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Executive Summary 
 

Enbridge Gas Distribution (EGD) and Union Gas are subject to a demand-side 

management (DSM) framework that was implemented in 2006 and reviewed in 2008-

2009.  Calculating the reductions in gas usage due to these DSM programs is a complex 

and cumbersome process.  This computation depends on a number of assumptions about 

specific DSM measures, and it involves judgments on free riders, spillovers, and the 

attribution of benefits from a given program.  Stakeholders will have differing opinions 

(and material interests) regarding each of the many elements that enter into these 

calculations, which naturally makes these calculations more contentious. 

Some customer groups have suggested that the DSM framework can be improved 

by developing a “top down” estimate of gas usage reductions resulting from DSM efforts.  

Rather than starting with individual measures and programs, this approach would use 

econometric methods to estimate gas usage per customer given a variety of factors that 

influence gas consumption.  One of these factors could be gas distributors’ DSM 

expenditures.     

Pacific Economics Group Research (PEG) was asked to advise Ontario Energy 

Board (OEB) Staff on whether a top-down, econometric approach to estimating gas 

savings is feasible for EGD and Union Gas.  We were asked to evaluate the current data 

and gas demand models used in Ontario and see whether they could be adapted to “top 

down” measurement of changes in gas consumption resulting from utility DSM 

programs.  This work would include empirical investigation of “top down” econometric 

models.  Based on these results, we would evaluate the merits of a potential “top down” 

approach compared with the bottom-up methods that are currently in use.      

PEG is not aware of any “top-down” econometric approaches to measuring 

energy savings that are derived using data for all customers on a tariff.  California has 

used a variant of econometric, “ex post” measurement of DSM savings, particularly in 

the 1990s.  However, the econometric techniques in California use customer-specific data 

and distinguish between the energy consumption of customers who are participating in 

company DSM programs from those that are not.  This is a much more data-intensive 

econometric approach than the “top down” methods PEG was asked to investigate.     



 

Both EGD and Union Gas currently use gas demand models for regulatory 

purposes.  However, these models are used for forecasting gas usage and not estimating 

DSM-related energy savings.  PEG has examined both companies’ econometric gas 

demand models, and we believe they have some appealing features.  The extensive 

demand modeling in the Province also makes a wealth of information available that can 

provide a foundation for the current, “top down” research.  At the same time, there are 

statistical issues with the EGD and Union Gas models that can reduce the efficiency of 

estimates and bias inference.  These issues will be more problematic in a DSM-

measurement than forecasting application.   

PEG investigated several different approaches for developing “top down” 

estimates.  The first builds on recent work in the economic literature and examines the 

link between DSM spending by Ontario gas distributors and subsequent changes in gas 

consumption.  We use a two-stage econometric technique, where the first stage regress 

monthly volume data on monthly values of heating degree days (HDD) and prices by 

revenue class.  We then insert monthly values for HDD and price into the fitted 

regressions to obtain normalized, monthly consumption volumes.  The second stage uses 

the percentage change between actual and normalized consumption as the dependent 

variable.  Changes in this dependent variable are regressed on DSM spending and other 

variables.  The coefficient on DSM spending would measure the direct and spillover 

effects on consumption from customers participating in utility DSM programs, net of free 

riders, which would be an appropriate “top down” measure of gas savings to use in TRC 

calculations. 

We also estimated updated, but somewhat modified, versions of the EGD and 

Union gas demand models which included estimates of monthly DSM spending as an 

explanatory variable.  Both companies cautioned about the quality of the monthly gas 

demand spending data since, among other reasons, DSM costs are not necessarily booked 

in the same month in which actual program costs are incurred.  While it is important to 

keep these limitations on data quality in mind, this approach is nevertheless a 

straightforward extension of the gas demand work that is already presented in OEB 

proceedings, and it may provide some indicative evidence on the relationship between 

DSM spending and gas consumption for different revenue classes. 



 

Finally, PEG investigated whether there are statistically significant differences 

between actual and predicted changes in gas consumption, where predictions are based 

on econometric gas demand models that do not include DSM spending as an explanatory 

variable.  Any statistically significant differences between actual and predicted gas usage 

using these models could be interpreted as an indicator, at least, of the impact of DSM 

programs on gas consumption. 

For the first approach, PEG’s first-stage regression results were generally 

sensible.  The coefficients on HDD and prices had the expected signs and were highly 

significant for all revenue classes.  The second-stage results were also generally sensible 

for the residential revenue classes, but less so for commercial customers.  However, in 

the dozens of models we estimated, PEG was never able to identify a statistically 

significant relationship between changes in gas consumption (for residential or 

commercial customers) and DSM spending in the previous year.   

The results using monthly DSM spending as an explanatory variable in updated 

Company demand models were more promising.  We estimated that there was a 

statistically significant and negative relationship between DSM spending and gas 

consumption for all residential revenue classes and for two of the five commercial 

revenue classes for EGD and Union.  Our models show that a 10% increase in DSM 

spending for residential customers will lead to a 0.6% to 1.0% decline in gas 

consumption.  For commercial customers, our models show that a 10% increase in gas 

DSM spending will lead to a 0.3% to 0.8% decline in gas consumption.  This provides 

some indicative, but not definitive, evidence of the impact of the Companies’ DSM 

spending on gas consumption. 

Our third approach evaluated the relationship between actual and predicted gas 

consumption by revenue class.  We could never identify a year in which actual gas usage 

was below the predicted value and outside of the confidence intervals.  Thus, this 

approach was not successful in identifying the impact of DSM programs on gas usage.  

Overall, PEG’s research did not provide any “top down” evidence that can 

substitute for the bottom-up methods currently used in Ontario.  Our strongest results 

came from integrating DSM spending into variants of the gas demand models the 

Companies currently use to forecast gas demand.   Monthly data on gas DSM spending 



 

are not reliable, however, so these results can at best provide supplementary or 

supporting evidence on the impact of DSM programs on gas consumption.  Our 

econometric models that used more reliable measures of gas DSM spending were never 

able to identify a significant relationship between DSM activity and gas consumption.      

PEG’s analysis could likely be improved if better data were available.  One 

improvement would be more accurate data on DSM spending by revenue class and (for 

EGD) geographic zone.  It could also be helpful to have information on when (in a given 

year) particular DSM measures were installed, in addition to having more accurate data 

on DSM spending. 

More appropriate estimates of DSM savings could also be developed if demand 

models are estimated separately for participating and non-participating customers.  A 

relatively small share of customers in a revenue class is likely to be participating in utility 

DSM programs in any given year.  The behavioral characteristics of participating and 

non-participating customers may be so different that they effectively constitute different 

populations with, accordingly, different underlying demands for natural gas.  However, 

developing detailed customer-specific data would likely entail significant costs, and it 

would take years for enough sample data to be available to facilitate statistical analysis.  

There is also no guarantee that this approach will be successful and yield statistically 

significant and robust results. 
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1.  INTRODUCTION AND SUMMARY  

1.1 Introduction 

Enbridge Gas Distribution (EGD) and Union Gas are subject to a demand-side 

management (DSM) framework that was implemented in 2006 and reviewed in 2008-

2009.  Well-designed DSM policies encourage customers to implement energy 

conservation measures that reduce their energy usage over a multi-year time horizon.  

Effective DSM programs lead to net total resource cost (TRC) savings which is a 

(discounted) stream of reductions in energy and other resource costs that more than offset 

the DSM equipment and program costs.   

Reductions in gas usage are the main source of TRC net savings resulting from 

the DSM programs of EGD and Union.  These reductions in gas usage are also used to 

compute the revenues lost from DSM measures that EGD and Union are allowed to 

recover through the lost revenue adjustment mechanism (LRAM), as well as the 

incentive-based earnings they can earn under the shared savings mechanism (SSM).  An 

accurate measure of the reductions in gas consumption is therefore critical for ensuring 

that gas distribution DSM plans create appropriate incentives to pursue cost-effective 

energy conservation.     

However, calculating changes in gas usage from EGD’s and Union’s DSM 

measures has proven to be controversial.  The framework uses a “bottom up” approach 

for calculating these benefits, based on an assumed reduction in annual gas usage for 

each particular measure.  Annual savings  associated with a measure are calculated by 

multiplying savings in gas consumption per unit of the DSM technology by the number 

of units installed.  A discounted value of the flow of these benefits is then obtained by 

assuming the number of years for which the unit will be in service (i.e. an asset life), and 

discounting these future benefits back to the present time by using a selected discount 

rate.   

The basic gas savings calculation therefore hinges on a number of assumptions, 

including gas savings for each unit of technology, the years each installed unit will be in 
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service before it is replaced, and the appropriate discount rate.  This calculation is made 

even more complex by the need to include only those gas reductions that result from the 

utilities’ own behavior.  For example, “free riders” are participants in programs who 

would have installed the measure even in the absence of a utility DSM program.  

Ontario’s TRC calculation excludes both the benefits and costs of measures for all 

program participants who are deemed to be “free riders.”  On the other hand, the TRC 

calculation should include gas savings that result from customers who decide to adopt 

energy efficiency measures because of the utilities’ marketing efforts even if those 

customers do not participate in the utilities’ DSM programs.  These are often referred to 

as “spillover” DSM benefits.  In addition, the calculation of TRC net savings in Ontario 

depends on how the benefits stemming from a measure are attributed to a utility vis-à-vis 

third parties who are also promoting DSM.  Only benefits attributed to utilities are 

included in the TRC calculation, and 100% of the benefits of a program will be attributed 

to a utility only if that utility can demonstrate that its role was “central” to the program.   

In sum, calculating the reductions in gas usage due to utility DSM programs is a 

complex and cumbersome process.  This computation depends on a number of 

assumptions about specific DSM measures, and it involves judgments on free riders, 

spillovers, and the attribution of benefits from a given program.  Stakeholders will have 

differing opinions (and material interests) regarding each of the many elements that enter 

into the TRC calculation, which naturally makes these calculations more contentious. 

Some ratepayer groups have suggested that the DSM framework can be improved 

by developing a “top down” estimate of gas usage reductions resulting from DSM efforts.  

Rather than starting with individual measures and programs, this approach would use 

econometric methods to estimate gas usage per customer given a variety of factors that 

influence gas consumption.  One of those variables could be measures of utilities’ DSM 

efforts.   

There are a number of advantages with such a “top down” approach in principle.  

Once the gas forecasting methodologies are in place, calculating reductions in gas usage 

would be straightforward.  The process for computing gas savings would therefore be 

greatly streamlined and less costly.  A more rule-based and less discretionary framework 
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could also strengthen utilities’ incentives to pursue DSM and ensure that it is undertaken 

in the most cost-effective manner. 

Researchers have long recognized the potential value of using statistical methods 

in the estimation of DSM savings.  For example, in an early paper examining utilities’ 

experience with conservation programs, Joskow and Marron wrote:  

 
“Most serious analysts recognize that it is quite difficult to measure accurately the 
energy savings resulting from utility conservation efforts.  These difficulties arise 
because of diversity in customer utilization patterns, changes in these patterns 
over time, the limited information a utility has about both the base level of and 
changes in the utilization of individual participants, differences in characteristics 
between participants and the population upon which “typical customer” utilization 
data are based, changes in behavior induced by conservation etc. 
 
In some cases it is possible to obtain good savings estimates by using statistical 
methods to compare utilization patterns of participating customers with those of 
similar non-participating customers.  Such an approach requires, however, the 
careful identification of control groups, collection of data on all relevant customer 
characteristics, and careful monitoring of consumption and changes in customer 
characteristics for the treatment and control groups over a sufficient period of 
time to capture all relevant behavioral changes.  In other applications, especially 
when there are significant idiosyncratic customer specific characteristics, it may 
be very difficult to make accurate measurements of savings.  What is clear is that 
measurement of savings requires careful thought, extensive data collection, 
careful analysis, time, and (probably) a lot of money.”1 

 
As this passage indicates, while top-down approaches to estimation of savings  

are appealing in principle, implementing such a method involves significant challenges.  

In addition to the issues highlighted above, another fundamental issue is simply 

developing an appropriate econometric model for forecasting gas consumption.  In 

Ontario, EGD and Union have developed gas demand models and used them in 

regulatory applications.  However, these models differ in important respects, and have 

not been used directly for estimation of gas savings nor they have been designed for this 

purpose.   

Pacific Economics Group Research (PEG) was retained to assess whether a top-

down, econometric approach to estimating gas savings is feasible for EGD and Union 

                                                 
1  Joskow, P. and D. Marron (1992), “What Does a Negawatt Really Cost?  Evidence From Utility 

Conservation Programs,” Energy Journal, Vol 13: 4, p. 54. 



 

4 

 

Gas.  We were asked to evaluate the current data and gas demand models used by the two 

gas distributors in Ontario and see whether they could be adapted to “top down” 

estimation of changes in gas consumption resulting from utility DSM programs.  This 

work would include empirical investigation of “top down” estimation of gas savings  

using econometric techniques.  Based on these results, we would evaluate the merits of a 

potential “top down” approach compared with the bottom-up methods that are currently 

in use.  This report presents the results of PEG’s work.    

1.2 Summary of Results 

Our results can be briefly summarized.  We are not aware of any “top-down” 

econometric approaches to estimating savings that are applied for data that are aggregated 

for all customers in a revenue class.   California has used a variant of econometric, “ex 

post” evaluation, but it focuses specifically on the experience of program participants.   

Both EGD and Union Gas currently use gas demand models for regulatory 

purposes.  However, these models are used for forecasting gas usage and not for 

estimation of  energy savings.  PEG has examined both companies’ econometric gas 

demand models, and we believe they have many appealing features.  The extensive 

demand modeling undertaken by the two utilities  also makes a wealth of information 

available that can provide a foundation for the “top down” research.  At the same time, 

there are some statistical issues with the EGD and Union Gas models that can reduce the 

efficiency of estimates and bias inference.  These issues will be more problematic in an 

estimation of savings than a forecasting application.   

PEG investigated three different approaches for developing “top down” estimates.  

The first builds on recent work in the economic literature and examines the link between 

DSM spending by Ontario gas distributors and subsequent changes in gas consumption.  

We used a two-stage econometric technique, where the first stage regresses monthly 

volume data on monthly values of heating degree days (HDD) and prices by revenue 

class.  We then insert monthly values for HDD and price into the fitted regressions to 

obtain normalized, monthly consumption volumes.  The normalized monthly 

consumption is then aggregated into annual consumption. The second stage uses the 

difference between actual and normalized annual consumption as the dependent variable.  
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Changes in this dependent variable are regressed on DSM spending and other variables.  

The coefficient on DSM spending would measure the direct and spillover effects on 

consumption from customers participating in utility DSM programs, net of free riders, 

which would be an appropriate “top down” measure of gas savings.  

The second approach involved estimation of  updated versions of the EGD and 

Union gas demand models which included estimates of monthly DSM spending as an 

explanatory variable.  These models were necessarily modified to some extent; one 

reason is that EGD did not collect DSM spending on a regional basis, which made it 

impossible to include DSM as an independent variable in EGD’s gas demand models for 

different geographic zones.   Both companies also cautioned about the quality of the 

monthly gas demand spending data since, among other reasons, DSM costs are not 

necessarily booked in the same month in which actual program costs are incurred.  While 

it is important to keep these limitations on data quality in mind, this approach is 

nevertheless a straightforward extension of the gas demand modeling that is already 

presented in OEB proceedings, and it may provide some indicative evidence on the 

relationship between DSM spending and gas consumption for different revenue classes. 

