Colin J. McLorg 14 Carlton St. Toronto, Ontario M5B 1K5

Telephone: 416.542.2513 Facsimile: 416.542.2776 regulatoryaffairs@torontohydro.com

September 18, 2009

via RESS e-filing – signed original to follow by courier

Ms. Kirsten Walli, Board Secretary Ontario Energy Board PO Box 2319, 2300 Yonge St, 27th floor Toronto, ON M4P 1E4

Dear Ms. Walli:

Re: Application for Recovery of Contact Voltage Remediation Costs EB-2009-0243

Pursuant to the Board's Procedural Order #1, issued on August 19, 2009, Toronto Hydro-Electric System Limited ("THESL") hereby submits its response to interrogatories from Board Staff, Energy Probe Research Foundation, the Canadian Union of Public Employees (Local One), and the Vulnerable Energy Consumers Coalition. THESL did not receive any interrogatories from the School Energy Coalition. Two paper copies are enclosed.

Please also note for the record in this proceeding and for the purpose of further communication that counsel for THESL in this proceeding is Mr. J. Mark Rodger, whose contact information appears below. Please include Mr. Rodger on all future communication.

Mr. J. Mark Rodger Borden Ladner Gervais LLP Scotia Plaza, 40 King Street West Toronto ON M5H 3Y4 Telephone: 416-367-6190 Fax: 416-361-7088 mrodger@blgcanada.com

Yours truly,

[original signed by Colin McLorg]

Colin J. McLorg, Manager, Regulatory Policy and Relations

encl. CJM:jl/acc

cc: J. Mark Rodger, Counsel for THESL, by electronic mail only Intervenors of Record for EB-2009-0243, by electronic mail only

1 **INTERROGATORY 1:**

2 **Reference(s):** page 1

3

4 Please state why THESL is seeking recovery of its contact voltage remediation costs

5 through a separate application rather than incorporating this request as part of its

6 anticipated 2010 cost of service rate filing.

7

8 **RESPONSE:**

THESL has a responsibility to its shareholder, bondholders, and credit rating agencies to 9 present the best information available concerning its financial results. The incremental 10 expenditures incurred by THESL to remediate the contact voltage situation are significant 11 with respect to its overall financial results for the fiscal year ending December 31, 2009, 12 and the Board's decision regarding the regulatory treatment of those costs will be 13 correspondingly significant. Had THESL not applied separately for recovery of the 14 contact voltage costs, there would be no prospect of a Board decision by the time 15 financial statements for 2009 need to be prepared. Therefore it was necessary for THESL 16 17 to apply separately.

Toronto Hydro-Electric System Limited EB-2009-0243 Exhibit J Tab 1 Schedule 2 Filed: 18 Sep 2009 Page 1 of 1

RESPONSES TO ONTARIO ENERGY BOARD STAFF INTERROGATORIES

1 **INTERROGATORY 2:**

2 **Reference(s):** page 1

3

4 THESL states that:

- 5 "The costs were incurred by THESL from February
- 6 through March of 2009, and in one category will be
- 7 continued to year end 2009."
- 8 Please state whether or not THESL is anticipating any additional contact voltage costs
- 9 arising from the 2008-2009 incidents for recovery which are not included in this
- 10 application.
- 11

12 **RESPONSE:**

- 13 No, THESL is not anticipating any further costs in connection with the Level III
- 14 emergency.

1 INTERROGATORY 3:

2	Re	ference(s): page 1
3		
4	a)	Please state whether or not THESL is aware of any other instances of electricity
5		distributors experiencing the contact voltage conditions and magnitude of costs that
6		THESL experienced in the February through March 2009 period.
7	b)	If THESL is aware of any such instances, please provide details and state what, if
8		any, cost recovery was allowed by the affected distributors' regulators.
9	c)	If THESL is not aware of any such instances, please state why THESL believes it
10		experienced such unique circumstances. Please state whether there were any
11		conditions unique to THESL's operating territory that gave rise to these
12		circumstances and if so what they were.
13		
14	RF	CSPONSE:
15	a)	THESL is aware that Consolidated Edison of New York has experienced contact
16		voltage (known in that jurisdiction as "stray voltage") conditions similar to THESL,
17		that first came to attention in January 2004. Consolidated Edison's approved annual
18		Stray Voltage Testing costs for Rate Year 2009-2010 are USD \$22.014 million (Case
19		08-E-0539).
20		
21	b)	The State of New York Public Service Commission imposed new Safety Standards
22		for all electric utilities subject to their jurisdiction, effective January 5, 2005 (Case
23		04-M-0159). These Safety Standards include the requirement for annual stray voltage
24		testing of utility electric facilities accessible to the public, using qualified voltage
25		detection devices. The standards require that where a utility finds stray voltage, it

1	must immediately make the facility safe and repair it within a short time period
2	thereafter. In the January 5, 2005 Order Instituting Safety Standards, the NYPSC
3	stated the following regarding cost recovery:
4	
5	"We therefore agree with the recommendation that any
6	utility seeking cost recovery for complying with the safety
7	standards must demonstrate that the costs it incurs are
8	incremental to the amounts included in its rates.
9	Additionally, the utilities are cautioned that, in considering
10	such petitions, we will apply our traditional process for
11	evaluating deferral accounting requests and would not
12	favorably consider requests that do not satisfy the three
13	elements of that process. Given the foregoing and the
14	potential for different treatment for each utility, we will not
15	approve cost recovery for any utility at this time. Rather,
16	each utility that seeks authorization to recover costs for
17	complying with the safety standards as an incremental
18	expense is directed to file a detailed estimate, with
19	supporting documentation and work papers, of its costs for
20	implementing the safety standards.
21	
22	To be considered, the filing shall include the following
23	elements: (i) identification and justification of the extent to
24	which the costs are incremental to the utility's existing
25	programs and procedures; (ii) an explanation of the extent

1		to which the costs are incremental to the utility's
2		responsibility and obligation under PSL §65(1) to provide
3		safe and adequate service; (iii) a demonstration that the
4		costs satisfy the three-prong test for deferral accounting;
5		(iv) a description of the provisions of the utility's current
6		rate plan as it relates to these activities; (v) a proposal of
7		the type of cost recovery the utility is seeking; and (vi) an
8		exposition of the potential rate and bill impacts to
9		customers." (ref: page 51 &52)
10		
11	c)	THESL does not assert that it experienced unique circumstances, and does not assert
12		that conditions unique to its territory gave rise to the circumstances surrounding the
13		incidence of contact voltage. THESL does assert that bifurcated ownership and
14		control of secondary distribution plant contributed to the contact voltage problem.

1 **INTERROGATORY 4:**

2	Re	ference(s): pages 1, 4-5
3		
4	It i	s stated on page 1 that:
5		"Site investigations revealed that in each incident, contact
6		voltage was caused by insulation breakdown on energized
7		connectors, allowing voltage to energize the metal frame
8		and cover the respective handwells."
9	It i	s further stated on pages 4 and 5 that:
10		"Existing handwells were systematically inspected because
11		it had become apparent that they had significant potential to
12		be involved in or contribute to an incident of contact
13		voltage. Inspection revealed numerous instances of
14		missing plastic caps; degraded or faulty insulation; and
15		improper repacking of the conductors."
16		
17	a)	Please state why THESL's ongoing maintenance programs had not identified these
18		problems in the past.
19	b)	Please state what percentage of the handwells inspected were found to be defective.
20	c)	Please state whether or not THESL is undertaking any internal reviews of its
21		maintenance procedures in light of these events.
22		
23	RF	CSPONSE:
24	a)	During the course of normal operation, THESL performs systematic maintenance of
25		its assets to ensure general safety and reliability. However, given that contact voltage

1		was never a problem in the past, these particular maintenance programs were not
2		geared towards locating and/or eliminated suspected cases of contact voltage on
3		secondary circuits, and as a result did not identify the problem.
4		
5	b)	A total of 9.7% or 1,454 of the 15,032 existing handwells had inherent defects
6		requiring corrective repair or asset replacement.
7		
8	c)	THESL will review the annual maintenance programmes and incorporate specific
9		maintenance programmes related to street lighting assets should the OEB approve the
10		transfer of these assets to THESL.

1 **INTERROGATORY 5:**

2	Re	erence(s): pages 2, 8
3		
4	On	page 2, THESL quotes a letter which it sent to the Board on February 2, 2009,
5	adv	ising of the Level III emergency arising from this situation. That letter states in part
6	tha	:
7		"Toronto Hydro has therefore suspended all other non-
8		emergency planned work on its system and has deployed its
9		own utility and streetlighting crews, as well as available
10		contractor resources on a 7 day per week, 24 hour per day
11		basis to locate, diagnose, secure and repair to a safe
12		condition all the suspect equipment on its distribution and
13		streetlighting systems."
14	On	page 8, THESL also states that:
15		"Furthermore, it was necessary to suspend non-emergency
16		planned work for the duration of the Level III project and
17		consequently connections and other normal jobs were not
18		being completed during this period."
19		
20	a)	Please clarify whether the costs claimed for recovery in this proceeding are
21		incremental to the costs related to the non-emergency planned work that would have
22		been incurred had this emergency not occurred.
23	b)	If so, please state how the recovery amount was adjusted for the non-incurrence of the
24		normal ongoing costs and the amount of this adjustment. If no such adjustment was
25		made, please explain why.

1 **RESPONSE:**

- The costs claimed for recovery in this proceeding are incremental to the costs related 2 a) to the non-emergency planned work that would have been incurred had this 3 emergency not occurred, as explained in the Application at pages 5 and 6. There 4 THESL stated in part that "THESL is committed to achieving its planned and 5 approved levels of operations and maintenance and capital work in 2009 and will 6 therefore at least exhaust its approved revenue requirement in this category". Since 7 the costs for non-emergency planned work will not in fact be avoided, the costs set 8 out in the Application are incremental and did not displace costs that would otherwise 9 be incurred. 10 11
- b) Please refer to answer a) above.

1 **INTERROGATORY 6:**

2 **Reference(s):** page 5

3

4 It is stated that a further amount of \$2.41 million will be expended through the balance of

- 5 2009 for the maintenance of the scanning program on a non-emergency basis in order to
- 6 ensure that further instances of contact voltage are minimized. Please state whether the
- 7 scanning program is anticipated to continue beyond 2009 and, if so, what a normal annual
- 8 cost level for such a program is anticipated to be.
- 9

10 **RESPONSE:**

- 11 THESL has engaged PSC on an annual contract basis to perform ongoing scanning. The
- 12 contract amount is \$US 4 million.

INTERROGATORY 7:

Reference (s):	page 6
	Reference (s):

3

4 On this page, THESL states that the contact voltage remediation costs are exogenous in

5 nature, which "refers to their character as having been externally imposed or required, as

6 distinct from being discretionary and voluntarily undertaken."

7 a) Please state what was the exogenous event that precipitated these costs.

b) Please state if THESL is aware of any prior Board Decisions which have been based
on a similar definition of exogeneity and if so please state which decisions and why
THESL believes the definitions to be similar.

11

12 **RESPONSE:**

a) No single event (such as an ice-storm, etc.) caused the contact voltage remediation
 costs. However, the proximate cause of the costs was the discovery of a possibly

15 widespread system condition in which contact voltage could occur.

16

b) The term "exogeneity" is simply a synonym for the term 'inability of management to 17 control', which term was defined in the original Rate Handbook at Chapter 5, page 5, 18 19 as "the cost must be attributable to some event outside of management's ability to control". As explained on pages 6 and 7 of the Application, THESL could not 20 21 responsibly have declined to take immediate steps to rectify an apparent contact voltage problem and therefore the costs were non-discretionary, in the same sense 22 storm restoration costs are non-discretionary. THESL therefore asserts that the costs 23 sought for recovery in the Application meet the criterion of exogeneity, or as it has 24 25 otherwise been known 'inability of management to control'.

- 1
- c) Many decisions of the Board concerning z-factor recovery have been based on the
 same criterion.

1 INTERROGATORY 8:

2 **Reference(s):** page 7

3

On this page, THESL discusses the prudence of the contact voltage control costs for which recovery is being sought and states that: "Correspondingly, the reasonableness of the measures and costs undertaken should be assessed by considering whether available alternative approaches, given the information and resources available, might have been used instead with greater effectiveness or lower cost."

a) Please state whether it is THESL's view that the Board should be assessing the
prudence of these costs solely from the perspective of THESL's actions from the time
the contact voltage problem came to THESL's attention and if so why. If not, please
state THESL's views on the applicable timeframe the Board should be using to assess
prudency.

b) Please state whether or not in THESL's view the costs incurred to correct the contact
voltage conditions that are the basis of this application would have been lower if the
need for this remediation had been identified as part of its ongoing maintenance
program. If THESL believes this to be the case, please provide an estimate as to how
much lower these costs would have been under such circumstances. If THESL
believes they would have been higher, please state how much higher and why this
would have been the case.

