assuming the base equipment cost/ efficient equipment cost ratio of the two 3.5 cu/ft washers is equivalent to that of two 2.8 cu/ft washers.

¹⁴ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹⁵ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2).

¹⁷ Navigant Consulting is defining "Low" as below 5%, "Medium" as between 5-50%, and "High" as above 50%,

¹⁸ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy

Measure Assumptions Used by Other Jurisdictions

savings or base natural gas consumption for water heating.

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
Puget Sound Energy, 2007 ²⁰	70	14	600	48%	
Comments No explicit assumptions made about base and efficient equipment for commercial clothes washers. For residential clothes washers, assumptions: base equipment, MEF = 1.0, efficient equipment, Energy Star Clothes Washer, MEF = 1.8. Measure saves 13% of 539 m ³ required for water heating.					
Source Annual Natural Effective Gas Savings (M3) (Years) Incremental Cost (\$) Penetration/Mark					
Efficiency Vermont, 20 14 \$750 N/A 2005 ²¹ 14 \$750 N/A					
Comments Cost is reported as the full cost of the energy efficient equipment rather than the incremental cost. Savings calculated are per customer basis rather than a per machine basis. No indication given of percentage					

¹⁹ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2
 ²⁰ Quantec *Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027)* Prepared for Puget Sound Energy
 ²¹ Efficiency Vermont, Technical Reference User Manual (TRM) No. 2005 - 37

Faucet Aerator (Muti-Family Bathroom)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Faucet Aerator (Bathroom) (1.5 GPM)

Base Equipment and Technologies Description

Average existing stock (2.2 GPM)¹

Decision Type	Target Market(s)	End Use
Retrofit	Multi-Family (existing)	Water heating

Codes, Standards, and Regulations

Ontario Building Code (2006)² requires bathroom and kitchen faucets to have a maximum flow of 2.2 GPM (8.35 L/min).

Resource Savings Table

	Electricity and Other Resource Savings			Equipment & O&M	Equipment & O&M Costs of
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	7	0	1,382	2	0
2	7	0	1,382	0	0
3	7	0	1,382	0	0
4	7	0	1,382	0	0
5	7	0	1,382	0	0
6	7	0	1,382	0	0
7	7	0	1,382	0	0
8	7	0	1,382	0	0
9	7	0	1,382	0	0
10	7	0	1,382	0	0
TOTALS	70	0	13,,820	2	0

¹ From on-site audit data. Resource Management Strategies, Inc. Regional Municipality of York Water Efficiency Master Plan

Update, 2007. Cited in: Summit Blue, Resource Savings Values in Selected Residential DSM Prescriptive Programs, June 2008.

Annual Natural Gas Savings		7 m ³
Assumptions and inputs:		
Average faucet water temperature: 3	2 °C (90 °F) ³	
Average water inlet temperature: 7.2	2 °C (45 °F) ⁴	
• Average water heater energy factor:	0.57 ⁵	
Annual gas savings calculated as follows:		
Savings = W *8.33* $(T_{out} - T_{in})$ * $\frac{1}{EF}$ *10	-6 * 27.8	
Where:		
	avings (gallons)	
	gy content of water (Btu/gallo	n/ºF)
	t water temperature (°F)	
	nlet temperature (°F)	
	heater energy factor r to convert Btu to MMBtu	
	or to convert MMBtu to m^3	
27.0 1 400		
Gas savings were determined to be 22% over	r base case:	
Percent Savings = $\frac{(G_{base} - G_{new})}{G_{base}}$		
G_{base}		
Where:		
	al natural gas use with efficient	
	al natural gas use with base	
Annual Electricity Savings		0 kWh
N/A		
Annual Water Savings		1,382 L
Assumptions and inputs:	_	
 Average household size: 2.14 persor 		_
Baseline faucet use (all faucets) per		

Bathroom faucet use as a percentage of total faucet use: 15%⁸

³ Average of findings in two studies. Mayer, P. W. et al, *Residential Indoor Water Conservation Study: Evaluation of High Efficiency Indoor Plumbing Fixture Retrofits in Single-Family Homes in East Bay Municipal Utility District Service Area, 2003 and Skeel, T. and Hill, S. Evaluation of Savings from Seattle's "Home Water Saver" Apartment/Condominium Program, 1994. Both cited in: Summit Blue (2008).*

⁴ Chinnery, Glen. *Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices*, EPA, Energy Star for homes, March 2004

http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf ⁵ Assumption of the Ministry of Energy of Ontario. See Table 4,

http://www.energy.gov.on.ca/index.cfm?fuseaction=conservation.guide13

⁶ Summit Blue (2008) and Census 2006. To maintain consistency with Summit Blue number but to reflect the fact that apartments are generally occupied by fewer people than houses, the Summit Blue number was degraded by the ratio of the average number of inhabitants per apartment in an Ontario building over five stories (2) to the average number of inhabitants of a fully detached house in Ontario (2.9).

⁷ Ibid.

⁸ DeOreo, W. and P. Mayer, *The End Uses of Hot Water in Snigle Family Homes from Flow Trace Analysis*, 1999 cited in Summit Blue (2008).

Point estimate of quantity of water that goes straight down the drain: 70%⁹ •

Annual water savings calculated as follows:

$$Savings = Fu * Ppl * 365 * Ba * \left((1 - Dr) - \left(1 - \frac{Fl_{base} - Fl_{eff}}{Fl_{base}} \right) * Dr \right)$$

Where:

Fu = Faucet use per capita (gallons) Ppl = Number of people per household 365 = Days per year Dr = Percentage of water that goes straight down the drain Ba = Individual bathroom faucet use as a percentage of total faucet use Fl_{base} = Flow rate of base equipment (GPM) Fl_{eff} = Flow rate of efficient equipment (GPM)

Water savings was determined to be 22% over base case:

$$Percent Savings = \frac{\left(W_{base} - W_{eff}\right)}{W_{base}}$$

Where:

W_{eff} = Annual water use with efficient equipment: 4,823 litres (1,274 gallons) W_{base}= Annual water use with base equipment: 6,205 litres (1,639 gallons)

Other Input Assumptions

Effective Useful Life (EUL)	10 Years
The U.S. DOE assumes a 10 year life for faucet aerators ¹⁰ .	
Base & Incremental Conservation Measure Equipment and O&M Costs	2 \$
Average equipment cost based on communication with local hardware sto	pres.
Customer Payback Period (Natural Gas Only) ¹¹	0.5 Years
Using a 5-year average commodity cost (avoided cost) ¹² of $0.38 / m^3$ an distribution cost ¹³ of $0.14 / m^3$, the payback period for natural gas saving based on the following:	d an average residential s is determined to be 0.5 years,

⁹ Summit Blue (2008).