The third approach investigated whether there are statistically significant 

differences between actual and predicted changes in gas consumption, where predictions 

are based on econometric gas demand models that do not include DSM spending as an 

explanatory variable.  Any statistically significant differences between actual and 

predicted gas usage using these models could be interpreted as an indicator, at least, of 

the impact of DSM programs on gas consumption. 

For the first approach, PEG’s first-stage regression results were generally 

sensible.  The coefficients on HDD and prices had the expected signs and were highly 

significant for all revenue classes.  The second-stage results were also generally sensible 

for the residential revenue classes, but less so for commercial customers.  However, in 

the dozens of models we estimated, PEG was never able to identify a statistically 

significant relationship between changes in gas consumption (for residential or 

commercial customers) and DSM spending in the previous year.   

The results of the second approach that is using monthly DSM spending as an 

explanatory variable in updated Company demand models were more promising.  We 



 

6 

 

estimated that there was a statistically significant and negative relationship between DSM 

spending and gas consumption for all residential revenue classes and for two of the five 

commercial revenue classes for EGD and Union.  Specifically the results showed that a 

10% increase in DSM spending could lead to a 0.6% to 1% decrease in gas consumption 

for residential customers and a 0.3% to 0.8% decline in gas consumption for commercial 

customers.  This provides some indicative, but not definitive, evidence of the impact of 

the Companies’ DSM spending on gas consumption. 

Our third approach evaluated the relationship between actual and predicted gas 

consumption by revenue class using the models developed above under approaches one 

and two.  We could never identify a year in which actual gas usage was below the 

predicted value and outside of the confidence intervals.  Thus, this approach was not 

successful in identifying the impact of DSM programs on gas usage. 

Overall, PEG’s research did not provide any “top down” evidence that is 

definitive enough to substitute for the bottom-up methods currently used in Ontario’s gas 

DSM framework.  Our strongest results came from integrating DSM spending into 

variants of the gas demand models the Companies currently use to forecast gas demand.   

Monthly data on gas DSM spending are not reliable, however, so these results can at best 

provide supplementary or supporting evidence on the impact of DSM programs on gas 

consumption.  Our econometric models that used more reliable measures of gas DSM 

spending were never able to identify a significant relationship between DSM activity and 

gas consumption.      

Our report is organized as follows.  The following section briefly discusses the 

industry’s experience with top down estimates.  Section three describes and analyzes the 

current gas demand models in Ontario.  Section four discusses some implications of this 

research on an appropriate specification of “top down” econometric models for 

estimating gas savings.  Section five presents PEG’s econometric estimation of these top 

down models.  Section six presents concluding remarks.  There is also an Appendix that 

discusses the California experience with econometric estimation of savings from 

conservation programs.      
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2.  EXPERIENCE IN INDUSTRY 

One of the issues PEG examined was utilities’ experience with “top down,” 

econometric estimation of energy savings from approved DSM programs.  The DSM 

programs of interest were those where econometric estimation methods were applied ex 

post (i.e. after DSM programs had been implemented) to aggregate billing data (e.g. 

energy consumption for all customers on a specific revenue class), rather than data for 

individual customers who were known to be participating in utility DSM programs.     

Unfortunately, it was not possible to undertake a comprehensive survey of this 

issue in the short time available to prepare this report.  In fact, compiling such a survey 

would be a formidable task even if time and resources were unlimited.  There is no 

centralized database or library for DSM regulatory decisions, and the heyday for DSM 

programs was in the early and mid-1990s, before electronic copies of such files were 

accessible more easily through the web.  Assembling the basic regulatory documents 

would therefore be a labor-intensive process requiring many hours of identifying, 

locating, and copying paper reports that outline utilities’ specific measurement and 

verification (M&V) procedures. 

Time constraints notwithstanding, PEG’s review did not identify any jurisdictions 

that undertake the kind of “top down” econometric estimations of savings we were asked 

to explore in this project.  The dominant approach used in the industry is clearly the ex 

ante (i.e. savings projected in advance), engineering-based approach that is used in 

Ontario.  This view was confirmed in conversations with DSM specialists at the Edison 

Electric Institute (which closely monitors and compiles information on DSM programs at 

US investor-owned utilities), Northeast Energy Efficiency Partnerships (which facilitates 

a M&V Forum and conducts research on M&V practices in the industry), and M&V 

professionals.   

It should be noted, however, that California has extensive experience with 

econometric estimation of savings that applies to customer-specific data differentiated by 

whether customers are participating in utility DSM programs.  There was an explicit 

move away from engineering-based estimates of energy savings to econometrically-
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derived estimates using customer-specific data in California in the mid-1990s.  Data 

available at this level of detail naturally facilitates econometric studies that can identify 

the impact of DSM programs per se.  Researchers can analyze customers’ consumption 

patterns before and after specific DSM measures are installed.  Differences between their 

“pre-” and “post-installation” normalized volumes can then be compared with changes in 

normalized consumption for non-participating customers over the same period to estimate 

net-to-gross (NTG) ratios.     

After 2000, however, there has been a movement back towards engineering-based 

estimation of energy savings in DSM programs.  The rationale for this change is not 

explained in detail in California Public Utility Commission documents but, according to 

people involved in California M&V, one critical factor was the meltdown in California’s 

retail electricity market in 2000-01.  The failure of this policy led to sweeping, systemic 

reforms.  One such reform included greater emphasis on market transformation (rather 

than program specific) DSM programs, and market transformation programs are less 

amenable to econometric estimations.  Nevertheless, econometric estimation of energy 

savings (using customer-specific data) remains an option in California, although M&V in 

the State is primarily engineering-based.  The Appendix of this Report presents a more 

detailed discussion of California’s experience with econometric estimations of savings 

from conservation programs.                 
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3.  EXISTING GAS DEMAND MODELS IN ONTARIO 

EGD and Union both currently use econometric models to forecast their 

customers’ natural gas usage.  Both develop predictions of normalized average gas 

consumption for different customer groups/rate classes.  The models are also regionally 

differentiated i.e. estimated for customer groups in different portions of their service 

territories. 

Both models share some features.  For example, both include some measure of the 

price of natural gas and weather (heating degree days) as independent variables, which is 

of course standard in natural gas demand models.  Both also include independent 

variables on customer characteristics that impact the demand for natural gas, although the 

choices for these variables differ.  EGD uses “vintage” variables that reflect the share of 

customers added since 1991, which was the year that Ontario’s Energy Efficiency Act 

increased efficiency standards for gas furnaces.  Customers of a more recent “vintage” 

would therefore be using more energy efficient equipment, which all else equal would 

reduce their natural gas consumption.  Union has constructed an alternate index of 

furnace efficiency based on estimates of the share of its customer base that still uses 

older, less efficient furnaces.  This variable is updated annually based on assumed 

furnace replacement rates.   

Both companies also employ diagnostic tools to assess the quality of their models, 

but EGD’s tests are more extensive.  EGD employs the Breush-Godfrey test for 

autocorrelation; the autoregressive conditional heteroskedacity (ARCH) test to test for 

heteroskedasticity (i.e. non-constant variance in the residual error terms across 

observations); the Chow test to test whether model parameters are stable across time; and 

the Ramsey Regression Equation Specification Error Test (RESET) to test the overall 

specification of the model.  Union uses the Durbin-Watson test to test for autocorrelation 

and an F test on the overall model specification.  While Union does not employ any tests 

for heteroskedasticity, in 2004 they commissioned a review of their model by R.J. 

Rudden, and Rudden’s review undertook heteroskedasticity tests on the results from 
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Union models.  Rudden’s review also generally affirmed the reasonableness of Union’s 

gas demand model. 

It should be noted, however, that neither the EGD nor Union Gas demand models 

have been used directly for DSM savings calculations.  In addition, neither model was 

specifically designed for this purpose.  The standards that apply for evaluating whether 

econometric models can identify DSM-related energy savings may differ from those that 

are relevant for assessing their ability to predict overall gas consumption.  Different 

econometric specifications may also be warranted for econometric estimation of energy 

savings. 

This chapter will briefly review the econometric gas demand models that are 

currently used in Ontario.  We begin with the Union Gas model and the associated 

Rudden Review report.  We then turn to EGD’s gas demand model.    

3.1 Union Gas Demand Models 

Union has gas demand models are used for forecasting total throughput volumes 

for residential and commercial general service customers.  For each sector, there are 

separate econometric estimations of the total number of customers (i.e. the demand for 

access to gas distribution service) and normalized average gas use (NAC) per customer.  

The total demand forecast by sector is calculated by multiplying the estimated number of 

customers in each month (from the first model) by the monthly estimates of average use 

per customer (from the second model).  

Union’s econometric models that forecast customer numbers are not really 

relevant for this project.  A “top down” estimation model would be focused on 

identifying the volume of gas savings due to DSM programs, for a given (and known) 

number of customers.  Since the customer number models are not relevant for this 

purpose, we do not consider them in this report but instead examine only the NAC 

demand models. 

Union has developed NAC demand models for five different customer groups:  1) 

residential M2 tariff volumes per customer; 2) residential R01 volumes per customer; 3) 

commercial M2 volumes per customer; 4) commercial R01 volumes per customer; and 5) 
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commercial R10 volumes per customer.2  In all cases, Union actually develops two 

separate NAC forecasts using two separate econometric models.  The first estimate is 

based on a regression where use per customer is the dependent variable in the regression.  

Union refers to this as the “Use” equation.  The second estimate is based on a regression 

where total volume is the dependent variable.  This equation is then used to project total 

volumes, and these volumes are divided by the forecast for customer numbers to produce 

a use per customer forecast.  Union then averages the NAC forecasts from these two 

approaches to produce its use per customer forecast for each customer group. 

Union uses the following independent variables in these equations: 

Residential Use Per Customer 

Use Per Customer Regression 

•    Heating degree days (HDD):  a measure of weather severity which affects the 

demand for space heating; HDD coefficients are actually estimated separately 

for nine separate months (HDD are zero in the months of June through August) 

•    Residential furnace efficiency:  Union has constructed an index of residential 

furnace efficiency for its customers; it is based on estimates of the current 

fraction of Union’s residential customer base that still has a conventional 

furnace, and an assumption that 6% of these customers will replace their 

conventional furnace with a high efficiency furnace each year.  This variable 

reflects the expected decline in gas consumption that results when customers 

replace their older furnaces with higher efficiency models. 

•    Number of persons per household:  Union has noticed that average use per 

customer has declined during the summer months, when the main residential use 

for natural gas is for water heating.  The demand for water heating will be 

impacted by the number of persons living in a household, and customer surveys 

indicate that the number of persons per household have declined over time.  

This variable is designed to capture the reduction in demand for water heating 

that results from a fewer number of persons per household, on average. 

                                                 
2 Union also developed forecasts for industrial customers, but the scope of our work applies only 

to residential and commercial DSM programs, so the industrial demand equations are not discussed for 
either Union or EGD. 
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•   Total bill:  this variable is designed to reflect the impact of changes in natural 

gas prices on the demand for natural gas.  Union had used a price variable in 

earlier gas demand models but found that the t statistic on the total bill variable 

was greater, so total bill was substituted for a price measure.  The total bill 

variable is lagged by a month, in most instances. 

Total Volume Regression 

• Heating degree days 

• Total bill 

• Total Customers:  designed to reflect the fact that the total demand for gas 

volumes will naturally rise as the number of customers increases. 

 

Commercial Use Per Customer 

Use Per Customer Regression 

• Heating degree days 

• Segmentation and efficiency index:  this is analogous to the furnace efficiency 

index used in the residential use per customer regression.  It reflects two main 

trends:  1) the fact that retail and office commercial customers have lower annual 

NAC levels compared with other commercial customers, and these segments have 

grown relatively more rapidly than other segments; and 2) changes in energy 

utilization efficiency per unit of floor space.     

• Total bill 

 

Total Volume Regression 

• Heating degree days 

• Total customers 

• Total bill:  unlike the other equations, however, the total bill is lagged four 

months in this regression. 

 

All equations are estimated using ordinary least squares.  The residential 

equations are, in most instances, estimated using sample data for the January 1994 to 
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March 2005 period.3  The commercial equations are estimated using sample data from 

May 1990 through March 2005.  The results from the regressions are presented in Tables 

1 and 2 in Appendix B of Paul Gardiner’s December 2005 testimony (EB-2005-0520, 

Exhibit C1, Tab 1).   

For the “Use Equations,” all of the parameter estimates are statistically significant 

at the 5% level or better (with the exception of the intercept on the residential M2 

equation).  The Durbin-Watson (DW) statistics are also good, with the exception of the 

Commercial 01 regression.  The DW tests suggest that autocorrelation is generally not a 

problem in these regressions.   

With respect to the “Volume Equations,” all of the parameter estimates are 

statistically significant at the 5% level or better (with the exception of the intercept on the 

commercial 01 equation).  The DW statistics are not as good as in the “use” equation, 

with the worst reported DW value again for the Commercial 01 regression.  Still, in most 

instances the DW values are in the indeterminate range, which suggests that 

autocorrelation is only somewhat more problematic in these regressions. 

Union also reports on the forecast accuracy of their models.  The volume 

(demand) forecast accuracy results are presented in Table 4 of Appendix B of the 

testimony, and the NAC forecast accuracy results are presented in Table 5.  The volume 

forecast errors varied from 1.1% to 3%, depending on the customer group or whether the 

forecasts were evaluated in-sample (i.e. within the same sample period used to estimate 

the model) or out-of-sample (which Union performs using a shortened sample period for 

the 2004 year; they refer to this as “Ex Post Error”).  The NAC forecast errors (without 

DSM variances) are reported to be 1.1% to -2.8%. 

