

2007 Electric Service Reliability Monitoring Annual Report

© 2008 Avista Corporation. All Right Reserved

Permission of the Copyright owner is granted to users to copy, download, reproduce, transmit or distribute any part of this document provided that: (1) the user includes Avista's copyright notice on all copies, and (2) the materials are not used in any misleading or inappropriate manner. Furthermore, no portion of the attached work shall be republished in printed or digital form without the written permission of the Copyright owner.

CONTENTS

INTRODUCTION		
DATA COLLECTION AND CALCULATION CHANGES		
Data Collection		
Interruption Cause Codes		
Customers Experiencing Multiple Interruptions		
DEFINITIONS	4	
Reliability Indices		
Baseline Reliability Statistics		
Major Events	6	
Customer Complaints		
SYSTEM INDICES	7	
Chart 1.1 – SAIFI - Sustained Interruptions / Customer		
Chart 1.2 – Sustained Interruptions / Customer Historic Comparison		
Chart 1.3 - MAIFI Momentary Interruption Events / Customer		
Chart 1.4 – Momentary Interruptions/ Customer Historic Comparison		
Chart 1.5 - SAIDI – Average Outage Time / Customer		
Chart 1.6 - CAIDI – Average Restoration Time		
OFFICE INDICES	13	
Chart 2.1 – SAIFI - Sustained Interruptions / Customer		
Chart 2.2 - MAIFI Momentary Interruption Events / Customer		
Chart 2.3 - SAIDI – Average Outage Time / Customer		
Chart 2.4 - CAIDI – Average Restoration Time		
AREAS OF CONCERN	15	
Cause Information:		
Work Plans:		
CUSTOMERS EXPERIENCING MULTIPLE INTERRUPTIONS	21	
Avista Service Territory CEMI _n Chart		
Colville Office - CEMI _n		
Davenport Office - CEMI _n		
Deer Park Office - CEMI _n		
Othello Office - CEMI _n		
Palouse Office - CEMI _n		
Lewis-Clark Office - CEMI _n		
Spokane Office - CEMI _n		
Sandpoint Office - CEMI _n		
Kellogg Office - CEMI _n		
Coeur d'Alene - $CEMI_n$		
Grangeville Office - CEMI _n		
MONTHLY INDICES		
Chart 3.1 – SAIFI - Sustained Interruptions / Customer		
Chart 3.2 - MAIFI Momentary Interruption Events / Customer		
Chart 3.3 - SAIDI – Average Outage Time / Customer		
Chart 3.4 - CAIDI – Average Restoration Time		

CUSTOMER COMPLAINTS	36
Commission Complaints	
Customer Complaints	

SUSTAINED INTERRUPTION CAUSES	
Table 4.1 - % SAIFI per Cause by Office	
Chart 4.1 – % SAIFI per Cause by Office	
Table 4.2 - % SAIDI per Cause by Office	
Chart 4.2 – % SAIDI per Cause by Office	
Table 4.3 - % SAIFI per Cause by Month	
Chart 4.3 – % SAIFI per Cause by Month	
Table 4.4 - % SAIDI per Cause by Month	
Table 4.4.1 Ave Outage Time	
Chart 4.4 – % SAIDI per Cause by Month	

MOMENTARY INTERRUPTION CAUSES46Table 5.1 - % MAIFI per Cause by Office46Table 5.1.1 - % MAIFI per Cause by Office (Washington only)47Chart 5.1 - % MAIFI per Cause by Office48Table 5.2 - % MAIFI per Cause by Month49

MAINTENANCE PLAN SUMMARY	51

MAJOR EVENT DAY CAUSES	
Chart 6.1 – % SAIFI by Cause Code for the Major Event Days	
Table 6.1 – % SAIFI by Sub Cause Code for the Major Event Days	
Table 6.2 – Yearly Summary of the Major Event Days	

INTERRUPTION CAUSE CODES......55

INDICES CALCULATIONS	58
Sustained Interruption	
Momentary Interruption Event	
SAIFI – System Average Interruption Frequency Index	
MAIFI _E – Momentary Average Interruption Event Frequency Index	
SAIDI – System Average Interruption Duration Index.	
CAIDI – Customer Average Interruption Duration Index	59
CEMI _n – Customers Experiencing Multiple Sustained Interruptions more than n.	59
CEMSMI _n – Customers experiencing multiple sustained interruption and momentary interruption events	59
MED - Major Event Day	60

NUMBERS OF CUSTOMERS SERVED	.6′	1
-----------------------------	-----	---

Introduction

Pursuant to WAC 480-100-393 and WAC 480-100-398, Washington state investor-owned Electric companies must file a plan for monitoring and reporting electric service reliability information to the Commission annually.

This document reports Avista Utilities' reliability metrics for the calendar year 2007. All numbers in this document are based on system data. The Company's system includes eleven geographical divisions. Two of these divisions straddle the Washington and Idaho border and commingle jurisdictional customers. A map of Avista's operating area is included in a following section.

WAC 480-100-393 (3)(b) requires the establishment of baseline reliability statistics. The Company's baseline statistics are included in this report.

Avista continues to review its baseline reliability statistics in light of operational experience under this regulatory protocol. The Company may modify its baseline statistics as appropriate and will update the Commission accordingly.

New to this years report, is a new section which analyzes the areas where customers are experiencing multiple sustained outages. This new section will analyze a new reliability indice called CEMI_n , which implies Customers Experiencing Multiple sustained Interruptions more than n times.

Data Collection and Calculation Changes

WAC 480-100-398 (2) requires the Company to report changes made in data collection or calculation of reliability information after initial baselines are set. This section addresses changes that the Company has made to data collection.

Data Collection

Since Avista's Electric Service Reliability Monitoring and Reporting Plan was filed in 2001, there have been several improvements in the methods used to collect outage data. In late 2001, centralizing the distribution trouble dispatch and data collection function for Avista's entire service territory began. The distribution dispatch office is located in the Spokane main complex. At the end of September 2005, 100% of the Company's feeders, accounting for 100% of the customers, are served from offices that employ central dispatching.

The data collected for 2007 represents the second full year of outage data collected through the Outage Management Tool (OMT). For 2007, all data was collected using the "Outage Management Tool" (OMT) based on the Company's Geographic Information System (GIS). The OMT system automates the logging of restoration times and customer counts.

Use of the OMT system and GIS data has improved the tracking of the numbers of customers without power, allowed for better prioritization of the restoration of service, and the improved dispatching of crews.

With the completion of the transition to the OMT system, there has been an increase in the variability of the data collected from 2001 to 2007. As described in the last three annual reports, the data that was most affected by moving to an OMT system is the number of customers associated with an outage. The OMT system improves the customer count accuracy because OMT uses the customer count from GIS, rather than an estimate. As the Company expected, the following reliability statistics were affected as a result of the areas being centralized:

- SAIFI and SAIDI These statistics were expected to increase since the total number of customers affected by an outage will be used rather than the number of customers that have called in. The OMT system also significantly reduces the estimates made by the Distribution Dispatcher.
- CAIDI This reliability index has not increased as much as anticipated due to the increases associated with both SAIFI and SAIDI. This is due to the better response time the Company can provide through the OMT system.
- MAIFI This statistic is not expected to be effected by the implementation of OMT. The data for momentary outages is gathered from the System Operators log (not the Distribution Dispatchers). However, the MAIFI statistic may be increasing in the future as more of the distribution feeder Trips and Recloses are recorded through the SCADA system.

The Company believes that centralization will also provide better <u>cause code</u> classification. The improvement will be due to the concentration of dispatchers, associated increased training, and quality control.

Interruption Cause Codes

Cause code information is provided in this report to give readers a better understanding of outage sources. Further, the Company uses cause information to analyze past outages and, if possible, reduce the frequency and duration of future outages.

• The Company made several changes in the classification of outage causes for the reporting of 2005 outages and subsequent years. No change is being proposed for 2007.

Customers Experiencing Multiple Interruptions

The IEEE Standard 1366P-2003 provides for two methods to analyze data associated with customers experiencing multiple momentary interruptions and/or sustained interruptions. Avista's Outage Management Tool (OMT) and Geographical Information System (GIS) provide the ability to geospatially associate an outage to individual customer service points. This association allows for graphically showing Customers Experiencing Multiple sustained Interruptions (CEMI_n) with Major Event Day data included onto GIS produced areas. Data can be exported to MS Excel to also create graphs representing different values of n. A new section will be added to the report after the Areas of Concern Section to summarize the analysis Avista performed on the 2007 outage data. The calculation for CEMI_n and Customers Experiencing Multiple Sustained and Momentary Interruptions CEMSMI_n is provided in the Indices Section.

Definitions

Reliability Indices

SAIFI (System Average Interruption Frequency Indices), MAIFI (Momentary Average Interruption Frequency Indices), SAIDI (System Average Interruption Duration Indices), and CAIDI (Customer Average Interruption Duration Indices) are calculated consistent with industry standards as described below. Avista adopts these for purposes of tracking and reporting reliability performance. Further explanation and definitions are provided in the "Indices Calculation" section of this report. While these indices are determined using industry standard methods, it is important to note that differing utilities may use different time intervals for momentary and sustained outages. Avista defines momentary outages as those lasting five (5) minutes or less. Sustained outages are those lasting longer than five (5) minutes.

Baseline Reliability Statistics

WAC 480-100-393 (3) (b) requires the establishment of baseline reliability statistics. The Company's 2003 Electric Service Reliability Monitoring and Reporting Plan initially established Avista's Baseline Reliability Statistics. At that time, the Company selected these baseline statistics as the average of the 2001 through 2003 yearly indices plus two standard deviations (to provide 95% confidence level). Last year, the Company reviewed the calculation of the baseline statistics in light of the completion of the transition to the OMT in 2005 and the data collected in 2006. Calculating the baseline reliability statistics including the 2004 through 2006 data show an increase in the values, which the Company believes, represents better reporting using OMT. The Company proposed the latest calculated Baseline Statistic values to reflect the best available data collection. Because the Company believes that the OMT data collection has affected the SAIFI index the most, it used the years 2004 to 2006 for the SAIFI Baseline Statistic and the years 2002 to 2006 for the MAIFI and SAIDI Indices.