¹⁰ U.S. Department of Energy, Federal Energy Management Program, FEMP Designated Product: Lavatory Faucets http://www1.eere.energy.gov/femp/procurement/eep_faucets.html

¹¹ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹² 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

¹³ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

Payback Period = Incremental cost / (natural gas savings x natural gas cost) = $2/(7 \text{ m}^3/\text{year} * 0.52 / \text{m}^3)$

= 0.5 years

Market Penetration	90%
Based on previous research conducted for the OPA, Navigant Consulting aerators (bathroom and kitchen) across all sectors to be 90% ¹⁴ .	estimates penetration of faucet

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/ Market Share
Puget Sound Energy ¹⁵	5	5	N/A	50%
Comments				
For a switch from a 2.5 0 heating.	GPM to a 1.8 GPM a	erator. Measure sa	aves 1% of 539 m ³ re	equired for water
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/ Market Share
State of Iowa Utilities Board ¹⁶	27	9	14 US\$	90%
Comments				
For a switch from a 3.0 0	GPM to a 1.5 GPM a	erator.		
In neither study is any di 320 m ³ required for wate		een kitchen and ba	athroom faucet use. I	Measure saves 8.5% of

¹⁴ Navigant Consulting, Inc. for the Ontario Power Authority, Residential Rebate Program: Participation Forecast and Incentive ¹⁵ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy ¹⁶ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Faucet Aerator (Multi-Family Kitchen)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Faucet Aerator (kitchen) (1.5 GPM)

Base Equipment and Technologies Description

Average existing stock (2.5 GPM)¹

Decision Type	Target Market(s)	End Use
Retrofit	Multi-Family (existing)	Water heating

Codes, Standards, and Regulations

Ontario Building Code (2006)² requires bathroom and kitchen faucets to have a maximum flow of 2.2 GPM (8.35 L/min).

Resource Savings Table

	Electricity and Other Resource Savings			Equipment & O&M	Equipment & O&M Costs of
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	26	0	5,377	2	0
2	26	0	5,377	0	0
3	26	0	5,377	0	0
4	26	0	5,377	0	0
5	26	0	5,377	0	0
6	26	0	5,377	0	0
7	26	0	5,377	0	0
8	26	0	5,377	0	0
9	26	0	5,377	0	0
10	26	0	5,377	0	0
TOTALS	260	0	53,770	2	0

¹ From on-site audit data. Resource Management Strategies, Inc. Regional Municipality of York Water Efficiency Master Plan

Update, 2007. Cited in: Summit Blue, Resource Savings Values in Selected Residential DSM Prescriptive Programs, June 2008.

Annual Natural Gas Savings	26 m ³
Assumptions and inputs:	
 Average faucet water temperature: 32 °C (90 F)³ 	
 Average water inlet temperature: 7.22 °C (45 F)⁴ 	
• Average water heater energy factor: 0.57 ⁵	
Annual gas savings calculated as follows:	
Savings = W * 8.33 * $(T_{out} - T_{in}) * \frac{1}{EF} * 10^{-6} * 27.8$	
Where:	
W = Water savings (gallons)	
8.33 = Energy content of water (Btu/gallo	n/ºF)
T _{out} = Faucet water temperature (°F)	
T _{in} = Water inlet temperature (°F)	
EF = Water heater energy factor	
10^{-6} = Factor to convert Btu to MMBtu	
27.8 = Factor to convert MMBtu to m ³	
Gas savings were determined to be 20% over base case:	
Percent Savings = $\frac{(G_{base} - G_{new})}{G_{base}}$	
G_{base}	
Where:	
G _{eff} = Annual natural gas use with efficie	
G _{base} = Annual natural gas use with base	equipment, 130 m [°]
Annual Electricity Savings	0 kWh
N/A Annual Water Savings	5,377 L
	J,311 L
Assumptions and inputs:	
 Average household size: 2.14 persons⁶ Baseline faucet use (all faucets) per capita per day: 53 litres (14 d 	

Baseline faucet use (all faucets) per capita per day: 53 litres (14 gallons)⁴

http://www.energy.gov.on.ca/index.cfm?fuseaction=conservation.guide13

³ Average of findings in two studies. Mayer, P. W. et al, Residential Indoor Water Conservation Study: Evaluation of High Efficiency Indoor Plumbing Fixture Retrofits in Single-Family Homes in East Bay Municipal Utility District Service Area, 2003 and Skeel, T. and Hill, S. Evaluation of Savings from Seattle's "Home Water Saver" Apartment/Condominium Program, 1994. Both cited in: Summit Blue (2008).

⁴ Chinnery, Glen. Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices, EPA, Energy Star for homes, March 2004,

http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf ⁵ Assumption of the Ministry of Energy of Ontario. See Table 4,

⁶ Summit Blue (2008) and Census 2006. To maintain consistency with Summit Blue number but to reflect the fact that apartments are generally occupied by fewer people than houses, the Summit Blue number was degraded by the ratio of the average number of inhabitants per apartment in an Ontario building over five stories (2) to the average number of inhabitants of a fully detached house in Ontario (2.9). Statistics Canada. No date. *Structural Type of Dwelling (10) and Household Size (9) for Occupied Private Dwellings of Canada, Provinces, Territories, Census Metropolitan Areas and Census Agglomerations, 2006 Census - 100% Data (Table) Census 2006.* Last updated Dec 6, 2008.

http://www12.statcan.ca/english/census06/data/topics/RetrieveProductTable.cfm?ALEVEL=3&APATH=3&CATNO=&DETAIL=0& DIM=&DS=99&FL=0&FREE=0&GAL=0&GC=99&GID=837983&GK=NA&GRP=1&IPS=&METH=0&ORDER=1&PID=89071&PTY PE=88971&RL=0&S=1&SUB=0&ShowAlI=No&StartRow=1&Temporal=2006&Theme=69&VID=0&VNAMEE=&VNAMEF=