  RJ Rudden was commissioned to analyze the Union gas demand models.  They 

wrote that their “objective…was to evaluate the Union Gas Forecast Models applicable to 

general service customers from the following perspectives:  forecast accuracy; logical 

construction; and statistical goodness of fit.”4  These were natural criteria, since the 

models were constructed to forecast Union’s gas volumes and, in Rudden’s words, “(f)or 

                                                 
3 The Use equation for the residential rate M2 was estimated using data from January 1994 to 

December 2004. 
4 RJ Rudden Review of the Union Gas Demand Forecast Methodology, December 2005, Attached 

as Appendix C to EB-2005-0520, Exhibit C1 Tab 1; p. 1. 
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models designed to forecast in the short term, the best indicator of forecasting success is 

the accuracy achieved by the forecasting process.”5  Rudden also writes that: 

 

Statistical issues (e.g., autocorrelation, multicollinearity, and heteroskedasticity) 
that could render long-term models unreliable/unstable are less of an issue in a 
short-term structure.  The reason for this is that short-term forecasts progress only 
a short time distance (in term of time periods ahead) from the end point of the 
history of the estimated model….Thus, such structural problems, if they do exist, 
have less of an absolute influence on the forecast results.  Autocorrelation, 
multicollinearity and heteroskedasticity actually increase their influence in a 
compounding fashion, the longer the forecast horizon.  Thus, the shorter the 
forecast period, the less the overall period.6  
 

Largely because of Rudden’s practical concern of forecast accuracy, they 

concluded that “Union’s forecasts and underlying methodologies are reasonable and 

produce accurate results.  Union’s Volume Forecasts for the Residential M2, 01 and 

Commercial M2, 01 and 10 classes are logical and statistically credible forecasting 

methodologies that produce accurate results sufficient for reliable 12-24-month ahead 

projections.”7  Rudden also found that “(c)ritics of the Union forecasts appear to have a 

focus on statistical “perfection,” perhaps at the expense of a good forecast.”8  

PEG does not dispute Rudden’s conclusions with respect to the forecast accuracy 

of Union’s econometric demand models (which, of course, is their purpose).  We should 

note, however, that the statistical issues that Rudden de-emphasizes will be more 

important in any “top down” econometric model that is focused on estimating the amount 

of gas savings that result from utility DSM programs.  If autocorrelation and 

heteroskedasticity exist, they will bias inferences on the statistical significance of 

individual explanatory variables, as well as on the hypothesis of whether the difference 

between actual gas consumption and the gas consumption predicted by the econometric 

model is statistically significant.9  Biased inferences on individual parameter estimates, as 

                                                 
5 RJ Rudden Review, op cit, p. 2. 
6 RJ Rudden Review, op cit, p. 3. 
7 RJ Rudden Review, op cit, p. 14. 
8 RJ Rudden Review, op cit, p. 12. 
9  Multicollinearity, or strong correlation among the independent variables used in an econometric 

model, is a feature of the sample data that tends to increase the standard errors of parameter estimates and 
therefore increase the probability that the regression will not produce statistically significant estimates of 
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well as on overall model predictions, could be very problematic in such a top-down 

model.  For example, a top down model could use the coefficient on DSM expenditures 

as an estimate of the overall relationship between DSM spending and changes in 

consumption (as in the Loughran-Kulick paper, or Cicchetti book).  Heteroskedasticity 

and autocorrelation would bias inferences on whether the DSM variable is statistically 

significant and could thereby lead to incorrect conclusions on the usefulness of such an 

approach.  Another “top down” approach could be testing whether there is a statistically 

significant difference between utilities’ actual gas volumes and the volumes predicted by 

a gas demand model that does not reflect utility DSM behavior.  If this difference is 

statistically significant, some portion of the “residual” volumes (i.e. those gas volumes 

that are not explained by the econometric model) could be interpreted as a measure of 

utilities’ gas DSM programs.  Obviously, this approach requires an unbiased inference on 

whether actual and predicted gas volumes are significantly different (in a statistical 

sense), but these inferences will be biased if autocorrelation or heteroskedasticity are 

present. 

Overall, PEG believes there are some positive attributes to Union’s gas volume 

econometric models.  They are simple, straightforward and transparent, and generally 

perform well on the basic statistical tests.  The explanatory variables are largely intuitive 

and, in the case of the commercial segmentation/efficiency index, creative.  There is also 

some merit in using an average from two forecasting models to develop a “consensus” 

Company forecast. 

  We have five main concerns with the Union econometric models, particularly as 

a potential starting point for a top-down, M&V econometric model.  First, while using 

total bills rather than gas prices as an explanatory variable may improve the models’ 

forecasting ability, it is suspect both economically and statistically.  Economic theory 

clearly links changes in quantities to changes in prices, not changes in the total amount 

paid for service.10  In fact, because total bills will reflect both the total quantity of gas 

                                                                                                                                                 
the parameters on the independent variables.  While this may be undesirable, it does not bias either the 
parameter estimates or inferences on statistical significance. 

10  Price elasticity is related to the relationship between changes in quantities and changes in 
revenues/total bills, but price elasticity will generally not be measured by regressing quantities on total 
bills. 
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consumed and the price for service, this variable may not be completely independent of 

the dependent variable, which is gas consumption.   

This concern is mitigated somewhat by the fact that the total bill variable in the 

Union models is lagged by a month, but this raises a second concern:  the gas demand 

models that include total bill also effectively include a lagged value of gas volumes as an 

explanatory variable.  In other words, if gas volumes in month t is a function of total bills 

in month t-1, the model is effectively regressing gas volumes in month t on gas price 

prices in month t-1 and gas volumes in month t-1, since total bills will reflect both the 

prices paid for natural gas and the total volumes that were billed in the month.  Including 

“lagged dependent variables” as explanatory variables is not necessarily a problem, but it 

is well known that the Durbin Watson statistic is not a valid test of autocorrelation when 

one of the independent, right-hand side variables is a lagged value of the dependent 

variable.11  This implies that the generally good DW statistics reported by Union cannot 

be taken as conclusive evidence that their models do not exhibit autocorrelation.  As 

discussed, autocorrelation will be more of a problem in a top-down econometric M&V 

model than in Union’s forecasting model. 

Third, the furnace efficiency index is a valid but relatively narrow explanatory 

variable.  Residential volumes can also be impacted by other factors that tend to be 

incorporated into new construction, such as better insulation and thermal windows.  

Union’s furnace efficiency index does not reflect these potential impacts on residential 

gas consumption. 

Fourth, Union’s gas demand models do not include any variables that reflect 

overall economic activity.  Some correlation between economic activity and gas 

consumption would be expected, particularly for commercial customers.  While 

economic activity variables may be less important for Union’s forecasting purposes, it is 

                                                 
11 For example, see Greene, W. (2000), Econometric Analysis, Prentice Hall: Upper Saddle River, 

NJ, pp. 542; Nerlove, M. and K. Wallis (1966), “Use of the Durbin-Watson Statistic in Inappropriate 
Situations,” Econometrica 34: 235-238;  Durbin, J., (1970), “Testing for Serial Correlation in Least Squares 
Regression When Some of the Regressors Are Lagged Dependent Variables,” Econometrica 38: 410-421; 
and  Dezhbaksh, H. (1990), “The Inappropriate Use of Serial Correlations Tests in Dynamic Linear 
Models,” Review of Economics and Statistics 72: 126-132. 
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important for a top down, M&V model to include such variables so that the estimates of 

the explanatory variables that are included do not exhibit omitted variable bias.  

Finally, Union measures the impact of weather on gas demand with a series of 

HDD variables that differ by month.  These variables are, in reality, a combination of a 

dummy variable for the month multiplied by measured HDD in that month.  The 

interpretation of these coefficients is therefore different from the interpretation of HDD in 

a conventional gas demand equation; it does not measure the impact of weather on gas 

volumes, but rather the impact of both weather and unspecified fixed effects that are 

specific to a month.  Intuitively, this approach assumes that the impact of a given value of 

heating degree days in, say, January has a different impact on gas consumption than 

would result if the same heating degree days were experienced in February or March. 

While this specification may improve Union’s forecasting accuracy, it is not appropriate 

for isolating the impact of HDD on gas consumption and should not be implemented in 

any “top down” model.  

3.2  Enbridge Gas Demand Models  

Enbridge uses a two-step estimation procedure and an Error Correction Model 

(ECM) that was developed by Engle and Granger.12  Engle and Granger describe the 

motivation for this model as follows:   

An individual economic variable, viewed as a time series, can wander extensively 
and yet some pairs of series may be expected to move so that they do not keep 
such series apart.  Typically economic theory will propose forces which tend to 
keep such series together.  Examples might be short and long term interest rates, 
capital appropriations and expenditures, household income and expenditures, and 
prices of the same commodity in different markets or close substitutes in the same 
market.  A similar idea arises from considering equilibrium relationships, where 
equilibrium is a stationary point characterized by forces which tend to push the 
economy back toward equilibrium whenever it moves away…In this paper, these 
ideas are put onto a firm basis and it is shown that a class of models, known as 
error correcting, allows long-run components of variables to obey equilibrium 
constraints while short-run components have a flexible dynamic specification.13 
 

                                                 
12 Engle, R. and C.W.J. Granger (1987), “Co-Integration and Error Correction:  Representation, 

Estimation and Testing,” Econometrica, Vol 55: 2, 251-276. 
13 Engle and Granger, op cit, pp. 251-252. 
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Accordingly, EGD has estimated both short-run and long-run models for one 

residential class (Rate 1 Revenue Class 20 customers) and two commercial revenue 

classes (Rate 6 Revenue Class 12 customers and Rate 6 Revenue Class 48 customers)14  

In all cases, separate models are estimated for customers in different geographic groups.  

Rate 1 Revenue Class 20 is divided into six such segments:  1) Metro Region – Central 

Weather Zone; 2) Western Region – Central Weather Zone; 3) Central Region – Center 

Weather Zone;  4) Northern Region- Central Weather Zone; 5) Eastern Weather Zone; 

and 6) Niagara Weather Zone.  The Rate 6 Revenue Classes 12 and 48 are each divided 

into three groups:  Central, Eastern, and Niagara. The independent variables in these 

models are the following: 

Rate 1 Revenue Class 20 

• Heating degree days 

• Real residential price of natural gas (i.e. expressed relative to the CPI) 

• A vintage variable, which reflects the share of customers added since 1991, which 

was the year that Ontario’s Energy Efficiency Act increased efficiency standards 

for gas furnaces.  Customers of a more recent “vintage” would therefore be using 

more energy efficient equipment, which all else equal would reduce their natural 

gas consumption. 

• Central employment zone employment (for some regressions), which reflects 

economic activity in the region    

• A linear time trend, to reflect changes in gas consumption over time that are not 

captured by the other explanatory variables; these factors can include the impact 

of DSM programs. 

 

Rate Class 6 

The Rate 6 regressions employ a larger array of variables, although they are not all 

employed in every Rate 6 regression:  

• Heating degree days 

                                                 
14 EGD has also estimated gas demand equations for Rate Class 6 Revenue Class 73 industrial 

customers, but our work is intended to examine residential and commercial “top down” models only, so 
these demand equations are not considered here. 
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• Employment (in either the central, eastern or Niagara weather zones) 

• Real commercial price of natural gas (in the central, eastern or Niagara weather 

zones) 

• Ontario real Gross Domestic Product 

• Greater Toronto Area (GTA) commercial vacancy rate 

• A linear time trend 

• In some regressions, a lagged dependent variable 

• The Central Revenue Class 12 regression also contains dummy variables for 2005 

and 2006 and a dummy to reflect customer migration; this is also the only 

customer class where only a single regression is estimated. 

It should also be noted that the short-run regressions are specified in “first difference” 

form (i.e. changes in variables) and include error correction mechanism terms resulting 

from the ECM procedure. 

 Like Union, the main purpose of the EGD demand models is forecasting.  EGD 

says that the main criteria they use for evaluating their models’ predictive ability is 

forecast accuracy.  Forecast accuracy is measured using in-sample and out-of-sample 

average variance.   

 EGD uses a variety of diagnostic tests to evaluate their econometric results.  The 

Bruesch-Godfrey test is used to test for whether there is autocorrelation among the error 

terms.  The autoregressive conditional heteroskedasticity (ARCH) test is used to test for 

the presence of heteroskedasticity, or non-constant variance in the error terms.  The 

Chow test is used to test whether the parameter estimates are stable across different time 

periods.  The Ramsey RESET tests for a variety of specification errors, including omitted 

variables, incorrect functional forms and correlation between the independent variables 

and the error term.  The null hypothesis for this test is that the error term is normally 

distributed with a zero expected value; if the null is rejected, the error term is normally 

distributed with a non-zero expected value. 

 The regression results for the Rate 1 customer groups are presented in Table 5 of 

the Denomy testimony (EB-2008-0219, Exhibit B, Tab 2, Schedule 2).  Most but not all 

of the estimates have the expected sign and are statistically significant at the 5% level or 

better (with the exception of the constant terms).  The main exception is the natural gas 
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price term, which is significant in five of the six long run regressions but in only three of 

the six short run regressions (it is statistically significant at the 10% level in four of the 

six short run regressions). 

 Table 6 presents the results of the diagnostic tests for Rate 1.  If these results are 

taken at face value, they suggest every one of the Rate 1 models is characterized by 

autocorrelation, heteroskedasticity, parameter instability, and specification error.  The 

null hypothesis for no autocorrelation, no heteroskedasticity, no parameter instability, and 

no specification error is rejected for all six regressions. 

 The regression results for Rate 6 customers are presented in Table 8.  The results 

for the commercial revenue classes are qualitatively similar to those reported for Rate 1 

customers.  Most but not all of the parameters have the expected sign and are statistically 

significant at the 5% level.  The main exception again is the natural gas price, although 

this variable is not included in all the regressions.  In fact, there is a considerable amount 

of heterogeneity in the independent variables included in the commercial demand 

equations for different regions and revenue classes. 

 The diagnostic tests on the Rate 6 regressions are presented in Table 9.  Again, if 

they are taken at face value, they indicate that the regression results for commercial 

customers exhibit autocorrelation, heteroskedasticity, parameter instability and 

specification error.  The only null hypothesis that is accepted is the Chow test (no 

parameter instability) for the Revenue Class 12 Central Weather Zone regression. 

 Tables 2 and 3 report the in-sample forecast variance for the Rate 1 and Rate 6 

models, respectively, in each year from 2001 through 2007.  The sample period used to 

estimate the models was 1985 through 2007.  These results show that the forecast errors 

for the econometric models tend to be relatively small.  For Rate 1, the difference 

between actual normalized usage per customer and the model’s predicted usage per 

customer ranges from -1.33% (2005) to 1.15% (2007).  These forecast errors also seem to 

be randomly distributed over the years, with no apparent trend.  For Rate 6, the difference 

between actual normalized usage per customer and the model’s predicted usage per 

customer ranges from -0.86% (2001) to 0.55% (2006), again with no discernible trend.  

These results indicate that the models appear to generate reasonable forecasts, in spite of 

the statistical flaws indicated by the diagnostic tests. 
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 There are some positive elements of the Enbridge econometric models.  The 

vintage variable is similar to Union’s furnace efficiency index but somewhat more 

comprehensive, since it is constructed using data on residential dwellings and not the age 

distribution of furnaces only.  EGD also uses a variety of variables that reflect economic 

activity.  These variables are usually statistically significant, which is evidence that they 

have a substantial impact on gas consumption.    

There are also some obvious concerns with the EGD models.  Most importantly, 

while the EGD methodology employs a battery of tests on the output of their models, 

their models actually do poorly on these tests.  EGD’s diagnostic tests show that, in 

nearly all cases, their econometric models exhibit autocorrelation, heteroskedasticity and 

parameter instability over time.  For the reasons discussed earlier, these traits will be 

more problematic for developing “top down” estimates of savings than is likely to be the 

case in a forecasting application.  The EGD results suggest that improved econometric 

results can be obtained through generalized least squares procedures that are directed 

towards addressing problems with autocorrelation and heteroskedasticity.   

 We also do not believe there would be any value in using an ECM when 

investigating the viability of top-down, econometric estimation methods.  Our work is not 

focused on investigating instances where variables in the short-run may diverge from 

their long-run equilibrium values.  In fact, the type of equilibrating tendencies that Engle 

and Granger describe as motivating the ECM appear to be entirely absent for utility DSM 

programs.    
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4.  DEVELOPING “TOP DOWN” M&V MODELS  

4.1 Previous Work 

The econometric research on energy conservation and utility DSM programs is 

extensive, and this report was not designed to survey this literature.  Nevertheless, there 

are recent econometric articles that could prove helpful for developing a feasible, “top 

down” econometric estimation model for Ontario’s gas distributors.  This section will 

briefly review this econometric work.    