The baseline indices have been adjusted by removing Major Event Days, MED's, as defined in the following section.

Indices	2004-2006 Average (Excluding Major Events)	Baseline Statistic (Ave + 2 Standard Deviations)
SAIFI	1.09	1.44
1		
Indices	2002-2006 Average (Excluding Major Events)	Baseline Statistic (Ave + 2 Standard Deviations)
Indices MAIFI	Average	Statistic

The following table summarizes the baseline statistics by indices.

Additional comparison of the Baseline Indices is provided in the System Indices section of this report.

Avista is anticipating using the different years in the Baseline Statistics for SAIFI for at least a couple of years until a full five years of data is gathered using the current Outage Management Tool.

Major Events

Major Events and Major Event Days as used in this report are defined per the IEEE Guide for Electric Power Distribution Reliability Indices, IEEE P1366-2003. The following definitions are taken from this IEEE Guide.

Major Event – Designates an event that exceeds reasonable design and or operation limits of the electric power system. A Major Event includes at least one Major Event Day (MED).

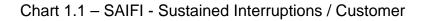
Major Event Day – A day in which the daily system SAIDI exceeds a threshold value, T_{MED} . For the purposes of calculating daily system SAIDI, any interruption that spans multiple calendar days is accrued to the day on which the interruption began. Statistically, days having a daily system SAIDI greater than T_{MED} are days on which the energy delivery system experienced stresses beyond that normally expected (such as severe weather). Activities that occur on major event days should be separately analyzed and reported.

The Company will use the process defined in IEEE P1366 to calculate the threshold value of T_{MED} and to determine MED's. All indices will be reported both including and excluding MED's. The comparisons of service reliability to the baseline statistics in subsequent years will be made using the indices calculated without MED's.

Major Event Days	SAIDI (Customer- Minutes)	Cause
2007 Major Event Day Threshold	8.017	
01-06-2007	9.98	Wind Storm
06-29-2007	32.64	Wind Storm
07-13-2007	12.79	Wind Storm
08-31-2007	21.30	Wind & Lightning Storm

The table below lists the major event days for 2007.

Additional analysis of the 2007 Major Event Days is provided in this Annual Report starting on Page 52, section Major Event Days Causes.


Customer Complaints

The Company tracks reliability complaints in two areas, Commission complaints and Customer complaints. Commission complaints are informal complaints filed with and tracked by the Commission. Customer Complaints are recorded by our Customer Service Representatives when a customer is not satisfied with a resolution or explanation of their concern. See the Customer Complaints section on Page 36 for a summary of results for this year.

System Indices

The charts below show indices for Avista's Washington and Idaho ("system") electric service territory by year. Breakdown by division is included later in this report.

The Company continues to use the definition of major events as described above to be consistent with IEEE Standards. Therefore, the following charts show statistics including the effect of major events per this definition.

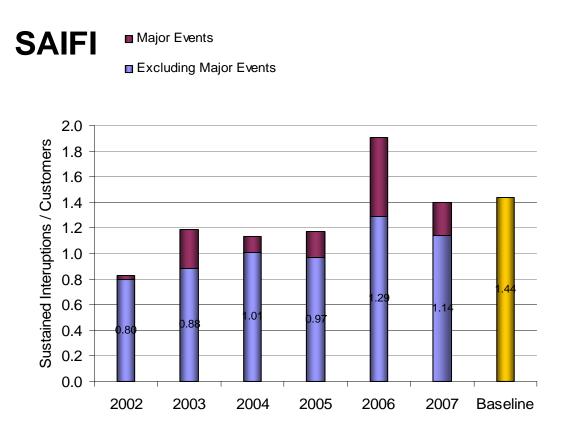
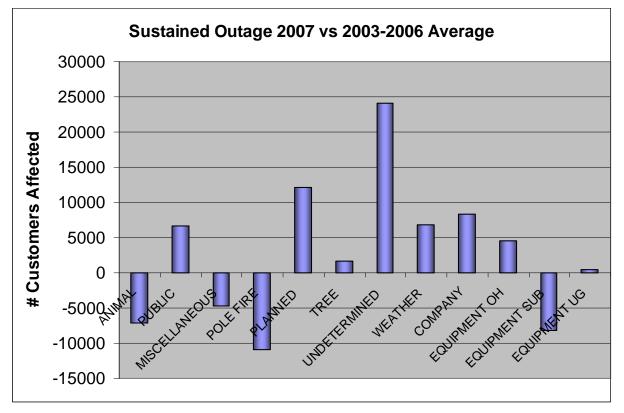



Chart 1.2 – Sustained Interruptions / Customer Historic Comparison

SAIFI for 2007 was within the existing baseline and 12% lower than 2006. Major contributors to this difference were lower weather, tree, public, and overhead equipment outages.

There were 71,949 customers affected by sustained outages caused by weather in 2007. This compares to the 2003–2006 average of 65,115 customers.

47,051 customers were affected by sustained outages associated with tree related incidents. This compares to the 2003-2006 average of 45,350 customers. The vast majority of the tree related reasons were associated with either tree fell or tree weather incidents.

Planned maintenance activities, and forced repairs affected 27,293 customers as compared to the 2003-2006 average of 15,164 customers. Additional maintenance activities associated with the Company cutout replacement program contributed to the increase in this cause and reduced the Overhead Equipment outage causes.

Equipment overhead (OH) failures resulted in outages to 53,397 customers as compared to the 2003-2006 average of 48,817. Major Equipment OH sub-categories were distribution fused cutouts, primary connector failures, arrester failures and other.

Cars hitting poles, felling trees and fires were a majority of the public caused outages.

A large increase in the number of Undetermined Causes occurred in 2007 as compared to the 2003-2006 average. 51,408 customer had undetermined causes as compared to the average of 27,250. A significant number of outages were associated with transformer fuses, but there was no known reason for the fuse to operate.

Chart 1.3 - MAIFI Momentary Interruption Events / Customer

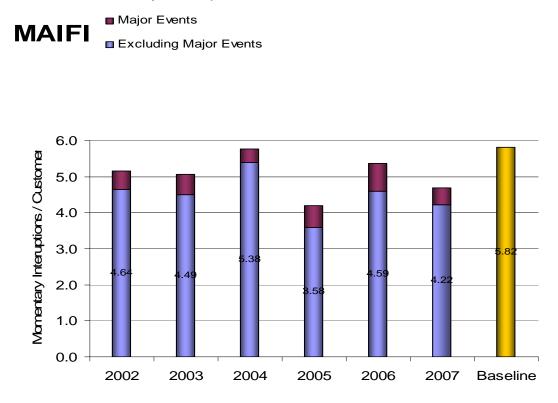
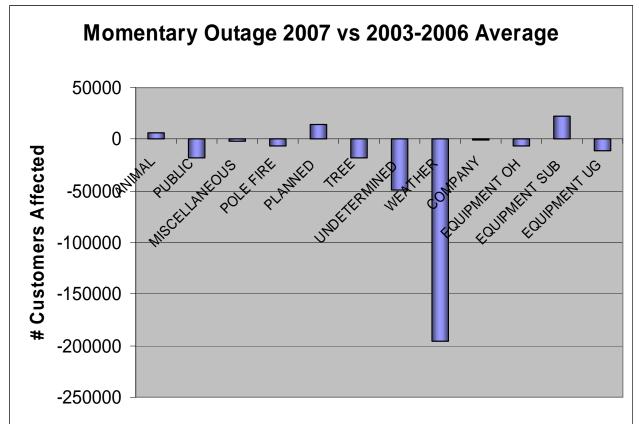



Chart 1.4 – Momentary Interruptions/ Customer Historic Comparison

The 2007 results for MAIFI show a small decrease in the number of incidents compared to the 2003 to 2006 average. There was a significant reduction in weather/undetermined related momentary outages, that were most likely due to the better overall weather conditions. Distribution Dispatch continues to make improvements in correlating the momentary outages with subsequent sustained outages, which reduces the undetermined causes. Wind contributed to 32,157 customers being impacted, Heavy Snow impacted 39,443 customers while Lightning accounted for impacts to 23,566 customers.

All other categories showed either a slight increase or slight decrease that would be consistent with previous years.

