

April 30, 2010

Ontario Energy Board 2300 Yonge Street, Suite 2700 Toronto, Ontario M4P 1E4

Attention: Ms. Kirsten Walli, Board Secretary

RE: EB-2009-0166 - Union Gas Limited - 2010 Demand Side Management Plan – 2010 Measures and Updated Input Assumptions

Dear Ms. Walli:

On September 30, 2009, the Ontario Energy Board (the "Board") issued its EB-2009-0166 Decision and Order approving Union Gas Limited's ("Union") 2010 Demand Side Management ("DSM") Plan. The approved DSM Plan included input assumptions based on the Navigant Report and proposed additions submitted by Union.

In its August 20, 2009 reply submission, Union stated: "Any proposed changes to those input assumptions will be discussed with the EAC and will be submitted to the Board for approval." The measures included in this submission are the result of completed research projects and DSM opportunities which were identified during the 2010 marketing planning process which occurred after the filing of the 2010 DSM Plan on May 29, 2009.

Union is applying for the 2010 measures and input assumptions attached as they represent opportunities for energy savings present in the market. It is important for these measures to be put before the Board at this time to avoid lost opportunities in the marketplace.

On March 8, 2010 Union initiated a consultation process with the 2010 EAC to discuss new measures which Union was considering filing for the 2010 program year. Union has consulted with the 2010 EAC on all measures included in this filing. The consultation process concluded on April 27, 2010 where Union achieved complete consensus with the 2010 EAC on all input assumptions included in this filing. Union requests an order of the Board approving the input assumptions as filed.

If you have any questions, please contact me at 519-436-5476.

Yours truly,

[original signed by]

Chris Ripley Manager, Regulatory Applications

cc: Crawford Smith (Torys) EB-2009-0166 Intervenors

2010 Input Assumptions for New Measures

Target Market		Equipment Details			Annual Resource Savings			Other			
Sector	New/Existing	Efficient Equipment	Details of efficient equipment	Base Equipment	Details of base equipment	Natural Gas (m3)	Electricity (kWh)	Water (L)	EUL	Incremental Cost (\$)	Free Rider (%)
Residential Space	e Heating										
Residential	New	Programmable Thermostat		Standard Thermostat		53	54	0	15	\$25	10%
		Fireplace intermittent ignition control									
Residential	Existing	retrofit		Natural gas fireplace with a pilot		104	(-) 31	0	8	\$150	1%
Residential Wate	er Heating										
Residential	New	Faucet Aerator	Bathroom, 1.0 GPM	Ontario Building Code 2006	2.2 GPM	10	0	3,435	10	\$0.55	33%
Residential	Existing	Equat Assetan	Bathroom, 1.0 GPM	Avenue existing stock	2.2 GPM	10	0	3,435	10	\$0.55	33%
Residential	Existing	Faucet Aerator	Bathroom, 1.0 GPM	Average existing stock	2.2 GPM	10	0	3,433	10	\$0.55	33%
Residential	New	Faucet Aerator	Kitchen, 1.0 GPM	Ontario Building Code 2006	2.2 GPM	32	0	10,631	10	\$1.59	33%
reordental	1.0.0			Shaho Bahang Code 2000	212 01 11	22	0	10,001	10	<i><i><i>w</i>1.07</i></i>	
Residential	Existing	Faucet Aerator	Kitchen, 1.0 GPM	Average existing stock	2.5 GPM	35	0	11,694	10	\$1.59	33%
-	0										
Residential	Existing	Solar Pool Heaters		Natural gas pool heater		1,116	-57	0	20	\$1450	10%
Commercial Spa	ice Heating	T		1			1				
					Equivalent in efficiency to a power						
					vented or separated combustion						
					unit heater (78% Annually						
Commercial	New/Existing	Condensing Unit Heater		% Sales Weighted Average model	Efficient)	0.00631 /Btu/hr	(-)0.00186 /Btu/hr	0	18	\$0.0129 /Btu/hr	0%
Commercial Wa	Ų	0		6 6							
	0	Pre-Rinse Spray Nozzle (Full									
Commercial	Existing	Service)	0.64 GPM	Pre-rinse spray nozzel	1.6 GPM	457	0	97,292	5	\$150	0%
Commercial	Existing	Pre-Rinse Spray Nozzle (Limited)	0.64 GPM	Pre-rinse spray nozzel	1.6 GPM	90	0	19,197	5	\$150	0%
Commercial	Existing	Pre-Rinse Spray Nozzle (Other)	0.64 GPM	Pre-rinse spray nozzle	1.6 GPM	109	0	23,166	5	\$150	0%
a	N T		Undercounter - High			001	2.754	112 705	10	()#12	1000
Commercial	New/Existing	Energy Star Dishwasher	Temperature Undercounter – Low	Non-Energy Star Dishwasher		801	3,754	112,795	10	(-)\$13	40%
Commercial	New/Existing	Energy Star Dishwasher	Temperature	Non-Energy Star Dishwasher		326	559	45,891	10	(-)\$13	40%
Commercial	I to w/ Existing	Energy Star Disnwasher	Temperature	Non-Energy Star Disnwasher		520	557	45,671	10	(-)\$15	4070
			Stationary Rack, (Door type, or								
Commercial	New/Existing	Energy Star Dishwasher	Single rack) - High Temperature	Non-Energy Star Dishwasher		619	3,553	87,119	15	(-)\$350	20%
			Stationary Rack, (Door type, or							1.	
Commercial	New/Existing	Energy Star Dishwasher	Single rack) – Low Temperature	Non-Energy Star Dishwasher		841	855	118,369	15	(-)\$350	20%
0	No	En anna Star Disha I	Rack Conveyor, Single (Tank) –	New Francisco Stern Di 1		2 202	0.011	210 271	20	¢0.275	270/
Commercial	New/Existing	Energy Star Dishwasher	High Temperature Back Convoyor, Multi (Tank)	Non-Energy Star Dishwasher		2,203	9,811	310,271	20	\$2,375	27%
Commercial	New/Existing	Energy Star Dishwasher	Rack Conveyor, Multi (Tank) – High Temperature	Non-Energy Star Dishwasher		3,708	15,822	522,192	20	\$288	27%
Commercial	The W/ EXISTING	Commercial Laundry Washing	ingn iomperature	Commercial Laundry Washing		5,700	13,022	544,174	20	9200	<i>∠ 1</i> 70
Commercial	New/Existing	Equipment with Ozone	Washer extractor - 60 lbs	Equipment without Ozone		0.0328 /lbs/yr	0.00219 /lbs/yr	2.01 /lbs/yr	15	\$10,970	8%
	in Estisting	Commercial Laundry Washing		Commercial Laundry Washing	1	5.52_57106 ji		1 / 100/ y1	1	+	
Commercial	New/Existing	Equipment with Ozone	Washer extractor - 500 lbs	Equipment without Ozone		0.0328 /lbs/yr	0.00219 /lbs/yr	2.01 L/lbs/yr	15	\$30,270	8%
	-	Commercial Laundry Washing		Commercial Laundry Washing		*			I		1
Commercial	New/Existing	Equipment with Ozone	Tunnel Washer - 120 lbs	Equipment without Ozone		0.0240 /lbs/yr	0.00152 /lbs/yr	1.22 /lbs/yr	15	\$49,667	8%
		Commercial Laundry Washing		Commercial Laundry Washing							
Commercial	New/Existing	Equipment with Ozone	Tunnel Washer - 500 lbs	Equipment without Ozone	1	0.0240 /lbs/yr	0.00152 /lbs/yr	1.22 /lbs/yr	15	\$160,065	8%