The most noteworthy article is “Demand Side Management and Energy 

Efficiency in the United States,” by David Loughran and Jonathan Kulick.15  This article 

examined whether DSM expenditures have increased the electricity efficiency of the US 

economy.  The authors tested this issue using panel data on DSM expenditures for 324 

US utilities over the 1989-99 period.  These data are available from the US Energy 

Information Administration on EIA Form 861. 

There are two intriguing elements of the Loughran-Kulick methodology.  First, 

they use DSM spending itself as an explanatory variable in their econometric model.  The 

main focus of their work is to examine the relationship between this variable and energy 

consumption.  This approach therefore provides direct evidence on the relationship 

between spending on DSM programs and the resulting impact on energy consumption.  

This evidence would be more relevant to developing “top down” estimates of DSM-

related savings than, say, the INSTALL dummy variables that were previously discussed 

in the econometric models in California. 

Second, Loughran-Kulick employ a “first difference” econometric specification 

that examines the relationship between changes in energy consumption and changes in 

independent variables, including DSM spending.  They claim that this simple approach 

will lead to generally appropriate estimates of the net energy impacts from utility DSM 

programs.  They argue that a 

                                                 
15  Loughran, D. and J. Kulick, “Demand Side Management and Energy Efficiency in the United 

States,” Energy Journal, 25: 1, 19-43. 
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“first-differenced specification…controls for any fixed effects between utilities in 
the level of electricity sales.  This is important since these fixed differences across 
utilities could be correlated with DSM expenditures generating spurious 
correlation between these expenditures and electricity sales.  Utilities with large 
DSM programs may serve regions with particularly strong sentiments for 
conservation, for instance.  Such regions may be more inclined to adopt building 
codes and appliance and equipment standards that emphasize electricity efficiency 
or just generally be more conservative in their use of electricity.”16 
 

Thus, Loughran and Kulick believe a first-differenced specification can control to at least 

some extent for a variety of factors that come into play when determining net-to-gross 

ratios. 

 Loughran and Kulick find that utility DSM programs have a more modest impact 

on energy consumption than utilities typically estimate.  The estimated impacts depend 

on the specification, but in their most credible models DSM expenditures reduce 

electricity sales by 0.4% to 0.6% per annum.  The authors write that they “suspect utility 

estimates of DSM program effects are higher than our estimates because utilities 

generally do not control for selection bias.”17 

This paper has been widely cited and was recently criticized in the same journal.  

Auffhammer, Blumstein and Fowlie (ABF) claim that the test statistic that Loughran and 

Kulick use is not appropriate for the hypothesis they are testing.18  Their main concern is 

that Loughran and Kulick examine the relationship between DSM expenditures and 

unweighted, rather than weighted, changes in energy consumption.  This is relevant since 

utilities with lower electricity sales tend to spend less on DSM programs and report lower 

energy savings (in percentage terms).  Since observations for these smaller utilities are 

treated the same (i.e. they are not weighted any differently) as observations for larger 

utilities, ABF claim that the Loughran-Kulick analysis puts too much emphasis on the 

experience of small utilities.  ABF also claim that energy savings are unusually relative to 

expenditures in the first year of reporting, especially for utilities with small DSM 

programs.  ABF develop a new test statistic that controls for these purported flaws, and 

                                                 
16 Loughran and Kulick, op cit, pp. 27-28. 
17 Loughran and Kulick, op cit, p. 39. 
18 Auffhammer, M., C. Blumstein and M. Fowlie, “Demand-Side Management and Energy 

Efficiency Revisited,” Energy Journal, 29: 3, 91-104. 
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their estimated savings from utility DSM programs are considerably higher than those 

estimated by Loughran and Kulick. 

Regardless of the merits of the ABF critique, it would not appear to be relevant in 

an Ontario gas DSM application.  Auffhammer et al. essentially find fault with the fact 

that Loughran and Kulick do not adequately control for differences in the size of 

companies in their cross sectional dataset.  This issue would be far less important if a 

variant of Loughran-Kulick approach was applied to Ontario’s gas distribution industry, 

since there are only two gas distributors in the Province, and they are both large and of 

(roughly) similar size. 

It should be noted that other economists have also recently examined the 

relationship between spending on DSM programs and energy savings.  In his 2009 book 

Going Green and Getting Regulation Right: A Primer for Energy Efficiency, PEG Senior 

Advisor Charles Cicchetti used EIA 861 data to examine the impact of energy efficiency 

spending on reported energy savings.  He finds a highly significant positive relationship 

between these variables.19  This work provides further support for the use of gas DSM 

expenditures as an explanatory variable in econometric M&V models.   

Some variant of the Loughran-Kulick model, which includes measures of Union 

and EGD DSM spending as explanatory variables, could potentially be applied to the 

Ontario environment.  The regulatory applications of gas forecasting models in the 

Province make a fair amount of data on gas consumption and explanatory variables 

available to researchers, including data on DSM spending for certain classes of 

customers.  This information provides a solid (if not ideal) foundation for further 

investigation into the “top down” M&V issue.  However, as discussed in the previous 

chapter, we believe the econometric methods that have been used to date in Ontario can 

and should be enhanced to deal with autocorrelation and heteroskedasticity.  It is more 

important for these statistical problems to be addressed in an econometric model used to 

measure energy savings from DSM programs than in a gas forecasting model.    

                                                 
19 For example, see Tables 23-2 and 23-3 on pp. 253-54 in Cicchetti, C., Going Green and Getting 

Regulation Right:  A Primer for Energy Efficiency, Public Utilities Reports Inc., Vienna VA. 
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4.2 PEG’s Approach and Specifications 

Building on the Loughran-Kulick model, PEG’s main approach for developing 

“top down” econometric estimates of gas savings examines whether there is a statistically 

significant link between DSM spending by Ontario gas distributors and subsequent 

changes in gas consumption.  A supplementary approach investigated whether there are 

statistically significant differences between actual and predicted changes in gas 

consumption, where predictions are based on econometric gas demand models that do not 

include DSM spending as an explanatory variable.  Any statistically significant 

differences between actual and predicted gas usage using these models could be 

interpreted as an indicator, at least, of the impact of DSM programs on gas consumption.    

One issue that is important for evaluating an “ideal” top-down econometric 

specification in Ontario is the frequency of the data to be used in the analysis.  Three 

main factors are relevant for evaluating this issue.  The first is simply the amount of the 

sample data.  In statistical analysis, more information is almost always preferred to less.  

All else equal, larger samples increase confidence in the statistical estimates.  Monthly 

data naturally lead to larger sample sizes than annual data and will be preferred on this 

criterion. 

Another factor is the accuracy of the data.  It is clearly important for all data to be 

accurately recorded and measured.  Data errors can lead to biased estimates of regression 

parameters.  In Ontario, neither EGD nor Union has customarily reported data on its 

DSM expenditures on a monthly basis.  Both companies also claim that the quality of any 

monthly DSM spending data will be suspect since, among other reasons, DSM costs are 

not necessarily booked in the same month in which actual program costs are incurred.  

Because annual expenditures will provide a more accurate measure of the companies’ 

DSM programs over the selected interval than more frequently reported (i.e. monthly) 

data, annual data are preferred to monthly data on this criterion. 

The third factor is the varying temporal pattern of gas consumption throughout the 

year.  Clearly, for most residential and commercial customers, the pattern of gas 

consumption varies substantially over the course of a year, and the time pattern of gas 

DSM expenditures may vary as well.  This implies that the quantitative relationship 

between expenditures on DSM measures and, say, changes in gas consumption in the 
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following month may also vary throughout the year.  For example, expenditures on DSM 

measures that are installed in June may have less of an impact on gas consumption in the 

following month than the same measures would have if they were installed in November.  

The estimated coefficient on DSM expenditures in a demand equation would represent 

the impact of DSM on consumption in an ‘average’ month, and if this relationship varies 

over the course of the year there would be more variance and, all else equal, larger 

standard errors associated with estimates developed using monthly rather than annual 

data.  This would reduce the likelihood of developing statistically significant estimates of 

the impact of DSM programs.  Thus, this factor supports the use of annual rather than 

monthly data. 

Given these factors, PEG believes the ideal “top down” specification in Ontario 

would utilize annual data on DSM expenditures when analyzing the relationship between 

DSM spending and changes in gas consumption.  At the same time, it should be 

recognized that there is a temporal pattern for gas consumption during the course of the 

year that is driven primarily by weather (and, to a lesser but related extent, prices for 

natural gas, which often increase during high-use periods during the year).  The impact of 

weather (and to a lesser extent price) factors can be estimated more precisely if monthly 

data are used, since these data will track changes in gas consumption within the year due 

to changes in heating degree days and delivered prices for natural gas. 

PEG’s first econometric approach uses the existing data and gas demand models 

in Ontario as a starting point, but reflects these ideas on the “ideal” specification as well.  

In particular, we supplemented the existing gas demand models in Ontario with data on 

DSM spending and other customer and economic conditions as explanatory variables.  

The ideal frequency of some independent variables – particularly heating degree days and 

delivered natural gas prices – is monthly, while the ideal frequency of some other 

explanatory variables (especially DSM spending) is annual.   

Because of this difference in the preferred frequency of different explanatory 

variables, our main top down approach used a two-stage econometric approach. The first 

stage regresses monthly data on gas consumption per customer monthly values of heating 

degree days (HDD) and prices (Pr).  These regressions are done by revenue class (i.e. the 

same five revenue classes for Union, and the same three revenue classes for Enbridge, 
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that the companies use in their gas demand models)  Thus, for each revenue class j for 

each company i,  and in each month t, PEG estimates 
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After this first stage regression was estimated for each revenue class, we inserted 

monthly values for HDD and price into the fitted regressions to obtain normalized, 

monthly consumption volumes per customer.  These normalized average use per 

customer values were then multiplied by the associated actual customer numbers for the 

month to yield total normalized volumes by month 
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These monthly values were then aggregated over all months in a year, to compute annual 

values j
TiV ,

~  (T=1991 through 2008) of normalized consumption for the year.   

The second stage regression uses a measure of the difference between actual and 

normalized consumption as the dependent variable.  More specifically, the dependent 

variable in the second stage regression is the logarithm of actual gas consumption divided 

by j
TiV ,

~ in each year, which is mathematically equivalent to the log of actual consumption 

minus the log of j
TiV ,

~ .  The dependent variable therefore reflects change in annual gas 

consumption that cannot be attributed to changes in heating degree days or delivered 

natural gas prices.  This dependent variable is then regressed on a constant term, DSM 

spending (DSM) in the previous year, a vector of economic variables (EC) that can 

impact gas consumption (e.g. total employment and Ontario GDP), and a vector of 

customer specific variables (Cust) that can impact demand (e.g.  customer “vintage” or 

the number of persons per household).  In general terms, we regress  
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With this specification, the constant term b0 will measure changes in gas 

consumption for the revenue class (or classes) that are independent of changes in heating 

degree days and natural gas prices (both of which are reflected directly in the dependent 



 

28 

 

variable), DSM spending, and changes in economic conditions and customer 

characteristics that drive consumption.  It is reasonable to believe that “free riders” will 

be reflected in b0, since free rider effects by definition reflect actions that customers are 

taking independent of utility DSM programs.  On the other hand, the b1 coefficient on the 

DSM variable would reflect all the effects of DSM spending on energy consumption net 

of the other independent variables.  Thus, b1 would capture both the direct effects on 

consumption from customers participating in utility DSM programs as well as any 

indirect or spillover effects.  The b1 coefficient can therefore be interpreted as the impact 

that a unit (e.g.  dollar) of DSM expenditures has on the change in normalized gas 

consumption, independent of all other factors that drive gas usage.  This would in theory 

be an appropriate “top down” measure of gas savings to use in TRC calculations in the 

Enbridge and Union DSM programs. 

PEG’s second approach added DSM as an explanatory variable to variants of the 

gas demand models that are currently used by EGD and Union Gas.  We also added the 

EcoEnergy variable to these models, since these programs may have had a significant 

impact on residential gas consumption in 2007-08 but have not been included in either of 

the Companies’ models to date.  PEG retained the estimation procedure that we used in 

earlier regressions, since this corrects for ARCH and serial correlation, and it is important 

to correct for these influences to obtain the most efficient statistical estimates and 

improve statistical inference.  PEG’s estimation procedure therefore differs from that 

used by Union and EGD. 

 PEG’s third approach is to regress gas usage per customer on heating degree days, 

prices and the vectors of economic and customer characteristics discussed above, but not 

include DSM as an independent variable.  Thus for each revenue class j for each firm i, 

and for monthly observations t, PEG estimates  
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The EC and Cust vectors are defined as above, so the actual variables to be explored will 

differ by revenue class.     

 We then insert values for each of the independent variables above to compute 

predicted values for gas consumption, by revenue class by year.  We then construct 95% 
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confidence intervals around this predicted value and compare actual gas consumption to 

the predicted value and the confidence intervals.  If actual consumption is below the 

predicted value and outside of the confidence interval, we can conclude that actual gas 

consumption is significantly below its predicted value.  The difference between actual 

and predicted consumption may therefore also be seen as an indicator of the impact of 

DSM programs on gas consumption, which are excluded from the regression, or at least 

evidence that either supports or fails to support the evidence from the first approach.  

In all of our regressions, PEG tests for autoregressive conditional 

heteroskedasticity (ARCH) and serial correlation in the residuals.  As discussed in the 

previous chapter, these statistical problems are more problematic when trying to identify 

the independent impact of DSM expenditures on gas consumption than they would be in 

a forecasting application.  If we cannot reject the hypothesis of either ARCH or serial 

correlation, we will use a generalized least squares estimation procedure that corrects for 

these problems.  Further details of these corrections are discussed in the following 

chapter. 
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5.  ECONOMETRIC ESTIMATION OF “TOP DOWN” MODELS  

 This chapter presents the results of PEG’s econometric research on “top down” 

estimation of gas demand models for EGD and Union Gas.  We begin by describing our 

data sources and some data issues encountered in our work.  We then briefly discuss our 

econometric methods, particularly the tests and corrections for ARCH and serial 

correlation.  Finally, we present our econometric results. 

5.1 Data 

We used the existing gas demand models and data sources in Ontario as a starting 

point for our work.  Much of the data that we used was therefore provided by EGD and 

Union Gas.  In particular, in our first stage regression, we used gas consumption, 

customer numbers, heating degree days (HDD) and delivered natural gas price data for 

eight revenue classes that was provided by EGD and Union Gas and previously used in 

their demand models (three for EGD and five for Union Gas).   

Some of the companies’ gas demand models were geographically disaggregated 

into more than one region.  This presented more geographic detail than PEG would be 

able to use in our subsequent work.  To keep our analysis tractable, we therefore 

estimated a single first stage regression for each revenue class.  Where gas consumption, 

price, or HDD data provided by EGD or Union were geographically disaggregated, PEG 

computed customer-weighted averages of these variables for each revenue class.  The 

revenue-share level variables were then used in our first stage regressions.  More 

precisely, using 1991-2008 data, the first stage econometric models regressed monthly 

observations of average gas consumption (total volumes divided by total customers) on 

monthly HDD and delivered prices for each revenue class.  We estimated three such 

regressions for EGD (for residential revenue class 20 and commercial revenue classes 12 

and 48) and five first-stage regressions for Union Gas (for residential 01 customers and 

residential M2 customers; and for commercial 01 customers, commercial M2 customers, 

and Commercial revenue class 10 customers).  
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The available DSM data were also not perfectly aligned with our volume data.  