21

22 **RESPONSE:**

a) THESL does not seek to limit the perspectives from which the Board might consider
 the prudence of the contact voltage remediation costs. However, it is not clear what
 relevance any period before the contact voltage problem came to THESL's attention

1		might have to this Application, since in the first instance no such period has been
2		defined and in any case THESL is not claiming any costs for such a period nor have
3		such costs ever formed part of a previous revenue requirement.
4		
5	b)	THESL does not believe that there would have been any difference in the contact
6		voltage emergency remediation costs stemming from how the underlying condition
7		came to be discovered. If the thrust of the question is rather whether costs would
8		have been lower had an emergency condition not existed, THESL acknowledges in
9		the hypothetical that they would have been. THESL has no basis upon which to
10		estimate the difference between actual costs and hypothetical costs which might have
11		been incurred under different conditions.

1 **INTERROGATORY 9:**

2	Reference (s):	pages 9-10
2	Keiter chee(s).	pages J-1

3

4

- THESL proposes that of the total \$14.35 million of costs for which recovery is being
- 5 sought, \$6.56 million of scanning costs be allocated to all classes as they were undertaken
- 6 to ensure the safety of the entire distribution system, while the remaining \$7.79 million
- 7 related to the remediation of existing contact voltages and inspection and remediation of
- 8 handwells be recovered from the Streetlighting and USL classes only.
- 9 a) Please provide THESL's views on the reasonableness of recovering all of these costs
 10 from the Streetlighting and USL classes.
- b) Please provide revised Exhibits 1, 2a and 2b on the basis of recovery of all of these
- 12 costs from the Streetlighting and USL classes
- 13

14 **RESPONSE:**

- a) THESL does not believe it is reasonable to recover scanning costs from only the SL
- and USL classes since these costs are incurred to ensure the safety of the overall
- 17 system for the public and employees.
- 18
- 19 b) Please see Appendix A.

Exhitbit 1 - Derivation of Rate Riders

	Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7	Col. 8	Col.
1				RESIDENTIAL	GS < 50 kW	GS - 50 to 1000 kW	GS > 1000 to 5000 kW	LARGE USE	UNMETE SCATTER
2	2009 Approved Load by Rate Class								
4 5	Number of Customers Number of Connection			611,808	66,191	11,719	530	49	
6	2009 - Cost of Service Allocation - Secondary	Customer Base		611,808	66,191	2,803	12	0	
7 8 9 10	Allocators Percentages 2009 - Cost of Service Allocation - Secondary Connections Allocation	Customer Base (%)		77.37%	8.37%	0.35%	0.00%	0.00%	

11			ALLOCATOR	RESIDENTIAL	GS < 50 kW	GS - 50 to 1000 kW	GS > 1000 to 5000 kW	LARGE USER	SMALL SC
12	Scanning	\$6,555,000	Connections Allocation	\$0	\$0	-	\$0	\$0	\$1, ⁻
13	Remediation	\$7,790,000	Connections Allocation	\$0	\$0	-	\$0	\$0	\$1,4
14	Total Recovery	\$14,345,000		\$0	\$0	-	\$0	\$0	\$2,

15 20	010 - Rate Riders	RECOVERY AMOUNT	ALLOCATOR	RESIDE	NTIAL	GS <	< 50 kW	GS - 5 1000		GS > 1 5000	1000 to) kW	LARG	E USER	SM	ALL SCATTER LOAD	ST	REETLIGHT
16 Sca	anning	\$2,185,000	Connections Allocation Connections	\$	-	\$	-	\$	-	\$	-	\$	-	\$	1.63	\$	0.91
7 Re	mediation	\$2,596,667	Allocation	\$	-	\$		\$	-	\$	-	\$	-	\$	1.94	\$	1.08
18 Tot	tal Contact Voltage Rider	\$4,781,667			\$0		\$0		\$0		\$0		\$0		\$4		\$2

19 2011 - Rate R	iders	RECOVERY AMOUNT	ALLOCATOR	RESID	ENTIAL	GS	< 50 kW	-	S - 50 to 000 kW	 • 1000 to 00 kW	GE USER	SM	ALL SCATTER LOAD	STR	EETLIGHT
20 Scanning		\$2,185,000	Connections Allocation	\$	-	\$	-	\$	-	\$ -	\$ -	\$	1.63	\$	0.91
21 Remediation		\$2,596,667	Connections Allocation	\$	-	\$	-	\$	-	\$ -	\$ -	\$	1.94	\$	1.08
22 Total Contact Volta	ge Rider	\$4,781,667			\$0		\$0		\$0	\$0	\$0		\$4		\$2

23	2012 - Rate Riders	RECOVERY AMOUNT	ALLOCATOR	RESIDEN	ITIAL	GS -	< 50 kW	 - 50 to 00 kW	 1000 to 00 kW	LARC	GE USER	SM	ALL SCATTER LOAD	STRI	EETLIGHT	
24	Scanning	\$2,185,000	Secondary Customer Base	\$	-	\$	-	\$ -	\$ -	\$	-	\$	1.63	\$	0.91	
25	Remediation	\$2,596,667	Connections Allocation	\$	-	\$	-	\$ -	\$ -	\$	-	\$	1.94	\$	1.08	
26	Total Contact Voltage Rider	\$4,781,667			\$0		\$0	\$0	\$0		\$0		\$4		\$2	

Toronto Hydro	-Electric System Limited
	EB-2009-0243
	Exhibit J
	Tab 1
	Schedule 9
	Appendix A
ol. 11	Filed: 18 Sep 2009
	Page 1 of 3

ol. 9	Col. 10	Col. 11
TERED		
ER LOAD	STREETLIGHT	TOTAL
1,135	1	691,433
19,907	162,450	182,357
19,907	90,026	790,747
2.52%	11.38%	100%
18.11%	81.89%	100%
SCATTER		
AD	STREETLIGHT	TOTAL
\$1,187,004	\$5,367,996	\$6,555,000
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	φ0,001,000	<i>40,000,000</i>
\$1,410,642	\$6,379,358	\$7,790,000
		A () A (F A A A
\$2,597,646	\$11,747,354	\$14,345,000

Toronto Hydro-Electric System Limited EB-2009-0243 Exhibit J Tab 1 Schedule 9 Appendix A Filed: 18 Sep 2009 Page 2 of 3

Exhibit 2a: 2009 Distribution and Rate Rider Bill Impact

	Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11
1					2009 Rates			with CV Rate Rid		2009 Increa	
2	kWh	kW	kVA	Distribution (\$)	Rate Rider (\$)	Total (\$)	Distribution (\$)	Rate Rider (\$)	Total (\$)	\$	%
3	Residential										
4	100			18.29	0.57	18.86	18.29	0.57	18.86	0.00	0.0%
5	250			20.45	0.45	20.90	20.45	0.45	20.90	0.00	0.0%
6	500			24.04	0.25	24.29	24.04	0.25	24.29	0.00	0.0%
7	750			27.64	0.05	27.69	27.64	0.05	27.69	0.00	0.0%
8	1,000			31.23	-0.15	31.08	31.23	-0.15	31.08	0.00	0.0%
9	1,500			38.42	-0.55	37.87	38.42	-0.55	37.87	0.00	0.0%
10	2,000			45.61	-0.95	44.66	45.61	-0.95	44.66	0.00	0.0%
11	GS<50 kW										
12	1,000			41.23	0.24	41.47	41.23	0.24	41.47	0.00	0.0%
13	5,000			120.39	-1.36	119.03	120.39	-1.36	119.03	0.00	0.0%
14	10,000			219.34	-3.36	215.98	219.34	-3.36	215.98	0.00	0.0%
15	20,000			417.24	-7.36	409.88	417.24	-7.36	409.88	0.00	0.0%
16	GS 50-999 kW	100	100	= 10.01	(- 10.01	1.00			
17	30,000	100	100	548.61	-4.02	544.59	548.61	-4.02	544.59	0.00	0.0%
18	40,000	100	100	548.61	-4.02	544.59	548.61	-4.02	544.59	0.00	0.0%
19	150,000	500	556	2,898.91	-24.52	2,874.39	2,898.91	-24.52	2,874.39	0.00	0.0%
20	200,000	500	556	2,898.91	-24.52	2,874.39	2,898.91	-24.52	2,874.39	0.00	0.0%
21	270,000	900	1,000	5,191.89	-44.52	5,147.37	5,191.89	-44.52	5,147.37	0.00	0.0%
22	360,000	900	1,000	5,191.89	-44.52	5,147.37	5,191.89	-44.52	5,147.37	0.00	0.0%
23	450,000	900	1,000	5,191.89	-44.52	5,147.37	5,191.89	-44.52	5,147.37	0.00	0.0%
24	GS 1000-4999 kW	4 000		5 540 70	400.00	5 400 00	5 540 70	100.00	5 400 00		0.00/
25	300,000	1,000	1,111	5,516.79	-106.88	5,409.92	5,516.79	-106.88	5,409.92	0.00	0.0%
26	400,000	1,000	1,111	5,516.79	-106.88	5,409.92	5,516.79	-106.88	5,409.92	0.00	0.0%
27	500,000	1,000	1,111	5,516.79	-106.88	5,409.92	5,516.79	-106.88	5,409.92	0.00	0.0%
28	600,000	2,000	2,222	10,328.24	-214.43	10,113.81	10,328.24	-214.43	10,113.81	0.00	0.0%
29	800,000	2,000	2,222	10,328.24	-214.43	10,113.81	10,328.24	-214.43	10,113.81	0.00	0.0% 0.0%
30	1,000,000	2,000	2,222	10,328.24	-214.43	10,113.81	10,328.24	-214.43	10,113.81	0.00	0.0%
31	Large Use	F 000	E EEC	04 EDE 4E	-548.76	22,096,20	04 E2E 4E	E 40 70	22,096,20	0.00	0.09/
32	1,500,000	5,000	5,556	24,535.15		23,986.39	24,535.15 24,535.15	-548.76	23,986.39	0.00	0.0% 0.0%
33	2,000,000	5,000	5,556	24,535.15 24,535.15	-548.76	23,986.39	24,535.15	-548.76	23,986.39	0.00	0.0% 0.0%
34	2,500,000	5,000	5,556	46,431.26	-548.76	23,986.39 45,333.05	46,431.26	-548.76	23,986.39	0.00	0.0%
35	3,000,000	10,000	11,111		-1,098.21		46,431.26	-1,098.21	45,333.05 45,333.05	0.00	0.0%
36	4,000,000 5,000,000	10,000 10,000	11,111	46,431.26 46,431.26	-1,098.21	45,333.05		-1,098.21		0.00	0.0%
37			11,111	40,431.20	-1,098.21	45,333.05	46,431.26	-1,098.21	45,333.05	0.00	0.0%
38	Street Lighting 9,182,014	Connections 159,861	Mthly kVA 26,461	666,540.82	-1,749.04	664,791.78	666,540.82	321,525.71	988,066.54	323,274.75	48.6%
39	· · · · ·	159,001	20,401	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
40	365 Unmetered	1	'	20.70	-0.07	20.64	20.70	1.92	22.63	1.99	9.6%
41	Scattered Loads	Customers	Connections								
41	4,829,242	1,466	17,721	213,223.27	-8,161.42	205,061.85	213,223.27	55,102.55	268,325.82	63,263.97	30.9%
42 43	4,029,242	1,400	17,721	213,223.27	-0,101.42	18.42	19.04	2.95	200,325.02	3.57	30.9 <i>%</i> 19.4%
43	305	1	1	19.04	-0.62	10.42	19.04	2.95	21.99	3.57	19.4%

