Filed: December 18, 2009 EB-2009-0096 Exhibit J6.4 Page 1 of 1

UNDERTAKING

<u>Undertaking</u>

TO PROVIDE WORK PLAN SUPPORTING THE \$5 MILLION EXPENDITURE

7 8 **<u>Re</u>**

<u>Response</u>

9 10

1 2

3 4

5 6

The Distribution System Innovation component of the Smart Grid capital program shown in the interrogatory at Exhibit H, Tab 9, Schedule 13 consists of 7 specific areas of work,

- in the interrogatory at Exhibit H, Tab 9, Schedu
 for which additional detail is provided below:
- 13

Sub Program Name	Work Description	2010	2011
		(\$M)	(\$M)
A. Distribution	Our rural Dx system is not currently	0.9	0.8
Monitoring - Pilot	monitored except at metering points.		
	With DGs additional monitoring will be		
	required.		
B. DVAR Feasibility	The ability to maximize DGs depends on	1.0	1.0
for Dx Transient	dynamic VAR management. Capacitor		
Stability/Control	and reactor banks are static devices.		
C. Dx Automation Pilot	Sectionalize a feeder fault quickly and	0.6	0.4
	restoring the rest improves reliability.		
	Doing this requires intelligence and		
	automation.		
D. Intelligent Feeder	For DG maximization and load-	0.9	0.9
Protections	generation mix variation, protections		
	need to be adaptive and change their		
	settings appropriately.		
E. Other/Misc -	Other smaller pilots include: short circuit	0.9	0.9
Technical Studies	control, energy storage, battery charging,		
and Pilots	solar PV as VAR control, inverter		
	harmonics.		
F. Smart Automation -	With increased DG penetration	0.4	0.4
Feeder + Area	(intermittency) will come balancing with		
Control	additional supply at the Dx level. This		
	will be for an area.		
G. Smart Load Control	In the ultimate DER (distributed energy	0.4	0.4
– Demand Response	resource) environment, the load-		
(DR), CDM	generation balance will also require		
	demand side actions such as DR and		
	CDM.		
Total Distribution System Innovation Program		5.1	4.8

14