For EGD, we only had DSM spending for Rate 1 and Rate 6 tariffs.  For the purposes of 

our second stage regressions, we took all of Rate 1 DSM spending as a measure of DSM 

activity for the Revenue 20 class within Rate 1.  We also added the volumes (i.e. the 

difference between actual and normalized gas volumes) for EGD’s Revenue classes 12 

and 48 of Rate 6 and linked this to DSM spending for all of Rate 6.  This introduced a 

degree of imprecision, and possible bias, into the econometric estimates but was 

unavoidable given available data. 

PEG also had a limited time series of data available for the second stage 

regressions for each revenue class.  Data on DSM spending were available only from 

1998 through 2008.  Thus, there were no more than 10 observations for each revenue 

class for our second stage regressions, since these equations use the logarithmic change 

in (actual minus normalized) volumes as the dependent variable and a lagged value of 

DSM spending as an independent variable.   

There would be very few degrees of freedom, and little chance of obtaining 

statistically significant results, using such a small sample for each revenue class.  PEG’s 

second-stage regressions for residential customers therefore “stacked” the data for all of 

EGD’s and Union’s residential revenue classes (i.e. for EGD revenue class 20, Union 

residential 01 and Union residential M2).  Stacking the data for different revenue classes 

triples the number of observations to 30, thereby greatly increasing the likelihood of 

obtaining statistically significant results.  The coefficient on the DSM variable in this 

regression would measure the impact of a dollar of DSM spending on residential gas 

savings for residential gas customers in the Province.   

Similarly, our second-stage regressions for commercial customers stacked the 

data for EGD’s and Union’s commercial revenue classes (i.e. for EGD revenue class 12 

plus revenue class 48, Union commercial 01, commercial M2 and revenue class 10).  

Compared to the 10 observations available for each commercial revenue class, this 

quadrupled the number of observations to 40 for estimating a commercial second-stage 

regression and hence increased the likelihood of obtaining statistically significant results. 

The coefficient on the DSM variable in this regression would measure the impact of a 

dollar of DSM spending on gas savings for commercial gas customers in the Province.  
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However, our residential and commercial second stage regressions both have 

separate constant terms for each revenue class.  There were accordingly three constants or 

fixed effects in the residential regression, and four fixed effects in the commercial 

regression.  Having different constants for different revenue classes allows for differences 

in free ridership and similar unmeasured factors across companies and revenue classes.  

Only the coefficients on the DSM, economic and customer characteristics are assumed to 

be the same for Union and EGD in our second-stage regressions.    

PEG considered a variety of different economic and customer characteristic 

variables.  The economic variables we explored for residential customers were the 

unemployment rate, personal income, and personal income per capita in Ontario (all 

obtained from StatsCanada).  Gas usage should be positively correlated with economic 

activity, so we would expect the coefficients on the latter two variables to be positive and 

negative on the unemployment rate.   

For commercial customers, we considered the Ontario unemployment rate, the 

Greater Toronto Area (GTA) commercial vacancy rate and Ontario GDP (the latter two 

provided by EGD).  The coefficient on Ontario GDP is expected to be positive.  Higher 

GTA vacancy rates signal a decline in commercial economic activity, so we expect the 

coefficient on this variable to be negative.      

For residential customer characteristics, we considered the number of people per 

household and the number of households with school age kids in Ontario (from 

StatsCanada).  Gas usage is expected to increase in line with the total number of persons 

in a household as well as with the presence of school age children.  The expected 

coefficients on these variables are therefore positive.   

PEG also considered a variant of the “vintage” variable that was used in EGD’s 

gas demand models.  However, since it was necessary to use both EGD and Union data in 

the same regression, we needed to develop comparable vintage measures for both 

companies.  It was not possible to replicate the methodology that EGD used to construct 

its vintage variable for Union.  We therefore constructed a simplified vintage variable for 

both firms, which was calculated in each year as the number of residential customers in 

1991 divided by the number of residential customers for the year.  Declining values for 

this variable indicate a newer customer base, on average.  This should be associated with 
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declines in gas usage due to the installation and use of more energy efficient gas-using 

equipment. The expected sign of the vintage coefficient is therefore positive.   

For commercial customers, we included Union’s segmentation index as an 

independent variable.  It was also not possible to replicate this methodology for EGD 

given available data, and in this instance there was no straightforward alternative that 

could be constructed for both companies.  We therefore assumed that EGD had the same 

“segmentation” values as Union in the sample years. 

In addition, for the residential second stage regression, we included a variable that 

that reflected the extent of EcoEnergy residential DSM programs in 2007 and 2008.  We 

used the number of post-retrofit evaluations that occurred under the EcoEnergy programs.  

These are the evaluations that trigger a government DSM grant.  Because these programs 

are intended to reduce energy consumption, the expected sign of the EcoEnergy variable 

is negative.    

5.2 Econometric Methods 

Our estimation procedures tested for autoregressive conditional heteroskedasticity 

(ARCH) and serial correlation.  If we could not reject the hypothesis of either ARCH or 

serial correlation, we used generalized least squares (GLS) procedures to address the 

problems.  GLS estimates will lead to more efficient estimates and more accurate 

inferences on whether a given variable has a statistically significant effect on (changes in) 

gas consumption.   

ARCH arises when the variance of an error term in a given period is a function of 

the variance of previous periods. For example, in the model ttt xy μββ ++= 10 , the 

variance of the error term in period t  can be dependent on the variance of the error in 

period t-1 and given by 2
110

2 )( −+= ttE μααμ .  We test for ARCH by running a least square 

regression of the squared residual errors on the squared residual error in the previous time 

period. The Lagrange multiplier statistic computed from this regression is (t-1)*R2, has a 

chi-square distribution with one degree of freedom and can be used to test the null 
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hypothesis of no ARCH.  If we cannot reject the null, we re-estimate the model using a 

GLS procedure that corrects for unequal variances across observations.20  

Serial correlation arises when the error terms of different time periods are 

correlated.  The most common form of serial correlation in error terms is an 

autoregressive process of order 1 (AR(1)),  where the error term in period t is given 

by ttt e+= −1ρμμ . We test for the presence of AR(1) using the Durbin-Watson statistic.  If 

we cannot reject the null of no serial correlation, then we use a Prais-Winsten procedure 

to estimate the degree of serial correlation and transform the data to correct for AR (1).21  

5.3 Econometric Results 

5.3.1  New Gas Demand Models 

We begin by summarizing our two-stage results.  The results from the first stage 

regressions are presented in Tables One through Eight.  Tables One through Three 

present results for Enbridge Revenue Classes 20, 12, and 48, respectively.  Tables Four 

through Eight present results for Union Revenue Classes 01 Residential, 01 Commercial, 

M2 Residential, M2 Commercial, and Commercial class 10, respectively.  Table Nine 

presents second-stage regression results for residential gas customers in Ontario, and 

Table Ten presents second-stage regression results for commercial gas customers in 

Ontario. 

                                                 
20 More precisely, we obtain initial OLS parameter estimates and estimates of residual variances 

for each observation, and transform both the dependent and independent matrices by multiplying them by 
the variance associated with the observation divided by the sum of the variances across all observations.   

21 This procedure uses OLS to obtain an estimate of ρ, by regressing the error term on the error of 
the previous period, transforming the data by multiplying the dependent (y) and independent (x) variables 
by ( ) 1

2/12ˆ1 yρ− in the first period and by )( 1−− tt yy ρ and ).( 1−− tt xx ρ  in all subsequent periods. 
 



                     VARIABLE KEY

HDD= Heating Degree Days for Revenue Class 20
P= Residential Total Delivery Price for Revenue Class 20

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

HDD 0.288 189.775 P -0.129 -2.826

Constant 5.672 453.120 Trend -0.005 -2.512

System Rbar-Squared 0.721

Durbin-Watson Statistic 1.783

F Statistic 139.976

Sample Period 1991-2008

Number of Observations 216

Table 1

Other Results

First Stage Regression: Average Gas Use Per Customer
Enbridge Revenue Class 20



                     VARIABLE KEY

HDD= Heating Degree Days for Revenue Class 12
P= Commercial Total Delivery Price for Revenue Class 12

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

HDD 0.278 143.320 P -0.263 -6.947

Constant 8.842 894.565 Trend 0.031 15.107

System Rbar-Squared 0.686

Durbin-Watson Statistic 2.077

F Statistic 118.41

Sample Period 1991-2008

Number of Observations 216

Table 2

Other Results

First Stage Regression: Average Gas Use Per Customer
Enbridge Revenue Class 12



                     VARIABLE KEY

HDD= Heating Degree Days for Revenue Class 48
P= Commercial Total Delivery Price for Revenue Class 48

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

HDD 0.344 355.379 P -0.055 -2.812

Constant 7.324 889.740 Trend 0.012 11.511

System Rbar-Squared 0.753

Durbin-Watson Statistic 1.818

F Statistic 164.96

Sample Period 1991-2008

Number of Observations 216

Table 3

Other Results

First Stage Regression: Average Gas Use Per Customer
Enbridge Revenue Class 48



                     VARIABLE KEY

HDD= Heating Degree Days for Northern Region
P= Total Delivery Price for Revenue Class 01 Residential

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

HDD 0.556 79.588 P -0.629 -17.665

Constant 5.385 362.058 Trend 0.010 6.099

System Rbar-Squared 0.917

Durbin-Watson Statistic 1.764

F Statistic 591.97

Sample Period 1991-2008

Number of Observations 216

Table 4

Other Results

First Stage Regression: Average Gas Use Per Customer
Union Revenue Class 01 Residential



                     VARIABLE KEY

HDD= Heating Degree Days for Northern Region
P= Total Delivery Price for Revenue Class 01 Commercial

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

HDD 0.683 82.750 P -0.604 -21.069

Constant 6.561 831.924 Trend 0.012 9.109

System Rbar-Squared 0.881

Durbin-Watson Statistic 1.629

F Statistic 398.48

Sample Period 1991-2008

Number of Observations 216

Table 5

Other Results

First Stage Regression: Average Gas Use Per Customer
Union Revenue Class 01 Commercial



                     VARIABLE KEY

HDD= Heating Degree Days for Southern Region
P= Total Delivery Price for Revenue Class M2 Residential

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

HDD 0.296 87.312 P -1.325 -48.956

Constant 5.138 408.929 Trend 0.037 25.273

System Rbar-Squared 0.822

Durbin-Watson Statistic 1.892

F Statistic 248.52

Sample Period 1991-2008

Number of Observations 216

Table 6

Other Results

First Stage Regression: Average Gas Use Per Customer
Union Revenue Class M2 Residential



                     VARIABLE KEY

HDD= Heating Degree Days for Southern Region
P= Total Delivery Price for Revenue Class M2 Commercial

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

HDD 0.406 169.847 P -0.058 -58.389

Constant 7.240 1419.319 Trend 0.016 17.251

System Rbar-Squared 0.802

Durbin-Watson Statistic 1.575

F Statistic 218.74

Sample Period 1991-2008

Number of Observations 216

Table 7

Other Results

First Stage Regression: Average Gas Use Per Customer
Union Revenue Class M2 Commercial



                     VARIABLE KEY

HDD= Heating Degree Days for Northern Region
P= Total Delivery Price for Revenue Class 10

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

HDD 0.595 252.715 P -0.248 -22.629

Constant 9.035 1383.267

System Rbar-Squared 0.873

Durbin-Watson Statistic 1.647

F Statistic 370.45

Sample Period 1991-2008

Number of Observations 216

Table 8

Other Results

First Stage Regression: Average Gas Use Per Customer
Union Revenue Class 10
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 Beginning with the first-stage results, it can be seen that the results are generally 

sensible.  In every regression, the coefficient on HDD is positive and the coefficient on 

price is negative, as expected.  Both estimates are also highly significant (at the 1% level) 

in every regression.  We also included a trend term in seven of the eight regressions.  

While this term was also statistically significant, in most regressions it was positive, 

which was a surprising and perhaps counterintuitive (but nevertheless robust) result. 

 It is also notable that the R2 values in the Union first-stage regressions are quite 

high and larger than those for comparable EGD regressions.  The R2 values in the Union 

regressions ranged from .802 to .917, which shows that from 80% to just over 90% of the 

variation in Union’s monthly gas sales can be accounted for by changes in HDD, 

delivered natural gas prices, and the temporal trend in consumption.  R2 values in the 

EGD regressions range from 0.686 to 0.753, showing that approximately 70% of the 

variation in EGD monthly gas sales for these revenue classes can be attributed to changes 

in HDD, natural gas prices, and the trend.    

We explored a variety of second-stage regressions, with varying results and 

degrees of success.  It would be more distracting than illuminating to present the full 

range of these results in this report.  In Tables Nine and Ten, we present what we believe 

are the most sensible and “best” regression results for Ontario residential and commercial 

customers, respectively.  

The first column in Table Nine presents the fixed effects for the three revenue 

classes in the residential customer equation.  All three are negative, statistically 

significant at the 5% level, and have similar magnitudes.  Recall that the dependent 

variable in the second stage regression is gas consumption, net of changes due to HDD 

and prices.  These negative fixed effect terms show there are significant reductions in 

residential gas consumption that are not due to weather, prices or any of the variables 

included in the second-stage regression.  These reductions could reflect, in whole or in 

part, energy conservation actions that customers are undertaking at their own initiative.  It 

is also interesting that the magnitudes of these fixed effects are almost identical for EGD 

revenue class 20, Union’s 01 residential customers, and Union’s M2 residential 

customers.  This may suggest that such “free rider” effects tend to be fairly uniform 

across EGD and Union residential customers. 



                     VARIABLE KEY

ID1= Constant for Enbridge Revenue Class 20
ID2= Constant for Union Revenue Class 01 Residential
ID3= Constant for Union Revenue Class M2 Residential

ECOE= EcoEnergy dummy variable
DSM= DSM Spending in previous year

UR= Unemployment Rate
VIN= Customer Vintage

NPHH= Number of People per Household

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

ID1 -2.641 -2.545 ECOE -0.047 -4.315

ID2 -2.494 -2.509 DSM -0.009 -0.496

ID3 -2.576 -2.510 UR -0.005 -3.223

VIN 0.259 2.026

NPHH 2.385 2.550

System Rbar-Squared 0.388

Durbin-Watson Statistic 2.86

F Statistic 3.18

Sample Period 1999-2008

Number of Observations 30

Table 9

Other Results

Second Stage Regression: Change in 'Normalized' Gas Use
Residential Revenue Classes



                     VARIABLE KEY

ID1= Constant for Enbridge Rate Class 6
ID2= Constant for Union Revenue Class 01 Commercial
ID3= Constant for Union Revenue Class M2 Commercial
ID4= Constant for Union Revenue Class 10

BUC= 2005, 2006 dummy variables
DSM= DSM Spending in previous year

SEGM= Segmentation index
CVR= Commercial Vacancy Rate

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

ID1 -0.402 -1.117 BUC -0.001 -0.188

ID2 -0.315 -0.831 DSM 0.017 1.320

ID3 -0.331 -0.877 SEGM 0.343 0.900

ID4 -0.083 -0.876 CVR -0.006 -3.307

System Rbar-Squared 0.188

Durbin-Watson Statistic 2.354

F Statistic 2.00

Sample Period 1999-2008

Number of Observations 40

Table 10

Other Results

Second Stage Regression: Change in 'Normalized' Gas Use
Commercial Revenue Classes



 

46 

 

 Regarding the other variables, it can be seen that the EcoEnergy variable is 

negative and significant.  This has the expected sign, and it provides evidence that the 

EcoEnergy programs in 2007-2008 have led to a significant decline in residential gas 

usage, independent of other energy conservation activities.  The unemployment rate has 

the expected negative sign and is highly significant, showing that increases in 

unemployment are correlated with declines in residential gas usage.  The vintage variable 

has the expected positive sign and is significant at the 5% level.  This provides evidence 

that relatively newer “vintages” of customers and associated gas-using equipment are 

associated with declines in residential gas usage.  The coefficient on the number of 

people per household is also positive and significant, showing that changes in the 

composition of residential households also have a significant impact on gas usage. 