Exhibit 2b: 2009 Total Bill Impact

	Col. 1 Co	ol. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12	Col. 13	Col. 14
1						200				2009 with CV			2009 Increas	se
						Dete Dider	Non- Distribution			Rate Rider	Non- Distribution			
2		kWh	kW		Distribution (\$)	Rate Rider (\$)	Distribution (\$)	Total (\$)	Distribution (\$)	(\$)	Distribution (\$)	Total (\$)	\$	%
2	Residential	KVVII	NVV			(Ψ)	(Ψ)	Total (\$)	Distribution (\$)	(Ψ)	(φ)	TOtal (\$)	Ψ	/0
4		100			18.29	0.57	7.90	26.76	18.29	0.57	7.90	26.76	0.00	0.0%
5		250			20.45	0.45	19.38	40.27	20.45	0.45	19.38	40.27	0.00	0.0%
6		500			24.04	0.25	38.51	62.80	24.04	0.25	38.51	62.80	0.00	0.0%
7		750			27.64	0.05	57.64	85.32	27.64	0.05	57.64	85.32	0.00	0.0%
8		1,000			31.23	-0.15	78.91	109.99	31.23	-0.15	78.91	109.99	0.00	0.0%
9		1,500			38.42	-0.55	121.84	159.71	38.42	-0.55	121.84	159.71	0.00	0.0%
10		2,000			45.61	-0.95	164.77	209.43	45.61	-0.95	164.77	209.43	0.00	0.0%
11	GS<50 kW													
12		1,000			41.23	0.24	78.84	120.31	41.23	0.24	78.84	120.31	0.00	0.0%
13		5,000			120.39	-1.36	420.19	539.22	120.39	-1.36	420.19	539.22	0.00	0.0%
14		10,000			219.34	-3.36	846.89	1,062.87	219.34	-3.36	846.89	1,062.87	0.00	0.0% 0.0%
15 16	GS 50-999 k	20,000			417.24	-7.36	1,700.28	2,110.16	417.24	-7.36	1,700.28	2,110.16	0.00	0.0%
10	G3 30-999 k	30,000	100	100	548.61	-4.02	2,597.38	3,141.97	548.61	-4.02	2,597.38	3,141.97	0.00	0.0%
18		40,000	100	100	548.61	-4.02	3,347.01	3,891.60	548.61	-4.02	3,347.01	3,891.60	0.00	0.0%
19		150,000	500	556	2,898.91	-24.52	13,012.92	15,887.31	2,898.91	-24.52	13,012.92	15,887.31	0.00	0.0%
20		200,000	500	556	2,898.91	-24.52	16,761.06	19,635.45	2,898.91	-24.52	16,761.06	19,635.45	0.00	0.0%
21		270,000	900	1,000	5,191.89	-44.52	23,428.46	28,575.83	5,191.89	-44.52	23,428.46	28,575.83	0.00	0.0%
22		360,000	900	1,000	5,191.89	-44.52	30,175.11	35,322.48	5,191.89	-44.52	30,175.11	35,322.48	0.00	0.0%
23		450,000	900	1,000	5,191.89	-44.52	36,921.76	42,069.13	5,191.89	-44.52	36,921.76	42,069.13	0.00	0.0%
24	GS 1000-49	99 kW												
25		300,000	1,000	1,111	5,516.79	-106.88	26,402.34	31,812.26	5,516.79	-106.88	26,402.34	31,812.26	0.00	0.0%
26		400,000	1,000	1,111	5,516.79	-106.88	33,898.62	39,308.54	5,516.79	-106.88	33,898.62	39,308.54	0.00	0.0%
27		500,000	1,000	1,111	5,516.79	-106.88	41,394.90	46,804.82	5,516.79	-106.88	41,394.90	46,804.82	0.00	0.0%
28		600,000	2,000	2,222	10,328.24	-214.43	52,811.18	62,924.99	10,328.24	-214.43	52,811.18	62,924.99	0.00	0.0%
29		800,000	2,000	2,222	10,328.24	-214.43	67,803.74	77,917.55	10,328.24	-214.43	67,803.74	77,917.55	0.00	0.0%
30		000,000	2,000	2,222	10,328.24	-214.43	82,796.30	92,910.11	10,328.24	-214.43	82,796.30	92,910.11	0.00	0.0%
31	Large Use	500.000	E 000	F FF0	04 505 45	E 40 70	100 500 70	454 507 40	04 505 45	E 40 70	100 500 70	45450740	0.00	0.000
32		500,000	5,000	5,556	24,535.15	-548.76	130,580.78	154,567.16	24,535.15	-548.76	130,580.78	154,567.16	0.00	0.0%
33 34		000,000 500,000	5,000 5,000	5,556 5,556	24,535.15 24,535.15	-548.76 -548.76	167,443.20 204,305.63	191,429.59 228,292.01	24,535.15 24,535.15	-548.76 -548.76	167,443.20 204,305.63	191,429.59 228,292.01	0.00	0.0% 0.0%
34 35		000,000	10,000	0,000 11,111	46,431.26	-548.76	204,305.63	306,501.10	46,431.26	-548.76	204,305.63	306,501.10	0.00	0.0%
35 36	· · · · · · · · · · · · · · · · · · ·	000,000	10,000	11,111	46,431.26	-1,098.21	334,892.90	380,225.95	46,431.26	-1,098.21	334,892.90	380,225.95	0.00	0.0%
37		000,000	10,000	11,111	46,431.26	-1,098.21	408,617.75	453,950.80	46,431.26	-1,098.21	408,617.75	453,950.80	0.00	0.0%
38	Street Light		Connections	Mthly kVA		.,		,		.,		,	0.00	
39		182,014	159,861	26,461	666,540.82	-1,749.04	810,021.26	1,474,813.04	666,540.82	321,525.71	810,021.26	1,798,087.80	323,274.75	21.9%
40	-,	365	1	1	20.70	-0.07	28.80	49.44	20.70	1.92	28.80	51.43	1.99	4.0%
	Unmetered													
41	Scattered L	oads	Customers (Connections										
42		829,242	1,466	17,721	213,223.27	-8,161.42	396,581.69	601,643.54	213,223.27	55,102.55	396,581.69	664,907.51	63,263.97	10.5%
43		365	1	1	19.04	-0.62	26.82	45.24	19.04	2.95	26.82	48.81	3.57	7.9%

1 INTERROGATORY 1:

-	'	
2	Re	erence(s): Exhibit: Application, pages 4-5
3		Level III Remediation Activities
4		
5	Th	evidence of the Applicant, beginning at line 36 of page 4, states
6		Existing handwells were systematically inspected because
7		it had become apparent that they had significant potential to
8		be involved in or contribute to an incident of contact
9		voltage. Inspection revealed numerous instances of
10		missing plastic caps; degraded or faulty insulation; and
11		improper repacking of the conductors. Any faults or sub-
12		standard conditions found on inspection were corrected to
13		prevent a future instance of contact voltage from occurring.
14		
15	a)	Were all contact voltage problems found to be associated with handwells? If not,
16		what other components of the distribution and/or SEL systems were involved in
17		contact voltage problems?
18	b)	Who has access to the handwells? Who is authorized to make connections in the
19		handwells? Who gives that authorization?
20	c)	In THESL's view, which of the parties identified in question b) above, was
21		responsible for maintaining the connections in the handwells? Are records kept of
22		maintenance activities in the handwells?
23	d)	In THESL's view, how did the handwells come to be in the condition they were i.e.
24		with missing plastic caps, degraded or faulty insulation and improper packing of
25		conductors?

1	e)	Does the Electrical Safety Authority ("ESA") have jurisdiction to inspect connections
2		in the handwells prior to energization? If yes, are connections normally inspected by
3		ESA? If no, would ESA inspection, in THESL's view, assist in preventing recurrence
4		of contact voltage problems caused by deficiencies in handwell connections?
5		
6	RF	CSPONSE:
7	a)	No. Not all contact voltage problems are directly related to equipment housed within
8		handwell structures. Other problems relate to street lighting assets housed within
9		poles and supplies to third party devices. The failed components that were typically
10		discovered include insulated conductors and connectors, covers to access holes on
11		poles, and grounding provisions.
12		
13	b)	Access to the handwells is restricted to trained personnel from both THESI and
14		THESL, and contractors uniquely approved by THESI and THESL.
15		
16	c)	Connections within handwells have been installed/maintained by THESL and/or
17		THESI personnel as the responsibility for maintaining street lighting facilities passed
18		between these organisations through transfer of ownership. Some other connections
19		have been installed/maintained by approved contractors operating with the approval
20		of THESI/THESL.
21		
22		Records of maintenance activities have historically been limited to primary voltage
23		assets. It is generally more costly to track activities at the level of the secondary
24		system, and since historically there had been no apparent need to do so, such records
25		of maintenance of handwells were not kept.
26		

1	d)	The handwell environment is the most hostile found within the electrical distribution
2		plant in Toronto. These handwells do not have any form of direct drainage
3		connection, but rely on natural dispersion of water into the surrounding soil.
4		Accordingly, these structures are prone to repeated salt exposure, with connections
5		immersed in saline solution/suspension for extended periods of time. The
6		polyethylene pail is intended to provide two functions. The pail provides a physical
7		barrier between insulated live components and the metallic frame and cover. The pail
8		also provides an enclosed airspace where the cable connections will reside safely
9		above the water/saline level within the structure during those times when the
10		surrounding soil is saturated with water and the handwell is flooded. Over time the
11		polyethylene pails become brittle and crack allowing the enclosed air to escape and
12		ground water/saline to submerge the electrical connections. This type of submersion
13		caused the degradation of the original insulation on the street lighting connections.
14		
15		The original mechanical connectors in use and the self-amalgamating tape used
16		toinsulate these connections were the industry standard at the time of plant
17		installation. These connections are still commonly used in the electrical industry,
18		however we are witnessing the end-of-life for these components.
19		
20	e)	The ESA has jurisdiction and normally inspects any new connections made to
21		THESL assets, including connections in handwells, prior to energization. However,
22		this inspection only applies to new connections, and does not impact cases of contact
23		voltage resulting from wear and failure of assets nearing the end of their life cycle.

1 INTERROGATORY 2:

Reference(s): Exhibit: Application, page 4
 Level III Remediation Activities

- 4
- 5 The evidence of the Applicant, beginning at Line 13 on Page 4 and continuing until Line
- 6 24, summarize the actions taken to resolve contact voltage problems once they were
- 7 identified.
- a) How many of the contact voltage problems were caused by THESL equipment?
- 9 b) How many were caused by THESI equipment?
- 10 c) How many were caused by third party connections?
- 11
- 12 For questions a) through c) above, responses using estimated percentages will be
- adequate if detailed records were not kept of each contact voltage problem.
- 14

15 **RESPONSE:**

- a) A total of 21% of the contact voltage problems were caused by THESL equipment.
- 17
- b) A total of 25% of the contact voltage problems were caused by THESI equipment.
- 19
- c) A total of 54% of the contact voltage problems were caused by customer, BIA
- 21 (business improvement areas), TTC and Toronto Traffic assets.

1 INTERROGATORY 3:

2 **Reference(s):** Exhibit: Application, page 5, Table 1

3 Level of Costs Incurred

- 4
- 5 The table sets out the costs of the contact voltage remediation effort.
- 6 a) Are THESI costs included in the total?
- 7 b) If yes, please provide a breakdown to show THESL and THESI costs separately.
- 8 c) If no, is THESI absorbing its costs?
- 9

10 **RESPONSE:**

- 11 a) No, they are not.
- 12 b) Please see above response.

13 c) Yes.

1 INTERROGATORY 4:

2	Re	ference(s):	Exhibit: Application, page 6
3			Recover Eligibility Analysis of Expenditures Incurred
4			
5	The	e evidence o	f the Applicant, beginning at line 1 on page 6, states:
6			THESL's claim of incrementality of these costs rests
7			fundamentally on the facts that the necessity of the
8			expenditures was unforeseen, and that the expenditures
9			were novel. No such work had apparently been necessary
10			previously and the project overall was certainly
11			unprecedented on the THESL system. As a result, neither
12			THESL nor any other party had knowledge beforehand that
13			such expenditures might be necessary, and THESL clearly
14			did not include these as part of its requested Opex budget
15			for 2009.
16			
17	The	ese lines sug	gest that the contact voltage problem was an anomaly not seen before.
18	a)	Please conf	irm whether this interpretation is correct.
19	b)	If it is corre	ect, how was the system managed differently when THESL, and
20		subsequent	ly the City owned it, so that contact voltage problems did not arise?
21	c)	What main	tenance activities did THESL perform on the system during its ownership?
22	d)	Did the Cit	y and THESI follow a similar maintenance program during their respective
23		ownership	of the system?
24	e)	If not, would	ld following a regular maintenance program, in THESL's view, have
25		prevented d	leterioration of the system and the resulting contact voltage problems?
26	f)	If the answ	er to e) is Yes, would implementation by THESI of a regular maintenance

1		program obviate the need for THESL to assume ownership of the SEL system?
2		
3	RE	CSPONSE:
4	a)	Yes. This interpretation is correct.
5		
6	b)	There has been no change in THESL's management of its own system. The historical
7		data on contact voltage events does not indicate a significant risk exposure to the
8		general public. This is an emerging problem directly related to end-of-life assets.
9		
10	c)	THESL, as a THC affiliate, has never owned the street lighting assets. Regular
11		maintenance is performed by THESL on all its assets, but given that contact voltage
12		has never been a problem in the past, this maintenance was never geared towards
13		locating and/or eliminating suspected cases of contact voltage.
14		
15	d)	Yes.
16		
17	e)	See above.
18		
19	f)	This question does not pertain to this Application. Please refer to the appropriate
20		applications.