Target Market		Equipment Details			Annual Resource Savings			Other			
Sector	New/Existing	Efficient Equipment	Details of efficient equipment	Base Equipment	Details of base equipment	Natural Gas (m3)	Electricity (kWh)	Water (L)	EUL	Incremental Cost (\$)	Free Ride (%)
Multi-Family W	ater Heating	1	r	1	1		1	1			-
Multi-Family	New/Existing	Energy Star Front-Loading Clothes Washer	MEF=1.72 ,WF=8.0	Conventional top loading vertical axis washers	MEF = 1.26, WF=9.5	76	201	19,814	11	\$150	48%
Multi-Family	New	Faucet Aerator	Bathroom, 1.5 GPM	Ontario Building Code 2006	2.2 GPM	4	0	1,382	10	\$0.55	10%
Multi-Family	New	Faucet Aerator	Kitchen 1.5 GPM	Ontario Building Code 2006	2.2 GPM	13	0	4,280	10	\$1.39	10%
Multi-Family	New	Faucet Aerator	Bathroom, 1.0 GPM	Ontario Building Code 2006	2.2 GPM	7	0	2,371	10	\$0.55	10%
Multi-Family	New	Faucet Aerator	Kitchen, 1.0 GPM	Ontario Building Code 2006	2.2 GPM	22	0	7,337	10	\$1.59	10%
Multi-Family	New	Low-flow showerhead (Union Gas ESK)	1.5 GPM		2.2 GPM	33	0	5,228	10	\$6	10%
Multi-Family	New	Low-flow showerhead (Union Gas ESK)	1.25 GPM		2.2 GPM	45	0	8,824	10	\$3.69	10%

PROGRAMMABLE THERMOSTAT

Residential New Construction

Efficient Technology & Equipment Description
Programmable thermostat
Base Technology & Equipment Description
Standard thermostat

Resource Savings Assumptions

Natural Gas	53 m^3
EB 2009-0154	
Electricity	54 kWh
EB 2009-0154	
Water	n/a L

Other Input Assumptions

Equipment Life	15 Years
EB 2009-0154	
Incremental Cost	\$25.00
EB 2009-0154	
Free Ridership	10 %

Pre-screening will be conducted to ensure builders who install a programmable thermostat as standard are not targeted.

Measure will not be delivered to Energy Star Labeled Homes.

A builder survey will be conducted immediately prior to launch of the program in order to capture the majority of builders in the franchise area.

FIREPLACE INTERMITTENT IGNITION CONTROL RETROFIT

Residential – Existing Homes

Efficient Technology & Equipment Description				
Retrofitting a fireplace with a intermittent ignition control				
Base Technology & Equipment Description				
Natural gas fireplace with a pilot				

Resource Savings Assumptions

Natural Gas	104 m3/yr
Gas savings were based on gas normally consumed by	a pilot flame during the winter and the
non-heating season discounted by the fraction of people	e who shut off their fireplace gas pilot in
the non-heating season according to the NRCAN SHEU	
consume 700 Btu/hr (which is at the lower end of the p	ublished values). ^{1,2} The table below ³
shows approximately how much gas is consumed by a	pilot flame in the heating and non-heating
seasons.	

				m3 Gas
			Annual	Per
Operation Mode	Btu/hr	~m3/hr	hours	Year
Pilot Light- Heating Season	700	0.02	4,932 ⁴	96.6
Pilot Light - Non-Heating Season	700	0.02	3,650 ⁵	71.5

The table below shows the effects on the gas savings estimates from fireplace owners who shut off their pilot lights during the non-heating season.

	Annual m3	Percent of Fireplace Owners	Weighted Average (m3/yr)
Standing Pilot Use in Heating Season	96.6	100%	96.6
Standing Pilot Use in Non- Heating Season	71.5	38% ⁶	27.2

¹ Leapfrog Energy Technologies, Market Assessment for Potential Natural Gas Fireplace DSM Initiatives, 2007, Union Gas Fireplace Consolodated Presentation 071221.ppt, slide 18. ² "A pilot light...can consume from 600 to 1500 Btu of gas per hour and, if left to run continuously, can

significantly increase your annual energy costs." - "All About Gas Fireplaces", Office of Energy Efficiency, Natural Resources Canada – March 2004

³ From Fireplace Backup Calculations for Pete 071221.xls

⁴ The heating season was estimated to last for 7 months. The time that the pilot light runs during the heating season is 7 months/12 months X 365 days X 24 hours MINUS the number of hours when the fireplace is actually running.

⁵ The non-heating hours per year are equivalent to 8760 minus the time that the fireplace is running and minus the time when the pilot flame is running during the heating season. ⁶ Table 3.4 "NRCan - 2003 Survey of Household Energy Use" – 38% of households in Ontario do not

extinguish pilot lights in non-heating season.

A small portion of the winter time pilot gas heat is assumed to contribute to space heating during					
the heating season, however the actual value is unknown. A nominal value of 20% was					
estimated by Skip Hayden of NRCAN ⁷ .					
104 m3/yr = 27.2 m3/yr + (96.6 m3/yr * 80%)					
Electricity	(-) 31 kWh/yr				
Intermittent ignition systems actually increase electricity consumption. The power supply for the electronic fireplace ignition consumes standby power anywhere from 2 Watts ⁸ to 5 Watts ⁹ . Power is drawn continuously through the year (8760 hours). The corresponding annual power consumption ranges from 17.5 to 43.8 kWh.					
31 kWh/yr is the average between 17.5 and 43.8 kWh					
Water	NA				

Equipment Life	8 yrs			
The intermittent ignition control equipment life was estimated from manufacturer technical service reps to last the lifetime of the fireplace (~20 years). ¹⁰ The average fireplace age is 12 years ¹¹ . The Equipment life is estimated to be 8 years based on how many years the fireplaces are expected to operate with the intermittent ignition control (20 yrs $- 12$ yrs $= 8$ yrs).				
Incremental Cost	\$150			
It is estimated that the capital cost for an intermittent ignition system is \$75 and the cost of the labour is \$75 ¹² . The total cost for retrofitting a fireplace would be approximately \$150. Free Ridership 1 %				
Free Ridership	1 /0			
For Retrofitting a fireplace with intermittent ignition, is market penetration according to a NRCAN survey. As approximately 0% of survey respondents said they hav percent of existing fireplaces owners weren't sure if the range of market penetration is between 0 and 2%, 1% penetration of intermittent ignition in fireplaces.	ccording to an NRCAN survey ¹³ , ve intermittent ignition. Two heir fireplaces have them. Since the			

⁷ Agreed upon at UG EAC meeting April 15, 2010.