The main coefficient of interest in this regression is on the DSM variable.  It is 

negative but not statistically significant.  This result was robust in all of the specifications 

we explored.  PEG was never able to identify a statistically significant relationship 

between changes in residential gas consumption and DSM spending in the previous year. 

Finally, we note that the R2 value in the residential regression was 0.388.  This 

may appear relatively low, but recall that the first stage residential regressions explained 

more than 80% of the variation in residential gas consumption.  This regression focuses 

on the approximately 20% of changes in gas consumption that were not explained in the 

first stage.  The R2 for this regression shows that about 40% of gas consumption that 

cannot be explained by HDD, prices and the secular trend is explained by the variables in 

this model. 

Table 10 presents results on the commercial second stage regression.  The first 

column presents results on the fixed effects for the individual revenue classes. Each of 

these fixed effects is negative, which is consistent with intuition, but none are statistically 

significant.  In fact, the only variable in this regression that is statistically significant is 

the commercial vacancy rate (it also has the expected negative sign).  The DSM variable 

is insignificant and, as in the residential regressions, this result is robust; PEG was never 

able to identify a statistically significant relationship between changes in commercial gas 

consumption and DSM spending in the previous year.        
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5.3.2 Econometric Results Using Monthly DSM Data 

 PEG also experimented with regressions using monthly observations on DSM 

expenditures as an independent variable.  As discussed in Section 4.2, there are 

acknowledged problems with the monthly DSM expenditure data.  In fact, EGD and 

Union monthly data on DSM expenditures for different revenue classes are spotty, at 

best.  There can also be discrepancies between when DSM costs are incurred and when 

actual DSM measures are installed.  For these and related reasons, the Companies 

cautioned against the use of monthly DSM expenditures. 

While it is important to keep these limitations on data quality in mind, there may 

also be some value in exploring the use of monthly DSM expenditures in gas demand 

modeling.  The use of monthly DSM data will greatly expand sample sizes and increase 

the likelihood of obtaining statistically significant results.  Monthly DSM data can also be 

added as an explanatory variable to existing demand models that are already being used 

by EGD and Union.  This approach is therefore a straightforward extension of the gas 

demand work that is already presented in OEB proceedings.  While the concerns about 

data quality reduce the reliability of any results based on these data, these results may still 

provide some indicative - but not definitive - evidence on the relationship between DSM 

spending and gas consumption for different revenue classes. 

 PEG therefore added DSM as an explanatory variable to variants of the gas 

demand models that are currently used by EGD and Union Gas.  We also added the 

EcoEnergy variable to these models, since these programs may have had a significant 

impact on residential gas consumption in 2007-08 but have not been included in either of 

the Companies’ models to date.  PEG retained the estimation procedure that we used in 

earlier regressions, since this corrects for ARCH and serial correlation, and it is important 

to correct for these influences to obtain the most efficient statistical estimates and 

improve statistical inference.  PEG’s estimation procedure therefore differs from that 

used by Union and EGD.22  

 These econometric results are presented in Tables 11 through 18.  Tables 11 

through 13 show the results for the three EGD revenue classes.  In all cases, the 
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coefficients on price and HDD have the expected sign and are statistically significant.  

The EcoEnergy variable also has the expected negative sign and is significant in the 

residential regression (revenue class 20).  Two variables are statistically significant but 

have the incorrect, or unexpected, sign:  the furnace efficiency variable in revenue class 

20, and the commercial vacancy rate in revenue class 48.  For two of the three revenue 

classes (residential class 20 and commercial class 12), the coefficients on DSM variable 

have a negative sign and are statistically significant; the estimate on DSM is not 

significant for revenue class 48.  The values of the two, statistically significant 

coefficients are -0.105 and -0.084, which indicates that a 1% increase in DSM 

expenditures will be associated with contemporaneous declines in gas consumption of 

0.105% for revenue class 20 and 0.084% for revenue class 12.   

 The econometric results for Union’s five revenue classes are presented in Tables 

14 through 18.  In all cases, the coefficient on price is negative and statistically 

significant and, in nearly every instance, the coefficient on Union’s monthly HDD 

variable is positive and significant.  The EcoEnergy variable is not significant in either of 

the two residential revenue class regressions.  Two variables also have an unexpected 

sign and are statistically significant:  number of people per household (for M2 residential 

customers), and the segmentation index (for commercial revenue class 10).  The 

coefficient on DSM is negative and statistically significant on both of the residential 

revenue classes and for one of the three commercial revenue classes (Commercial 01 

customers).  These DSM coefficients are -0.077 for the 01 Residential Class, -0.056 for 

the M2 Residential Class, and -0.034 for 01 Commercial Customers.  These values 

indicate that a 1% increase in DSM expenditures will be associated with 

contemporaneous declines in gas consumption of 0.077% for Residential 01 customers, 

0.056% for Residential M2 customers, and 0.034% for Commercial 01 customers. 

                                                                                                                                                 
22   For reasons that were explained in Chapter Three, we also substituted the delivered price of 

natural gas for the total bill in the Union regressions that used total bill as an explanatory variable. 



                     VARIABLE KEY
P= Total Delivery Price for Revenue Class 20

HDD= Heating Degree Days for Revenue Class 20
FE= Furnace Efficiency Index

ECOE= Eco Energy dummy variable
DSM= DSM Cost for Rate Class 1

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

P -0.172 -1.596 ECOE -0.023 -5.266

HDD 0.335 34.769 DSM -0.105 -18.717

FE -0.328 -11.045

Constant 5.691 74.654 Trend 0.027 4.112

System Rbar-Squared 0.735

Durbin-Watson Statistic 1.811

F Statistic 52.69

Sample Period 1998-2008

Number of Observations 132

Other Results

Table 11

Alternate Regression: Monthly DSM Data
Enbridge Revenue Class 20



                     VARIABLE KEY
P= Total Delivery Price for Revenue Class 12

HDD= Heating Degree Days for Revenue Class 12
BUC1= Building Code 2005 dummy variable
BUC2= Building Code 2006 dummy variable

RM= Rate Migration dummy variable
DSM= DSM Cost for Rate Class 6

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

P -0.263 -27.714 BUC2 -0.015 -10.238

HDD 0.251 134.269 RM -0.005 -5.012

BUC1 -0.015 -4.370 DSM -0.084 -5.232

Constant 8.237 174.744 Trend 0.083 18.350

System Rbar-Squared 0.68

Durbin-Watson Statistic 1.792

F Statistic 35.69

Sample Period 1998-2008

Number of Observations 132

Other Results

Table 12

Alternate Regression: Monthly DSM Data
Enbridge Revenue Class 12



                     VARIABLE KEY
P= Total Delivery Price for Revenue Class 48

HDD= Heating Degree Days for Revenue Class 48
ONTGDP= Ontario GDP

CVR= GTA Commercial Vacancy Rate
DSM= DSM Cost for Rate Class 6
Trend= Time Trend

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

P -0.684 -4.342 CVR 0.137 1.815

HDD 0.301 47.370 DSM -0.021 -1.176

ONTGDP 2.266 4.250 Trend 0.003 0.169

Constant 7.328 45.301

System Rbar-Squared 0.734

Durbin-Watson Statistic 1.702

F Statistic 52.63

Sample Period 1998-2008

Number of Observations 132

Other Results

Table 13

Alternate Regression: Monthly DSM Data
Enbridge Revenue Class 48



                     VARIABLE KEY
P= Total Delivery Price for Revenue Class 01 Residential

HDD1= January Heating Degree Days for Northern Region
HDD2= February Heating Degree Days for Northern Region
HDD3= March Heating Degree Days for Northern Region
HDD4= April Heating Degree Days for Northern Region
HDD5= May Heating Degree Days for Northern Region
HDD9= September Heating Degree Days for Northern Region

HDD10= October Heating Degree Days for Northern Region
HDD11= November Heating Degree Days for Northern Region
HDD12= December Heating Degree Days for Northern Region
NPHH= Number of Persons Per Household

FE= Furnace Efficiency Index
ECOE= Eco Energy dummy variable
DSM= DSM Cost for Rate 01Residential

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

P -0.339 -16.540 HDD10 0.050 22.368

HDD1 0.131 50.066 HDD11 0.102 42.915

HDD2 0.130 54.414 HDD12 0.136 60.714

HDD3 0.117 49.760 NPHH -0.107 -0.885

HDD4 0.080 38.278 FE 0.155 7.748

HDD5 0.038 16.079 ECOE 0.001 0.900

HDD9 0.010 3.217 DSM -0.077 -10.367

Constant 4.124 1563.138

System Rbar-Squared 0.973

Durbin-Watson Statistic 1.893

F Statistic 318.58

Sample Period 1998-2008

Number of Observations 132

Table 14

Other Results

Alternate Regression: Monthly DSM Data
Union Revenue Class 01 Residential



                     VARIABLE KEY
P= Total Delivery Price for Revenue Class M2 Residential

HDD1= January Heating Degree Days for Southern Region
HDD2= February Heating Degree Days for Southern Region
HDD3= March Heating Degree Days for Southern Region
HDD4= April Heating Degree Days for Southern Region
HDD5= May Heating Degree Days for Southern Region
HDD9= September Heating Degree Days for Southern Region

HDD10= October Heating Degree Days for Southern Region
HDD11= November Heating Degree Days for Southern Region
HDD12= December Heating Degree Days for Southern Region
NPHH= Number of Persons Per Household

FE= Furnace Efficiency Index
ECOE= Eco Energy dummy variable
DSM= DSM Cost for Rate M2 Residential

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

P -0.214 -10.319 HDD10 0.053 29.520

HDD1 0.137 43.947 HDD11 0.096 61.445

HDD2 0.138 81.708 HDD12 0.142 109.293

HDD3 0.126 69.459 NPHH -0.038 -0.204

HDD4 0.084 53.539 FE 0.112 9.645

HDD5 0.037 28.495 ECOE -0.001 -1.515

HDD9 -0.007 -4.970 DSM -0.056 -8.587

Constant 4.129 773.148

System Rbar-Squared 0.984

Durbin-Watson Statistic 1.684

F Statistic 544.56

Sample Period 1998-2008

Number of Observations 132

Other Results

Table 15

Alternate Regression: Monthly DSM Data
Union Revenue Class M2 Residential



                     VARIABLE KEY
P= Total Delivery Price for Revenue Class 01 Commercial

HDD1= January Heating Degree Days for Northern Region
HDD2= February Heating Degree Days for Northern Region
HDD3= March Heating Degree Days for Northern Region
HDD4= April Heating Degree Days for Northern Region
HDD5= May Heating Degree Days for Northern Region
HDD9= September Heating Degree Days for Northern Region

HDD10= October Heating Degree Days for Northern Region
HDD11= November Heating Degree Days for Northern Region
HDD12= December Heating Degree Days for Northern Region
SEGM= Segmentation Index

DSM= DSM Cost for Rate 01 Commercial

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

P -0.125 -3.948 HDD9 0.009 5.950

HDD1 0.181 91.066 HDD10 0.095 71.405

HDD2 0.175 145.277 HDD11 0.135 79.792

HDD3 0.162 274.763 HDD12 0.174 131.892

HDD4 0.114 129.495 SEGM 0.164 0.949

HDD5 0.060 78.135 DSM -0.034 -3.825

Constant 5.100 736.159

System Rbar-Squared 0.956

Durbin-Watson Statistic 1.991

F Statistic 221.43

Sample Period 1998-2008

Number of Observations 132

Table 16

Other Results

Alternate Regression: Monthly DSM Data
Union Revenue Class 01 Commercial



                     VARIABLE KEY
P= Total Delivery Price for Revenue Class M2 Commercial

HDD1= January Heating Degree Days for Southern Region
HDD2= February Heating Degree Days for Southern Region
HDD3= March Heating Degree Days for Southern Region
HDD4= April Heating Degree Days for Southern Region
HDD5= May Heating Degree Days for Southern Region
HDD9= September Heating Degree Days for Southern Region

HDD10= October Heating Degree Days for Southern Region
HDD11= November Heating Degree Days for Southern Region
HDD12= December Heating Degree Days for Southern Region
SEGM= Segmentation Index

DSM= DSM Cost for Rate M2 Commercial

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

P -0.128 -6.992 HDD9 0.014 22.459

HDD1 0.163 114.384 HDD10 0.082 219.577

HDD2 0.160 102.119 HDD11 0.129 113.005

HDD3 0.150 221.101 HDD12 0.158 198.070

HDD4 0.106 98.564 SEGM 0.515 4.625

HDD5 0.060 143.988 DSM -0.002 -0.268

Constant 5.949 1229.972

System Rbar-Squared 0.968

Durbin-Watson Statistic 1.891

F Statistic 309.49

Sample Period 1998-2008

Number of Observations 132

Table 17

Other Results

Alternate Regression: Monthly DSM Data
Union Revenue Class M2 Commercial



                     VARIABLE KEY
P= Total Delivery Price for Revenue Class 10 Commercial

HDD1= January Heating Degree Days for Northern Region
HDD2= February Heating Degree Days for Northern Region
HDD3= March Heating Degree Days for Northern Region
HDD4= April Heating Degree Days for Northern Region
HDD5= May Heating Degree Days for Northern Region
HDD9= September Heating Degree Days for Northern Region

HDD10= October Heating Degree Days for Northern Region
HDD11= November Heating Degree Days for Northern Region
HDD12= December Heating Degree Days for Northern Region
SEGM= Segmentation Index

DSM= DSM Cost for Rate 10 Commercial

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

EXPLANATORY 
VARIABLE

PARAMETER 
ESTIMATE T-STATISTIC

P -0.070 -3.425 HDD9 -0.002 -0.504

HDD1 0.152 124.821 HDD10 0.083 105.458

HDD2 0.140 453.624 HDD11 0.117 458.747

HDD3 0.137 175.920 HDD12 0.136 319.824

HDD4 0.090 57.349 SEGM -0.208 -2.139

HDD5 0.043 61.816 DSM -0.003 -0.467

Constant 7.842 3622.985

System Rbar-Squared 0.94

Durbin-Watson Statistic 1.825

F Statistic 157.93

Sample Period 1998-2008

Number of Observations 132

Table 18

Other Results

Alternate Regression: Monthly DSM Data
Union Revenue Class 10 Commercial
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 Again, these results must be interpreted cautiously in light of the problems with 

the monthly DSM expenditure data.  However, they do provide some indicative evidence 

on the impact of DSM spending on changes in gas consumption for several revenue 

classes for EGD and Union Gas.  This information could potentially be used as 

supplementary, or supporting, evidence in DSM proceedings in Ontario, but it is certainly 

not definitive enough to substitute for the bottom-up approach that is currently used in the 

Province. 