1 INTERROGATORY 1:

2	Re	Cerence(s): Application, page 3, paragraph 1
3		
4		"In order to accomplish this substantial work program as
5		quickly and effectively as possible, all the involved
6		resources will be directed by senior management of the
7		distribution utility. While Toronto Hydro will make every
8		effort to capture and record all relevant information on the
9		equipment itself and the directly associated expenditures, it
10		will not be possible under the conditions to segregate the
11		crews and assets of the streetlighting affiliate from those of
12		the distribution utility. For any location determined to
13		require repair, the first available crew will be dispatched
14		regardless of the precise nature of the electrical fault or of
15		crew personnel composition."
16		
17	a)	Explain why THESL could not track and determine (Post event) the costs of
18		remediation on a site specific basis in order to facilitate an appropriate allocation of
19		these costs.
20	b)	Why does not the utility's Work and Asset Management System work in such an
21		emergency situation as for normal scheduled work. Please explain in detail.
22	c)	Explain in detail why in respect of tracking of costs this situation was different than
23		the Storm Damage Emergency of August 2009?
24		

1 **RESPONSE:**

2	a)	THESL was unable to discretely track costs incurred at each asset location due to the
3		sheer volume of assets serviced. During this level III emergency event THESL staff
4		and our contract partners inspected and serviced 65,499 asset locations. Discrete
5		costing would require the creation of this same number of work orders and the
6		transaction of unique charges to each work order. This exercise was not practical in
7		the interest of expediently addressing this public safety concern within the time frame
8		allowed by the OEB.
9		
10	b)	The THESL Work and Asset Management System (Ellipse) was not applicable
11		during the level III emergency event because the street lighting assets did not belong
		during the level in energency event because the street righting assets during the belong
12		to THESL and were not included in our asset register.
12 13		
	c)	
13	c)	to THESL and were not included in our asset register.
13 14	c)	to THESL and were not included in our asset register. Emergency maintenance performed during storm events similar to that of August 20-

Application, page 5, Table 1

1 **INTERROGATORY 2:**

Reference(s):

2

3		
4	a)	What is the basis of the costs claimed in Table 1? Provide the summary Worksheets
5		showing the breakdown of costs on each line.
6	b)	Explain in detail why Base compensation (as opposed to Overtime) for THESL staff
7		deployed is incremental to the distribution revenue requirement? For example did
8		THESL hire extra staff to back fill deployed staff?
9	c)	If not included in a), provide the split in Labour costs (regular and OT) between
10		THESL and THESC/Streetlighting.
11	d)	Did THESL or Streetlighting not have Scanning Equipment and staff of its own that
12		could be deployed? Explain.
13	e)	Was the Contract for Scanning Services Tendered? If so provide details. If not on
14		what basis was Power Survey LLC ("PSC") retained?
15		
16	RF	CSPONSE:
17	a)	Additional information about the costs included in Table 1 is provided below.
18		
19		Labour – Regular Time and Overtime:
20		Labour cost incurred for planning, inspection and remediation activities by internal
21		staff. Labour costs include time for field crews and field supervision.
22		
23		Electrical Contractor:
24		Costs incurred for inspection and repair of electrified assets by third parties. Due to
25		the volume of work to be conducted in a short period of time, external contractors
26		were engaged to address a portion of the work to be completed. The third parties

1		engaged were Enterra and Powerline Plus.
2		
3		Scanning Contractor:
4		Costs incurred for the scanning of handwells and other objects to determine if they
5		were electrified. Scanning activities were performed by Power Survey Company
6		("PSC").
7		
8		Inventory and Materials:
9		Costs incurred for miscellaneous material used in the remediation work performed by
10		internal labour and external contractors.
11		
12		Other:
13		Primarily includes costs incurred for public communications and awareness
14		campaigns with respect to this initiative and costs for rented and internal vehicles
15		utilized during inspection and remediation activities.
16		
17	b)	THESL did not hire extra resources (other than the external contractor costs included
18		in Table 1) to conduct its business during the Level III emergency. THESL is
19		claiming the base compensation of the employees involved in the Level III
20		emergency as the tasks performed by these employees were not included in the
21		distribution revenue requirement and the time spent and related costs of such tasks
22		were material.
23		
24		Despite the delays related to the Level III emergency, THESL expects to deliver both
25		its capital and maintenance programs for 2009. In order to do so, THESL will most

1		likely incur incremental overtime costs or incremental external contractor costs for
2		the remainder of 2009. THESL did not believe that reducing the capital and
3		maintenance programs for 2009 was a valid option due to the pressing need to
4		improve its electricity infrastructure.
5		
6		In addition, most of the base compensation incurred during the Level III emergency
7		relates to employees deployed to capital programs. Under normal circumstances, the
8		base compensation of these employees is capitalized as part of property, plant and
9		equipment. Accordingly, only a fraction of the related costs would have been
10		recovered in 2009 through the amortization and depreciation component of the
11		distribution revenue requirement. THESL believes that since these costs were all
12		expensed in 2009, THESL should be entitled to a full recovery of the costs as they
13		were incurred.
14		
15	c)	The amount claimed in Table 1 only includes costs incurred by THESL. No costs
16		incurred by THESI were included in Table 1.
17		
18	d)	No. Neither THESL nor THESI had the capability (i.e., technology or qualified and
19		trained personnel) to provide mobile contact voltage detection services at the time.
20		
21	e)	Given the nature of the declared Level III Emergency and the urgency to protect
22		public safety at the time, THESL retained PSC as a "Sole Source" (i.e., a tender was
23		not issued to the market) service provider to provide mobile contact voltage detection
24		services pursuant to corporate approved procurement policy.
25		

- 1 PSC was selected based on THESL/THESI research, and references provided from
- 2 other Utilities particularly in the eastern United States where contact voltage is
- 3 becoming increasingly problematic. PSC has successfully demonstrated the ability to
- 4 provide effective mobile contact voltage detection services to many utilities
- 5 throughout the world.

Toronto Hydro-Electric System Limited EB-2009-0243 Exhibit J Tab 3 Schedule 3 Filed: 18 Sep 2009 Page 1 of 4

RESPONSES TO VULNERABLE ENERGY CONSUMERS COALITION INTERROGATORIES

1 INTERROGATORY 3:

2	Re	erence(s): Application, page 5	
3		Table 1 and page 6	
4			
5		"THESL also submits on the same basis that the costs for	
6		continued system scanning are clearly incremental to the	
7		approved revenue requirement for 2009; these costs were	
8		unforeseen and are novel for THESL's system."	
9			
10	a)	s the Level III emergency over? Provide copies of any correspondence in this	
11		regard. Explain in detail why Base compensation (as opposed to Overtime) for	
12		THESL staff deployed is incremental to the distribution revenue requirement? For	
13		example did THESL hire extra staff to back fill deployed staff? [repeats VECC IR =	#
14		2b]	
15	b)	If the Level III Emergency is over, is THESL retaining PSC on an ongoing basis?	
16		Explain the scope, cost and duration of this arrangement.	
17	c)	Provide information concerning the number of utilities PSC has provided similar	
18		services to in the last 3 years and if available whether the work related to low voltage	ge
19		urban distribution systems. Indicate Canadian utilities as a subset.	
20	d)	Explain why would not a utility such as THESL conduct surveys of its underground	Ł
21		equipment to on an ongoing basis to detect leakage/unsafe conditions (or respond to	D
22		complaints) as do the gas utilities, including Enbridge Gas Distribution?	
23	e)	Does THESL have the Equipment and trained staff to do routine Inspections survey	/s?
24		If not why not?	
25	f)	Why are the Ongoing Survey costs listed in Table 1 not part of ongoing operations.	

1		Provide a breakdown of this amount, including how the costs are allocated between
2		distribution and Streetlighting/USL.
3	g)	Explain why this work is not work of an ongoing nature that is prioritized along with
4		other underground maintenance/remediation work related to both the distribution
5		system and Streetlighting/USL.
6		
7	RF	CSPONSE:
8	a)	Yes, the Level III emergency was deemed sufficiently mitigated on February 25,
9		2009, at which time THESL scaled back emergency operations to a declared Level II
10		emergency status. Demobilization efforts continued beyond February 25 and were
11		completed by the start of business on March 1, 2009. A copy of an inter-office email
12		from System Operations declaring the emergency de-escalation is attached as
13		Appendix A.
14		
15	b)	Yes, THESL has retained the services of Power Survey Company ("PSC") pursuant
16		to approved corporate procurement policy effective August 2009, for a term of 36
17		months at a total cost of \$4 M USD per annum.
18		
19		PSC will provide a "turn-key" service that manages all aspects of contact voltage
20		detection (three mobile scanning units), mitigation, and record keeping functions
21		including support staff (technicians, inspectors, dispatchers and quality assurance
22		technicians) dedicated solely to the operation of the PSC technology system and all
23		support activities. Moreover, PSC will provide a complete data management system
24		in which status information about progress of scanning operations, mitigation, and
25		repair activities are tracked and updated daily.

1		
2	c)	See response to VECC IR # 2e.
3 4	d)	Regular inspection of the underground electrical and civil infrastructure is part of
5		THESL's ongoing maintenance program. Regular inspection attempts to reveal and
6		repair deficiencies in the infrastructure before they erode to a more severe state and
7		cause an interruption of power or pose a hazard to employees and the public.
8		The existence of Contact Voltage is not specific to any utility or region. Over the
9		
10		years, the frequency and severity of contact voltage instances at THESL have been
11		virtually non-existent. Moreover, until recently the technologies required to detect
12		contact voltage were found to be unreliable and not readily available. Consequently,
13		utilities such as THESL could not justify the expense to permanently implement
14		contact voltage detection programs.
15		
16		Today, however, for electric distributors like THESL, the severity and frequency of
17		contact voltage have increased considerably and annual contact voltage detection
18		surveys, mitigation, and repair programs are becoming standard practice.
19		
20	e)	See response to VECC IR # 2d. Contact voltage detection systems, technologies, and
21		expertise are for the most part relatively new in the electricity sector and in many
22		cases proprietary and not available for sale. For example, PSC was only recently
23		formed in 2004 following a string of Contact Voltage related incidents in the eastern
24		United States. PSC's SVD2000 mobile Contact Voltage detection technology has
25		received international acclaim but is proprietary and is not available for sale at this
26		time thereby precluding THESL from performing the services internally.

- f) The ongoing survey costs have historically never been part of ongoing operations
 because contact voltage is a new problem. However, these costs have now become
 part of ongoing operations, and the program will constitute part of THESL's regular
 maintenance activities. There is no further breakdown of the ongoing scanning cost
 amount. The allocation of the costs is provided at Exhibit 1 of the Application.
- 8 g) Please refer to the answer above.

Toronto Hydro-Electric System Limited EB-2009-0243 Exhibit J Tab 3 Schedule 3 Appendix A Filed: 18 Sep 2009

From:Email BroadcastTo:Emergency Distribution List - August 2008Date:Monday, February 23, 2009 5:43:52 PMSubject:Level III Emergency - Standing Down

Hello Everyone,

Please be advised that Distribution Grid Operations is downgrading the Contact Voltage Emergency Level III to a Level II Emergency effective 17:30 today.

Thank you,

Dayana Bonifaz Media Standby

CC: Dayana Bonifaz, Barry Buckley

Toronto Hydro-Electric System Limited EB-2009-0243 Exhibit J Tab 3 Schedule 4 Filed: 18 Sep 2009 Page 1 of 2

RESPONSES TO VULNERABLE ENERGY CONSUMERS COALITION INTERROGATORIES

1 INTERROGATORY 4:

2	Re	erence(s): Application Page
3		
4		On March 4, 2009, the Board issued a letter to distributors
5		(attached as Appendix 1 to this Application) addressing
6		issues around contact voltage. Among other things, the
7		Board stated: "Public safety is of primary importance.
8		Uncertainty as to connection demarcation points should not
9		inhibit or delay the correction of unsafe wiring of
10		unmetered load. Distributors should ensure that any unsafe
11		wiring encountered on public walkways is addressed
12		immediately."
13		
14	a)	Does THESL agree that there is no demarcation point(s) between distribution and
15		treetlighting and between distribution and unmetered scattered load?
16	b)	s there a difference between the physical connection points for streetlights and other
17		oads including USL (street signs bus shelters and other street furniture. Explain in
18		letail.
19	c)	With regard to the lack of demarcation between distribution and streetlighting does
20		THESL adopt the testimony of Mr. Haines in EB-2009-0180-0183?
21		
22	RF	PONSE:
23	a)	n practicality THESL agrees that no clear and consistent demarcation point exists
24		between LDC distribution plant and either street lighting or unmetered loads.
25		

RESPONSES TO VULNERABLE ENERGY CONSUMERS COALITION INTERROGATORIES

- b) In practicality these connections, which have evolved over past decades, are similar in
- 2 nature.
- 3
- 4 c) Mr. Haines did not provide testimony in the proceeding named in the question.