⁸ LeapFrog Energy Technology's phone conversations with Jatin at Majestic Fireplace technical services on 30/01/08. ⁹ LeapFrog Energy Technology's phone conversations with Stan at ESA Heating Products technical

LeapFrog Energy Technology's phone conversations with Starr at ESA Heating Froducts technical services 30/01/08.
 ¹⁰ LeapFrog Energy Technology's phone conversations with Jatin at Majestic Fireplace technical services on 30/01/08 and to Stan at ESA Heating Products technical services 30/01/08
 ¹¹ Union Gas Ltd., 2009 RESIDENTIAL SINGLE-FAMILY PENETRATION SURVEY, Pg 5
 ¹² Direct Energy verbal quote (888) 393-5553 November 12/2007
 ¹³ Table 3.4 "2003 Survey of Household Energy Use" – Natural Resources Canada 2006

1.0 GAL/MIN FAUCET AERATOR (BATHROOM)

Residential New/Existing Homes

Faucet Aerator (Bathroom) (1.0 GPM)	
Base Technology & Equipment Description	
Average existing stock & Ontario Building Code 2006 (2.2 GPM)	

Resource Savings Assumptions

Natural Gas (Updated)	10 m ³
Savings recommended by Navigant Consulting ¹ adjust technology	sted for 1.0 GPM efficient
Electricity	n/a kWh
Water (Updated)	3,435 L
Savings recommended by Navigant Consulting ¹ adjusted for 1.0 GPM efficient technology	

Equipment Life	10	Years
Faucet aerators have an estimated service life of 10 ye As approved in EB 2008-0384 & EB 2008-0385.	1, 2 ears.	
Incremental Cost	\$0.55	
As per utility program costs, bulk purchase of aerators	5.	
Free Ridership	33	%
Free Ridership rate recommended by Summit Blue Co As approved in EB 2008-0384 & EB 2008-0385.	onsulting. ³	

¹ Final Report "Measures and Assumptions for Demand Side Management (DSM) Planning", Navigant Consulting Inc., Ontario Energy Board, April 16, 2009

² U.S. DOE – FEMP, Energy Cost Calculator for Faucets and Showerheads, http://www.eere.energy.gov/femp

³ "Residential Measure Free Ridership And Inside Spillover Study - Final Report", Summit Blue Consulting, June 2008.

1.0 GAL/MIN FAUCET AERATOR (KITCHEN)

Residential New Homes

Efficient Technology & Equipment Description
Faucet Aerator (Kitchen) (1.0 GPM)
Base Technology & Equipment Description
Ontario Building Code 2006 (2.2 GPM)

Resource Savings Assumptions

Natural Gas	$32 m^3$
Savings based on the Navigant Report ¹ , except using 2.5) and 1.0 GPM efficient technology case	2.2 USGPM base case (opposed to
Electricity	n/a kWh
Water	10,631 L
Savings based on the Navigant Report ¹ , except using 2.2 USGPM base case (opposed to 2.5) and 1.0 GPM efficient technology case	

Equipment Life	10 years
Faucet aerators have an estimated service life of 10 years. As approved in EB 2008-0384 & EB 2008-0385.	2
Incremental Cost	\$1.59
As per utility program costs, bulk purchase of aerators.	
Free Ridership	33 %
Free Ridership rate recommended by Summit Blue Consulting. As approved in EB 2008-0384 & EB 2008-0385.	

¹ Final Report "Measures and Assumptions for Demand Side Management (DSM) Planning", Navigant Consulting Inc., Ontario Energy Board, Appendix C: Substantiation Sheets, pg. C60-63, April 16, 2009.

² U.S. DOE – FEMP, Energy Cost Calculator for Faucets and Showerheads, http://www.eere.energy.gov/femp

³ "Residential Measure Free Ridership And Inside Spillover Study - Final Report", Summit Blue Consulting, June 2008.

1.0 GAL/MIN FAUCET AERATOR (KITCHEN)

Residential Existing Homes

Faucet Aerator (Kitchen) (1.0 GPM)

Base Technology & Equipment Description

Average existing stock – 2.5 GPM Faucet Aerator (Kitchen)

Resource Savings Assumptions

Natural Gas	35 m^3
Savings based on the Navigant Report ¹ , except usin case	ng a 1.0 GPM efficient technology
Electricity	n/a kWh
Water	11,694 L
Savings based on the Navigant Report ¹ , except using a 1.0 GPM efficient technology case	

Equipment Life	10 years
Faucet aerators have an estimated service life of 10 ye As approved in EB 2008-0384 & EB 2008-0385.	ears. ²
Incremental Cost	\$1.59
As per utility program costs, bulk purchase of aerators	3.
Free Ridership	33 %
Free Ridership rate recommended by Summit Blue Consulting. As approved in EB 2008-0384 & EB 2008-0385.	

Final Report "Measures and Assumptions for Demand Side Management (DSM) Planning", Navigant Consulting Inc., Ontario Energy Board, Appendix C: Substantiation Sheets, pg. C60-63, April 16, 2009.

² U.S. DOE – FEMP, Energy Cost Calculator for Faucets and Showerheads, http://www.eere.energy.gov/femp

³ "Residential Measure Free Ridership And Inside Spillover Study - Final Report", Summit Blue Consulting, June 2008.

Program: Solar Pool Heater Sector: Residential Existing Homes

Efficient Technology & Equipment Description	
Solar Panels for pool heating	
Qualifier/Restriction	
Old gas pool heaters must be removed to qualify	
Base Technology & Equipment Description	
Natural Gas Heater	

Resource Savings Assumptions

Natural Gas (Updated)	1,116 m ³
Based on Enbridge Territory Load Research results: 2007 – 14 directly metered natural gas pools = 1330 m	n3
2008 – 6 directly metered natural gas pools = 901m3 Average natural gas savings from a customer choosing a solar pool heater alternative = 1116 m3 (100% of natural gas pool heater use)	
Electricity	-57 kWh
2009 Board Approved assumption filed by Navigant April 16, 2009 page c 83	
	1 / 10

Equipment Life	20 Years
2009 Board Approved assumption filed by Navigant April 16, 2009 page c 81-84	
Incremental Cost (Contractor Installed)	\$ 1,450
2009 Board Approved assumption filed by Navigant April 16, 2009 page c 83	
Free Ridership	10 %
NRCAN, Renewable Energy, Residential Solar Pool Heating Systems; A Buyer Guide	
page 3, 6	

CONDENSING UNIT HEATERS

Commercial – New/Existing

Efficient Technology & Equipment Description

Condensing Unit Heaters

Base Technology & Equipment Description

% Sales Weighted Average model, equivalent in efficiency to a power-vented or separated combustion unit heater (78% Annually Efficient)¹. For the Existing Building case, as it's not cost-effective to replace an existing unit heater prematurely, this measure is only applicable when existing equipment requires replacement (i.e., in cases of "natural" replacement).

Resource Savings Assumptions

Natural Gas	0.00631 m3/(BTU/H)
Gas savings is based on the NGTC report, but modified to use a % Annual Sales	
Weighted base case scenario. ² NGTC used the BIN M	
weather data ³ to estimate the annual operating hours of two Ontario regions: South	
(London) and North (North Bay). An oversizing factor of 100% was applied according to	
design practices. ^{4,5} Operating hours were based on an average of the UG Northern &	
Southern climates (see table below).	