5.3.3  Differences Between Actual and Predicted Consumption 

Finally, we briefly discuss the results from PEG’s third approach towards top-

down M&V of gas savings from utility DSM programs.  This approach constructed gas 

demand models for each of the eight revenue classes, generated predicted values and 95% 

confidence intervals for gas usage for each revenue class in each year, and compared this 

to actual gas consumption.  None of these gas demand models included DSM spending as 

an explanatory variable.  If actual gas consumption was below the predicted value, and 

outside the confidence interval, this could provide more indirect evidence of the impact 

of DSM spending on gas consumption. 

PEG investigated dozens of such models, and none of them identified a year in 

which actual gas usage was below the predicted value and outside of the confidence 

intervals.  Thus, this approach did not identify any negative and statistically significant 

differences between actual and predicted gas consumption.  Like the main approach 

detailed on Tables One through Ten, this secondary approach therefore does not provide 

“top down” evidence that can be used to substitute for the bottom-up methods currently 

used in Ontario’s gas DSM programs.  Because the econometric results from the 

secondary approach add little or nothing of value to Tables One through Ten, they are not 

presented in this report.     
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6.  CONCLUSION 

This project attempted to develop “top down” estimates of gas savings from 

utility DSM programs by applying econometric methods to the aggregate billing data of 

EGD and Union Gas.  This is an approach that can lead to substantial benefits, although it 

has rarely (if ever) been used to measure energy savings in approved DSM programs.  

PEG carefully examined the economic literature and developed a number of econometric 

models and techniques that we believed were appropriate and which could be feasibly 

implemented using available data in Ontario.   

However, our efforts were largely unsuccessful.  PEG explored scores of 

econometric models and variants of our preferred “top down” econometric specification, 

which used monthly values of HDD and prices but annual values for DSM expenditures 

and other economic and customer characteristic variables.  None of them produced 

results that were suitable for generating “top down” estimates of gas savings from DSM 

programs that could substitute, in whole or part, for the M&V methods currently used in 

the Province.  

The results using monthly DSM spending as an explanatory variable in updated 

Company demand models were more promising.  Notwithstanding the acknowledged 

deficiencies of the monthly DSM expenditure data, we found a statistically significant 

and negative relationship between DSM spending and gas consumption for all residential 

revenue classes and for two of the five commercial revenue classes for EGD and Union.   

Our models show that a 10% increase in DSM spending for residential customers 

will lead to a 0.6% to 1.0% decline in gas consumption.  For commercial customers, our 

models show that a 10% increase in gas DSM spending will lead to a 0.3% to 0.8% 

decline in gas consumption.   

Overall, PEG’s research did not provide any “top down” evidence that is 

definitive enough to substitute for the bottom-up methods currently used in Ontario’s gas 

DSM programs.  Our strongest results came from integrating DSM spending into variants 
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of the gas demand models the Companies currently use to forecast gas demand.   Monthly 

data on gas DSM spending are unreliable, however, so these results can at best provide 

supplementary or supporting evidence on the impact of DSM programs on gas 

consumption.  Our econometric models that used more reliable measures of gas DSM 

spending were never able to identify a significant relationship between DSM activity and 

gas consumption.      

PEG’s analysis could likely be improved if better data were available.  One 

improvement would be more accurate data on DSM spending by revenue class and (for 

EGD) geographic zone.  It could also be helpful to have information on when (in a given 

year) particular DSM measures were installed, in addition to having more accurate data 

on DSM spending. 

More appropriate estimates of DSM savings could also be developed if demand 

models are estimated separately for participating and non-participating customers.  A 

relatively small share of customers in a revenue class is likely to be participating in utility 

DSM programs in any given year.  The behavioral characteristics of participating and 

non-participating customers may be so different that they effectively constitute different 

populations with, accordingly, different underlying demands for natural gas.  However, 

developing detailed customer-specific data would likely entail significant costs, and it 

would take years for enough sample data to be available to facilitate statistical analysis.  

There is also no guarantee that this approach will be successful and yield statistically 

significant and robust results.  
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APPENDIX:  CALIFORNIA EXPERIENCE WITH ECONOMETRIC 
M&V 

California is clearly the leading DSM jurisdiction in North America.  California 

has implemented utility conservation programs more or less continuously since the 

1970s, which is the longest DSM experience in North America.  California’s programs 

also tend to be sizable and include ample budgets devoted to M&V.  Even in 2007 (the 

last available data), California’s electric utilities’ accounted for over half of spending on 

electricity energy efficiency programs by all investor-owned utilities in the US.23  

California is also widely acknowledged to be a leading jurisdiction in technical matters, 

including innovations used in M&V.  Many jurisdictions incorporate these techniques 

and/or designs into their own DSM programs.  Because of its leading position and rich 

DSM history, California’s M&V experience is especially relevant for this project. 

California’s energy utilities have administered DSM programs since the 1970s, 

with shareholder incentive mechanisms first approved in the late 1980s.  In June 1990, 

the Division of Ratepayer Advocates (DRA, later the Office of Ratepayer Advocates or 

ORA) of the California Public Utilities Commission (CPUC) was first provided a budget 

to review utilities’ DSM programs.  Energy savings from the 1970s through the early 

1990s were mainly calculated using engineering methods, similar to the “bottom up” 

approach currently used in Ontario’s gas DSM framework.  Because these savings were 

projected in advance of the programs – rather than calculated after the programs had been 

in effect – these were often referred to as “ex ante” estimates.  

This approach changed significantly in 1993.  In Decision D.93-05-063, the 

CPUC approved the Protocols and Procedures for the Verification of Costs, Benefits, and 

Shareholder Earnings from Demand-Side Management Programs.  These protocols were 

jointly developed by the four main investor-owned utilities in the State (Pacific Gas and 

Electric (PG&E), San Diego Gas and Electric (SDG&E), Southern California Edison 

(SCE), and Southern California Gas (SoCalGas)), the ORA, the Natural Resources 

                                                 
23   Data from the US Energy Information Administration, EIA Form 861.  In 2007, spending on 

electricity energy efficiency programs by Pacific Gas & Electric, Southern California Electric, and San 
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Defense Council (NRDC), and the California Energy Commission (CEC), a State 

government agency responsible for energy planning and promoting energy efficiency.  

The 1993 Decision also established the California DSM Measurement Advisory 

Committee (CADMAC, later renamed the California Measurement Advisory Committee 

or CALMAC) to develop these protocols.  Collectively, these institutional changes 

launched what is sometimes referred to as “the Protocol Era.” 

The Protocol era created greater consistency and rigor in how the costs and 

benefits of DSM programs were measured, as well as in how shareholder incentive 

mechanisms were implemented.  A consolidated annual hearing was held for the four 

utilities to evaluate earnings claims based on DSM programs.24  Importantly, the 

Protocols changed the dominant “ex ante” method for measuring savings to an “ex post” 

evaluation of the energy savings actually achieved by the programs.  These ex post 

evaluations were to be conducted using regression analysis and utilities’ actual billing 

data. 

The Protocols established what was called “The General Approach to Load 

Impact Measurement.”  This general approach was to be applied to specific utility DSM 

programs, which is more program-focused than the more aggregated “top down” methods 

proposed in Ontario for, say, entire customer classes.  The Protocols also distinguished 

between the estimation of gross and net energy impacts (where those terms are analogous 

to how they are used in Ontario). 

Regarding the estimation of gross energy impacts, the Protocols stated: 

The statistical estimation of gross energy impacts requires billing data and 
explains changes in energy use as a function of other variables in order to estimate 
the gross load impacts attributable to a DSM program. A variety of model types - 
including conditional demand analysis (CDA), statistically adjusted engineering 
(SAE), fixed effects, and other linear and nonlinear regression models - may 
qualify as acceptable load impact regression models (LIRMs), depending upon 
the circumstances. 
 
The LIRMs used to estimate gross energy savings should have the following 
characteristics: 

                                                                                                                                                 
Diego Gas & Electric totaled $351.2 million; the comparable figure for all US investor-owned utilities was 
$690 million.  Unfortunately, the EIA does not provide data on DSM programs for gas utilities. 

24  This was known as the Annual Earnings Assessment Proceeding, or AEAP. 
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a. The model is an econometric or statistical model, embodying accepted or 
thoroughly defensible empirical techniques for measuring impacts of policies, 
programs and measures. 
 
b. The models employ billing and weather data, pooled by customer, for multiple 
time periods, as well as customer-specific attributes, and/or other measured or 
observed data to estimate energy impacts. 
 
c. The model produces diagnostics and test statistics that allow others to assess the 
robustness of its estimates and/or simulations. 
 
d. The model specification is developed in consideration of the issues identified in 
the Protocols in Section D.5 of Table 7. That is, the model specification should 
follow from an accurate conceptualization of the energy consumption process, 
and should use compatible econometric and statistical techniques.  The estimates 
of energy impacts should flow from a statistical model rather than a deterministic 
engineering model, while perhaps relying to some extent on engineering 
information. For example, an SAE model exhibits an acceptable blend of 
statistical and engineering models.  Confounding effects on energy consumption 
should be controlled for. The use of a comparison group and the inclusion of 
social, political and economic changes, are acceptable methods (emphasis 
added).25 
 

It can be seen that the protocols clearly called for an econometric, ex post 

approach to measuring the load impacts and benefits from utility DSM programs.  This 

represents a clear and explicit change in direction from the engineering-based, ex ante 

approach that had been mainly used up to that time.  Engineering estimates could be 

incorporated as inputs, or independent variables, into statistical models, but billing data 

and econometric methods were both primary and mandatory.  The statistical models were 

also required to control for a variety of other factors that could impact gas and electricity 

demand (“confounding effects on energy consumption should be controlled for”), in 

order to isolate the impact of DSM programs per se.   

One allowable approach for identifying the gross impact of DSM on consumption 

is the use of “comparison groups.”  In practice, this often took the form of comparing the 

energy consumption of customers after they installed DSM measures with those same 

customers’ energy consumption before the measures were installed.  For example, 

monthly data on participating customers’ pre-DSM consumption could be regressed on 

                                                 
25 D. 93-05-063, Table 5, p. 12. 
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weather, price and other economic variables that affect demand.   Normalized measures 

for participating customers’ consumption could then be computed to the post-DSM 

period by inserting values for these independent variables into the estimated gas demand 

model.26  The difference between pre- and post-DSM normalized consumption could then 

be calculated.  Since other factors that could impact consumption were controlled for in 

the statistical model, the difference between pre- and post-DSM energy consumption 

could be interpreted as the gross energy impact resulting from the conservation measures.      

The Protocols specified even more detailed rules regarding the estimation of net 

energy impacts, as evident in the following: 

 

The estimation of net energy impacts can also involve the use of a statistical 
model that does not use energy consumption as the dependent variable but rather 
uses the observed decisions of customers to participate in DSM programs and to 
install efficient equipment as the dependent variables. The purpose of these 
models is to control for free ridership or to derive a net-to-gross savings 
adjustment. The models may also be used to estimate an adjustment factor to 
control for self-selection bias. 

 
The LIRMs used to estimate net energy savings should have the following 
characteristics: 
 
a. The model is an econometric or statistical model, embodying accepted or 
thoroughly defensible empirical techniques for measuring impacts of policies, 
programs and measures. 
 
b. The model utilizes comparisons between participants and nonparticipant 
behavior in a discrete choice, difference-of-differences, or other statistical 
modeling context to isolate net from gross load impacts. 
 
The model produces diagnostics and test statistics that allow others to assess the 
robustness of its estimates and/or simulations. 
 
3. If the methodology involves comparing participants and nonparticipants with 
respect to energy consumption, then the following framework can be used: 
 

Net Load Impacts = Participant Group Load Impacts 
 

                                                 
26 The Protocols refer to these types of econometric models as “conditional demand analysis” or 

CDA models, since customer demand is “conditional” on a variety of factors.  Since controlling for such 
independent variables is standard in good econometric practice, the CDA term used in the Protocols is 
synonymous with the term “gas demand model” that PEG uses throughout this report. 
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minus 
 

Comparison Group Load Impacts 
 
plus or minus 

 
Effects of Uncontrolled Differences between Participant and Comparison Groups 

 
OR 

 
• Net load impacts = Participant Group Load Impacts minus Comparison Group 
Load Impacts (referred to as the difference of differences method); 
 
• Participant Group Load Impacts = Participant Group Base Usage minus 
Participant Group Usage in the Impact Year 
 
• Comparison Group Load Impacts = Comparison Group Base Usage minus 
Comparison Group Usage in the Impact Year 
 
• Participant Group Base Usage = Participant Group Pre-Installation Usage 
 
• Comparison Group Base Usage = Comparison Group Pre-Installation Usage 
 
• Pre-Installation Usage (Participant and Comparison Group) = measured 
consumption or proxies for consumption of the energy using equipment or 
building prior to installation of the measure(s) intended to change energy use, 
adjusted (when applicable) to reflect the minimum efficiency level of the 
equipment or building that would have been installed without the utility 
assistance.27 
 

To isolate net impacts, the protocols require customer data for both participating 

and non-participating customers.  The “difference of differences method” is one approach 

for controlling for the free ridership reflected in the estimated gross energy impacts.  The 

basic idea is that environmental and behavioral factors that are independent of utility 

DSM programs can encourage customers to adopt energy conservation measures.  These 

factors would likely be reflected in the normalized energy consumption patterns for non-

participating customers (and certainly, any reductions in normalized energy consumption 

for non-participating customers cannot be the result of utility DSM programs).  Hence, to 

isolate the incremental impact of DSM programs on energy savings, one could compute 

                                                 
27  D. 93-05-063, Table 5, p. 13. 
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the difference between gross savings for participating customers and the changes in 

normalized energy consumption over the same period for non-participating customers.  If 

the behavioral characteristics of the participating and non-participating customers are 

similar, this difference can be interpreted as the value of the net energy impacts that result 

from DSM programs per se.  Alternatively, the “self-selection bias” can be quantified by 

explicitly modeling customers’ process for deciding whether or not to participate in 

utility DSM programs.  Estimates from these “discrete choice models” can then be used 

to derive net-to-gross ratios that are used to transform gross energy impacts into net 

energy impacts.   

The protocols also specified other rules in order to obtain the most accurate 

measures of net energy savings.  Participants were defined as those who received 

financial assistance in connection with an energy conservation measure or received 

services under an appropriately authorized DSM program (such as an energy audit).  Pre-

installation usage was to be based on 12 months billing data before a measure was 

installed; usage in the initial “impact” year was based on a minimum of nine months of 

billing data.28  In addition, there were detailed rules on how to determine appropriate 

samples for participating customers and controls designed to ensure data quality and 

processing. 