Chart 1.5 - SAIDI - Average Outage Time / Customer

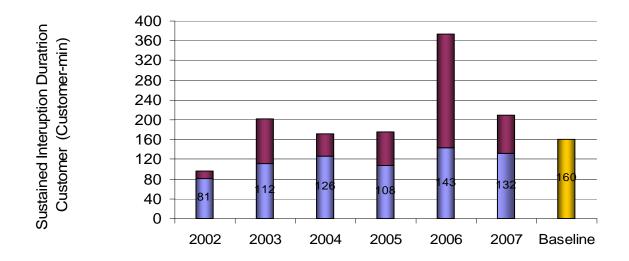
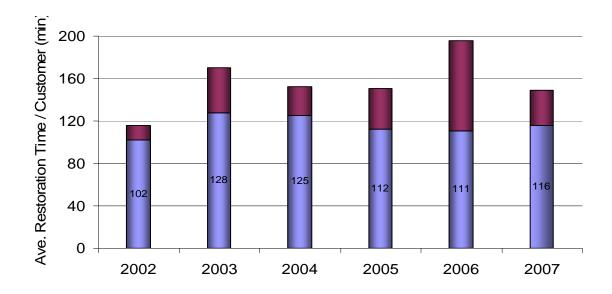



Chart 1.6 - CAIDI – Average Restoration Time

CAIDI

Major Events
 Excluding Major Events

OFFICE Indices

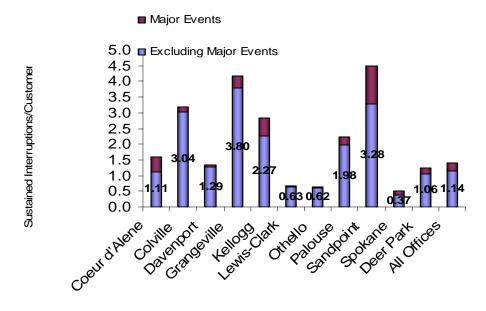
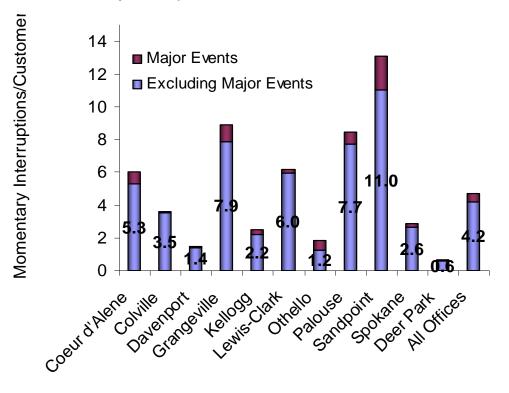



Chart 2.1 - SAIFI - Sustained Interruptions / Customer

Chart 2.2 - MAIFI Momentary Interruption Events / Customer

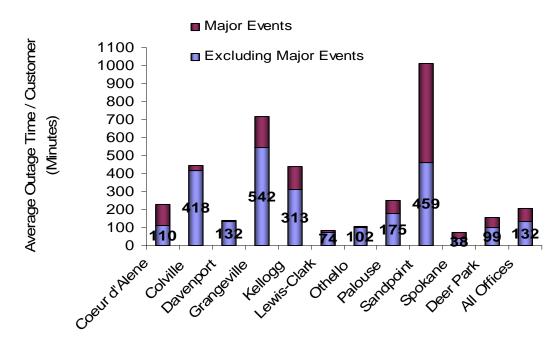
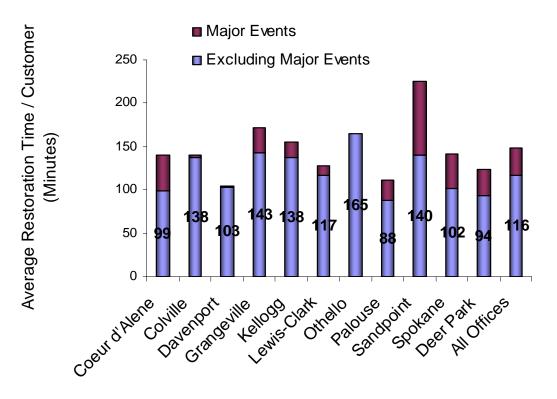



Chart 2.4 - CAIDI – Average Restoration Time

Areas of Concern

As in previous years, Colville has the lowest reliability of Washington's operating areas. However, the Colville area continues to show improvement over previous years as work plans are implemented. Colville was judged lowest based on its performance in the yearly indices for SAIFI, SAIDI, CAIDI, and MAIFI. Within the Colville area, five feeders (Gifford 34F1, Gifford 34F2, Colville 34F1, Colville 12F4, Chewelah 12F3 and Valley 12F1) were identified as areas of concern in 2006. For this report, six feeders are identified as the areas of concern for 2007. These feeders are Gifford 34F1, Gifford 34F2, Colville 34F1, Colville 12F4, Valley 12F3 and Valley 12F1.

Cause Information:

Generally rural areas have a greater number of outages per customer. Colville is a predominately rural and forested area. There are approximately 2342 miles of distribution line exposed to weather, underground cable failures and tree problems. Unlike most of the Company's system, lines in this area are built on the narrow, cross-country rights-of-way, typical of PUD construction practices prior to Avista acquiring the system. These conditions make patrolling, tree trimming, right of way clearing and other maintenance difficult. Over time and when cost effective Avista moves sections of these lines to road rights of way and/or converts them to underground.

Further, when outages occur in rural areas, the time required to repair damage is longer. More time is required for first responders to arrive and assess the damage and more time is required for the crew to reach the site. Often the damage is off road and additional time is required to transport materials and equipment to the site.

Listed below is a summary of the specific cause data for each feeder. This is a compilation of data from the Avista Outage Management Tool and the reporting from our local servicemen to Distribution Dispatch. Data from the reporting system is shown as a percentage of total customer-outages, (SAIFI) for that feeder.

Snow loading on green healthy trees growing beyond the rights-of-way often causes them to bend or break and contact distribution lines. These trees are not cut as part of our vegetation management program because they are outside our right of way and are considered healthy marketable timber.

The reliability of two of the Valley feeders has diminished over the last four years and will be added to the list for this year's report to reflect plans to improve the reliability in future years. Valley 12F3 has poorer reliability for 2007 than Valley 12F1 which was reported for the first time in the 2006 report.

Gifford 34F1

- 30.1% Weather: snow, wind and lightning storms
- 21.4% Equipment: poles, fused cutouts, & connectors
- 11.8% Pole fires
- 16.9% Trees
- 3.3% Planned outages

Colville 34F1

- 23.4% Weather; snow, wind and lightning storms
- 20.8% Equipment: crossarms and poles
- 0.1% Pole fires
- 34.1% Trees
- 10.7% Planned outages

Chewelah 12F3

- 3.7% Weather: snow, wind and lightning storms
- 35.7% Equipment: connector and arrester
- 23.0% Company
- 9.4% Trees
- 15.0% Planned outages
- 3.6% Animal: birds or squirrels

Gifford 34F2

- 14.0% Weather: Wind, snow, and lightning storms
- 0.1% Equipment: regulator failure
- 34.8% Pole Fires
- 37.5% Trees
- 6.3% Planned outages
- 2.6% Public: car hit pole, dig in

Valley 12F3

- 12.0% Weather: wind and lightning storms
- 33.5% Equipment: fused cutouts, insulator, and other
- 5.4% Trees
- 15.8% Public
- 15.5% Planned outages
- 0.5% Animal: birds or squirrels

Valley 12F1

- 3.6% Weather: snow, wind and lightning storms
- 42.6% Equipment: connector and arrester
- 0.3% Trees
- 9.2% Public
- 7.3% Planned outages
- 3.5% Animal: birds or squirrels

Work Plans:

The improvement work that has been accomplished or planned for each feeder is listed below. The Company's reliability working group is continuing to study these feeders to develop additional work plans. Each of the identified feeders also had planned outages that correspond to the maintenance and replacement activities in the area.

Gifford 34F1

- An engineering review was completed in 2006 and construction jobs drawn up to implement improvements to the feeder protection scheme which should break up the exposure on the long single phase laterals. Construction work was completed in the later part of 2007 to replace two reclosers and to add two additional reclosers to the feeder. In addition, adding 320 neutral extension racks should help address the ice unloading issue. However, the work on the extension racks has been delayed for a couple of years.
- No URD cable was replaced in 2007, but 7500' of cable has been identified to be replaced in 2008.
- Vegetation Management was scheduled to complete ROW clearing in 2007, but this was rescheduled to be completed in 2008. Work was rescheduled due to forest access restrictions last summer and completing work on other parts of the Avista system.

Colville 34F1

- No URD cable was replaced in 2007; however a 6620' section of new URD cable was installed to replace a section of overhead line that had a lot of poles that would need to be replaced.
- The remaining 50% of the feeder was re-cleared during 2007. No additional work planned for 2008.
- An engineering review was completed and construction jobs drawn up to implement improvements to the feeder protection scheme, eliminating a step-up transformer, and several 34.5 to 13.2 kV step-down transformers on the HWY 25N-Williams Lake section of the feeder to improve the level of service to customers. Construction work was completed in 2007, however the new recloser installed failed to perform properly and has been removed from service and has been returned to the factory for evaluation.

Chewelah 12F3

- Engineering analysis completed in 2006 and a budget item prepared. Higher priority budget items left these reliability improvements unfunded for 2007. In early 2007, budget money was approved to complete this project. Three reclosers were installed on the feeder to improve the temporary fault protection. Local personnel identified areas where turkeys roost and fly into the distribution facilities during early morning hours.
- Hazard tree patrol and mitigation work was completed during 2007. No work is planned for 2008.
- 3300' of URD cable was replaced in 2007.

Gifford 34F2

- Engineering analysis was completed in 2006 and a budget item prepared to implement improvements to the feeder protection scheme. Higher priority budget items left these reliability improvements unfunded for 2007 and 2008. Current planning is to begin work in 2009.
- No tree trimming work was planned for either 2007 or 2008.
- There is several planned replacement jobs of less than 1000' of URD cable scheduled in 2008.

Valley 12F1

- Engineering analysis was completed in 2006 and a budget item prepared to implement improvements to the feeder protection scheme that should reduce the exposure on long single phase laterals. Higher priority budget items left these reliability improvements unfunded for 2007 and 2008. Work is scheduled to be start in 2009.
- Hazard tree patrol and mitigation work was completed in 2007. No work planned for 2008, but work is planned for 2009.

Valley 12F3

- Engineering analysis was completed in 2007 after a car hit pole incident and subsequent line recloser failure to evaluate the overall protection scheme.
- No tree trimming work was planned or completed for 2007, but work is planned for 2008.
- No URD cable was replaced in 2007 or is planned to be replaced in 2008.

The Company typically uses several different protective devices on its feeders to isolate faulted or overloaded sections and also continue to serve the remaining customers. Generally, two different protection schemes are used to either "save" the lateral fuse or "blow" the lateral fuse by using or not using the instantaneous over current trip. Depending on the feeder, number of customers, types of faults, (temporary or permanent), customer type, time of year, etc. both of these schemes may be used on an individual feeder at different times at the discretion of the field personnel. With the better data and cause code collection that OMT provides and the customer growth on some of the Colville feeders, changes to the type of scheme used has been reviewed. In the last few years, new electronic fault indicators allow for quicker response to outages and help with restoration of customers. Fault indicators are being employed on some feeders to reduce the outage response times. Engineering reviews of some of the sections of the feeder(s) in the Colville area show that the addition of surge arrester protection should reduce outages on the feeder(s) due to lightning.