Annual Operating Hours (BIN Method)

Region	Design Temp.	Indoor Temp.	Operating Hours
UG South (London)	-18.8 (°C)	18.3 (°C)	1,347 (hr/year)
UG North (North Bay)	-27.9 (°C)	18.3 (°C)	1,392 (hr/year)
Average	N/A	18.3 (°C)	1,370 (hr/year)

It should be noted that NRCan indicates that a unit heater's typical duty is 2,122 hrs/yr⁶. This number is significantly higher than the one obtained using the recognized ASHRAE standard. The difference could be explained by the fact that numbers obtained by NGTC using the BIN method account for the industry practice, which is to oversize unit heaters by 100%. Since no detailed information exists about how NRCan calculated typical operating hours, and given that the BIN method is an industry-recognized standard, an average operating time of 1,370 hours per year will be used for the energy consumption

¹ based on NGTC, "DSM Opportunities Associated with Unit Heaters", April 22, 2009, pg 6 and TRC Test Bed -Feb 25 2010 426pm.xlsx

² based on NGTC, "DSM Opportunities Associated with Unit Heaters", April 22, 2009, pg 6 and TRC Test Bed -Feb 25 2010 426pm.xlsx

³ ASHRAE. Weather Data Viewer: London and North Bay (Ontario). Version 3.0. 2005.

⁴ Davis Energy Group. Analysis of Standards Options for Unit Heaters and Duct Furnaces. May 2004, 8 pages.

⁵ NGTC. NGTC Review (no. 123807-02) - Unit Heaters Savings (retainer task for Union Gas). August 17, 2007, 9 pages.

⁶ NRCan. Canada's Energy Efficiency Regulations: Gas-Fired Unit Heaters – April 2007. [On line]. October 2008. http://oee.nrcan.gc.ca/regulations/bulletin/gas-unit-heatersaprilr007. cfm?text=N&printview=N.

calculations.					
The annual savings was no	The annual savings was normalized using input capacity (BTU/H)				
Electricity		(-)0.00186	kWh/(BTU/H)		
Electrical consumption will	l increase with the installati	on of condensing u	unit heaters. The		
	the NGTC report results mo				
U	io. ⁷ Electrical consumption				
manufacturer's specification	ons which were aggregated a	and summarized be	elow.		
Electricity Consumption for Unit Heater ⁸					
Technology	125 – 200 kBtu/hr	225 – 300 kH	3tu/hr		
Gravity-vented	275 kWh	280 kWh			
Power-vented	392 kWh	747 kWh			
Separated-combustion	392 kWh	747 kWh			
Condensing	657 kWh	1,020 kWh			
The annual savings was normalized using input capacity (BTU/H)					
Water		NA			

Equipment Life		18 yrs
Equipment life is based on NGTC, "DSM Opportunities Associated with Unit Heaters",		
April 22, 2009, pg 7	7	
Lifetime (years)	Source	
20-25	Gas Research Institute (GRI, 19	998, US)
10-15	University of Wisconsin – green	nhouse application, 2006
19 (North of US)	ACEEE (GRI source, 1997, US)
25 (South of US)	ACEEE (GRI source, 1997, US)
15	Davis Energy Group, 2004 (pre	pared for California)
21.5	DOE (average data from GRI, 1	997, US)
18	NRCan, 2007	
18	Ecotope, Inc., 2003, prepared for	or Oregon
18	NGTC's estimate	
NGTC estimated 18 years for the average lifetime of unit heaters.		
Incremental Cost \$0.0129 /(BTU/H)		
Incremental costs were based equipment costs and installation costs found from Canadian		
manufacturers as well as a US website prices converted to Canadian currency. ⁹ The		
NGTC reported incremental costs were modified to use a % Sales Weighted average base		
case installed cost.		

 ⁷ based on NGTC, "DSM Opportunities Associated with Unit Heaters", April 22, 2009, pg 6 and TRC Test Bed - Feb 25 2010 426pm.xlsx
 ⁸ based on NGTC, "DSM Opportunities Associated with Unit Heaters", April 22, 2009, pg 5
 ⁹ based on NGTC, "DSM Opportunities Associated with Unit Heaters", April 22, 2009, pg 7-8 and TRC Test Bed - Feb 25 2010 426pm.xlsx

The incremental installed cost was normalized by input capacity (BTU/H)		
Free Ridership	0 %	
Free Ridership was estimated using % annual sales for Condensing Unit Heaters (~0.01- 0.02%) in UG territory. ¹⁰		

¹⁰ NGTC, "DSM Opportunities Associated with Unit Heaters", April 22, 2009, pg iii

Pre-Rinse Spray Nozzle (0.64 GPM)

Commercial – Existing Market

Efficient Equipment and Technologies Description
Low-flow pre-rinse spray nozzle/valve (0.64 GPM)
Due to the variability in energy savings resulting from variability in daily water use, resource savings were
calculated for three types of commercial enterprise using this technology¹:
Scenario A: Full service restaurant
Scenario B: Limited service (fast food) restaurant
Scenario C: Other
Base Equipment and Technologies Description
Less efficient pre-rinse spray nozzle/valve (1.6 GPM)

Decision Type	Target Market(s)	End Use
Retrofit	Commercial (existing)	Water heating

Codes, Standards, and Regulations

N/A

Resource Savings Table

	Electricity and Other Resource Savings		Equipment & O&M	Equipment & O&M Costs of	
Year	Natural Gas	Electricity	Water	Costs of Conservation Measure	Base Measure
(EUL=)	(m³))	(kWh)	(L)	(\$)	(\$)
	A: 457		A: 97,292		
1	B: 90	0	B: 19,197	150	0
	C: 109		C: 23,166		
	A: 457		A: 97,292		
2	B: 90	0	B: 19,197	0	0
	C : 109		C: 23,166		
	A: 457		A: 97,292		
3	B: 90	0	B: 19,197	0	0
	C : 109		C: 23,166		
	A: 457		A: 97,292		
4	B: 90	0	B: 19,197	0	0
	C: 109		C: 23,166		
	A: 457		A: 97,292		
5	B: 90	0	B: 19,197	0	0
	C : 109		C: 23,166		
	A: 2,284		A: 486,462		
TOTALS	B: 451	0	B: 95,987	150	0
	C: 544		C: 115,829		

¹ These bins are chosen based on empirical research conducted by Energy Profiles Ltd on behalf of Union Gas Energy Profiles Ltd, *Deemed Savings for (Low Flow) Pre-Rinse Spray Nozzles*, January 2009

Resource Savings Assumptions

Annual Natural Gas S	avings	A: 457 m ³ B: 90 m ³ C: 109 m ³
Average food serviWater heater thern	er used that is hot: $69\%^5$	5 °F) ³
Savings = Ws * Phot *8.3	$3*(T_{out} - T_{in}) * \frac{1}{Eff} * 10^{-6} * 27.8$	
Where:	Ws = Water savings (gallons) Phot = Percentage of water used that is hot T_{out} = Water heater set point temperature (°I T_{in} = Water inlet temperature (°F) Eff = Water heater thermal efficiency 8.33 = Energy content of water (Btu/gallon/° 10 ⁻⁶ = Factor to convert Btu to MMBtu 27.8 = Factor to convert MMBtu to m ³	
Gas savings were determin	ed to be 60% over base equipment:	
Percent Savings = $\frac{(G_{base})}{G_b}$	$-G_{eff}$)	
Where:	Full service restaurant: G _{eff} = Annual natural gas use with efficient e G _{base} = Annual natural gas use with base eq	

² A simple average of Toronto inlet temperature, cited in the following as personal communication with City of Toronto Works Dept. VEIC, Comments on Navigant's Draft Gas Measure Characterizations, March 2009, and the average inlet water temperatures found

in four jurisdictions examined as part of the following study: Energy Profiles Ltd, Deemed Savings for (Low Flow) Pre-Rinse Spray Nozzles, January 2009

³ Average of temperatures found in a survey of restaurants in four Ontario municipalities.