Toronto Hydro-Electric System Limited EB-2009-0243 Exhibit J Tab 3 Schedule 5 Filed: 18 Sep 2009 Page 1 of 2

RESPONSES TO VULNERABLE ENERGY CONSUMERS COALITION INTERROGATORIES

1 INTERROGATORY 5:

2	Re	ference(s):	Application Page 8
3			
4			In its letter of March 4, the Board also stated: "It is
5			expected that distributors have planned for, and are able to
6			accommodate, all necessary maintenance or isolation of
7			connections for unmetered loads to ensure the public's
8			safety. In this regard, distributors are also expected to
9			recover from the customer the cost of repairs or isolation of
10			customer owned equipment or connections. A one-time
11			billing charge or direct invoice may be used for this
12			purpose. Distributors should where possible discuss in
13			advance the need for correction to customer equipment.
14			
15	a)	Explain in	more detail why the costs cannot be recovered from the streetlighting and
16		USL/BIA a	asset owner. In particular is the reason based on lack of incident reports or
17		the inabilit	y of THESL to determine causation or both.
18	b)	Out of the	13,000- handwells inspected, how many were found defective?
19	c)	Provide a b	preakdown of the numbers according to the type of third party assets
20		connected	
21			
22	RF	ESPONSE:	
23	a)	Contact vo	ltage remediation cost recovery for street lighting and unmetered scattered
24		loads ("US	SL") is impractical due to the lack of unique account identification for each

25 of these loads. The cost of effort required to effectively recover the incurred

RESPONSES TO VULNERABLE ENERGY CONSUMERS COALITION INTERROGATORIES

1		expenses likely exceeds the value of the funds sought for recovery. Contact voltage
2		costs related to BIA problems reflect only THESL's effort to isolate any defective
3		services/areas for safety, with reconnection processed through normal customer
4		connection processes.
5		
6	b)	See answer to EP IR #2a.
7		
8	c)	The question does not specify what "numbers" a breakdown is sought for, or what
9		"types" third-party assets might fall into. As stated at page 4 of the Application, the
10		costs involved in disconnecting third-party assets were minimal.

Toronto Hydro-Electric System Limited EB-2009-0243 Exhibit J Tab 3 Schedule 6 Filed: 18 Sep 2009 Page 1 of 2

RESPONSES TO VULNERABLE ENERGY CONSUMERS COALITION INTERROGATORIES

1 **INTERROGATORY 6:**

2	Re	ference(s): Application Page 8
3		
4		Nevertheless, as discussed below under Cost Allocation,
5		THESL proposes that costs be recovered in a manner that
6		results in an outcome substantially similar to that which
7		likely would have prevailed if it had have been possible to
8		discretely record and cost each individual piece of
9		remediation work.
10		
11	a)	Explain in more detail why the proposed allocation is "substantially similar" to what
12		would have prevailed if THESL had recorded the cost of each site remediation.
13	b)	If there is no basis for cost causation, why should any costs be allocated to the
14		residential class. Explain fully why residential connections are part of the problem.
15	c)	Why is scanning of street level handwells in any way connected to any other loads
16		than end use loads such as streetlighting, USL and BIA assets connected to these
17		points? Please explain fully.
18	d)	Provide a tabulation showing estimated BIA assets/connections, customers and loads
19		by class.
20		
21	RF	CSPONSE:
22	a)	The quoted passage (which appears at page 9) pertains to the allocation of
23		remediation costs as between Streetlighting and USL. By definition, it is impossible
24		to observe what an exact allocation of remediation costs would have been even if
25		exact records could have been kept, since in any case assignment of joint remediation

RESPONSES TO VULNERABLE ENERGY CONSUMERS COALITION INTERROGATORIES

1		costs would have been judgemental. THESL simply asserts that the proposed
2		allocation as between USL and Streetlighting (18% and 82%, respectively) is likely
3		similar to the result that would have been obtained otherwise.
4		
5	b)	THESL rejects the premise of the question that "there is no basis for cost causation".
6		Furthermore, no remediation costs are allocated to the residential class.
7		
8	c)	The question mis-characterizes the scanning activity by implying that it is limited to
9		handwells. It is not. The scanning program assesses all sources of contact voltage at
10		street level and is directed at ensuring the safety of the overall system for the public
11		and employees. A portion of scanning costs are proposed to be allocated to the
12		residential class as one of the group of all classes.
13		

RESPONSES TO VULNERABLE ENERGY CONSUMERS COALITION INTERROGATORIES

1 INTERROGATORY 7:

2 **Reference(s):** Application, pages 9-10: Exhibits 1, 2a) and 2b)

3

4 THESL proposes that of the total \$14.35 million of costs for which recovery is being

- 5 sought, \$6.56 million of scanning costs be allocated to all classes on the basis that they
- 6 were incurred to ensure the safety of the entire distribution system, while the
- 7 remaining\$7.79 million related to the remediation of existing contact voltages and

8 inspection and remediation of handwells be recovered from the Streetlighting and USL

9 classes only.

- 10
- a) Please provide revised Exhibits 1, 2a and 2b on the basis of recovery of all costs from
 the Streetlighting and USL classes.
- b) Provide revised Exhibits1, 2a and 2b on the basis of recovery of all costs except
 ongoing scanning (\$2.4 million) from streetlighting and USL classes.
- 15 c) Based on the response VECC IR 6 d) provide revised Exhibits 1, 2a and 2b on the
- basis of recovery of all costs except ongoing scanning, from streetlighting USL
- 17 classes and Classes with BIA connections/loads. If there is no basis for cost
- 18 causation, why should any costs be allocated to the residential class. Explain fully
- ¹⁹ why residential connections are part of the problem. [same as VECC IR # 6b]
- 20
- 21 **RESPONSE:**
- a) See Appendix A.
- 23
- b) See Appendix B.
- 25

Toronto Hydro-Electric System Limited EB-2009-0243 Exhibit J Tab 3 Schedule 7 Filed: 18 Sep 2009 Page 2 of 2

RESPONSES TO VULNERABLE ENERGY CONSUMERS COALITION INTERROGATORIES

1 c) Please refer to responses to VECC IR #6c and 6d.

Exhitbit 1 - Derivation of Rate Riders

	Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11
1				RESIDENTIAL	GS < 50 kW	GS - 50 to 1000 kW	GS > 1000 to 5000 kW	LARGE USE	UNMETERED SCATTER LOAD	STREETLIGHT	TOTAL
4 Numb5 Numb	Approved Load by Rate Class per of Customers per of Connection - Cost of Service Allocation - Secondary	Customer Base		611,808 611,808	66,191 66,191	11,719 2,803	530 12	49 0	1,135 19,907 19,907	1 162,450 90,026	691,433 182,357 790,747
9 2009 -	ators Percentages - Cost of Service Allocation - Secondary ections Allocation	Customer Base (%		77.37%	8.37%	0.35%	0.00%	0.00%	2.52% 18.11%	11.38% 81.89%	100% 100%
11			ALLOCATOR	RESIDENTIAL	GS < 50 kW	GS - 50 to 1000 kW	GS > 1000 to 5000 kW	LARGE USER	SMALL SCATTER LOAD	STREETLIGHT	TOTAL
12 Scann	ing	\$6,555,000	Connections Allocation	\$0	\$0	-	\$0	\$0	\$1,187,004	\$5,367,996	\$6,555,000

11		ALLOCATOR	RESIDENTIAL	GS < 50 kW	GS - 50 to 1000 kW	GS > 1000 to 5000 kW	LARGE USER	SMALL SCATTER LOAD	STREETLIGHT	TOTAL
12 Scanning	\$6,555,000	Connections Allocation	\$0	\$0	-	\$0	\$0	\$1,187,004	\$5,367,996	\$6,555,000
13 Remediation	\$7,790,000	Connections Allocation	\$0	\$0	-	\$0	\$0	\$1,410,642	\$6,379,358	\$7,790,000
14 Total Recovery	\$14,345,000		\$0	\$0		\$0	\$0	\$2,597,646	\$11,747,354	\$14,345,000

15 201	10 - Rate Riders	RECOVERY AMOUNT	ALLOCATOR	RESIDEI	NTIAL	GS <	50 kW	- 50 to 00 kW	1000 to 00 kW	LARG	E USER	SM	ALL SCATTER LOAD	REETLIGHT
16 Scar	nning	\$2,185,000	Connections Allocation Connections	\$	-	\$	-	\$ -	\$ -	\$	-	\$	1.63	\$ 0.91
17 <mark>Rem</mark>	nediation	\$2,596,667	Allocation	\$	-	\$	-	\$ -	\$ 	\$	-	\$	1.94	\$ 1.08
18 Tota	I Contact Voltage Rider	\$4,781,667			\$0		\$0	\$0	\$0		\$0		\$4	 \$2

9 2011 - Rate Riders	RECOVERY AMOUNT	ALLOCATOR	RESID	DENTIAL	GS	< 50 kW	6 - 50 to 100 kW	1000 to 00 kW	GE USER	SM	ALL SCATTER LOAD	ST	REETLIGHT
20 Scanning	\$2,185,000	Connections Allocation	\$	-	\$	-	\$ -	\$ -	\$ -	\$	1.63	\$	0.91
Remediation	\$2,596,667	Connections Allocation	\$	-	\$	-	\$ -	\$ -	\$ -	\$	1.94	\$	1.08
2 Total Contact Voltage Rider	\$4,781,667			\$0		\$0	\$0	\$0	\$0		\$4		\$2

23	2012 - Rate Riders	RECOVERY AMOUNT	ALLOCATOR	RESIDEN	NTIAL	GS <	50 kW	50 to 0 kW	1000 to 00 kW	LARG	GE USER	SM	ALL SCATTER LOAD	STRE	ETLIGHT	
24	Scanning	\$2,185,000	Secondary Customer Base	\$	-	\$	-	\$ -	\$ -	\$	-	\$	1.63	\$	0.91	
25	Remediation	\$2,596,667	Connections Allocation	\$	-	\$	-	\$ -	\$ -	\$	-	\$	1.94	\$	1.08	
6	Total Contact Voltage Rider	\$4,781,667			\$0		\$0	\$0	\$0		\$0		\$4		\$2	

Toronto Hydro-Electric System Limited EB-2009-0243 Exhibit J Tab 3 Schedule 7 Appendix A Filed: 18 Sep 2009 Page 1 of 3

Toronto Hydro-Electric System Limited EB-2009-0243 Exhibit J Tab 3 Schedule 7 Appendix A Filed: 18 Sep 2009 Page 2 of 3

Exhibit 2a: 2009 Distribution and Rate Rider Bill Impact

	Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11
1					2009 Rates		2009 Rates	s with CV Rate Rid	ers	2009 Increas	se
2	kWh	kW	kVA	Distribution (\$)	Rate Rider (\$)	Total (\$)	Distribution (\$)	Rate Rider (\$)	Total (\$)	\$	%
3	Residential										
4	100			18.29	0.57	18.86	18.29	0.57	18.86	0.00	0.0%
5	250			20.45	0.45	20.90	20.45	0.45	20.90	0.00	0.0%
6	500			24.04	0.25	24.29	24.04	0.25	24.29	0.00	0.0%
7	750			27.64	0.05	27.69	27.64	0.05	27.69	0.00	0.0%
8	1,000			31.23	-0.15	31.08	31.23	-0.15	31.08	0.00	0.0%
9	1,500			38.42	-0.55	37.87	38.42	-0.55	37.87	0.00	0.0%
10	2,000			45.61	-0.95	44.66	45.61	-0.95	44.66	0.00	0.0%
11	GS<50 kW										
12	1,000			41.23	0.24	41.47	41.23	0.24	41.47	0.00	0.0%
13	5,000			120.39	-1.36	119.03	120.39	-1.36	119.03	0.00	0.0%
14	10,000			219.34	-3.36	215.98	219.34	-3.36	215.98	0.00	0.0%
15	20,000			417.24	-7.36	409.88	417.24	-7.36	409.88	0.00	0.0%
16	GS 50-999 kW										
17	30,000	100	100	548.61	-4.02	544.59	548.61	-4.02	544.59	0.00	0.0%
18	40,000	100	100	548.61	-4.02	544.59	548.61	-4.02	544.59	0.00	0.0%
19	150,000	500	556	2,898.91	-24.52	2,874.39	2,898.91	-24.52	2,874.39	0.00	0.0%
20	200,000	500	556	2,898.91	-24.52	2,874.39	2,898.91	-24.52	2,874.39	0.00	0.0%
21	270,000	900	1,000	5,191.89	-44.52	5,147.37	5,191.89	-44.52	5,147.37	0.00	0.0%
22	360,000	900	1,000	5,191.89	-44.52	5,147.37	5,191.89	-44.52	5,147.37	0.00	0.0%
23	450,000	900	1,000	5,191.89	-44.52	5,147.37	5,191.89	-44.52	5,147.37	0.00	0.0%
24	GS 1000-4999 kW								- (00.00		
25	300,000	1,000	1,111	5,516.79	-106.88	5,409.92	5,516.79	-106.88	5,409.92	0.00	0.0%
26	400,000	1,000	1,111	5,516.79	-106.88	5,409.92	5,516.79	-106.88	5,409.92	0.00	0.0%
27	500,000	1,000	1,111	5,516.79	-106.88	5,409.92	5,516.79	-106.88	5,409.92	0.00	0.0%
28	600,000	2,000	2,222	10,328.24	-214.43	10,113.81	10,328.24	-214.43	10,113.81	0.00	0.0%
29	800,000	2,000	2,222	10,328.24	-214.43	10,113.81	10,328.24	-214.43	10,113.81	0.00	0.0%
30	1,000,000	2,000	2,222	10,328.24	-214.43	10,113.81	10,328.24	-214.43	10,113.81	0.00	0.0%
31	Large Use	5 000	5 550	04 505 45	E 40 70	00,000,00	04 505 45	E 40 70	00,000,00	0.00	0.00/
32	1,500,000	5,000	5,556	24,535.15	-548.76	23,986.39	24,535.15	-548.76	23,986.39	0.00	0.0% 0.0%
33	2,000,000 2,500,000	5,000 5,000	5,556	24,535.15 24,535.15	-548.76 -548.76	23,986.39 23,986.39	24,535.15	-548.76 -548.76	23,986.39 23,986.39	0.00 0.00	0.0% 0.0%
34	· · · ·	· ·	5,556	· · · · · · · · · · · · · · · · · · ·	-546.76 -1,098.21	23,966.39 45,333.05	24,535.15 46,431.26		<i>'</i>		0.0%
35	3,000,000	10,000 10,000	11,111	46,431.26 46,431.26	-1,098.21	45,333.05	46,431.26	-1,098.21 -1,098.21	45,333.05 45,333.05	0.00 0.00	0.0%
36	4,000,000 5,000,000	10,000	11,111				46,431.26			0.00	0.0%
37		· · · · · · · · · · · · · · · · · · ·	11,111	46,431.26	-1,098.21	45,333.05	40,431.20	-1,098.21	45,333.05	0.00	0.0%
38	Street Lighting	Connections	Mthly kVA	666 E 40 92	1 740 04	664 701 79	666 540 92	201 505 71	000 066 54	202 274 75	40 60/
39	9,182,014 365	159,861 1	26,461	666,540.82 20.70	-1,749.04 -0.07	664,791.78 20.64	666,540.82 20.70	321,525.71 1.92	988,066.54	323,274.75 1.99	48.6% 9.6%
40	Unmetered	1	'	20.70	-0.07	20.64	20.70	1.92	22.63	1.99	9.0%
41	Scattered Loads	Customers	Connections								
42	4,829,242	1,466	17,721	213,223.27	-8,161.42	205,061.85	213,223.27	55,102.55	268,325.82	63,263.97	30.9%
43	365	1	1	19.04	-0.62	18.42	19.04	2.95	21.99	3.57	19.4%