- Kitchen faucet use as a percentage of total faucet use: 65%⁸
- Point estimate of quantity of water that goes straight down the drain: 50%⁹

Annual water savings calculated as follows:

$$Savings = Fu * Ppl * 365 * Ki * \left((1 - Dr) - \left(1 - \frac{Fl_{base} - Fl_{eff}}{Fl_{base}} \right) * Dr \right)$$

Where:

Fu = Faucet use per capita (gallons)
Ppl = Number of people per household
365 = Days per year
Dr = Percentage of water that goes straight down the drain
Ki = Kitchen faucet use as a percentage of total faucet use
Fl_{base} = Flow rate of base equipment (GPM)
Fl_{eff} = Flow rate of efficient equipment (GPM)

Water savings was determined to be 20% over base case:

$$Percent Savings = \frac{\left(W_{base} - W_{eff}\right)}{W_{base}}$$

Where:

W_{eff} = Annual water use with efficient equipment: 21,509 litres (5,681gallons)
 W_{base}= Annual water use with base equipment: 26,887litres (7,101 gallons)

Other Input Assumptions

Effective Useful Life (EUL)	10 Years
The U.S. DOE assumes a 10 year life for faucet aerators ¹⁰ .	
Base & Incremental Conservation Measure Equipment and O&M Costs	2 \$
Average equipment cost based on communication with local hardware sto	ores.
Customer Payback Period (Natural Gas Only) ¹¹	0.2 Years
Using a 5-year average commodity cost (avoided cost) ¹² of \$0.38 / m ³ ar distribution cost ¹³ of \$0.14 / m ³ , the payback period for natural gas saving based on the following:	d an average residential s is determined to be 0.2 years,

⁷ Ibid.

⁹Summit Blue (2008).

⁸ DeOreo, W. and P. Mayer, *The End Uses of Hot Water in Snigle Family Homes from Flow Trace Analysis*, 1999 cited in Summit Blue (2008).

¹⁰ U.S. Department of Energy, Federal Energy Management Program, *FEMP Designated Product: Lavatory Faucets* <u>http://www1.eere.energy.gov/femp/procurement/eep_faucets.html</u>

¹¹ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹² 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

Payback Period = Incremental cost / (natural gas savings x natural gas cos = \$2/ (26 m³/year * \$0.52 / m³) = 0.2 years	st)	
Market Penetration 90%		
Based on previous research conducted for the OPA, Navigant Consulting aerators (bathroom and kitchen) across all sectors to be 90% ¹⁴ .	estimates penetration of faucet	

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
Puget Sound Energy ¹⁵	5	5	N/A	50%
Comments For a switch from a 2.5 (heating.	For a switch from a 2.5 GPM to a 1.8 GPM aerator. Measure saves 1% of 539 m ³ required for water			
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
State of Iowa Utilities Board ¹⁶	27	9	14 US\$	90%
Comments For a switch from a 3.0 GPM to a 1.5 GPM aerator. In neither study is any distinction made between kitchen and bathroom faucet use. Measure saves 8.5% of 320 m ³ required for water heating.				

¹³ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2). ¹⁴ Navigant Consulting, Inc. for the Ontario Power Authority, *Residential Rebate Program: Participation Forecast and Incentive*

 ¹⁵ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy
 ¹⁶ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Low-Flow Showerhead (1.5 Gpm, Muti-Family, UG ESK)

Revision #	Description/Comment	Date Revised

Efficient Equipment and Technologies Description

Low-flow Showerhead (1.5 Gpm) – distributed to participants under Union Gas' ESK program.

Base Equipment and Technologies Description

Average existing stock (2.2 GPM)¹.

Decision Type	Target Market(s)	End Use
Retrofit	Multi-Family (Existing)	Water heating

Codes, Standards, and Regulations

Ontario Building Code (2006)² requires shower heads to have a maximum flow of 2.5 GPM (9.5 L/min)

Resource Savings Table

	Electricity	Electricity and Other Resource Savings		Equipment & O&M	Equipment & O&M Costs of
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	23	0	4,369	6	0
2	23	0	4,369	0	0
3	23	0	4,369	0	0
4	23	0	4,369	0	0
5	23	0	4,369	0	0
6	23	0	4,369	0	0
7	23	0	4,369	0	0
8	23	0	4,369	0	0
9	23	0	4,369	0	0
10	23	0	4,369	0	0
TOTALS	230	0	43,690	6	0

¹ Shower-heads distributed under Union Gas's ESK program are installed by homeowners rather than Union contractors. No observation is made of the base equipment's GPM. It is therefore assumed to be the full-on flow rate corresponding to the asused flow from York Region monitoring study calculated using the equation cited below.
Region provide the provided the provided the provided to the provided to

Resource Management Strategies, Inc., Regional Municipality of York Water Efficiency Master Plan Update, April 2007. Cited by: Summit Blue, *Resource Savings Values in Selected Residential DSM Prescriptive Programs*, June 2008.

² Ontario Regulations 350/06, 2006 Building Code

Resource Savings Assumptions

Annual Natural Gas Savings	23 m ³
Assumptions and inputs:	
 Average shower temperature with base equipment: 40 °C (104 °F) Average shower temperature with efficient equipment: 41 °C (106 ° Average water inlet temperature: 7.22 °C (45 °F)⁴ Average water heater energy factor: 0.57⁵ 	
Annual gas savings calculated as follows:	
$Savings = (W_{base} * (T_{out, base} - T_{in}) - W_{eff} * (T_{out, eff} - T_{in})) * 8.33 * \frac{1}{EF} * 10^{-1}$	-6 * 27.8
Where:	
$W_{base} = annual water use with base equiprW_{eff} = annual water use with efficient equipT_{out,base} = Shower temperature with base eT_{out,new} = Shower temperature with efficienT_in = Water inlet temperature (°F)8.33 = Energy content of water (Btu/gallonEF = Water heater energy factor10-6 = Factor to convert Btu to MMBtu27.8 = Factor to convert MMBtu to m3Gas savings were determined to be 12% over base equipment:$	oment (gallons) equipment (°F) t equipment (°F)
$Percent Savings = \frac{\left(G_{base} - G_{eff}\right)}{G_{base}}$	
Where:	
G_{eff} = Annual natural gas use with efficient G_{base} = Annual natural gas use with base e	
Annual Electricity Savings	0 kWh
N/A	
Annual Water Savings	4,369 L
Assumptions and inputs:	
 As-used flow rate with base equipment: 1.89 GPM⁶ 	

Average household size: 2.14 persons⁷

³ Although evidence for this increase in shower temperature remains anecdotal, Summit Blue suggest it is likely enough to include its effect in the analysis. Summit Blue (2008).