Avista develops a detailed annual budget for various improvements to the facilities it owns and operates. With the emphasis on Generation upgrades, Electric Transmission upgrades, Electric Substation capacity increases, and Electric Distribution capacity projects, the three projects described below were deferred until later years. Reliability specific projects were prioritized at a lower level than thermal capacity projects which is related to the recent economic growth in the Avista service territory. Many of these capacity projects have large capital expenditures associated with them and have taken the allocated capital budget resources. Also, as result of better data collection the analysis may show that these projects should have a higher priority over the next few years.

Feeder	Decisions/ basis	2008	2009 and beyond
Gifford 34F2	A small part of the initial budget item is being completed in 2008 on a portion of the feeder with the worst performance. The remaining portion of the budget item will be submitted again in 2009.	Planned	Planned
Valley 12F1	This feeder was first identified in mid 2006 as having areas that would be of concern. The priority of the projects identified for this feeder will be reviewed and resubmitted in future years.		Planned
Valley 12F3	A project has been identified to reconductor a section of this feeder near Waitts Lake to allow the addition of a third phase to a section of the feeder beyond the lake. Fusing protection will also be revised.	Planned	Planned

Besides the specific plans listed above, the Company performs ongoing maintenance activities in the Colville area that includes transmission aerial patrols, substation inspections and infrared surveys. Other maintenance activities occur daily as field personnel find and repair problems.

Porcelain cutout failures continue to contribute to outages and also have caused several pole fires on a system wide basis. As a result, Avista began purchasing a newer design of cutout with a polymer insulator beginning in January of 2005. Porcelain cutout failures tend to occur at a higher rate in areas with colder temperatures and wide temperature fluctuations, such as the Colville area. Avista started a system wide change out program in early 2007 to proactively replace problematic porcelain cutouts before this specific style fails. As of the end of February, 2008, 4400 out of about 8000 of this type of porcelain cutout have been replaced on the system. An additional 3600 are being planned to be replaced before year end 2008.

Avista has an annual vegetation management plan and budget to accomplish the plan. The budget is allocated into distribution, transmission, administration, and gas line reclearing.

Distribution

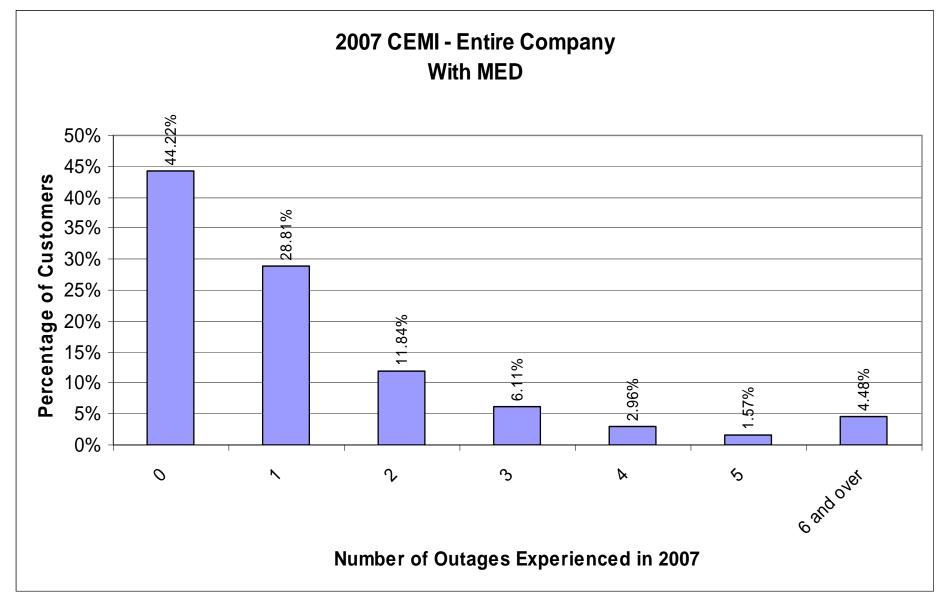
Our current plan for Avista's distribution system is managed by Asplundh Tree Expert Co. Every distribution circuit is scheduled to be line clearance pruned on a regular maintenance cycle of five years. Other distribution vegetation management activities include hazard tree patrol and herbicide application.

Transmission

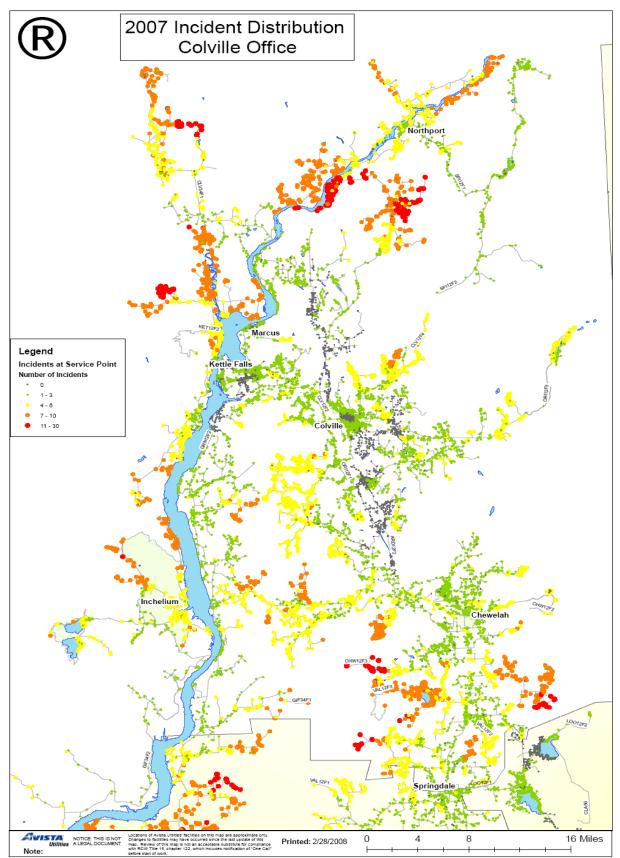
The transmission system is managed by Avista's forester. All 230 kV lines are patrolled annually for hazard trees and other issues, and mitigation is done in that same year. Approximately one third of 115 kV transmission system is patrolled annually for hazard tree identification, and Avista Utilities 19

assessment of right of way clearing needs. Right of way clearing maintenance is scheduled and performed approximately every ten to fifteen years (for each line). Interim spot work is done as identified and needed. Engineering specifications for various voltages, line configurations are followed when clearing the right of way. Currently, the work is bid to a variety of contractors.

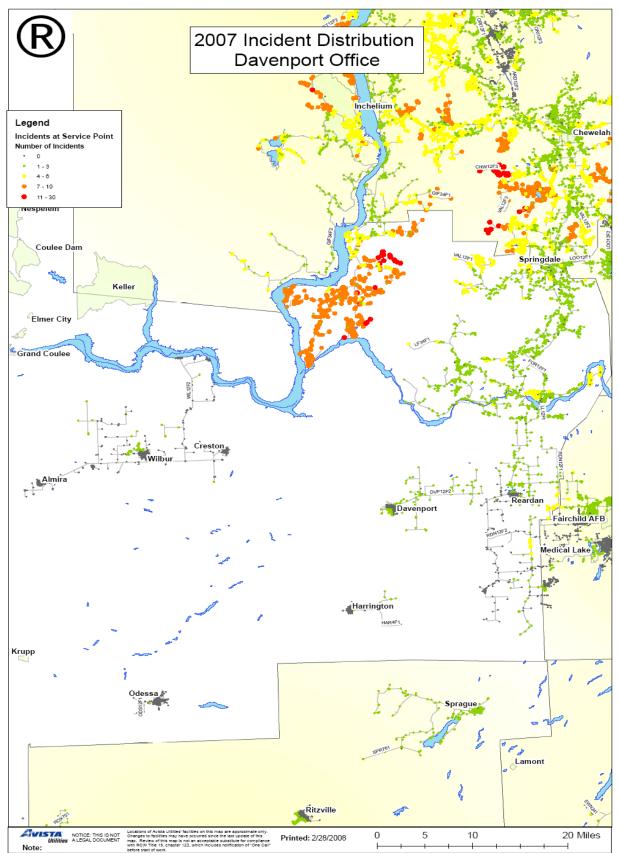
Customers Experiencing Multiple Interruptions

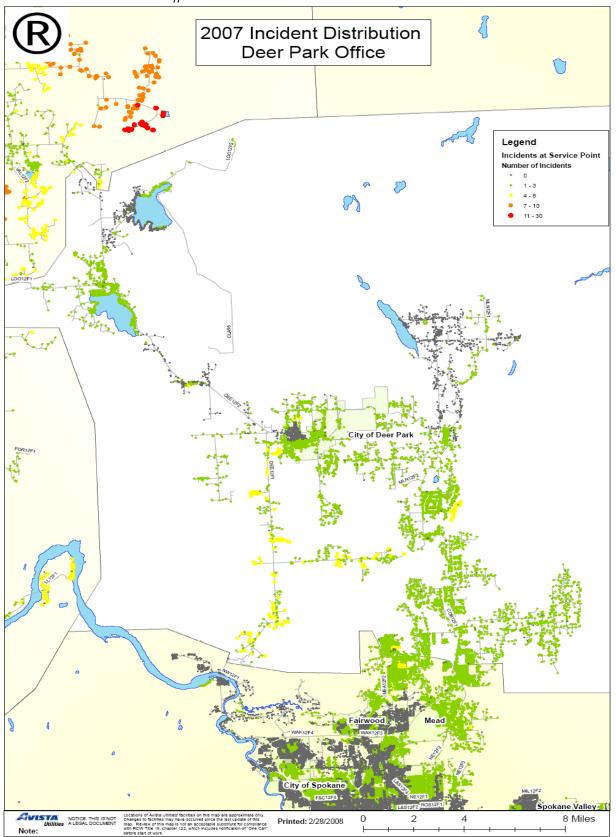

Avista has used the data from the OMT system integrated with the GIS system to geospatially display reliability data for specific conditions. The specific conditions imply looking at the number of sustained interruptions for each service point (meter point). This would be similar to the SAIFI indice, but would be related to a certain number of sustained interruptions. Avista includes all sustained interruptions including those classified under Major Event Days. This provides a view of what each customer on a specific feeder experiences on an annual basis. Momentary Interruptions are not included in the CEMI_n indice, because of the lack of indication on many of the rural feeder reclosers.