Energy Profiles Ltd, *Deemed Savings for (Low Flow) Pre-Rinse Spray Nozzles*, January 2009 ⁴ Minimum thermal efficiency for compliance with ASHRAE 90.1 standard.

 ⁵ Average of ratio found in a survey of restaurants in four Ontario municipalities.
 Energy Profiles Ltd, *Deemed Savings for (Low Flow) Pre-Rinse Spray Nozzles*, January 2009

Limited service restaurant: G _{eff} = Annual natural gas use with efficien	at equipment 60 m ³
G_{base} = Annual natural gas use with base	
Other: G_{eff} = Annual natural gas use with efficien G_{base} = Annual natural gas use with base	
Annual Electricity Savings	0 kWh
N/A	
Annual Water Savings	A: 97,292 L B: 19,197 L C: 23,166 L
Assumptions and inputs:	
 The study by Energy Profiles Ltd cited above measured average examined before and after a 3.0 GPM nozzle was replaced with a difference in average usage time by facility, before and after repla Consulting and found to be not statistically significant. Additionally findings suggest no difference in the duration of use between a 0 nozzle. Given these results, Navigant Consulting has assumed the identical before and after replacement. 	a 1.24 GPM nozzle. The accement was tested by Navigant y, the same study reports that its 64 GPM nozzle and a 3.0 GPM
 From the Energy Profiles Ltd. study cited above, the following average durations of use were calculated: 	
Full-service restaurant: 1.26 hours per day. Limited-service restaurant: 0.24 hours per day Other: 0.33 hours per day	
 The average numbers of days of operation per year for each restaurant type were drawn from the Energy Profiles Ltd. report. They are: Full-service restaurant: 355 days per year. Limited-service restaurant: 365 days per year. Other: 320 days per year. 	
Annual water savings calculated as follows:	
$Savings = (Fl_{base} - Fl_{eff}) * 60 * Hr * Days$	
Where:	
Fl _{base} = Flow rate of base equipment (GP	
Fl _{eff} = Flow rate of efficient equipment (G 60 = Minutes per hour	rivi)
Hr = Hours used per day	
Days = Days per year	
Water savings were determined to be 60% over base equipment:	

$Percent Savings = \frac{(W_{base} - W_{base})}{W_{base}}$	reff)
Where:	Full service restaurant: W _{eff} = Annual water consumed with efficient equipment, 64,862 litres W _{base} = Annual water consumed by showers with base equipment: 162,154 litres
	Limited service restaurant: W _{eff} = Annual water consumed with efficient equipment, 12,798 litres W _{base} = Annual water consumed by showers with base equipment: 31,996 litres
	Other: W _{eff} = Annual water consumed with efficient equipment, 15,444 litres W _{base} = Annual water consumed by showers with base equipment: 38,610 litres

Effective Useful Life (EUL)	5 Years
Studies conducted for the City of Calgary ⁶ , the U.S. DOE's FEMP ⁷ and by Puget Sound Energy ⁸ all give EUL for this measure as five years.	
Base & Incremental Conservation Measure Equipment \$ 150	
Equipment cost: \$100 (Bulk price). Installation cost: \$50 (Contracted price with third-party installer).	
Free Ridership 0%	
Basis: Relatively new product probably only aware of one manufacturer (Bricor).	

⁶ Ibid.

 ⁷ U.S. DOE, Federal Energy Management Program, *How to Buy a Low-Flow Pre-Rinse Spray Valve* <u>http://www1.eere.energy.gov/femp/pdfs/prerinsenozzle.pdf</u>
 ⁸ Quantec Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027) Prepared for Puget Sound Energy

ENERGY STAR DISHWASHERS

Commercial - New/Existing

Efficient Technology & Equipment Description
Energy Star versions of (6) different types of Commercial Dishwashers:
Undercounter Type – High Temperature (HT)
Undercounter Type – Low Temperature (LT)
Stationary Rack, (Door type, or Single rack) - HT
Stationary Rack, (Door type, or Single rack) - LT
Rack Conveyor, Single (Tank) – HT
Rack Conveyor, Multi (Tank) - HT
Base Technology & Equipment Description
Non-Energy Star Dishwashers

Resource Savings Assumptions

Natural Gas		See below	
Energy Savings were based on the results of NGTC study and savings calculator. NGTC			
racks or loads/day data for sta	ationary Rack dishwasher	rs was updated using UG territory	
data. The remaining load dat	ta came from FSTC & En	ergy Star. NGTC booster heater	
		Ontario. The idle energy rate &	
1		represent an Energy Star dishwasher	
		that just meets the minimum, but	
halfway in-between (25 th per	centile E-Star model, bas	ed on efficiency).	
A			
Assumptions ¹ :	an a ratura 110°E (CO°C)		
,	nperature: 140°F (60°C)	$-200^{\circ} = (500^{\circ} - 2)^{2}$	
•	e for building water heati	0	
0	ater annual efficiency (re	3)	
	er heater efficiency: 96% ⁴		
	on temperature differentia		
	The 25 th percentile E-Star models (in terms of efficiency) are sold more often		
than the average E-Star model. ⁶			
Undercounter - HT	801 m3/yr		
Undercounter - LT	326 m3/yr		
Stationary Rack - HT	619 m3/yr		
Stationary Rack - LT	841 m3/yr		

¹ NGTC, DSM Opportunities Associated with Commercial Dishwashers, Final Report, April 27, 2009, Pg 13 and calculator, 100201_DSM_analysis_final - PK.xlsx. ² DHW DW supply – Water city average = 140°F-50°F = 90°F (60°C-10°C = 50°C).

³ GAMA

 ⁴ Minimum EF for a 5 gallon booster; 98% of boosters are electric (source: Steve Garvin, UG)
 ⁵ Phone conversation with Joel Dipp from Hobart, worst case.
 ⁶ As discussed with the EAC & UG during conversation, estimated, no data, April 2010.

Rack Conveyor Single – HT Rack Conveyor Multi - HT		
Electricity		See below
-		energy, conveyor energy (where odels). The assumptions above also
Undercounter - HT Undercounter - LT Stationary Rack - HT Stationary Rack - LT Rack Conveyor Single – HT Rack Conveyor Multi - HT	, · ·	
Water		See below
Water savings is based on a capacity data, and associated		BNL data, manufacturer wash tank in wash & rinse cycles. ⁸
Undercounter - HT Undercounter - LT Stationary Rack - HT Stationary Rack - LT Rack Conveyor Single – HT Rack Conveyor Multi - HT	112,795 L/yr 45,891 L/yr 87,119 L/yr 118,369 L/yr 310,271 L/yr 522,192 L/yr	

Equipment Life		See below
The equipment lifetime can contributed to the developm distinction was identified re the efficiency (Energy Star	ent of the Energy Star US lative to the sanitation met	calculator. ^{9,10} No lifetime hod (high or low temperature) or to
Undercounter - HT	10 yrs	
Undercounter - LT	10 yrs	
Stationary Rack - HT	15 yrs	
Stationary Rack - LT	15 yrs	

⁷ NGTC, DSM Opportunities Associated with Commercial Dishwashers, Final Report, April 27, 2009, Pg 13 and calculator, 100201_DSM_analysis_final - PK.xlsx. ⁸ NGTC, DSM Opportunities Associated with Commercial Dishwashers, Final Report, April 27, 2009, Pg

 ¹⁴ and calculator, 100201_DSM_analysis_final - PK.xlsx.
 ⁹ NGTC, DSM Opportunities Associated with Commercial Dishwashers, Final Report, April 27, 2009, Pg

¹⁷¹⁰ US Energy Star. Energy Star Program Requirements for Commercial Dishwashers. [On line]. September 2008.

http://www.energystar.gov/ia/partners/product_specs/eligibility/comm_dishwashers_elig.pdf.