⁴ Chinnery, Glen. Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices, EPA, Energy Star for homes, March 2004 <u>http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf</u>

http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf 5 Assumption of the Ministry of Energy of Ontario. See Table 4,

http://www.energy.gov.on.ca/index.cfm?fuseaction=conservation.guide13

⁶ As-used flow is calculated as a function of "full-on" or label flow: as-used flow = min{ 0.691+0.542*full-on flow, full-on flow}. Proctor, J. Gavelis, B. and Miller, B. Savings and Showers: It's All in the Head, (PGE) Home Energy Magazine, July/Aug 1994. Cited in Summit Blue (2008).

Summit Blue uses the equation without assuming that it is a min function, implicitly assuming that participants will have the expertise or desire to make minor adjustments to the house water pressure to compensate for reduced shower flow.

• Showers per capita per day: 0.75⁸

- Proportion of showering affected by measure (i.e. percentage of the time the low-flow showerhead used) : 76%⁹
- Average showering time per capita per day with base equipment: 7.32 minutes
- Average showering time per capita per day with new technology: 7.5 minutes¹⁰

Annual water savings calculated as follows:

 $Savings = Ppl * Sh * 365 * \Pr(T_{base} * Fl_{base} - T_{eff} * Fl_{eff})$

Where:

 $\begin{array}{l} \mbox{Ppl} = \mbox{Number of people per household} \\ \mbox{Sh} = \mbox{Showers per capita per day} \\ \mbox{365} = \mbox{Days per year} \\ \mbox{T}_{base} = \mbox{Showering time with base equipment (minutes)} \\ \mbox{T}_{eff} = \mbox{Showering time with efficient equipment (minutes)} \\ \mbox{Fl}_{base} = \mbox{As-used flow rate with base equipment (GPM)} \\ \mbox{Fl}_{eff} = \mbox{As-used flow rate with efficient equipment (GPM)} \\ \mbox{Pr} = \mbox{Percentage of showers where efficient equipment used} \\ \end{array}$

Water savings were determined to be 14% over base technology:

$$Percent Savings = \frac{\left(W_{base} - W_{eff}\right)}{W_{base}}$$

Where:

 W_{eff} = Annual water consumed by showers with efficient equipment, 26,302 litres (6,947 gallons)
 W_{base}= Annual water consumed by showers with base equipment: 30,671 litres (8,101 gallons)

Other Input Assumptions

Effective Useful Life (EUL)	10 Years	
Summit Blue (2008) suggests an EUL of 10 years based on a survey of five studies of showerheads in other jurisdictions (California – two studies, New England, Vermont, Arkansas).		
Base & Incremental Conservation Measure Equipment 6\$		

⁷ To maintain consistency with Summit Blue number but to reflect the fact that apartments are generally occupied by fewer people than houses, the Summit Blue number was degraded by the ratio of the average number of inhabitants per apartment in an Ontario building over five stories (2) to the average number of inhabitants of a fully detached house in Ontario (2.9).

Statistics Canada. No date. Structural Type of Dwelling (10) and Household Size (9) for Occupied Private Dwellings of Canada, Provinces, Territories, Census Metropolitan Areas and Census Agglomerations, 2006 Census - 100% Data (Table) Census 2006. Last updated Dec 6, 2008. http://www12.statcan.ca/english/census06/data/topics/RetrieveProductTable.cfm?ALEVEL=3&APATH=3&CATNO=&DETAIL=0&

DIM=&DS=99&FL=0&FREE=0&GAL=0&GC=99&GID=837983&GK=NA&GRP=1&IPS=&METH=0&ORDER=1&PID=89071&PTY PE=88971&RL=0&S=1&SUB=0&ShowAll=No&StartRow=1&Temporal=2006&Them=69&VID=0&VNAMEE=&VNAMEF=

⁸ Ibid, based on data from: Resource Management Strategies, Inc., Regional Municipality of York Water Efficiency Master Plan Update, April 2007

⁹Survey of participants, 116 from Enbridge, 111 from Union, Summit Blue (2008)

¹⁰ Relationship modeled as: Average shower length = 8.17 – 0.448 * as-used GPM. From Energy Center of Wisconsin Analysis of data from Resource Management Strategies, Inc., *Regional Municipality of York Water Efficiency Master Plan Update*, April 2007. Cited in Summit Blue (2008)

Incremental cost based on a survey of online retailers¹¹.

Customer Payback Period (Natural Gas Only)¹²

0.5 Years

Using a 5-year average commodity cost (avoided cost)¹³ of \$0.38 / m³ and an average residential distribution cost¹⁴ of \$0.14 / m³, the payback period for natural gas savings is determined to be 0.5 years, based on the following:

Payback Period = Incremental cost / (natural gas savings x natural gas cost)

= \$6/ (23 m³/year * \$0.52 / m³)

= 0.5 years

Market Penetration

65%

Based on previous research conducted for the OPA, Navigant Consulting estimates penetration of lowflow showerheads of all flow rates across all sectors to be 65%¹⁵.