Toronto Hydro-Electric System Limited EB-2009-0243 Exhibit J Tab 3 Schedule 7 Appendix A Filed: 18 Sep 2009 Page 3 of 3

Exhibit 2b: 2009 Total Bill Impact

_	Col. 1 Co	l. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12	Col. 13	Col. 14
1						200				2009 with CV			2009 Increa	se
						Rate Rider	Non- Distribution			Rate Rider	Non- Distribution			
2		kWh	kW	kVA	Distribution (\$)	(\$)	(\$)	Total (\$)	Distribution (\$)	(\$)	(\$)	Total (\$)	\$	%
3	Residential	KWII	R.U.			(Ψ)	(Ψ)	Total (ψ)		(Ψ)	(Ψ)	τοται (ψ)	Ψ	70
4		100			18.29	0.57	7.90	26.76	18.29	0.57	7.90	26.76	0.00	0.0%
5		250			20.45	0.45	19.38	40.27	20.45	0.45	19.38	40.27	0.00	0.0%
6		500			24.04	0.25	38.51	62.80	24.04	0.25	38.51	62.80	0.00	0.0%
7		750			27.64	0.05	57.64	85.32	27.64	0.05	57.64	85.32	0.00	0.0%
8		1,000			31.23	-0.15	78.91	109.99	31.23	-0.15	78.91	109.99	0.00	0.0%
9		1,500			38.42	-0.55	121.84	159.71	38.42	-0.55	121.84	159.71	0.00	0.0%
10		2,000			45.61	-0.95	164.77	209.43	45.61	-0.95	164.77	209.43	0.00	0.0%
11	GS<50 kW													
12		1,000			41.23	0.24	78.84	120.31	41.23	0.24	78.84	120.31	0.00	0.0%
13		5,000			120.39	-1.36	420.19	539.22	120.39	-1.36	420.19	539.22	0.00	0.0%
14		10,000			219.34	-3.36	846.89	1,062.87	219.34	-3.36	846.89	1,062.87	0.00	0.0%
15		20,000			417.24	-7.36	1,700.28	2,110.16	417.24	-7.36	1,700.28	2,110.16	0.00	0.0%
16	GS 50-999 k													
17		30,000	100	100	548.61	-4.02	2,597.38	3,141.97	548.61	-4.02	2,597.38	3,141.97	0.00	0.0%
18		40,000	100	100	548.61	-4.02	3,347.01	3,891.60	548.61	-4.02	3,347.01	3,891.60	0.00	0.0%
19		150,000	500	556	2,898.91	-24.52	13,012.92	15,887.31	2,898.91	-24.52	13,012.92	15,887.31	0.00	0.0%
20		200,000	500	556	2,898.91	-24.52	16,761.06	19,635.45	2,898.91	-24.52	16,761.06	19,635.45	0.00	0.0%
21		270,000	900	1,000	5,191.89	-44.52	23,428.46	28,575.83	5,191.89	-44.52	23,428.46	28,575.83	0.00	0.0%
22		360,000	900	1,000	5,191.89	-44.52	30,175.11	35,322.48	5,191.89	-44.52	30,175.11	35,322.48	0.00	0.0%
23		450,000	900	1,000	5,191.89	-44.52	36,921.76	42,069.13	5,191.89	-44.52	36,921.76	42,069.13	0.00	0.0%
24	GS 1000-499													
25		300,000	1,000	1,111	5,516.79	-106.88	26,402.34	31,812.26	5,516.79	-106.88	26,402.34	31,812.26	0.00	0.0%
26		400,000	1,000	1,111	5,516.79	-106.88	33,898.62	39,308.54	5,516.79	-106.88	33,898.62	39,308.54	0.00	0.0%
27		500,000	1,000	1,111	5,516.79	-106.88	41,394.90	46,804.82	5,516.79	-106.88	41,394.90	46,804.82	0.00	0.0%
28		600,000	2,000	2,222	10,328.24	-214.43	52,811.18	62,924.99	10,328.24	-214.43	52,811.18	62,924.99	0.00	0.0%
29		300,000	2,000	2,222	10,328.24	-214.43	67,803.74	77,917.55	10,328.24	-214.43	67,803.74	77,917.55	0.00	0.0%
30		000,000	2,000	2,222	10,328.24	-214.43	82,796.30	92,910.11	10,328.24	-214.43	82,796.30	92,910.11	0.00	0.0%
31	Large Use	-00 000	E 000	E E E C	24 525 45	E 40 70	120 590 79	154 567 40	04 E2E 4E	E 40 70	120 590 79	154 567 40	0.00	0.09/
32		500,000 000,000	5,000	5,556 5,556	24,535.15 24,535.15	-548.76 -548.76	130,580.78 167,443.20	154,567.16 191,429.59	24,535.15 24,535.15	-548.76 -548.76	130,580.78 167,443.20	154,567.16 191,429.59	0.00 0.00	0.0% 0.0%
33 34		500,000	5,000 5,000	5,556	24,535.15	-548.76	204,305.63	228,292.01	24,535.15	-548.76	204,305.63	228,292.01	0.00	0.0%
	,	00,000	10,000	5,556 11,111	46,431.26	-548.76	204,305.63	306,501.10	46,431.26	-548.76	204,305.63	306,501.10	0.00	0.0%
35		000,000	10,000	11,111	46,431.26	-1,098.21	334,892.90	306,501.10	46,431.26	-1,098.21	334,892.90	306,501.10	0.00	0.0%
36 37		000,000	10,000	11,111	46,431.26	-1,098.21	408,617.75	453,950.80	46,431.26	-1,098.21	408,617.75	453,950.80	0.00	0.0%
	Street Lighti		Connections	Mthly kVA	40,431.20	-1,090.21	400,017.75	433,930.00	40,431.20	-1,030.21	400,017.75	400,900.00	0.00	0.070
38 39		182,014	159,861	26,461	666,540.82	-1,749.04	810,021.26	1,474,813.04	666,540.82	321,525.71	810,021.26	1,798,087.80	323,274.75	21.9%
40	5,1	365	100,001	20,401	20.70	-0.07	28.80	49.44	20.70	1.92	28.80	51.43	1.99	4.0%
40	Unmetered	000			20.10	0.07	20.00		20.10	1.52	20.00	01.40	1.55	4.070
41	Scattered Lo	ade	Customers (Connections										
41 42		329,242	1,466	17,721	213,223.27	-8,161.42	396,581.69	601,643.54	213,223.27	55,102.55	396,581.69	664,907.51	63,263.97	10.5%
42	4,0	365	1,400	1,721	19.04	-0.62	26.82	45.24	19.04	2.95	26.82	48.81	3.57	7.9%
43		305		1	19.04	-0.02	20.02	40.24	19.04	2.95	20.02	40.01	3.37	1.9%

Exhitbit 1 - Derivation of Rate Riders

	Col. 1 Col. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11
1			RESIDENTIAL	GS < 50 kW	GS - 50 to 1000 kW	GS > 1000 to 5000 kW	LARGE USE	UNMETERED SCATTER LOAD	STREETLIGHT	TOTAL
2			Α	В		E	F		G	н
3 4 5	2009 Approved Load by Rate Class Number of Customers Number of Connection		611,808	66,191	11,719	530	49	1,135 19,907	1 162,450	691,433 182,357
6 7	2009 - Cost of Service Allocation - Secondary Customer Base		611,808	66,191	2,803	12	0	· · · · · · · · · · · · · · · · · · ·	90,026	790,747
8	Allocators Percentages									
9 10		(%	77.37%	8.37%	0.35%	0.00%	0.00%	2.52% 2.52% 18.11%	11.38% 81.89%	100% 100%
11		ALLOCATOR	RESIDENTIAL	GS < 50 kW	GS - 50 to 1000 kW	GS > 1000 to 5000 kW	LARGE USER	SMALL SCATTER LOAD	STREETLIGHT	TOTAL

11			ALLOCATOR	RESIDENTIAL	GS < 50 kW	GS - 50 to 1000 kW	GS > 1000 to 5000 kW	LARGE USER	SMALL SCATTER LOAD	STREETLIGHT	TOTAL
12	On going Scanning	\$2,410,000	Secondary Customer Base Connections	\$1,864,640	\$201,733	8,542	\$37	\$1	\$60,672	\$274,376	\$2,410,000
13	Scanning/Remediation	\$11,935,000	Allocation	\$0	\$0	-	\$0	\$0	\$2,161,235	\$9,773,765	\$11,935,000
14	Total Recovery	\$14,345,000		\$1,864,640	\$201,733	8,542	\$37	\$1	\$2,221,906	\$10,048,141	\$14,345,000

15 2010 - Rate Riders	RECOVERY AMOUNT	ALLOCATOR	RESIDENTIAL	. (6S < 50 kW	GS - 50 to 1000 kW	5 > 1000 to 5000 kW	LARGE	USER	SMALL ITER LOAD	STI	REETLIGHT
16 On going Scanning	\$2,410,000	Secondary Customer Base Connections	\$ 0.2	25 \$	0.25	\$ 0.06	\$ 0.01	\$	-	\$ 0.25	\$	0.14
17 Scanning/Remediation	\$3,978,333	Allocation	\$-	\$	-	\$ -	\$ -	\$	-	\$ 2.97	\$	1.65
18 Total Contact Voltage Rider	\$6,388,333		9	0	\$0	\$0	\$0		\$0	\$3		\$2

19 2011 - Rate Riders	RECOVERY AMOUNT	ALLOCATOR	RESIDE	NTIAL	GS <	50 kW	- 50 to 00 kW	⊳ 1000 to 00 kW	LA	RGE USER	SMALL ITER LOAD	STREE	TLIGHT
20 On going Scanning	\$0	Secondary Customer Base	\$	-	\$	-	\$ -	\$ -	\$	-	\$ -	\$	-
21 Scanning/Remediation	\$3,978,333	Connections Allocation	\$	-	\$	-	\$ -	\$ -	\$	-	\$ 2.97	\$	1.65
22 Total Contact Voltage Rider	\$3,978,333			\$0		\$0	\$0	\$0		\$0	\$3		\$2

23	2012- Rate Riders	RECOVERY AMOUNT	ALLOCATOR	RESIDENT	IAL	GS < 5	50 kW	- 50 to 0 kW	> 1000 to 00 kW	LAF	RGE USER	MALL TER LOAD	ST	TREETLIGHT	
24	On going Scanning	\$0	Secondary Customer Base	\$	-	\$	-	\$ -	\$ -	\$	-	\$ -	\$	-	
5	Scanning/Remediation	\$3,978,333	Connections Allocation	\$	-	\$	-	\$ -	\$ -	\$	-	\$ 2.97	\$	1.65	
6	Total Contact Voltage Rider	\$3,978,333			\$0		\$0	\$0	\$0		\$0	\$3		\$2	