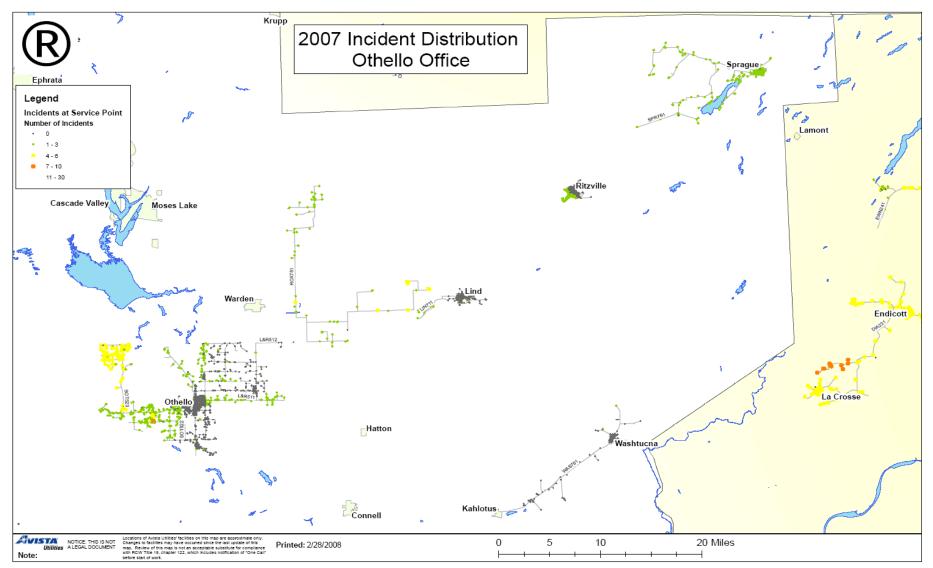
The first chart below provides a view of the percentage of customers served from the Avista system that have sustained interruptions. 73 % of Avista customer had 1 or fewer sustained interruptions and 4.48% of Avista Customers had 6 or more sustained interruptions during 2007.

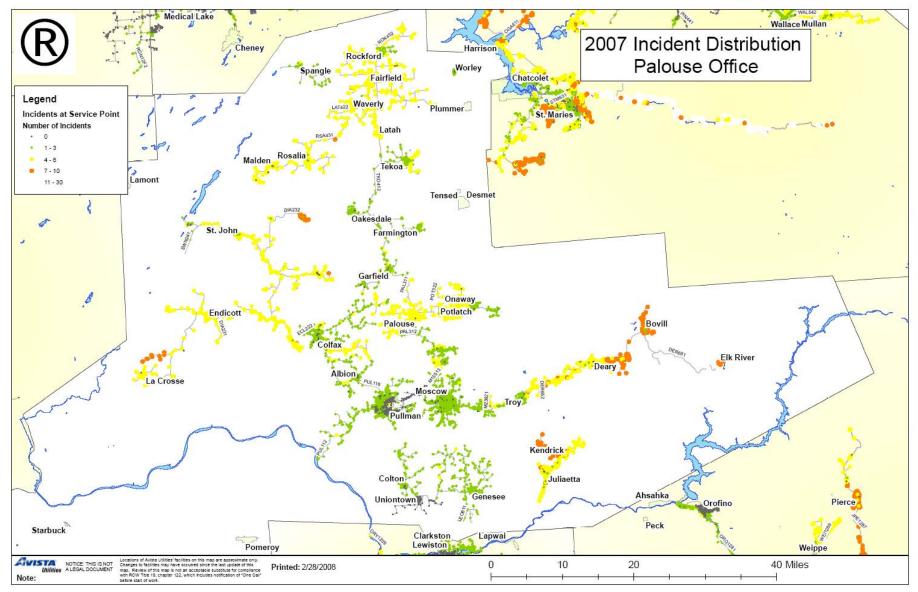

The remaining geographic plots show the sustained interruptions by color designation according to the legend on each plot for each office area. Note the office area is designated as the area in white for each plot and that there is overlap between adjacent office area plots. The adjacent office areas are shown in light yellow.

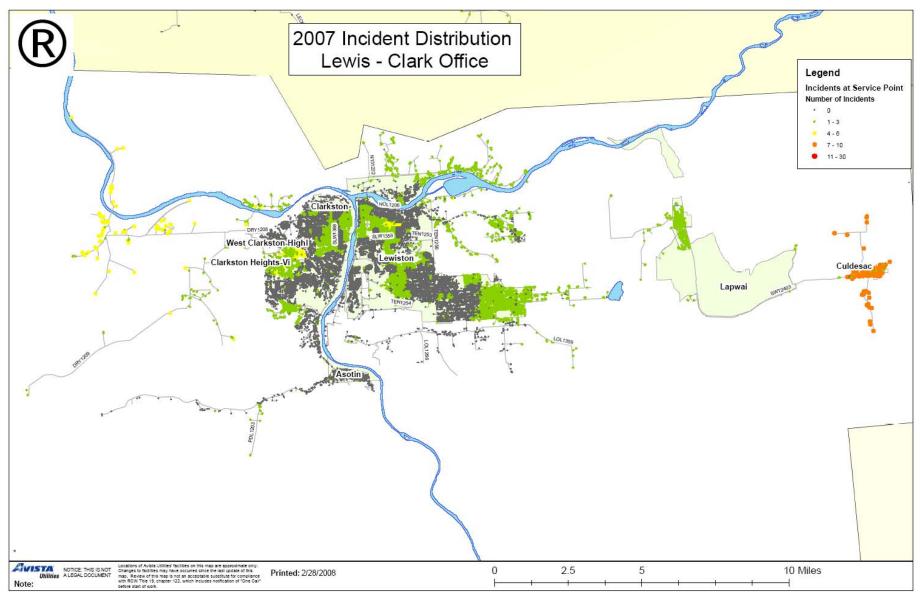
The plots provide a quick visual indication of varying sustained interruptions, but significant additional analysis is required to determine underlying cause(s) of the interruptions and potential mitigation.