Rack Conveyor Single – HT Rack Conveyor Multi - HT	20 yrs 20 yrs	
Incremental Cost		See below
therefore they were left out. terms of efficiency) E-Star m the average E-Star model. ¹¹ I using the report's original pri according to exact efficiency	installation costs between NGTC updated their pric odels because it was pres List pricing was used bec cing source because not of wasn't available).	a the base case & upgrade cases, ing to reflect the 25 th percentile (in umed to be sold more often than ause this analysis couldn't be done enough information (pricing
dishwasherworld.com, greatd foodservicewarehouse.com at	lishwashers.com, restaura	
Undercounter - HT	(-) \$13	
Undercounter - LT	(-) \$13	
Stationary Rack - HT	(-) \$350	
Stationary Rack - LT	(-) \$350	
Rack Conveyor Single – HT	\$2,375	
Rack Conveyor Multi - HT	\$288	
Free Ridership		See below
Free Ridership is estimated u territory. ¹²	sing market share for End	ergy Star Dishwashers in UG
Undercounter - HT	40%	
Undercounter - LT	40%	
Stationary Rack - HT	20%	
Stationary Rack - LT	20%	
Rack Conveyor Single – HT	27%	
Rack Conveyor Multi - HT	27%	

 ¹¹ As agreed upon with the EAC & UG, estimated, no data, April 9, 2010.
 ¹² NGTC, DSM Opportunities Associated with Commercial Dishwashers, Final Report, April 27, 2009, Pg 11

OZONE LAUNDRY

Commercial – New/Existing

Efficient Technology & Equipment Description

Commercial Laundry Washing Equipment with Ozone

In the commercial laundry industry, ozone is generated via corona discharge or ultraviolet light. It dissolves in cold to ambient temperature water (light and medium soil laundry) and activates the detergents, improving their activity and leading to a stronger cleaning action. However, since the solubility of ozone is low and its decomposition is faster at higher temperatures (38degC, (100degF)), the use of ozone is not recommended for heavy soils, which require warmer water. Generally, heavy soil laundry is treated with traditional laundry techniques.

Qualifier/Restriction

- No residential style clothes washers
- Minimum required annual laundry load for each washer using ozone is: Washer Type Minimum Laundry Load (Lbs/yr)

······································	
Washer extractor – 60 lbs	10
Washer extractor – 500 lbs	26
Tunnel Washer – 120 lbs	60

00.000 lbs/vr 60,000 lbs/yr 600,000 lbs/yr Tunnel Washer – 500 lbs 1,900,000 lbs/yr

Base Technology & Equipment Description

Commercial Laundry Washing Equipment without Ozone

Resource Savings Assumptions

Natural Gas			See below
Washer Type	Gas Saving	gs per Pounds	washed per year (Lbs/yr)
Washer extractor – 60 lbs	0.0328	m3/(lbs/y	yr)
Washer extractor – 500 lbs	0.0328	m3/(lbs/y	yr)
Tunnel Washer – 120 lbs	0.0240	m3/(lbs/y	yr)
Tunnel Washer – 500 lbs	0.0240	m3/(lbs/y	yr)

Operating conditions used to calculate the energy consumptions per pound of laundry evaluated using input data from the "Ozone Company" and from a linen service: "La Buanderie Centrale de Montréal". These operating conditions are typical of what may be found in high production industrial laundries¹. Assumptions: supply water temperature of 9 degC and natural gas water heater efficiency of 78%. Note that 120 lbs is a typical tunnel washer capacity. Larger tunnel washers (up to 500 lbs) do exist but are less frequent.

The savings was normalized by dividing the estimated savings by the annual laundry load (lbs/yr) of laundry found in the report.

Electricit	y	See below

¹ Riesenberg, James, "PBMP- Commercial Laundry Facilities", Koeller and Company, November 4th, 2005

Electrical savings were based	d on the	same conditions as	s described above.
Washer Type	Electri	icity savings per Po	ounds washed per year (Lbs/yr)
Washer extractor – 60 lbs	0.0021	9 kWh/(lbs/	yr)
Washer extractor – 500 lbs	0.0021	9 kWh/(lbs/	yr)
Tunnel Washer – 120 lbs	0.0015	52 kWh/(lbs/	/yr)
Tunnel Washer – 500 lbs	0.0015	52 kWh/(lbs/	yr)
Water			See below
Electrical savings were based	d on the	same conditions as	s described above.
Washer Type	Water	savings	
Washer extractor – 60 lbs	2.01	L/(lbs/yr)	
Washer extractor – 500 lbs	2.01	L/(lbs/yr)	
Tunnel Washer – 120 lbs	1.22	L/(lbs/yr)	
Tunnel Washer – 500 lbs	1.22	L/(lbs/yr)	

Equipment Life		15 yrs
Savings attributed to the mea equipment. This data was ob	1	the life expectancy of the
Incremental Cost		See below
Washer Type Washer extractor – 60 lbs Washer extractor – 500 lbs Tunnel Washer – 120 lbs Tunnel Washer – 500 lbs Capital and installation costs converted to Canadian dollar		ars from The Ozone Company and
Free Ridership		8 %
results of a survey conducted	l by TNS Canadian Facts. htly limited by the type of	h in UG territory, according to the Further penetration of ozone washing machines used (ozone ines) ⁵ .

 ² NGTC, DSM OZONE LAUNDRY TREATMENT Final Report_v02 (#134809) November 25, 2009, Pgs iv-vi
 ³ NGTC, DSM OZONE LAUNDRY TREATMENT Final Report_v02 (#134809) November 25, 2009, Pg 6
 ⁴ NGTC, DSM OZONE LAUNDRY TREATMENT Final Report_v02 (#134809) November 25, 2009, Pgs iv-vi
 ⁵ NGTC, DSM OZONE LAUNDRY TREATMENT Final Report_v02 (#134809) November 25, 2009, Pgs 19

ENERGY STAR CLOTHES WASHER

Multi-Family – New/Existing

Efficient Technology & Equipment Description
Energy Star high efficiency front load washers for application in the Multi-Family sector $(MEF=1.72, WF=8.0, tub size = 2.8 ft)^{1}$

Base Technology & Equipment Description

Conventional top loading vertical axis washers (MEF = 1.26, WF=9.5, tub size = 2.8 ft)²