Toronto Hydro-Electric System Limited EB-2009-0243 Exhibit J Tab 3 Schedule 7 Appendix B 11 Filed: 18 Sep 2009 Page 1 of 3

Toronto Hydro-Electric System Limited EB-2009-0243 Exhibit J Tab 3 Schedule 7 Appendix B Filed: 18 Sep 2009 Page 2 of 3

Exhibit 2a: 2009 Distribution and Rate Rider Bill Impact

	Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11
1					2009 Rates			with CV Rate Rid	ers	2009 Increa	
2	kWh	kW	kVA	Distribution (\$)	Rate Rider (\$)	Total (\$)	Distribution (\$)	Rate Rider (\$)	Total (\$)	\$	%
3	Residential										
4	100			18.29	0.57	18.86	18.29	0.82	19.11	0.25	1.3%
5	250			20.45	0.45	20.90	20.45	0.70	21.15	0.25	1.2%
6	500			24.04	0.25	24.29	24.04	0.50	24.54	0.25	1 .0 %
7	750			27.64	0.05	27.69	27.64	0.30	27.94	0.25	0.9%
8	1,000			31.23	-0.15	31.08	31.23	0.10	31.33	0.25	0.8%
9	1,500			38.42	-0.55	37.87	38.42	-0.30	38.12	0.25	0.7%
10	2,000			45.61	-0.95	44.66	45.61	-0.70	44.91	0.25	0.6%
11	GS<50 kW										
12	1,000			41.23	0.24	41.47	41.23	0.49	41.72	0.25	0.6%
13	5,000			120.39	-1.36	119.03	120.39	-1.11	119.28	0.25	0.2%
14	10,000			219.34	-3.36	215.98	219.34	-3.11	216.23	0.25	0.1%
15	20,000			417.24	-7.36	409.88	417.24	-7.11	410.13	0.25	0.1%
16	GS 50-999 kW										
17	30,000	100	100	548.61	-4.02	544.59	548.61	-3.96	544.65	0.06	0.0%
18	40,000	100	100	548.61	-4.02	544.59	548.61	-3.96	544.65	0.06	0.0%
19	150,000	500	556	2,898.91	-24.52	2,874.39	2,898.91	-24.46	2,874.45	0.06	0.0%
20	200,000	500	556	2,898.91	-24.52	2,874.39	2,898.91	-24.46	2,874.45	0.06	0.0%
21	270,000	900	1,000	5,191.89	-44.52	5,147.37	5,191.89	-44.46	5,147.43	0.06	0.0%
22	360,000	900	1,000	5,191.89	-44.52	5,147.37	5,191.89	-44.46	5,147.43	0.06	0.0%
23	450,000	900	1,000	5,191.89	-44.52	5,147.37	5,191.89	-44.46	5,147.43	0.06	0.0%
24	GS 1000-4999 kW										
25	300,000	1,000	1,111	5,516.79	-106.88	5,409.92	5,516.79	-106.87	5,409.93	0.01	0.0%
26	400,000	1,000	1,111	5,516.79	-106.88	5,409.92	5,516.79	-106.87	5,409.93	0.01	0.0%
27	500,000	1,000	1,111	5,516.79	-106.88	5,409.92	5,516.79	-106.87	5,409.93	0.01	0.0%
28	600,000	2,000	2,222	10,328.24	-214.43	10,113.81	10,328.24	-214.42	10,113.82	0.01	0.0%
29	800,000	2,000	2,222	10,328.24	-214.43	10,113.81	10,328.24	-214.42	10,113.82	0.01	0.0%
30	1,000,000	2,000	2,222	10,328.24	-214.43	10,113.81	10,328.24	-214.42	10,113.82	0.01	0.0%
31	Large Use										
32	1,500,000	5,000	5,556	24,535.15	-548.76	23,986.39	24,535.15	-548.76	23,986.39	0.00	0.0%
33	2,000,000	5,000	5,556	24,535.15	-548.76	23,986.39	24,535.15	-548.76	23,986.39	0.00	0.0%
34	2,500,000	5,000	5,556	24,535.15	-548.76	23,986.39	24,535.15	-548.76	23,986.39	0.00	0.0%
35	3,000,000	10,000	11,111	46,431.26	-1,098.21	45,333.05	46,431.26	-1,098.21	45,333.05	0.00	0.0%
36	4,000,000	10,000	11,111	46,431.26	-1,098.21	45,333.05	46,431.26	-1,098.21	45,333.05	0.00	0.0%
37	5,000,000	10,000	11,111	46,431.26	-1,098.21	45,333.05	46,431.26	-1,098.21	45,333.05	0.00	0.0%
38	Street Lighting	Connections	Mthly kVA								
39	9,182,014	159,861	26,461	666,540.82	-1,749.04	664,791.78	666,540.82	289,035.79	955,576.61	290,784.83	43.7%
40	365	1	1	20.70	-0.07	20.64	20.70	1.72	22.43	1.79	8.7%
	Unmetered										
41	Scattered Loads	Customers	Connections								
42	4,829,242	1,466	17,721	213,223.27	-8,161.42	205,061.85	213,223.27	48,900.20	262,123.47	57,061.62	27.8%
43	365	1	1	19.04	-0.62	18.42	19.04	2.60	21.64	3.22	17.5%

Exhibit 2b: 2009 Total Bill Impact

_	Col. 1 Co	l. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7	Col. 8	Col. 9	Col. 10	Col. 11	Col. 12	Col. 13	Col. 14
1						200				2009 with CV			2009 Increa	se
						Dete Dider	Non- Distribution			Dete Dider	Non-			
		kWh	L-\A/		Distribution (\$)	Rate Rider (\$)	Distribution (\$)	Total (\$)	Distribution (\$)	Rate Rider (\$)	Distribution (\$)	Total (\$)	¢	0/
2	Residential	KVVII	kW	KVA		(\$)	(\$)	Total (\$)	Distribution (\$)	(\$)	(\$)	Total (\$)	\$	%
4	Residential	100			18.29	0.57	7.90	26.76	18.29	0.82	7.90	27.01	0.25	0.9%
5		250			20.45	0.45	19.38	40.27	20.45	0.70	19.38	40.52	0.25	0.6%
6		500			24.04	0.25	38.51	62.80	24.04	0.50	38.51	63.05	0.25	0.4%
7		750			27.64	0.05	57.64	85.32	27.64	0.30	57.64	85.57	0.25	0.3%
8		1,000			31.23	-0.15	78.91	109.99	31.23	0.10	78.91	110.24	0.25	0.2%
9		1,500			38.42	-0.55	121.84	159.71	38.42	-0.30	121.84	159.96	0.25	0.2%
10		2,000			45.61	-0.95	164.77	209.43	45.61	-0.70	164.77	209.68	0.25	0.1%
11	GS<50 kW	,												
12		1,000			41.23	0.24	78.84	120.31	41.23	0.49	78.84	120.56	0.25	0.2%
13		5,000			120.39	-1.36	420.19	539.22	120.39	-1.11	420.19	539.47	0.25	0.0%
14		10,000			219.34	-3.36	846.89	1,062.87	219.34	-3.11	846.89	1,063.12	0.25	0.0%
15		20,000			417.24	-7.36	1,700.28	2,110.16	417.24	-7.11	1,700.28	2,110.41	0.25	0.0%
16	GS 50-999 k	W												
17	:	30,000	100	100	548.61	-4.02	2,597.38	3,141.97	548.61	-3.96	2,597.38	3,142.03	0.06	0.0%
18		40,000	100	100	548.61	-4.02	3,347.01	3,891.60	548.61	-3.96	3,347.01	3,891.66	0.06	0.0%
19		50,000	500	556	2,898.91	-24.52	13,012.92	15,887.31	2,898.91	-24.46	13,012.92	15,887.37	0.06	0.0%
20		00,000	500	556	2,898.91	-24.52	16,761.06	19,635.45	2,898.91	-24.46	16,761.06	19,635.51	0.06	0.0%
21		70,000	900	1,000	5,191.89	-44.52	23,428.46	28,575.83	5,191.89	-44.46	23,428.46	28,575.89	0.06	0.0%
22	3	60,000	900	1,000	5,191.89	-44.52	30,175.11	35,322.48	5,191.89	-44.46	30,175.11	35,322.54	0.06	0.0%
23		50,000	900	1,000	5,191.89	-44.52	36,921.76	42,069.13	5,191.89	-44.46	36,921.76	42,069.19	0.06	0.0%
24	GS 1000-499													
25		00,000	1,000	1,111	5,516.79	-106.88	26,402.34	31,812.26	5,516.79	-106.87	26,402.34	31,812.27	0.01	0.0%
26		00,000	1,000	1,111	5,516.79	-106.88	33,898.62	39,308.54	5,516.79	-106.87	33,898.62	39,308.55	0.01	0.0%
27		00,000	1,000	1,111	5,516.79	-106.88	41,394.90	46,804.82	5,516.79	-106.87	41,394.90	46,804.83	0.01	0.0%
28		00,000	2,000	2,222	10,328.24	-214.43	52,811.18	62,924.99	10,328.24	-214.42	52,811.18	62,925.00	0.01	0.0%
29		00,000	2,000	2,222	10,328.24	-214.43	67,803.74	77,917.55	10,328.24	-214.42	67,803.74	77,917.56	0.01	0.0%
30		00,000	2,000	2,222	10,328.24	-214.43	82,796.30	92,910.11	10,328.24	-214.42	82,796.30	92,910.12	0.01	0.0%
31	Large Use	00.000	E 000	E 550	04 505 45	E 40 70	400 500 70	454 507 40	04 505 45	E 40 70	400 500 70	454 507 40		0.001
32		00,000	5,000	5,556	24,535.15 24,535.15	-548.76	130,580.78	154,567.16	24,535.15	-548.76	130,580.78	154,567.16	0.00	0.0% 0.0%
33	,	00,000	5,000	5,556	,	-548.76	167,443.20	191,429.59	24,535.15	-548.76	167,443.20	191,429.59	0.00	0.0%
34	,	00,000	5,000	5,556	24,535.15	-548.76	204,305.63	228,292.01 306,501.10	24,535.15	-548.76	204,305.63	228,292.01	0.00	0.0%
35	· · · · · · · · · · · · · · · · · · ·	00,000 00,000	10,000 10,000	11,111 11,111	46,431.26 46,431.26	-1,098.21 -1,098.21	261,168.05 334,892.90	306,501.10	46,431.26 46,431.26	-1,098.21 -1,098.21	261,168.05 334,892.90	306,501.10 380,225.95	0.00 0.00	0.0%
36	· · · · · · · · · · · · · · · · · · ·	00,000	10,000	1	46,431.26	-1,098.21	1	453,950.80	,	-1,098.21		453,950.80	0.00	0.0%
37				11,111 Mtblv (k) (A	40,431.20	-1,090.21	408,617.75	455,950.60	46,431.26	-1,090.21	408,617.75	455,950.60	0.00	0.0%
38 39	Street Light	82,014	Connections 159,861	Mthly kVA 26,461	666,540.82	-1,749.04	810,021.26	1,474,813.04	666,540.82	289,035.79	810,021.26	1,765,597.87	290,784.83	19.7%
39 40	9,1	365	159,001	20,401	20.70	-1,749.04	28.80	49.44	20.70	1.72	28.80	51.23	290,784.83	
40	Unmetered	303	1	1	20.70	-0.07	20.00	49.44	20.70	1.72	20.00	51.23	1.79	3.070
11	Scattered L	oade	Customers (Connections										
41		29,242	1,466	17,721	213,223.27	-8,161.42	396,581.69	601,643.54	213,223.27	48,900.20	396,581.69	658,705.16	57,061.62	9.5%
42 43	4,8	29,242 365	1,400	17,721	19.04	,	26.82	45.24	213,223.27	48,900.20	26.82	48.46	3.22	9.5% 7.1%
43		305	1	1	19.04	-0.62	20.82	45.24	19.04	2.60	20.82	48.46	3.22	7.1%

1 **INTERROGATORY 1:**

2	Reference(s):	page 2
---	----------------------	--------

3

Considered together, the events outlined above indicated the possibility of systemic faults 4 in underground equipment, which, if present, would pose an unacceptable risk to the 5 public and to employees of THESL and THESI. The possible hazard to the public was 6 heightened by the presence of road salt that when mixed with water, combined to form a 7 highly conductive solution on sidewalks and thoroughfares throughout the city. 8 Executive management of THESL therefore concluded that an emergency condition 9 existed which demanded immediate and intensive efforts to correct. THESL declared a 10 Level III emergency, the second highest level of system emergency, on January 30, 2009. 11 12 13 a) Given the above-noted "unacceptable risk" posed to employees and the public, please outline the nature and cost of any additional Occupational Health and Safety training 14 15 or other additional safety measures that have been implemented in the context of the Level III emergency. 16 17 b) In addition, we require the same information in respect of any such programming, including anticipated costs, that will be implemented on a go-forward basis in 18 19 response to the Level III emergency. c) In respect of this interrogatory, please provide a detailed breakdown of these costs 20 21 according to the following categories of workers: Bargaining unit employees (for both inside and outside workers); 22 • Non-bargaining unit employees; 23 • Managerial employees; and, • 24

• Sub-contractors.