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share	
U. S. Dept. of Energy, Federal Energy Management Program ¹⁶ .	108	10	N/A	N/A	
Comments					
Based on switching from a 2.2 GPM to a 1.5 GPM showerhead. Assumptions include: 10mins per shower, 2 showers per day, shower temperature of 106F, inlet water temp of 58F. Measure provides savings of 81% over 133 m ³ required for heating water used with base equipment.					
Source	Annual Natural Gas Savings	Effective Useful Life	Incremental Cost (\$)	Penetration/Market Share	

Source	Gas Savings (m3)	Useful Life (Years)	Cost (\$)	Share
State of Iowa Utilities Board ¹⁷	48	10	US\$ 36	75%
		·		

Comments

Based on switching from a 4 GPM to a 2.5 GPM showerhead. Measure saves 15% of 320 m³ required for water heating.

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2). ¹⁵ Navigant Consulting, Inc. for the Ontario Power Authority, *Residential Rebate Program: Participation Forecast and Incentive*

¹¹ Whedon Products 1.5 GPM Ultra Saver Showerhead.

http://www.antonline.com/p USB3C-GP 398829.htm

¹² Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹³ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

¹⁴ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

Bundling Strategy – Key Findings Summary, December 2008 ¹⁶ U.S Department of Energy, Federal Energy Management Program, *FEMP Designated Product: Showerheads*

http://www1.eere.energy.gov/femp/procurement/eep_showerhead.html

¹⁷ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Low-Flow Showerhead (1.25 Gpm, Muti-Family, Enbridge TAPS)

Revision #	Description/Comment	Date Revised		
Efficient Equip	ment and Technologies Description			
Low-flow Showerhe	ead (1.25 Gpm) – Installed by Enbridge-designa	ated contractors.		
Base Equipme	nt and Technologies Description			
Average existing st	ock within one of three ranges.			
Range mid-points u	ised as point estimates:			
Scenario A	– 2.0 GPM			
Scenario B	– 2.25 GPM			
 Scenario C – 3.0 GPM 				
When new shower	neads are installed contractors use a bag-test to	o determine base equipment flow-rate.		

Decision Type	Target Market(s)	End Use
Retrofit	Multi-Family (Existing)	Water heating

Codes, Standards, and Regulations

Ontario Building Code (2006)¹ requires shower heads to have a maximum flow of 2.5 GPM (9.5 L/min)

¹ Ontario Regulations 350/06, 2006 Building Code

Resource Savings Table

[Electricity and Other Resource Savings			Equipment & O&M	Equipment & O&M Costs of
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
	A: 34		A: 6,081		
1	B: 43	0	B: 7,507	13	0
	C: 70		C: 11,840		
	A: 34		A: 6,081		
2	B: 43	0	B: 7,507	0	0
	C: 70		C: 11,840		
	A: 34		A: 6,081		
3	B: 43	0	B: 7,507	0	0
	C: 70		C: 11,840		
	A: 34		A: 6,081		
4	B: 43	0	B: 7,507	0	0
	C: 70		C: 11,840		
	A: 34		A: 6,081		
5	B: 43	0	B: 7,507	0	0
	C: 70		C: 11,840		
	A: 34		A: 6,081		
6	B: 43	0	B: 7,507	0	0
	C: 70		C: 11,840		
	A: 34		A: 6,081		
7	B: 43	0	B: 7,507	0	0
	C: 70		C: 11,840		
	A: 34		A: 6,081		
8	B: 43	0	B: 7,507	0	0
	C: 70		C: 11,840		
	A: 34		A: 6,081		
9	B: 43	0	B: 7,507	0	0
	C : 70		C : 11,840		
	A: 34		A: 6,081		
10	B: 43	0	B: 7,507	0	0
	C : 70		C : 11,840		
	A: 340		A: 60,810		
TOTALS	B: 430	0	B: 75,070	13	0
	C: 700		C: 118,400		

Resource Savings Assumptions

Annual Natural Gas Savings	A: 34 m ³ B: 43 m ³ C: 70 m ³
 Assumptions and inputs: Average shower temperature with base equipment: 40 °C (104 °F Average shower temperature with efficient equipment: 41 °C (106 Average water inlet temperature: 7.22 °C (45 °F)³ Average water heater energy factor: 0.57⁴ 	,

Annual gas savings calculated as follows:

² Although evidence for this increase in shower temperature remains anecdotal, Summit Blue suggest it is likely enough to include its effect in the analysis. Summit Blue (2008).

³ Chinnery, Glen. *Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices*, EPA, Energy Star for homes, March 2004

http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf ⁴ Assumption of the Ministry of Energy of Ontario. See Table 4, <u>http://www.energy.gov.on.ca/index.cfm?fuseaction=conservation.guide13</u>

$$Savings = (W_{base} * (T_{out, base} - T_{in}) - W_{eff} * (T_{out, eff} - T_{in})) * 8.33 * \frac{1}{EF} * 10^{-6} * 27.8$$

Where:

 W_{base} = annual water use with base equipment (gallons) W_{eff} = annual water use with efficient equipment (gallons) $T_{out,base}$ = Shower temperature with base equipment (°F) $T_{out,new}$ = Shower temperature with efficient equipment (°F) T_{in} = Water inlet temperature (°F) 8.33 = Energy content of water (Btu/gallon/°F) EF = Water heater energy factor 10⁻⁶ = Factor to convert Btu to MMBtu 27.8 = Factor to convert MMBtu to m³

Scenario **A:** Gas savings were determined to be 18% over base equipment: Scenario **B:** Gas savings were determined to be 22% over base equipment: Scenario **C:** Gas savings were determined to be 30% over base equipment:

Percent Savings =
$$\frac{(G_{base} - G_{eff})}{G_{base}}$$

Where:

 $\begin{array}{l} G_{eff} & = \mbox{ Annual natural gas use with efficient equipment,} \\ & \mbox{ Scenario } {\bf A:} 150 \mbox{ m}^3 \\ & \mbox{ Scenario } {\bf B:} 153 \mbox{ m}^3 \\ & \mbox{ Scenario } {\bf C:} 162 \mbox{ m}^3 \\ & \mbox{ G}_{base} = \mbox{ Annual natural gas use with base equipment,} \\ & \mbox{ Scenario } {\bf A:} 184 \mbox{ m}^3 \\ & \mbox{ Scenario } {\bf B:} 196 \mbox{ m}^3 \\ & \mbox{ Scenario } {\bf C:} 232 \mbox{ m}^3 \\ \end{array}$

Annual Electricity Savings	0 kWh
N/A	
Annual Water Savings	A: 6,081 L
	B: 7,507 L
	C: 11,840 L
Assumptions and inputs:	
 As-used flow rate with base equipment⁵: 	
Scenario A: 1.78 GPM	
Scenario B: 1.91 GPM	
Scenario C: 2.32 GPM	
 Average household size: 2.14 persons⁶ 	

⁵ As-used flow is calculated as a function of "full-on" or label flow: as-used flow = min{ 0.691+0.542*full-on flow, full-on flow}.