Resource Savings Assumptions

Natural Gas	76 m ³
Assumptions and inputs: • Percentage of water used by base equip • Percentage of water used by efficient ec • Average water inlet temperature: 9.33 de • Average water heater set point temperat • Water heater thermal efficiency: 0.78 • Gas use per cycle7 for commercial gas de	oment which is hot water: 17%. uipment which is hot water: 10% egC (48.8 degF) ture: 54 degC (130 degF)
 Gas dryer penetration in Ontario Multi-Fa Annual gas savings from reduced dryer Annual gas savings from reduced hot was 	amily market: 25.5% use: 7 m3
Annual gas savings calculated as follows:	
$Savings = \left[\left(W_{base} * Hot_{base} - W_{eff} * Hot_{eff} \right) * 8.33 * \frac{1}{Eff} \right]$	$*(T_{out} - T_{in}) + (Dr_{base} - Dr_{eff}) * Pene \bigg] * 10^{-6} * 27.8$
Where: W _{base} = Annual water use with base equipr W _{eff} = Annual water use with efficient equip Hot _{base} = Percentage of water used that's h Hot _{eff} = Percentage of water used that's ho 8.33 = Energy content of water (Btu/gallon Eff = Eff = Water heater thermal efficiency T _{out} = Water heater set point temperature (T _{in} = Water inlet temperature (degF) Dr _{base} = Annual dryer gas use with base eco Dr _{eff} = Annual dryer gas use with efficient efficient efficient efficient for Pene = Penetration rate of natural gas pow 10^-6 = Factor to convert Btu to MMBtu 27.8 = Factor to convert MMBtu to m3	oment (gallons) not with base equipment t with efficient equipment / degF) degF) guipment (Btu) equipment (Btu)
Gas savings were determined to be 43% over base	e equipment. ¹

¹ Navigant Report, pg B-233 MEASURES AND ASSUMPTIONS FOR DEMAND SIDE MANAGEMENT (DSM) PLANNING APPENDIX C: SUBSTANTIATION SHEETS – April 16, 2009

² Ibid.

³ Corrected from Navigant's original value (73), based completely on Navigant's own calculation methodology & input assumptions. "E-star comml clothes washer - Navigant calculations check - April 29 2010 - 1137am.xlsx"

PercentSavings =
$$\frac{(G_{base} - G_{off})}{G_{base}}$$

 Where:

 Get: = Annual natural gas use with afficient equipment, 104 m3⁴

 Conset = Annual natural gas use with base equipment, 180 m3⁵
Electricity 201 kWh

 Assumptions and inputs:
 • Washer electricity use per cycle, base equipment: 0.13 kWh.

 • Washer electricity use per cycle, base equipment: 1.11 kWh.

 • Washer electricity use per cycle, efficient equipment: 1.11 kWh.

 • Washer electricity use per cycle, efficient equipment: 1.11 kWh.

 • Washer electricity use per cycle, base equipment (kWh).

 • Washer electricity use per cycle, base equipment (kWh)

 • Washer electricity use per cycle, base equipment (kWh)

 • Washer electricity use per cycle, base equipment (kWh)

 • Washer electricity use per cycle, base equipment (kWh)

 Where:

 Washer electricity use per cycle, efficient equipment (kWh)

 Dright electricity use per cycle, base equipment (kWh)

 • Washer electricity use per cycle, efficient equipment (kWh)

 Dright electricity use per cycle, efficient equipment (kWh)

 Drinstre or cycle, base equipment (kWh)

 ⁴ Corrected from Navigant's original value (110 m3), based completely on Navigant's own calculation methodology & input assumptions. It is now consistent with the savings value (76 m3/yr) "E-star comml clothes washer - Navigant calculations check - April 29 2010 - 1137am.xlsx"
 ⁵ Corrected from Navigant's original value (182 m3), based completely on Navigant's own

⁵ Corrected from Navigant's original value (182 m3), based completely on Navigant's own calculation methodology & input assumptions. It is now consistent with the savings value (76 m3/yr) "E-star comml clothes washer - Navigant calculations check - April 29 2010 - 1137am.xlsx"

 $Savings = (W_{base} - W_{eff}) * Cyc$

Where:

 W_{base} = Annual water use with base equipment (gallons or litres) W_{eff} = Annual water use with efficient equipment (gallons or litres) Cyc = Average number of cycles per year machine is used

Water savings were determined to be 16% over base measure:

$$PercentSavings = \frac{\left(W_{base} - W_{eff}\right)}{W_{base}}$$

Where:

 W_{eff} = Annual water consumed with efficient equipment, 105,675 litres (27,910 gallons). W_{base} = Annual water consumed by showers with base equipment: 125,489 litres (33,144 gallons).

Equipment Life	11 years
The U.S. DOE's Federal Energy Management Program has Family clothes washers have an average EUL of 11.25 yea adopting an EUL of 11 years. ³	
Incremental Cost (Cust. / Contr. Install)	\$ 150
Incremental cost based on prices offered online by a local r	etailer. ⁴
Free Ridership	48 %
Estimated based on Puget Sound Energy's findings. ⁵	

¹ Navigant Report, pg B-233 MEASURES AND ASSUMPTIONS FOR DEMAND SIDE

MANAGEMENT (DSM) PLANNING APPENDIX C: SUBSTANTIATION SHEETS – April 16, 2009 2 Navigant Report, pg B-233 MEASURES AND ASSUMPTIONS FOR DEMAND SIDE

MANAGEMENT (DSM) PLANNING APPENDIX C: SUBSTANTIATION SHEETS – April 16, 2009 ³ Navigant Report, pg B-233 MEASURES AND ASSUMPTIONS FOR DEMAND SIDE

MANAGEMENT (DSM) PLANNING APPENDIX C: SUBSTANTIATION SHEETS – April 16, 2009 ⁴ Base measure (3.5 cu/ft top loader, GE): \$850

New technology (3.5 cu/ft front loader, LG): \$1,000

www.homedepot.ca. Assuming the base equipment cost/ efficient equipment cost ratio of the two 3.5 cu/ft washers is equivalent to that of two 2.8 cu/ft washers.

⁵ Quantec, Comprehensive Assessment of Demand-Side Resource Potentials (2008-2027), Prepared for Puget Sound Energy

1.5 GAL/MIN FAUCET AERATOR (BATHROOM)

Multi-Family - New

Efficient Technology & Equipment Desc	ription
Faucet Aerator (Bathroom) (1.5 GPM)	
Base Technology & Equipment Description	on
Base Technology & Equipment Descripti Ontario Building Code 2006 (2.2 GPM)	on

Resource Savings Assumptions

Natural Gas (Updated)	4	m ³
Savings recommended by Navigant Consulting. ¹		
Electricity	n/a	kWh
Water (Updated)	1,382	L
Savings recommended by Navigant Consulting. ¹		

Other Input Assumptions

Equipment Life	10 Years
Faucet aerators have an estimated service life of 10 yea As approved in EB 2008-0384 & EB 2008-0385.	1, 2 ars.
Incremental Cost	\$0.55
As per utility program costs, bulk purchase of aerators.	
Free Ridership (Updated)	10 %
Free ridership – EB 2008-0384 & EB 2008-0385	

Final Report "Measures and Assumptions for Demand Side Management (DSM) Planning", Navigant Consulting Inc., Ontario Energy Board, April 16, 2009

² U.S. DOE – FEMP, Energy Cost Calculator for Faucets and Showerheads, http://www.eere.energy.gov/femp

³ "Residential Measure Free Ridership And Inside Spillover Study - Final Report", Summit Blue Consulting, June 2008.