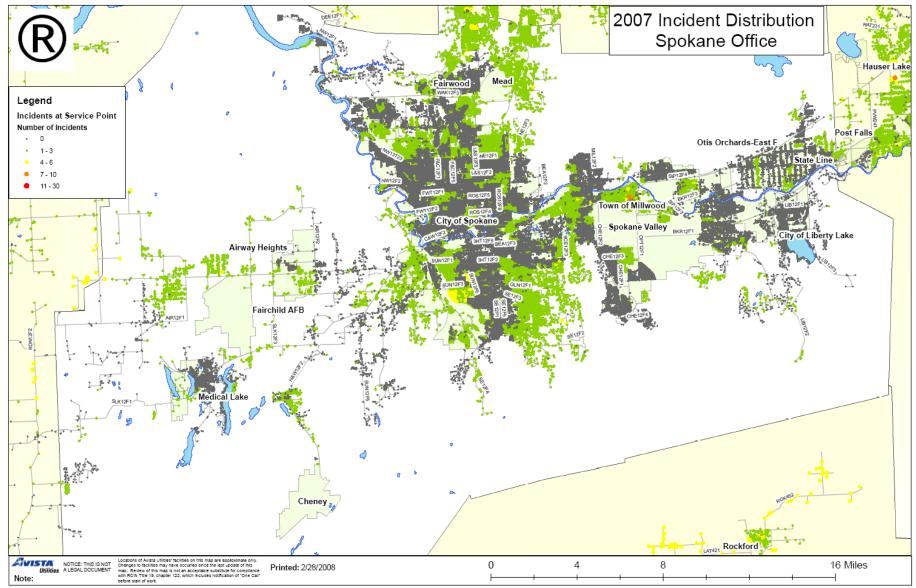

Avista Service Territory CEMI_n Chart

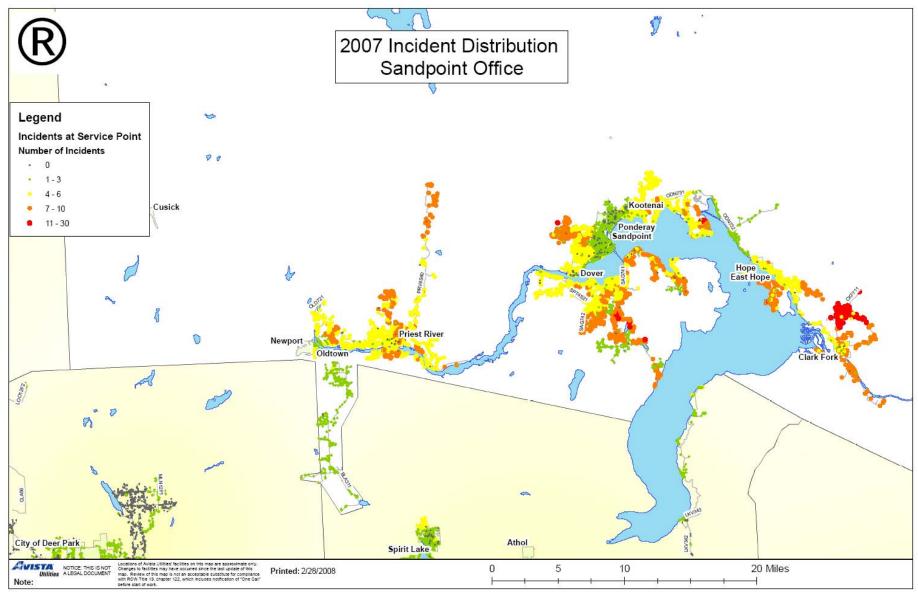

Colville Office - CEMI_n

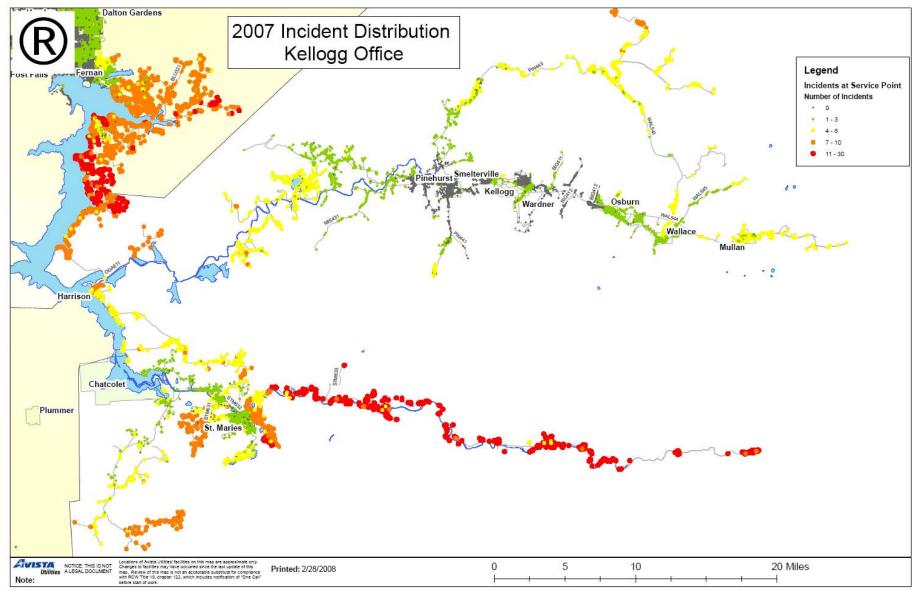

Davenport Office - CEMI_n

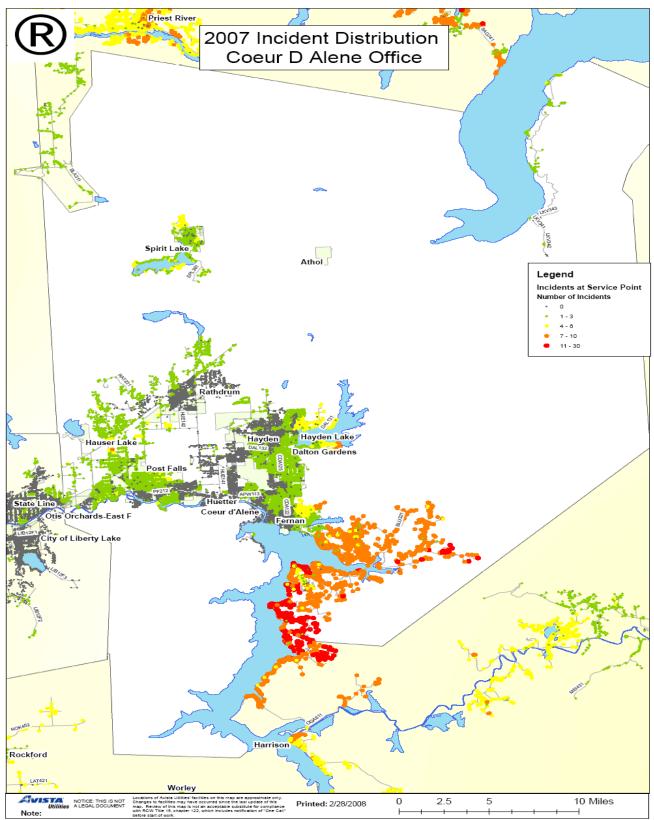

Deer Park Office - CEMIn

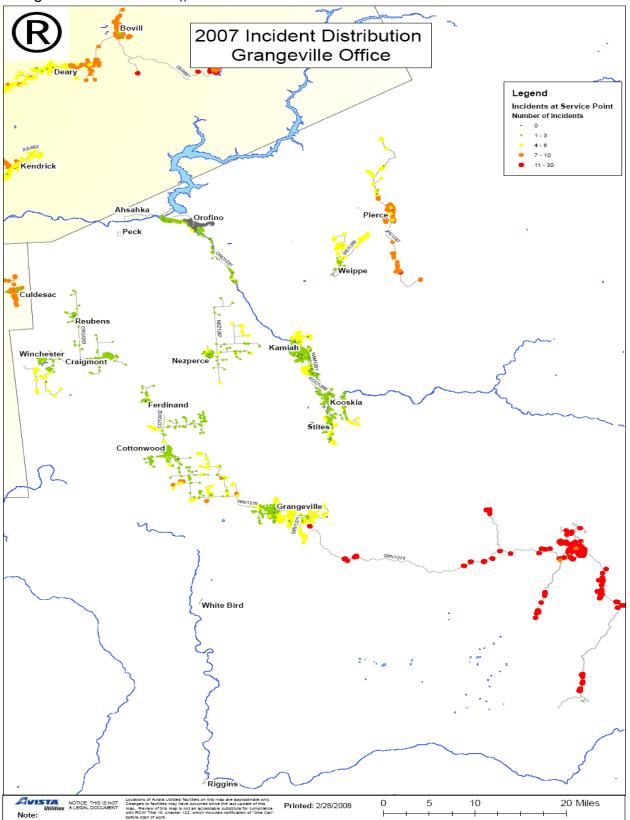

Othello Office - CEMI_n


Palouse Office - CEMIn

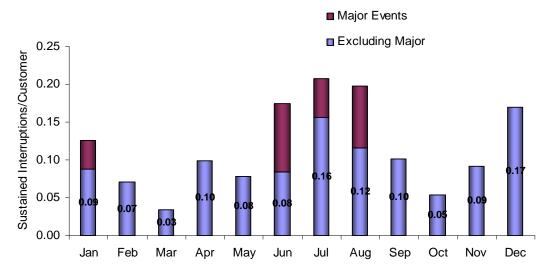



Spokane Office - CEMI_n


Sandpoint Office - CEMIn



Coeur d'Alene - CEMIn



Grangeville Office - CEMI_n

Monthly Indices

Each of the following indices, reported by month, shows the variations from month to month. These variations are partially due to inclement weather and, in some cases, reflect incidents of winter snowstorms, seasonal windstorms, and in mid- and late summer lightning storms. They also reflect varying degrees of animal activity causing disruptions in different months of the year.

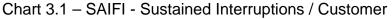
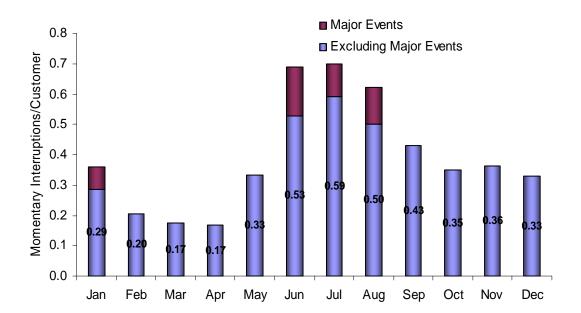



Chart 3.2 - MAIFI Momentary Interruption Events / Customer

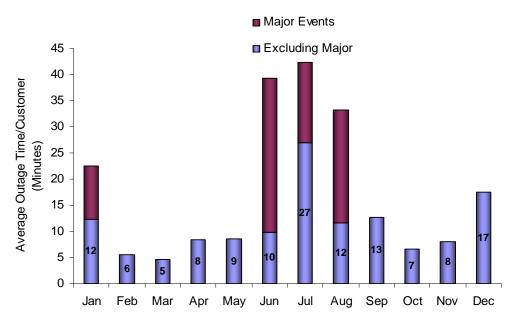
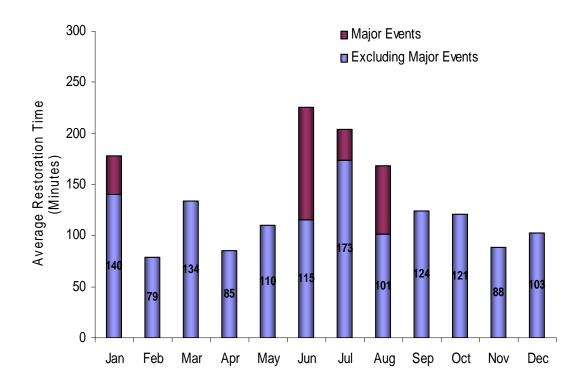



Chart 3.4 - CAIDI – Average Restoration Time

Customer Complaints

Commission Complaints

The following is a list of Complaints made to the Commission during this year.

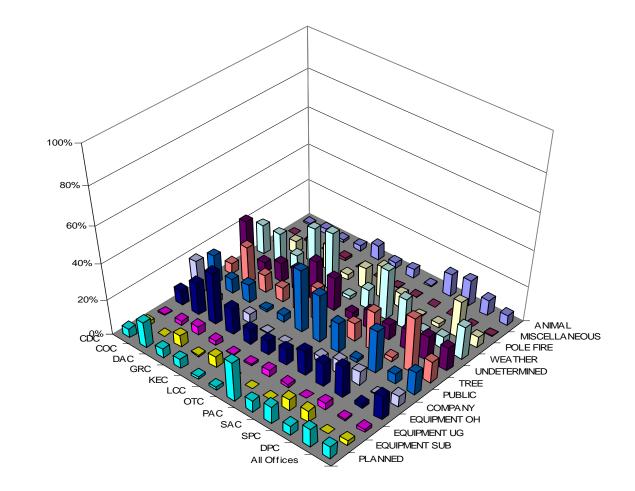
Customer Address	Complaint	Resolution
Chewelah, WA Chewelah 12F2	The area in which customer lives experiences periodic power outages. Yesterday they were without power for 18 hours for no apparent reason – no bad weather, etc. Neighbors have purchased \$3000 generators. Customer does not feel he should have to purchase as generator.	4 sustained outages and 1 momentary outage. 8/03/07 Complaint Closed – Company upheld.