Proctor, J. Gavelis, B. and Miller, B. Savings and Showers: It's All in the Head, (PGE) Home Energy Magazine, July/Aug 1994. Cited in Summit Blue (2008).

Summit Blue uses the equation without assuming that it is a min function, implicitly assuming that participants will have the expertise or desire to make minor adjustments to the house water pressure to compensate for reduced shower flow.

⁶ To maintain consistency with Summit Blue number but to reflect the fact that apartments are generally occupied by fewer people than houses, the Summit Blue number was degraded by the ratio of the average number of inhabitants per apartment in an Ontario building over five stories (2) to the average number of inhabitants of a fully detached house in Ontario (2.9). Statistics Canada. No date. *Structural Type of Dwelling (10) and Household Size (9) for Occupied Private Dwellings of Canada, Provinces, Poort.*

• Showers per capita per day: 0.75⁷

- Proportion of showering affected by measure (i.e. percentage of the time the low-flow showerhead used): 76%⁸
- Average showering time per capita per day with base equipment:
 - Scenario A: 7.37 minutes Scenario B: 7.31 minutes
 - Scenario C: 7.13 minutes
- Average showering time per capita per day with new technology: 7.61 minutes⁹

Annual water savings calculated as follows:

$$Savings = Ppl * Sh * 365 * \Pr(T_{base} * Fl_{base} - T_{eff} * Fl_{eff})$$

Where:

 $\begin{array}{l} \mathsf{Ppl} = \mathsf{Number} \ of \ \mathsf{people} \ \mathsf{per} \ \mathsf{household.} \\ \mathsf{Sh} = \mathsf{Showers} \ \mathsf{per} \ \mathsf{capita} \ \mathsf{per} \ \mathsf{day.} \\ \mathsf{365} = \mathsf{Days} \ \mathsf{per} \ \mathsf{year.} \\ \mathsf{T}_{\mathsf{base}} = \mathsf{Showering} \ \mathsf{time} \ \mathsf{with} \ \mathsf{base} \ \mathsf{equipment} \ (\mathsf{minutes}) \\ \mathsf{T}_{\mathsf{eff}} = \mathsf{Showering} \ \mathsf{time} \ \mathsf{with} \ \mathsf{efficient} \ \mathsf{equipment} \ (\mathsf{minutes}). \\ \mathsf{Fl}_{\mathsf{base}} = \mathsf{As}\text{-used} \ \mathsf{flow} \ \mathsf{rate} \ \mathsf{with} \ \mathsf{base} \ \mathsf{equipment} \ (\mathsf{GPM}) \\ \mathsf{Fl}_{\mathsf{eff}} = \mathsf{As}\text{-used} \ \mathsf{flow} \ \mathsf{rate} \ \mathsf{with} \ \mathsf{efficient} \ \mathsf{equipment} \ (\mathsf{GPM}) \\ \mathsf{Fr} = \mathsf{Percentage} \ \mathsf{of} \ \mathsf{showers} \ \mathsf{where} \ \mathsf{efficient} \ \mathsf{equipment} \ \mathsf{used}. \end{array}$

Scenario **A**: Water savings were determined to be 21% over base equipment Scenario **B**: Water savings were determined to be 24% over base equipment Scenario **C**: Water savings were determined to be 32% over base equipment

$$Percent Savings = \frac{\left(W_{base} - W_{eff}\right)}{W_{base}}$$

Where:

W _{eff} = Annual water consumed by showers with efficient equipment,
Scenario A: 22,999 litres (6,074 gallons)
Scneario B: 23,450 litres (6,193 gallons)
Scenario C: 24,818 litres (6,555 gallons)
W _{base} = Annual water consumed by showers with base equipment:
Scenario A: 29,080 litres (7,680 gallons)
Scenario B: 30,957 litres (8,176 gallons)
Scenario C: 36,658 litres (9,682 gallons)

Territories, Census Metropolitan Areas and Census Agglomerations, 2006 Census - 100% Data (Table) Census 2006. Last updated Dec 6, 2008.

http://www12.statcan.ca/english/census06/data/topics/RetrieveProductTable.cfm?ALEVEL=3&APATH=3&CATNO=&DETAIL=0& DIM=&DS=99&FL=0&FREE=0&GAL=0&GC=99&GID=837983&GK=NA&GRP=1&IPS=&METH=0&ORDER=1&PID=89071&PTY PE=88971&RL=0&S=1&SUB=0&ShowAlI=No&StartRow=1&Temporal=2006&Theme=69&VID=0&VNAMEE=&VNAMEF=

⁷ Ibid, based on data from: Resource Management Strategies, Inc., Regional Municipality of York Water Efficiency Master Plan Update, April 2007

⁸ Survey of participants, 116 from Enbridge, 111 from Union, Summit Blue (2008)

⁹ Relationship modeled as: Average shower length = 8.17 – 0.448 * as-used GPM. From Energy Center of Wisconsin Analysis of data from Resource Management Strategies, Inc., *Regional Municipality of York Water Efficiency Master Plan Update*, April 2007. Cited in Summit Blue (2008)

Other Input Assumptions

Effective U	seful Life (EUL)	10 Years
	(2008) suggests an EUL of 10 years based on a survey of fi ons (California – two studies, New England, Vermont, Arka	
Base & Inc and O&M (remental Conservation Measure Equipment	13\$
Incremental c	ost based on a survey of online retailers ¹⁰ .	
Customer	Payback Period (Natural Gas Only) ¹¹	A: 0.7 Years B: 0.6 Years C: 0.4 Years
distribution co for Scenario A	ar average commodity cost (avoided cost) ¹² of $0.38 / m^3$ a st ¹³ of $0.14 / m^3$, the payback period for natural gas saving 0, 0.6 years for Scenario B and 0.4 years for Scenario C, ba	is is determined to be 0.7 years sed on the following:
-	od = Incremental cost / (natural gas savings x natural gas co	ost)
Scenario A	= \$13/ (34 m³/year * \$0.52 / m³) = 0.7 years	
Scenario B	= \$13/ (43 m³/year * \$0.52 / m³) = 0.6 years	
Scenario C	= \$13/ (70 m³/year * \$0.52 / m³) = 0.4 years	
Market Per	netration	65%
Based on pre	vious research conducted for the OPA, Navigant Consulting eads of all flow rates across all sectors to be 65% ¹⁴ .	