These concepts (including alternative applications of the basic ideas) can be made 

more concrete by considering specific examples of CDA models used to measure energy 

savings in California.  One early model applied to SCE’s Energy Management Services 

and Hardware Rebate Program Evaluation.  This program actually took effect in 1990, 

before the Protocols required econometric M&V.  The model used to evaluate energy 

savings was the following:29  

 

                                                 
28 In addition to the initial year impact study, utilities were required to undertake follow-up 

“persistence” studies done (usually in years four and nine after the measure was installed) to see whether 
the measure was retained and hence determine effective useful lives and long-run savings from specific 
energy conservation measures. 

29 For more details, see Pacific Consulting Services (1994), “An Evaluation of Statistical and 
Engineering Models for Estimating Gross Energy Impacts,” prepared for the California Demand Side 
Management Advisory Committee:  The Subcommittee on Modeling Standards for End Use Consumption 
and Load Impact Models. 
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Ei t= α + β1INSTALLit+β2PRICEit +β3 SQFTi + β4HOURSi + +β5INFLATIONt + εit  
 
where 
 

• Eit = electricity consumption for the ith customer at time t 

• α = a constant term 

• INSTALLit = installation of the ECM by the ith customer at time t 

• PRICEit = price of electricity faced by the ith customer at time t 

• SQFTi = square footage of the ith customer 

• HOURSi = operating hours of the ith customer 

• INFLATIONt = the rate of inflation at time t 

• εit = the error terms for the ith customer at time t 

 
This model is estimated using a panel data set, based on the monthly electricity 

consumption for a cross section of customers who have installed specific energy 

conservation measures.  The data are therefore customer-specific, and the time subscript t 

references the month.  The INSTALL variable is a “dummy variable” that takes a value 

of 0 before the efficiency measure is installed and a value of 1 afterwards.  The 

coefficient estimated on the “INSTALL” variable can thus be interpreted as the gross 

impact of the energy conservation measure on an average customers’ consumption, 

independent of the other variables in the model.  

 A more complex variant of this model was used to evaluate a PG&E DSM 

program during the Protocol era.  This model used both “pre” and “post” consumption 

data and a variable to reflect potential behavioral differences between the composition of 

participating and non-participating customers.  The general form of this model was: 

Ei,Post = α + β1INSTALLi + β2Ei,Pre + β3 Inverse Mills Ratio + ∑β kXik + εi 
 
where 
 

• Ei,Post =  electricity consumption for the ith customer after the energy 

efficiency measure was installed  

• α = a constant term 

• INSTALLi = installation of the energy efficiency measure for the ith customer  
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• Ei,Pre = electricity consumption for the ith customer prior to the installation of 

the energy efficiency measure 

• Inverse Mills Ratio = a term designed to control for selection bias, reflecting 

differences in behavioral characteristics between participating and non-

participating customers 

• X = a vector of other economic variables, such as changes in the price of 

energy, square feet, operating hours, and the rate of inflation for the ith 

customer 

• εi = the error term 

 

This model reflects the use of pre- and post-installation consumption data for 

participating customers, consistent with the Protocols.  It also includes a comparison 

group of non-participating customers.  Because there are both participating and non-

participating customers in the model, the INSTALL dummy variable now takes a value of 

zero for non-participating customers and a value of one for participating customers.   

The “Inverse Mills Ratio” is an explanatory variable that is specifically designed 

to control for selection bias, or the fact that there may be behavioral differences between 

customers who “select” utility DSM programs and those who do not.  It is important to 

control for these factors when isolating the impact of utility DSM programs per se.  A 

good explanation for why this is the case is presented in an earlier article by Raymond 

Hartman: 

In many evaluations, program-induced effects have been estimated by comparing 
the observed savings of program participants and non-participants.  This 
comparison is appropriate only if participants and non-participants are identical in 
all respects except program participation.  However, participants and 
nonparticipants usually differ in observed economic and demographic 
characteristics, which in turn induce differences in unobserved preferences for 
energy consumption and program participation.  Attribution of the observed 
difference in energy savings to the programs alone ignores these other 
differences.  The result can be an upwardly-biased estimate of program 
effectiveness because the demographic and economic characteristics of program 
participants would have induced some conservation in the absence of the 
programs (all italics in original).30 
                                                 
30  Hartman, R. (1988), “Self-Selection Bias in the Evolution of Energy Conservation Programs,” 

The Review of Economics and Statistics, 70: 3, p. 448. 
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As this explanation indicates, the “self selection” problem relates directly to the 

issue of “free riders” and the difference between the estimated gross and net energy 

impacts from DSM programs.  Including an inverse Mills ratio is one means of 

controlling for customer characteristics that would tend to exaggerate the estimated 

impact of utility programs per se.31  However, there are other (econometric and sample 

design) methods for controlling for this type of selection bias.  The best techniques for 

doing so, and therefore for computing net-to-gross ratios, remains a hotly contested 

issue.32     

The initial Protocol Era ran from 1994 through 1997, with new protocols 

established in 1998.33  There were some similarities between the updated and initial 

protocols.  Both used participant and comparison groups to determine gross and net 

savings, and both had carefully detailed rules for specific DSM programs.  However, in 

the updated protocols, statistical and econometric methods were no longer mandatory for 

estimating gross energy impacts.  Companies were now given the choice of estimating 

load impacts through conditional demand analysis (i.e. econometric modeling of energy 

demand) or a calibrated engineering (CE) model.  The new protocols did not discuss why 

econometrics were no longer mandatory, but the head of the company overseeing the 

                                                 
31 The procedure for using the inverse Mills ratio to control for sample selection bias was 

recommended by Nobel Laureate Econometrician James Heckman.  The process is:  1) run a Probit 
regression on individuals’ binary decisions to participate (i.e. 1 = participation, 0 = no participation) against 
a set of explanatory variables Z; 2) obtain the estimated coefficients Γ on Z, and compute the inverse Mills 
ratio as (the standard normal density function Γ*Z) divided by (the cumulative normal density function 
Γ*Z); 3) include the inverse Mills ratio as an additional variable in an ordinary least squares regression of 
dependent variable Y on a vector of independent variables X.  For more details, see section 13.13.1in 
Johnston and Dinardo, Econometric Methods.  

32  A detailed review of this literature goes well beyond the scope of this project, and would 
probably not be fruitful in any case, since the econometric methods require customer specific data on 
participating and non-participating customers.  PEG was told that neither EGD nor Union collects data at 
this level.  However, interested parties can find a review of this literature in Cook, G. “Attribution 
Methodology Wars:  Self-Report Methods Versus Statistical Number Crunching – Which Should Win?”  

33  Many other institutional changes also took place beginning in 1998, including more emphasis 
on funding for “market transformation” DSM programs and less scope for incentive-based awards for 
traditional utility DSM programs.  There was also a significant increase in spending on M&V studies that 
attempted to quantify the market effects and indirect benefits attributable to market transformation 
programs.  For further details, see TecMarket Works Framework Team, The California Evaluation Manual, 
Prepared for Southern California Edison, to conduct a joint study supported by Pacific Gas and Electric, 
San Diego Gas and Electric, Southern California Edison and Southern California Gas, as mandated by the 
California Public Utilities Commission; June 2004: p. 40. 
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current master contract for M&V programs in California indicated that an important 

consideration was the difficulty in controlling for customer characteristics and their 

impact on behavior in econometric studies.34   

In 2001, California adopted new Energy Efficiency Policy Rules in Decision D. 

01-11-066.  Some parts of this Decision reflect a further movement towards ex ante, 

engineering based estimates of energy impacts.  For example, the Decision required 

utilities to create a Best Practices database that could be used to assist parties (including 

non-utilities) in how to design the most effective energy conservation programs.  As part 

of this Best Practices database 

“the Commission requires the utilities to undertake expert evaluation of “ex ante” 
(projected) or deemed savings estimates of energy savings associated with a set of 
reasonably predictable energy efficiency measures.  Currently, the CEC’s 
Database for Energy Efficiency Resources (DEER) is the most comprehensive 
resource for program planners to use when projecting energy savings associated 
with particular program activities.  This database, though updated periodically, is 
primarily for use by technical experts.  In developing a set of deemed savings 
values for the state, the Commission seeks to simplify the assumptions used to 
project energy savings into a user-friendly format assessable to a wider audience.  
The goal of this effort would be to produce an Internet-accessible, searchable tool 
containing best-available deemed savings values for all regions of the state, 
grouped by sector, building type, end-use, and climate zone (where applicable).”35  
 
Although the purpose of this mandate is to assist program planners in advance (ex 

ante) of undertaking programs, it is notable that the “best practices” database relies 

overwhelmingly on engineering rather than econometric evidence.  It is also notable that 

one of the aims of this effort was to “simplify the assumptions used to project energy 

savings” since this is also one of the objectives motivating Ontario’s interest in “top 

down” econometric M&V models.  In California, where there had been considerable 

experience with econometric M&V, regulators decided to move in a different direction 

when attempting to simplify the estimation of energy savings.    

In 2004, the CPUC mandated a study that led to the creation of The California 

Evaluation Framework.  This was a detailed policy document which, among other things, 

                                                 
34 Telephone conversation between Larry Kaufmann and Nick Hall, President of TecMarket 

Works, November 18, 2009. 
35 Decision 01-11-066, Interim Opinion Adopting Energy Efficiency Policy Rules, November 29 

2001, p. 22. 
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contained a discussion of the merits of using econometric or engineering analyses to 

measure energy savings from DSM programs.  According to the Framework:  

Billing analysis (i.e. econometric analysis of billing data) will tend to be preferred 
when: 

• Both pre and post-retrofit billing data are available 
• Expected program impacts can be expected to be observed in a billing 

analysis (e.g., at least 10% of total consumption, depending upon method 
used, cleanliness of billing data, and accuracy of measured variables in 
analysis) 

• The analysis is of a program with larger numbers of participants that are 
more homogenous 

Engineering analysis will tend to be preferred when: 
• No pre-measure billing data is available, e.g., new construction 
• Expected impacts are too small to likely be observed in a billing analysis 

(e.g., less than 10% of total consumption) 
• The programs have a small number of participants or unique measures, 

e.g., with industrial process improvements 
• The programs have significant investments in engineering methods within 

the program that can provide cost savings for a similar evaluation, e.g., 
programs that include substantial engineering M&V or building energy 
simulation modeling36 

As this passage indicates, in the judgment of the Framework team, the California 

experience indicates that econometric methods are the preferred M&V approach when 

energy efficiency measures are expected to have relatively large (10% or more) impacts 

on consumption, and when pre- and post-installation data are available for relatively 

homogeneous customer groups.  The “observed impact” criterion is no doubt motivated 

by the likelihood that, all else equal, it is easier to identify statistically significant impacts 

of variables when the impact of those variables tends to be large relative to random or 

non-quantifiable effects.  Pre- and post-installation data and customer homogeneity are 

valuable for isolating the impact of DSM measures per se and transforming gross into net 

energy savings.  If these criteria are not satisfied, the Framework finds that engineering-

based estimates of energy savings are preferred.  However, the main author of the 

Framework emphasizes that this recommendation applies to the calculation of gross 

energy savings only; net-to-gross analysis is inherently concerned with individual 

behavior and not technology or engineering assessments, yet many policymakers and 

                                                 
36 TecMarket Works Framework Team, The California Evaluation Framework, op cit,  p. 100. 
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even M&V professionals continue to approach NTG calculations from a technological or 

engineering perspective.37   

Since the Framework was published, some other, relatively comprehensive 

reference documents have been produced that address the measurement and verification 

of DSM savings.  These include the April 2007 International Performance Measurement 

and Verification Protocol:  Concepts and Options for Determining Energy and Water 

Savings and the November 2007 Model Energy Efficiency Program Impact Evaluation 

Guide.  Both of these documents emphasize the use of engineering M&V methods. 

 

 

 

 

 

 

 

                                                 
37 E-mail communications from Nick Hall to Larry Kaufmann, November 30, 2009. 



 

72 

 

REFERENCES 

Auffhammer, M., C. Blumstein and M. Fowlie, (2008), “Demand-Side Management and 
Energy Efficiency Revisited,” Energy Journal, 29(3), 91-104. 

 
California Public Utilities Commission (1993), Decision No. 93-05-063. 
 
California Public Utilities Commission (2001), “Interim Opinion Adopting Energy 

Efficiency Policy Rules,” Decision No. 01-11-066.  
 
Cicchetti, C. (2009), Going Green and Getting Regulation Right:  A Primer for Energy 

Efficiency, Vienna, VA: Public Utilities Reports. 
 
Cook, G. (2008). “Attribution Methodology Wars:  Self-Report Methods Versus 

Statistical Number Crunching –Which Should Win?” Presented at the ACEEE 
Summer Study of Energy Efficiency in Buildings, Pacific Grove, CA. 

 
Dezhbaksh, H. (1990), “The Inappropriate Use of Serial Correlations Tests in Dynamic 

Linear Models,” Review of Economics and Statistics 72: 126-132. 
 
Durbin, J., (1970), “Testing for Serial Correlation in Least Squares Regression When 

Some of the Regressors Are Lagged Dependent Variables,” Econometrica 38: 
410-421.  
 

Engle, R. and C.W.J. Granger (1987), “Co-Integration and Error Correction:  
Representation, Estimation and Testing,” Econometrica, Vol 55: 2, 251-276. 

 
Efficiency Valuation Organization (2007), International Performance Measurement and 

Verification Protocol: Concepts and Options for Determining Energy and Water 
Savings (www.evo-world.org) 
 

Greene, W. (2000), Econometric Analysis, Prentice Hall: Upper Saddle River, NJ, pp. 
542. 

 
Hartman, R. (1988), “Self-Selection Bias in the Evolution of Energy Conservation 

Programs,” The Review of Economics and Statistics, 70(3), 448. 
 
Johnston, J. and J. DiNardo (1998), Econometric Methods, Oxford: McGraw Hill Book 

Company.  
 
Joskow, P. and D. Marron, (1992), “What Does a Negawatt Really Cost?  Evidence From 

Utility Conservation Programs,” Energy Journal, 13(4), 54. 
 



 

73 

 

Loughran, D. and J. Kulick (2004), “Demand Side Management and Energy Efficiency in 
the United States,” Energy Journal, 25(1), 19-43. 
 

National Action Plan for Energy Efficiency (2007), Model Energy Efficiency Program 
Impact Evaluation Guide, Prepared by Steven R. Schiller, Schiller Consulting, 
Inc.  (www.epa.gov/eeactionplan) 

 
Nerlove, M. and K. Wallis (1966), “Use of the Durbin-Watson Statistic in Inappropriate 

Situations,” Econometrica 34: 235-238.   
 
Ridge, R., R. Violette, and D. Dohrman, (1994). “An Evaluation of Statistical and 

Engineering Models for estimating Gross Energy Impacts,” Prepared for the 
California Demand Side Management Advisory Committee: The Subcommittee on 
Modeling Standards for End Use Consumption and Load Impact Models. 

 
RJ Rudden Review of the Union Gas Demand Forecast Methodology, December 2005, 

Attached as Appendix C to EB-2005-0520, Exhibit C1 Tab 1 
 
TecMarket Works Framework Team (2004), The California Evaluation Framework, 

Prepared for the California Public Utilities Commission. 
 
US Energy Information Administration (2007), Form EIA-861 Final Data File for 2007, 

Retrieved from: http://www.eia.doe.gov/cneaf/electricity/page/eia861.html 
 
 
 

 

 