1.5 GAL/MIN FAUCET AERATOR (KITCHEN)

Multi-Family - New

Efficient Technology & Equipment Description
Faucet Aerator (Kitchen) (1.5 GPM)
Base Technology & Equipment Description
Ontario Building Code 2006 (2.2 GPM)

Resource Savings Assumptions

Natural Gas	13 m^3
Savings based on the Navigant Report ¹ , except using 2.5 GPM)	2.2 USGPM base case (opposed to
Electricity	n/a kWh
Water	4,280 L
Savings based on the Navigant Report ¹ , except using 2.5 GPM)	2.2 USGPM base case (opposed to

Equipment Life	10 years
Faucet aerators have an estimated service life of 10 ye As approved in EB 2008-0384 & EB 2008-0385.	ars.
Incremental Cost	\$1.39
As per utility program costs, bulk purchase of aerators	
Free Ridership	10 %
Free ridership – EB 2008-0384 & EB 2008-0385	

¹ Final Report "Measures and Assumptions for Demand Side Management (DSM) Planning", Navigant Consulting Inc., Ontario Energy Board, Appendix C: Substantiation Sheets, pg. C248-250, April 16, 2009.

² U.S. DOE – FEMP, Energy Cost Calculator for Faucets and Showerheads, http://www.eere.energy.gov/femp

³ "Residential Measure Free Ridership And Inside Spillover Study - Final Report", Summit Blue Consulting, June 2008.

1.0 GAL/MIN FAUCET AERATOR (BATHROOM)

MultiFamily - New

Efficient Technology & Equipment Description	
Faucet Aerator (Bathroom) (1.0 GPM)	
Base Technology & Equipment Description	
Base Technology & Equipment Description Ontario Building Code 2006 (2.2 GPM)	

Resource Savings Assumptions

Natural Gas (Updated)	7	m ³
Savings recommended by Navigant Consulting ¹ adjust	sted for 1.0 GPM	
Electricity	n/a	kWh
Water (Updated)	2,371	L
Savings recommended by Navigant Consulting ¹ adjusted for 1.0 GPM		

Other Input Assumptions

Equipment Life	10 Years
Faucet aerators have an estimated service life of 10 ye As approved in EB 2008-0384 & EB 2008-0385.	1,2 cars.
Incremental Cost	\$0.55
As per utility program costs, bulk purchase of aerators	5.
Free Ridership (Updated)	10 %
Free ridership – EB 2008-0384 & EB 2008-0385	

¹ Final Report "Measures and Assumptions for Demand Side Management (DSM) Planning", Navigant Consulting Inc., Ontario Energy Board, April 16, 2009

² U.S. DOE – FEMP, Energy Cost Calculator for Faucets and Showerheads, http://www.eere.energy.gov/femp

1.0 GAL/MIN FAUCET AERATOR (KITCHEN)

Multi-Familiy - New

Efficient Technology & Equipment Description
Faucet Aerator (Kitchen) (1.0 GPM)
Base Technology & Equipment Description
Ontario Building Code 2006 (2.2 GPM)

Resource Savings Assumptions

Natural Gas	22 m^3
Savings based on the Navigant Report ¹ , except using 2.5) and 1.0 GPM efficient technology case	2.2 USGPM base case (opposed to
Electricity	n/a kWh
Water	7,337 L
Savings based on the Navigant Report ¹ , except using 2.5) and 1.0 GPM efficient technology case	2.2 USGPM base case (opposed to

Equipment Life	10 years
Faucet aerators have an estimated service life of 10 years As approved in EB 2008-0384 & EB 2008-0385.	ars.
Incremental Cost	\$1.59
As per utility program costs, bulk purchase of aerators	
Free Ridership (Updated)	10 %
Free ridership – EB 2008-0384 & EB 2008-0385	

¹ Final Report "Measures and Assumptions for Demand Side Management (DSM) Planning", Navigant Consulting Inc., Ontario Energy Board, Appendix C: Substantiation Sheets, pg. C248-250, April 16, 2009..

² U.S. DOE – FEMP, Energy Cost Calculator for Faucets and Showerheads, http://www.eere.energy.gov/femp

LOW-FLOW SHOWERHEAD - 1.5 GAL/MIN

Multi-Family – New

Efficient Technology & Equipment Description

Low-flow showerhead 1.5 gal/min.

Base Technology & Equipment Description

2.2 gpm¹ which also conforms to Ontario Building Code 2006 requirements²

Resource Savings Assumptions

Natural Gas	33 m3	
Based on Navigant savings calculation ³ .		
Water	5,228 L	
Based on Navigant savings calculation ⁴ .		
Electricity	n/a kWh	

Other Input Assumptions

Equipment Life	10 years	
Low flow showerheads have an estimated service life of 10 years as recommended by		
Navigant and approved in EB 2008-0384 & EB 2008-0385.		
Incremental Cost (Cust Install)	\$6	
Based on Navigant's values ⁵ . Incremental cost based on a survey of online retailers ⁶ .		
This does not include installation costs		
Free Ridership	10 %	
As per EB 2008-0384 & EB 2008-0385		

PLANNING - APPENDIX C: SUBSTANTIATION SHEETS, April 16, 2009, Pg. C-251-254

⁶ Whedon Products 1.5 GPM Ultra Saver Showerhead. http://www.antonline.com/p_USB3C-GP_398829.htm

¹ Summit Blue, *Resource Savings Values in Selected Residential DSM Prescriptive Programs*, June 2008.

² Ontario Building Code 2006 – Table 7.6.4.2

³ Navigant Consulting, MEASURES AND ASSUMPTIONS FOR DEMAND SIDE MANAGEMENT (DSM) PLANNING - APPENDIX C: SUBSTANTIATION SHEETS, April 16, 2009, Pg. C-251-254

⁴ Navigant Consulting, MEASURES AND ASSUMPTIONS FOR DEMAND SIDE MANAGEMENT (DSM)

PLANNING - APPENDIX C: SUBSTANTIATION SHEETS, April 16, 2009, Pg. C-251-254 ⁵ Navigant Consulting, MEASURES AND ASSUMPTIONS FOR DEMAND SIDE MANAGEMENT (DSM)

LOW-FLOW SHOWERHEAD - 1.25 GAL/MIN

Multi-Family –New

Efficient Technology & Equipment Description

Low-flow showerhead 1.25 gal/min.

Base Technology & Equipment Description

2.2 gpm¹, which also conforms to Ontario Building Code 2006 requirements²

Resource Savings Assumptions

Natural Gas	45 m3	
Based on Navigant savings calculation ³ .		
Water	8,824 L	
Based on Navigant savings calculation ⁴ .		
Electricity	n/a kW	h

Equipment Life	10 years	
Low flow showerheads have an estimated service life of 10 years as recommended by		
Navigant and approved in EB 2008-0384 & EB 2008-0385.		
Incremental Cost (Cust Install)	\$3.69	
As per utility program costs, bulk purchase of showerheads.		
Free Ridership	10 %	
As per EB 2008-0384 & EB 2008-0385		

¹ Summit Blue, *Resource Savings Values in Selected Residential DSM Prescriptive Programs*, June 2008.

² Ontario Building Code 2006 – Table 7.6.4.2

³ Navigant Consulting, MEASURES AND ASSUMPTIONS FOR DEMAND SIDE MANAGEMENT (DSM) PLANNING - APPENDIX C: SUBSTANTIATION SHEETS, April 16, 2009, Pg. C-255-258

⁴ Navigant Consulting, MEASURES AND ASSUMPTIONS FOR DEMAND SIDE MANAGEMENT (DSM)

PLANNING - APPENDIX C: SUBSTANTIATION SHEETS, April 16, 2009, Pg. C-255-258