¹⁰ Earth Massage Showerhead 1.25 GPM <u>http://cgi.ebay.com/Earth-Massage-Showerhead-Water-Saver-1-25-gpm-flow_W0QQitemZ130256063752QQihZ003QQcategoryZ71282QQcmdZViewItemQQ_trksidZp1742.m153.l1262</u>

¹¹ Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹² 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost. ¹³ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and

Enbridge Gas websites (https://portal-

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2). ¹⁴ Navigant Consulting, Inc. for the Ontario Power Authority, *Residential Rebate Program: Participation Forecast and Incentive* Bundling Strategy – Key Findings Summary, December 2008

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
U. S. Dept. of Energy, Federal Energy Management Program ¹⁵	108	10	N/A	N/A

Comments

Based on switching from a 2.2 GPM to a 1.5 GPM showerhead. Assumptions include: 10mins per shower, 2 showers per day, shower temperature of 106F, inlet water temp of 58F. Measure provides savings of 81% over 133 m³ required for heating water used with base equipment.

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/Market Share
State of Iowa Utilities Board ¹⁶	48	10	US\$ 36	65%
Comments				

Based on switching from a 4 GPM to a 2.5 GPM showerhead. Measure saves 15% of 320 m³ required for water heating.

¹⁵ U.S Department of Energy, Federal Energy Management Program, *FEMP Designated Product: Showerheads* <u>http://www1.eere.energy.gov/femp/procurement/eep_showerhead.html</u>
 ¹⁶ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2

Low-Flow Showerhead (1.25 Gpm, Muti-Family, UG ESK)

Revision #	

Date Revised

Efficient Equipment and Technologies Description

Description/Comment

Low-flow Showerhead (1.25 Gpm) – distributed to participants under Union Gas' ESK program.

Base Equipment and Technologies Description

Average existing stock (2.2 GPM)¹.

Decision Type	Target Market(s)	End Use
Retrofit	Multi-Family (Existing)	Water heating

Codes, Standards, and Regulations

Ontario Building Code (2006)² requires shower heads to have a maximum flow of 2.5 GPM (9.5 L/min)

Resource Savings Table

	Electricity and Other Resource Savings			Equipment & O&M	Equipment & O&M
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Costs of Base Measure
(EUL=)	(m ³)	(kWh)	(L)	(\$)	(\$)
1	42	0	7,289	13	0
2	42	0	7,289	0	0
3	42	0	7,289	0	0
4	42	0	7,289	0	0
5	42	0	7,289	0	0
6	42	0	7,289	0	0
7	42	0	7,289	0	0
8	42	0	7,289	0	0
9	42	0	7,289	0	0
10	42	0	7,289	0	0
TOTALS	420	0	72,890	13	0

¹ Shower-heads distributed under Union Gas's ESK program are installed by homeowners rather than Union contractors. No observation is made of the base equipment's GPM. It is therefore assumed to be the full-on flow rate corresponding to the as-used flow from York Region monitoring study calculated using the equation cited below. Resource Management Strategies, Inc., Regional Municipality of York Water Efficiency Master Plan Update, April 2007. Cited by: Summit Blue, *Resource Savings Values in Selected Residential DSM Prescriptive Programs*, June 2008.

² Ontario Regulations 350/06, 2006 Building Code

Resource Savings Assumptions

Annual Natural Gas Savi	ngs	42 m ³
Assumptions and inputs:		
Average shower temper	rature with base equipment: 40 °C (104 °F rature with efficient equipment: 41 °C (106 perature: 7.22 °C (45 °F) ⁴ nergy factor: 0.57 ⁵	
Annual gas savings calculated a	as follows:	
$Savings = (W_{base} * (T_{out, base} - T))$	$(T_{in}) - W_{eff} * (T_{out,eff} - T_{in})) * 8.33 * \frac{1}{EF} * 10$	$0^{-6} * 27.8$
Where:		
Gas savings were determined to Percent Savings = $\frac{(G_{base} - G_{abse})}{G_{base}}$		ipment (gallons) equipment (°F) ent equipment (°F)
Duse		
Where:	G_{eff} = Annual natural gas use with efficien G_{base} = Annual natural gas use with base	
Annual Electricity Saving	gs	0 kWh
N/A		
Annual Water Savings		7,289 L
Assumptions and inputs:	2	
As-used flow rate with b	base equipment: 1.89 GPM ⁶	

Average household size: 2.14 persons⁷ •

³ Although evidence for this increase in shower temperature remains anecdotal, Summit Blue suggest it is likely enough to include its effect in the analysis. Summit Blue (2008).

⁴ Chinnery, Glen. Policy Recommendations for the HERS Community to Consider regarding HERS point credit for Waste Water Heat Recovery Devices, EPA, Energy Star for homes, March 2004

http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf ⁵ Assumption of the Ministry of Energy of Ontario. See Table 4, <u>http://www.energy.gov.on.ca/index.cfm?fuseaction=conservation.guide13</u>

⁶ As-used flow is calculated as a function of "full-on" or label flow: as-used flow = min{ 0.691+0.542*full-on flow, full-on flow}. Proctor, J. Gavelis, B. and Miller, B. Savings and Showers: It's All in the Head, (PGE) Home Energy Magazine, July/Aug 1994. Cited in Summit Blue (2008).

Summit Blue uses the equation without assuming that it is a min function, implicitly assuming that participants will have the expertise or desire to make minor adjustments to the house water pressure to compensate for reduced shower flow.