Customer Complaints

The following is a list of complaints made to our Customer Service Representatives.

Customer / Feeder	Complaint	Resolution
Rice, WA Gifford 34F1	03/19/07 – Customer emailed Avista with a complaint about all of the outages in his area this year. Email forwarded on to the Colville office to answer his question.	Colville office sent Customer an email explaining that Avista was unaware that the customer was out of power. Apparently the customer does not live at this location and Avista is unaware when the power is out. Customer did not reply as of November 29, 2007.
Pullman, WA South Pullman 121	08/29/07 – Customer called to complain about several momentary outages over the past few days. Customer had counted 5 momentary outages in the last 4 days.	Electric Transmission Operations reported that this was a transmission problem that should be resolved now. 8/29/2007.
Rice, WA Gifford 34F1 or Gifford 34F2	07/17/07 - Customer called about power outage on July 22, 2007 that was scheduled.	Customer location could not be found, and call back phone number was not valid. No resolution.
Pullman, WA Pullman 112	10/02/07 –Customer called and is tired of coming home every day and having to reset all the clocks etc. due to Avista power surge issues or whatever is causing this in Pullman. Customer was told that if outage is less than 10 seconds it is not a big deal, but it happens constantly. Please get this fixed; customer doesn't have the option of choosing a different power company.	Complaint was forwarded to Pullman office. Customer was sent an apology letter after Avista left a message on his phone. Avista did experience some power outages about that time.
Hope, ID Clark Fork 711	08/14/07 – Customer unhappy power keeps going out. Would like someone to let him know what Avista is doing to fix this problem. Wants resolved before he goes out of town the 1 st of September.	Sandpoint office made several attempts to contact the customer and never did talk to him directly. Hope area had numerous outages and momentary outages during the summer due to wind storms and lightning.

Sustained Interruption Causes


Table 4.1 - % SAIFI per Cause by Office

The following table lists the percentage SAIFI contribution by causes for outages excluding major event days.

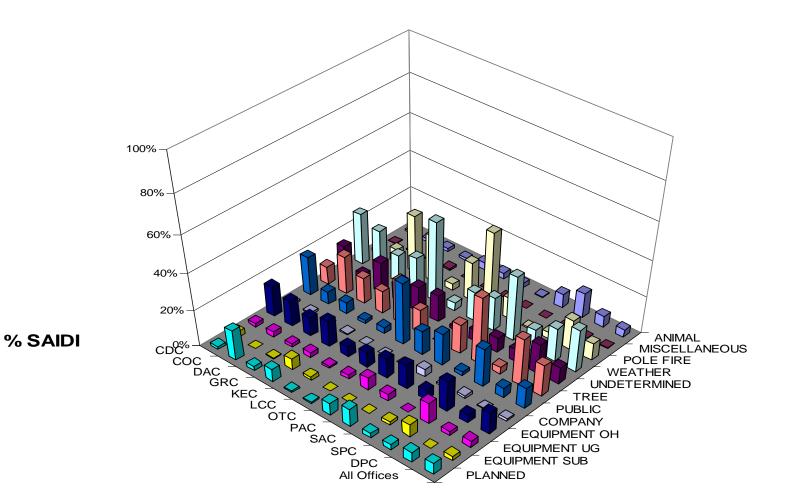
Reason	CDC	COC	DAC	GRC	KEC	LCC	отс	PAC	SAC	SPC	DPC	All Offices
ANIMAL	0.9%	2.6%	1.5%	3.1%	8.0%	3.5%	5.0%	0.8%	12.6%	14.8%	8.9%	5.7%
MISCELLANEOUS	0.1%	0.9%	0.0%	1.7%	0.0%	0.0%	0.1%	0.0%	0.0%	0.2%	0.0%	0.3%
POLE FIRE	0.4%	6.5%	12.6%	14.0%	3.0%	12.1%	18.0%	8.1%	0.6%	2.2%	20.4%	6.0%
WEATHER	16.6%	16.7%	9.4%	30.0%	32.4%	1.9%	11.1%	27.7%	16.9%	4.3%	6.7%	18.4%
UNDETERMINED	24.4%	6.0%	10.8%	12.6%	22.3%	18.4%	4.2%	10.3%	8.4%	11.3%	13.7%	13.1%
TREE	5.9%	20.6%	9.7%	8.1%	13.8%	18.7%	0.2%	9.9%	22.5%	2.3%	30.7%	12.2%
PUBLIC	16.4%	8.0%	10.3%	1.7%	3.9%	35.0%	26.6%	16.6%	1.7%	24.1%	5.6%	12.8%
COMPANY	19.2%	3.6%	0.1%	5.1%	0.1%	0.0%	0.0%	3.8%	7.6%	7.7%	0.5%	6.2%
EQUIPMENT OH	8.4%	18.0%	29.2%	15.0%	8.6%	7.8%	9.1%	14.2%	13.3%	17.6%	2.2%	13.6%
EQUIPMENT UG	0.5%	2.5%	4.9%	2.4%	0.6%	1.0%	3.7%	1.8%	0.1%	3.8%	1.0%	1.8%
EQUIPMENT SUB	2.3%	0.0%	6.3%	1.0%	6.2%	0.0%	0.0%	0.0%	6.6%	6.6%	0.0%	2.8%
PLANNED	4.8%	14.6%	5.2%	5.3%	1.2%	1.6%	22.1%	6.7%	9.7%	5.3%	10.2%	7.0%

CDC	Coeur d'Alene	LCC	Lewiston-Clarkston
COC	Colville	OTC	Othello
DAC	Davenport	PAC	Palouse
DPC	Deer Park	SAC	Sandpoint
GRC	Grangeville	SPC	Spokane
KEC	Kellogg/ St. Maries		

Chart 4.1 – % SAIFI per Cause by Office The following chart shows the percentage SAIFI contribution by causes for outages excluding major event days.

% SAIFI

Table 4.2 - % SAIDI per Cause by Office

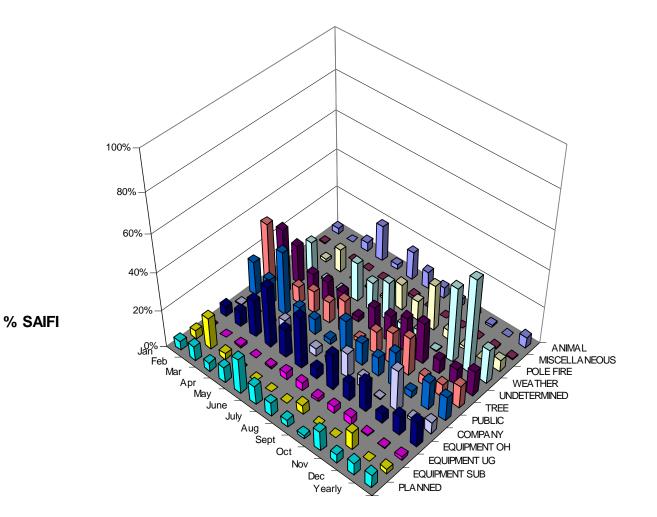

The following table lists the percentage SAIDI contribution by causes for outages excluding major event days.

Reason	CDC	COC	DAC	GRC	KEC	LCC	отс	PAC	SAC	SPC	DPC	All Offices
ANIMAL	1.1%	1.7%	1.9%	1.3%	4.0%	3.3%	2.8%	0.5%	7.4%	13.3%	6.1%	4.1%
MISCELLANEOUS	0.1%	0.5%	0.0%	1.2%	0.0%	0.0%	0.1%	0.2%	0.0%	0.1%	0.0%	0.3%
POLE FIRE	1.2%	7.3%	31.2%	25.0%	3.4%	20.6%	42.3%	11.4%	0.5%	3.3%	16.5%	9.2%
WEATHER	27.7%	23.4%	14.9%	18.7%	43.3%	4.3%	15.7%	18.0%	35.3%	11.7%	18.3%	23.3%
UNDETERMINED	15.5%	5.1%	16.5%	9.3%	13.7%	14.4%	2.0%	5.8%	7.9%	6.8%	15.9%	9.1%
TREE	9.8%	20.6%	14.0%	12.0%	23.0%	12.6%	0.1%	15.9%	36.3%	3.9%	25.6%	17.3%
PUBLIC	21.0%	6.8%	6.3%	1.9%	3.5%	33.6%	12.9%	17.3%	1.9%	20.9%	5.3%	11.4%
COMPANY	0.7%	1.3%	0.0%	0.6%	0.0%	0.0%	0.0%	4.1%	0.7%	1.6%	0.3%	1.3%
EQUIPMENT OH	16.4%	14.1%	10.4%	14.3%	5.6%	8.3%	10.9%	13.3%	5.5%	16.7%	4.2%	12.0%
EQUIPMENT UG	1.9%	3.0%	2.0%	2.9%	0.9%	2.3%	6.8%	3.8%	0.1%	11.7%	2.4%	3.5%
EQUIPMENT SUB	3.1%	0.0%	0.5%	6.0%	1.9%	0.0%	0.0%	0.0%	1.8%	6.9%	0.0%	2.4%
PLANNED	1.6%	16.5%	2.3%	6.8%	0.7%	0.7%	6.5%	9.7%	2.6%	3.1%	5.4%	6.1%

CDC	Coeur d'Alene	LCC	Lewiston-Clarkston
COC	Colville	OTC	Othello
DAC	Davenport	PAC	Palouse
DPC	Deer Park	SAC	Sandpoint
GRC	Grangeville	SPC	Spokane
KEC	Kellogg/ St. Maries		-

Chart 4.2 - % SAIDI per Cause by Office

The following chart shows the percentage SAIDI contribution by causes for outages excluding major event days.