1	d)	In addition, given the high-risk circumstances described, we wish to know whether
2		THESL or THESI employees or contracted workers participated in any work refusals
3		under the Occupational Health and Safety Act during the material time, and please
4		provide the estimated cost implications of any such instances.
5		
6	RF	CSPONSE:
7	a)	THESL crews are fully capable and trained to work on the secondary distribution
8		equipment under the conditions experienced during the contact voltage Level III
9		emergency. No additional training was required.
10		
11	b)	Please refer to the answer above. Cost levels in future years are not the subject of this
12		Application.
13		
14	c)	The requested information is not available.
15		
16	d)	There were no work refusals requiring Ministry of Labour involvement.

1 INTERROGATORY 2:

2	Reference (s):	pages 2-3
---	-----------------------	-----------

3

4 The Applicant has reproduced the following communication from Anthony Haines,

- 5 President of THESL, to the Toronto Hydro Board of Directors. The following
- 6 paragraphs are excerpted from Mr. Haines' letter:

7	Toronto Hydro has therefore suspended all other non-
8	emergency planned work on its system and has deployed its
9	own utility and streetlighting crews, as well as available
10	contractor resources, on a 7 day per week, 24 hour per day
11	basis to locate, diagnose, secure, and repair to a safe
12	condition all the suspect equipment on its distribution and
13	streetlighting systems. In order to accomplish this
14	substantial work program as quickly and effectively as
15	possible, all the involved resources will be directed by
16	senior management of the distribution utility. While
17	Toronto Hydro will make every effort to capture and record
18	all relevant information on the equipment itself and the
19	directly associated expenditures, it will not be possible
20	under the conditions to segregate the crews and assets of
21	the streetlighting affiliate from those of the distribution
22	utility. For any location determined to require repair, the
23	first available crew will be dispatched regardless of the
24	precise nature of the electrical fault or of crew personnel
25	composition.

1		
2	a)	Describe the extent to which THESL relied on the above-noted "available contractor
3		resources" in undertaking the Level III program.
4	b)	In addition, explain in detail the extent to which such reliance on contracted labour
5		deviated from usual utility management practices. More narrowly, describe the
6		nature of all analyses undertaken by THESL management in identifying and
7		assigning any to such contracted resources in context of the Level III emergency.
8		
9	In	the same letter, [Mr.] Haines also stated:
10		It is clear that this work program will be disruptive, to
11		varying degrees, of Toronto Hydro's normal business and
12		planned activities. We expect that there may be additional
13		operating and cost consequences and we intend to manage
14		these diligently to minimize any adverse impacts. Please
15		also be assured that Toronto Hydro will do our utmost to
16		maintain our standard of response to outages and any other
17		safety matters which present in the normal course of
18		business.
19		
20	c)	Identify any "additional operating or cost consequences" arising from the Level III
21		situation which have not been identified within the instant Application. More
22		specifically, provide detailed information, including, but not limited to cost
23		implications, pertaining to any such operating consequences in relation to the
24		following non-exhaustive list:
25		• Previous and anticipated sale or divestment of assets;

1	• Hiring of employees, and maintenance of employee complement, both inside
2	andoutside of the bargaining unit;
3	• Any new plans, or variation to existing plans, with respect to the hiring or
4	subcontractual staffing of additional trades persons;
5	• Procurement of equipment, including, but not limited to safety equipment;
6	• Tendering and/or Contracting for delivery of services by third-parties, including,
7	but not limited to sub-contracting entities
8	• Reorganization of internal management and decision-making structures
9	• Development of new internal policies and/or procedures, including any revision to
10	existing policies and/or procedures; including, but not limited to human resources,
11	staffing, procurement, risk assessments, safety, and environmental policies.
12	
13	[Mr.] Haines also stated:
14	Our concern for worker and public safety is paramount and
15	guides our decisions around this challenge. I commit to
16	maintaining heightened communication with the Board on
17	this matter until its resolution and invite you to contact me
18	directly should you have questions or concerns.
19	
20	d) Provide specific details of the manner in which workers' safety has been accounted
21	for by THESL management, including any cost-related analyses, in light of the stated
22	importance of expeditious and efficient emergency response.
23	

1 **RESPONSE:**

a)	In financial terms THESL expended approximately \$670,000 on electrical contractor
	resources to augment our internal staff in this response. Internal staff account for
	\$5.52M in expended effort. This translates to about 12.1% of the total effort applied
	to this level III emergency response.
b)	THESL's continued reliance on contractors during the Level III emergency response
	was consistent with normal operating practices. In the course of normal operations
	THESL regularly retains contractors to provide value-added services such as forestry,
	civil construction, complete maintenance of switching cubicles, thermographic line
	audits, pumping and washing of underground structures, and grounds maintenance at
	all THESL properties.
c)	The requested information is not pertinent to this Application and in any event is not
	available.
d)	The THESL Health & Safety Policy and all work practices and procedure govern all
	work performed by staff at all times, including emergency conditions.
	b)

Toronto Hydro-Electric System Limited EB-2009-0243 Exhibit J Tab 4 Schedule 3 Filed: 18 Sep 2009 Page 1 of 2

RESPONSES TO CANADIAN UNION OF PUBLIC EMPLOYEES, LOCAL ONE INTERROGATORIES

1 **INTERROGATORY 3:**

2 Reference(s):	page 4
------------------------	--------

3 4

The Applicant stated:

5	Remediation was carried out by THESL crews, THESI crews, and
6	crews from available electrical contractors, all working under the
7	direction of THESL management. Remediation work was itself
8	undertaken in two categories; response to identified contact voltage
9	incidents, and systematic inspection and repair, as necessary, of all
10	handwells.
11	
12	a) Provide a detailed breakdown of remedial work distribution referenced in

a) Provide a detailed breakdown of remedial work distribution referenced in this
 paragraph, including the nature and timing of work, and associated cost implications
 as among "the THESL crews, THESI crews, and crews from available electrical
 contractors". Additionally please list the particular contractors referenced and
 enumerate the relative expenditures with respect to each.

b) Provide a relative costing of remediation work that was performed by contracted
labour in comparison with reference to the cost of the same work, had it been
performed by the Applicant's employees. Include, along with any cost rationale, an
explanation of other factors considered by management, to the extent that such factors
rationalized or influenced the distribution of such work from the declaration of Level
III status to the present date.

23

1 **RESPONSE:**

- a) The requested breakdown is not available beyond the information already provided in
 the Application.
- 4
- b) The data captured during this Level III emergency response does not include the
 completed maintenance activities unique to locations; hence a specific breakdown of
 this work, by resource type and location is not available. This work was completed
 during the period between January 30, 2009 and February 23, 2009.
- 9
- Inspection and repair work was performed by both THESL staff and resources
- 11 provided by our contractor partners Powerline Plus and Entera Utility Contractors.
- 12 THESL staff resources inspected / serviced 61,331 asset locations. Resources from
- Powerline Plus inspected / serviced 1,583 asset locations. Resources from Entera
- Utility Contractors inspected/serviced 2,585 asset locations. These contractors were
 engaged in the work from February 8-20, 2009.
- 16
- 17 The THESL contractors were compensated accordingly:
- Powerline Plus \$335,840
- Entera Utility Contractors \$319,444
- 20

It should be noted that the nature of the work assigned to THESL versus contractors resources varied significantly and thus did not permit a meaningful comparison of costs. The primary focus of this initiative was strictly to respond to public safety concerns.

Toronto Hydro-Electric System Limited EB-2009-0243 Exhibit J Tab 4 Schedule 4 Filed: 18 Sep 2009 Page 1 of 1

RESPONSES TO CANADIAN UNION OF PUBLIC EMPLOYEES, LOCAL ONE INTERROGATORIES

1 **INTERROGATORY 4:**

2	Reference(s):page 5
3	
4	With respect to total costs incurred, the Applicant states:
5	In total, the expensed cost incurred by THESL for the
6	Level III emergency was \$11.94 million. A breakdown of
7	these expenditures is given in Table 1. A further amount of
8	\$2.41 million will be expended through the balance of 2009
9	for the maintenance of the scanning program on a
10	nonemergency basis in order to ensure that further
11	instances of contact voltage are minimized.
12	
13	Further, also on p. 5, "Table 1" refers to broad categories for costs incurred during the
14	Level III emergency, including:
15	• "Labour" (overtime and non-overtime);
16	• "Non-Labour" (electrical contractor cost; scanning contractor cost; inventory and
17	materials; other);
18	"Continued Scanning Expenditures."
19	
20	Provide a definitive explanation of what the Applicant includes within each of the
21	broad incurred costs categories presented in "Table 1".
22	
23	RESPONSE:
24	Please refer to the response to VECC IR # 2a.

Toronto Hydro-Electric System Limited EB-2009-0243 Exhibit J Tab 4 Schedule 5 Filed: 18 Sep 2009 Page 1 of 2

RESPONSES TO CANADIAN UNION OF PUBLIC EMPLOYEES, LOCAL ONE INTERROGATORIES

1 **INTERROGATORY 5:**

2	Reference (s):	page 6
---	-----------------------	--------

3

4

THESL states the following:

5	With respect to regular labour and other miscellaneous
6	internal costs charged to the Level III emergency project,
7	THESL submits that these are properly considered
8	incremental to the approved revenue requirement because
9	THESL is committed to achieving its planned and approved
10	levels of operations and maintenance and capital work in
11	2009 and will therefore at least exhaust its approved
12	revenue requirement in this category. In fact, it is highly
13	likely that THESL will have to incur unbudgeted overtime
14	and contractor costs in order meet this commitment; in any
15	case though, given THESL's commitment to meet planned
16	O&M and capital work, the diversion of the resources that
17	would otherwise have been devoted to that work should be
18	treated as incremental. In the case of overtime labour, this
19	would not have been incurred at the level experienced in
20	February 2009 but for this event.

21

To the extent that unbudgeted overtime and contractor costs were unforeseen and are novel for THESL's system, advise as to any potential implications with respect to O&M and capital work.

25

1 **RESPONSE:**

- 2 THESL's capital and O&M programmes are scheduled for completion as originally
- 3 budgeted. For this reason, the expenditure of labour during the level III emergency event
- 4 caused a deficit in available labour to complete originally budgeted programmes,
- 5 resulting in the requirements for both overtime and the engagement of external vendors to
- 6 resolve this labour deficit.

1 **INTERROGATORY 6:**

e 8

3

4 With respect to its position that its response in respect of the relevant costs was

5 prudent, the Applicant states:

... it was necessary to suspend non-emergency planned work for the duration of 6 the Level III project and consequently connections and other normal jobs were not 7 being completed during this period. From the perspective of regular customer 8 service it was vital to minimize the period of disruption to normal operations. For 9 these reasons THESL submits that it was prudent in the circumstances for it to 10 hire the services of a contact voltage scanning contractor. The firm engaged by 11 THESL to do this work was selected because of its competence to undertake the 12 13 work and its immediate availability. It followed from the urgency of the situation that overtime up to safe limits, and the engagement of available contractors 14 15 outside of THESL, be undertaken to correct any detected instance of contact voltage as soon as possible.... 16

... the urgency of the situation demanded the use of available contractors and
 overtime up to safe levels in order to complete the necessary remediation as soon
 as possible and resume normal operations.

20

a) Describe the process by which THESL management arrived at its decision in
 contracting with service providers for both the ongoing scanning project, and in
 respect of any other contract that may be referenced, but not specified, within the
 above-excerpted paragraphs, or elsewhere within the Application.

b) Indicate the Applicant's intentions and/or plans, if any, for future hiring and/or

1		staffing strategies to address and remedy its apparent labour shortage.
2		
3	RF	CSPONSE:
4	a)	THESL engaged two civil unit price vendors currently under contract to supply
5		resources to augment the THESI/THESL resource complement with the task of
6		systematic inspection and repair. This decision complies with the THESL
7		procurement policy and was the most expedient manner to mobilise supplementary
8		resources for this public safety initiative. These vendors are Entera Utility
9		Contractors and Powerline Plus. Both of these vendors have, or were able to readily
10		obtain competent trades resources to perform the required tasks.
11		
12		The engagement of the Power Survey Company ("PSC") was also decided promptly
13		in the interest of public safety to rapidly identify and eliminate contact voltage
14		hazards. PSC is the most experienced firm in this emerging field and was able to
15		mobilise in Toronto within hours of engagement. The technology employed by PSC
16		is their own proprietary design. PSC was engaged by means of a sole-source
17		agreement as defined in the THESL procurement policy.
18		
19	b)	The requested THESL staffing plan is beyond the scope of this Application.