- Showers per capita per day: 0.75⁸
- Proportion of showering affected by measure (i.e. percentage of the time the low-flow showerhead used) : 76%⁹
- Average showering time per capita per day with base equipment: 7.32 minutes
- Average showering time per capita per day with new technology: 7.61 minutes¹⁰

Annual water savings calculated as follows:

 $Savings = Ppl * Sh * 365 * \Pr(T_{base} * Fl_{base} - T_{eff} * Fl_{eff})$

Where:

Ppl = Number of people per household.

Sh = Showers per capita per day.

365 = Days per year.

 $T_{base} = Showering time with base equipment (minutes)$ $T_{eff} = Showering time with efficient equipment (minutes).$ $FI_{base} = As-used flow rate with base equipment (GPM)$ $FI_{eff} = As-used flow rate with efficient equipment (GPM)$

Pr = Percentage of showers where efficient equipment used.

Water savings were determined to be 24% over base equipment:

$$Percent Savings = \frac{\left(W_{base} - W_{eff}\right)}{W_{base}}$$

Where:

W _{eff} = Annual water consumed by showers with efficie	nt
equipment, 23,381 litres (6,175 gallons).	
W _{base} = Annual water consumed by showers with base equipment: 30,671 litres (8,101 gallons).	

Other Input Assumptions

Effective Useful Life (EUL)	10 Years		
Summit Blue (2008) suggests an EUL of 10 years based on a survey of five studies of showerheads in other jurisdictions (California – two studies, New England, Vermont, Arkansas).			
Base & Incremental Conservation Measure Equipment and O&M Costs	13\$		

⁷ To maintain consistency with Summit Blue number but to reflect the fact that apartments are generally occupied by fewer people than houses, the Summit Blue number was degraded by the ratio of the average number of inhabitants per apartment in an Ontario building over five stories (2) to the average number of inhabitants of a fully detached house in Ontario (2.9).

Statistics Canada. No date. Structural Type of Dwelling (10) and Household Size (9) for Occupied Private Dwellings of Canada, Provinces, Territories, Census Metropolitan Areas and Census Agglomerations, 2006 Census - 100% Data (Table) Census 2006. Last updated Dec 6, 2008.

http://www12.statcan.ca/english/census06/data/topics/RetrieveProductTable.cfm?ALEVEL=3&APATH=3&CATNO=&DETAIL=0&DI M=&DS=99&FL=0&FREE=0&GAL=0&GC=99&GID=837983&GK=NA&GRP=1&IPS=&METH=0&ORDER=1&PID=89071&PTYPE =88971&RL=0&S=1&SUB=0&ShowAll=No&StartRow=1&Temporal=2006&Theme=69&VID=0&VNAMEE=&VNAMEF=

⁸ Ibid, based on data from: Resource Management Strategies, Inc., Regional Municipality of York Water Efficiency Master Plan Update, April 2007

⁹Survey of participants, 116 from Enbridge, 111 from Union, Summit Blue (2008)

¹⁰ Relationship modeled as: Average shower length = 8.17 – 0.448 * as-used GPM. From Energy Center of Wisconsin Analysis of data from Resource Management Strategies, Inc., *Regional Municipality of York Water Efficiency Master Plan Update*, April 2007. Cited in Summit Blue (2008)

Incremental cost based on a survey of online retailers ¹¹ .				
Customer Payback Period (Natural Gas Only) ¹²	0.6 Years			
Using a 5-year average commodity cost (avoided cost) ¹³ of $0.38 / m^3$ and an average residential distribution cost ¹⁴ of $0.14 / m^3$, the payback period for natural gas savings is determined to be 0.6 years, based on the following:				
Payback Period = Incremental cost / (natural gas savings x natural gas cost) = \$13/ (42 m³/year * \$0.52 / m³) = 0.6 years				
Market Penetration	65%			
Based on previous research conducted for the OPA, Navigant Consulting estimates penetration of low-flow showerheads of all flow rates across all sectors to be 65% ¹⁵ .				

Measure Assumptions Used by Other Jurisdictions

Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/ Market Share		
U. S. Dept. of Energy, Federal Energy Management Program ¹⁶	108	10	N/A	N/A		
Comments Based on switching from a 2.2 GPM to a 1.5 GPM showerhead. Assumptions include: 10mins per						
shower, 2 showers per day, shower temperature of 106F, inlet water temp of 58F. Measure provides savings of 81% over 133 m ³ required for heating water used with base equipment.						
Source	Annual Natural Gas Savings (m3)	Effective Useful Life (Years)	Incremental Cost (\$)	Penetration/ Market Share		
State of Iowa Utilities Board ¹⁷	48	10	US\$ 36	75%		
Comments						
Based on switching from a 4 GPM to a 2.5 GPM showerhead. Measure saves 15% of 320 m ³ required for water heating.						

plumprod.cgc.enbridge.com/portal/server.pt?open=512&objID=248&PageID=0&cached=true&mode=2&userID=2). ¹⁵ Navigant Consulting, Inc. for the Ontario Power Authority, *Residential Rebate Program: Participation Forecast and Incentive*

¹¹ Earth Massage Showerhead 1.25 GPM <u>http://cgi.ebay.com/Earth-Massage-Showerhead-Water-Saver-1-25-gpm-</u> flow W0QQitemZ130256063752QQihZ003QQcategoryZ71282QQcmdZViewItemQQ trksidZp1742.m153.l1262

¹² Customer payback period has been calculated using natural gas savings only. Where applicable, payback period is expected to decrease when electricity and/or water savings are included.

¹³ 2009 Avoided gas cost provided by Union Gas. 5 year average avoided gas cost determined by taking average for baseload and weather sensitive avoided gas cost.

¹⁴ Average distribution cost taken calculated from both Union Gas website (<u>http://www.uniongas.com/residential/rates/</u>) and Enbridge Gas websites (https://portal-

Bundling Strategy – Key Findings Summary, December 2008 ¹⁶ U.S Department of Energy, Federal Energy Management Program, *FEMP Designated Product: Showerheads*

http://www1.eere.energy.gov/femp/procurement/eep_showerhead.html

¹⁷ Iowa Utilities Board. Docket No. EEP-08-02 MidAmerican Energy Company. Volume IV, Appendix D, Part 1 of 2