Table 4.3 - % SAIFI per Cause by Month

The following table lists the percentage SAIFI contribution by causes for all outages, excluding major event days.

Reason	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Yearly
ANIMAL	2.9%	0.4%	5.0%	18.9%	2.6%	14.5%	8.9%	5.7%	3.7%	3.1%	1.0%	0.4%	5.7%
MISCELLANEOUS	0.1%	0.1%	0.0%	0.0%	0.0%	0.0%	1.3%	0.0%	0.1%	0.1%	0.0%	0.8%	0.3%
POLE FIRE	0.0%	1.6%	12.0%	0.0%	0.6%	1.1%	14.0%	10.0%	24.0%	4.8%	1.4%	0.4%	6.0%
WEATHER	5.7%	16.7%	0.8%	0.1%	20.8%	15.5%	20.9%	3.1%	5.5%	0.3%	39.7%	50.0%	18.4%
UNDETERMINED	24.3%	20.4%	10.0%	11.1%	10.8%	2.7%	13.4%	14.2%	18.7%	21.5%	7.6%	8.3%	13.1%
TREE	33.1%	14.1%	8.9%	11.8%	11.3%	17.7%	2.3%	12.0%	17.0%	20.1%	5.0%	6.5%	12.2%
PUBLIC	18.1%	13.6%	33.6%	8.9%	8.3%	2.8%	18.6%	12.2%	10.1%	18.7%	3.6%	14.8%	12.8%
COMPANY	0.5%	0.0%	0.9%	8.0%	11.0%	4.2%	4.1%	13.1%	5.9%	0.2%	22.1%	1.6%	6.2%
EQUIPMENT OH	5.4%	8.2%	19.7%	32.4%	15.1%	27.6%	5.5%	18.9%	9.7%	16.4%	5.1%	10.4%	13.6%
EQUIPMENT UG	0.8%	0.2%	1.2%	0.1%	1.0%	3.8%	4.1%	2.0%	3.4%	4.1%	0.6%	0.3%	1.8%
EQUIPMENT SUB	4.3%	17.0%	3.3%	0.6%	0.0%	0.0%	0.0%	4.9%	0.0%	0.0%	9.2%	0.0%	2.8%
PLANNED	4.8%	7.7%	4.7%	8.1%	18.5%	10.0%	6.9%	3.8%	1.9%	10.7%	4.6%	6.5%	7.0%

Chart 4.3 - % SAIFI per Cause by Month

The following chart shows the percentage SAIFI contribution by causes for all outages, excluding major event days.

Table 4.4 - % SAIDI per Cause by Month

REASON	Jan	Feb	Mar	Apr	Мау	June	Jul	Aug	Sept	Oct	Nov	Dec	Yearly
ANIMAL	1.5%	0.5%	3.1%	16.9%	2.4%	9.9%	4.9%	4.9%	2.0%	3.3%	1.4%	0.2%	4.1%
MISCELLANEOUS	0.1%	0.4%	0.0%	0.0%	0.0%	0.1%	0.7%	0.0%	0.0%	0.1%	0.0%	0.5%	0.3%
POLE FIRE	0.0%	1.7%	15.0%	0.0%	0.8%	1.6%	18.8%	17.3%	26.7%	3.6%	5.4%	0.7%	9.2%
WEATHER	6.4%	16.6%	0.8%	0.3%	28.6%	23.3%	32.8%	8.9%	5.8%	0.3%	43.1%	59.0%	23.3%
UNDETERMINED	16.9%	6.6%	10.6%	4.8%	3.0%	2.8%	9.0%	16.8%	14.4%	17.8%	5.9%	2.3%	9.1%
TREE	55.8%	29.6%	11.1%	31.8%	25.7%	10.2%	1.6%	9.3%	26.5%	17.3%	8.6%	7.3%	17.3%
PUBLIC	9.6%	15.4%	15.9%	12.3%	6.4%	4.9%	12.0%	13.9%	9.9%	21.8%	10.3%	11.0%	11.4%
COMPANY	0.3%	0.0%	0.5%	2.9%	1.9%	0.2%	0.4%	7.5%	0.7%	0.3%	0.9%	0.1%	1.3%
EQUIPMENT OH	5.9%	9.6%	18.1%	25.7%	17.9%	26.0%	5.3%	10.6%	7.9%	18.7%	9.3%	10.9%	12.0%
EQUIPMENT UG	1.0%	0.9%	2.1%	0.4%	2.0%	8.3%	3.6%	5.4%	5.0%	11.9%	1.6%	1.2%	3.5%
EQUIPMENT SUB	1.5%	14.0%	20.7%	1.1%	0.0%	0.0%	0.0%	2.1%	0.0%	0.0%	11.3%	0.0%	2.4%
PLANNED	1.1%	4.8%	2.0%	3.7%	11.4%	12.7%	10.8%	3.4%	1.1%	4.8%	2.3%	6.6%	6.1%

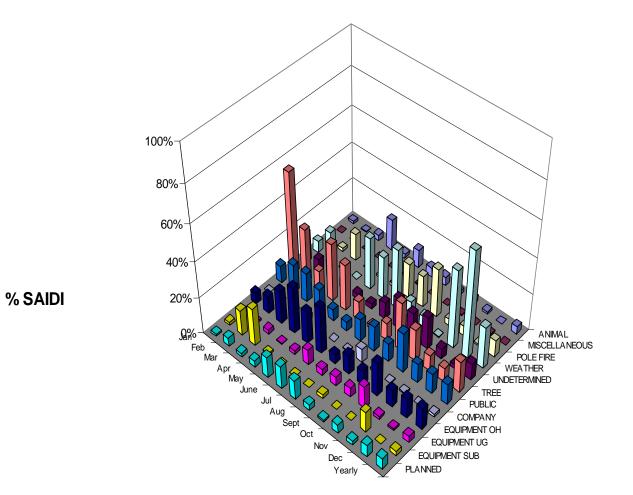

The following table lists the percentage SAIDI contribution by causes for outages excluding major event days.

Table 4.4.1 Ave Outage Time (HH:MM)

Reason	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec	Yearly
ANIMAL	1:33	1:37	1:41	1:37	1:45	1:59	1:57	1:46	1:48	1:44	1:25	1:24	1:48
MISCELLANEOUS	1:18	2:20	0:00	0:00	2:05	25:27	1:47	0:05	0:11	2:09	0:59	0:40	3:06
POLE FIRE	0:00	2:52	3:37	4:25	2:21	3:57	3:38	5:23	3:19	3:04	4:16	2:26	3:45
WEATHER	2:57	2:29	9:48	4:33	3:01	4:26	11:07	5:01	3:11	2:04	3:42	2:43	5:02
UNDETERMINED	2:00	1:54	1:54	2:05	2:01	2:58	2:26	1:44	1:50	1:46	1:40	1:42	2:03
TREE	4:19	3:24	2:25	7:40	3:01	2:34	3:02	2:34	3:18	3:06	2:33	2:37	3:20
PUBLIC	2:28	2:56	2:05	2:19	2:21	2:14	2:27	2:29	2:56	2:37	2:48	3:49	2:34
COMPANY	1:55	2:09	1:06	1:29	2:21	0:53	1:16	1:59	0:22	2:18	0:25	0:23	1:18
EQUIPMENT OH	2:51	2:40	2:23	1:55	2:41	3:00	4:45	2:56	3:09	2:59	3:10	2:55	2:59
EQUIPMENT UG	3:55	6:00	3:53	4:07	4:30	4:55	6:41	5:46	5:32	5:20	4:59	4:39	5:19
EQUIPMENT SUB	0:50	1:02	13:59	1:47	2:50	0:00	0:00	0:42	0:00	0:00	2:17	0:00	2:16
PLANNED	0:57	1:19	0:49	1:14	1:33	1:24	1:28	1:09	1:00	1:06	0:44	1:09	1:09

Chart 4.4 – % SAIDI per Cause by Month

The following chart shows the percentage SAIFI contribution by causes for outages excluding major event days.

Momentary Interruption Causes

The cause for many momentary interruptions is unknown. Because faults are temporary, the cause goes unnoticed even after the line is patrolled. Momentary outages are recorded using our SCADA system (System Control and Data Acquisition). On average, about 88% of Avista's customers are served from SCADA controlled stations.

Table 5.1 - % MAIFI per Cause by Office

The following table lists the percentage MAIFI contribution by causes for outages excluding major event days.

												All
REASON	CDC	COC	DAC	GRC	KEC	LCC	OTC	PAC	SAC	SPC	DPC	Offices
ANIMAL POLE FIRE	0.1% 1.6%	4.6% 0.0%	0.0% 0.0%	1.3% 0.0%	0.0% 0.0%	7.5% 0.7%	0.0% 0.0%	0.6% 0.0%	6.2% 0.0%	12.6% 2.8%	0.0% 0.0%	5.5% 1.1%
WEATHER	22.4%	22.7%	53.2%	36.6%	23.8%	5.5%	9.5%	13.9%	13.9%	5.9%	0.0%	14.2%
TREE	2.2%	0.0%	0.0%	0.8%	0.0%	0.0%	0.0%	1.8%	5.3%	0.9%	0.0%	1.6%
PUBLIC	3.6%	0.0%	0.0%	0.0%	0.0%	1.1%	0.0%	3.9%	0.0%	4.5%	0.0%	2.8%
COMPANY	2.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	3.0%	3.2%	0.0%	1.7%
UNDETERMINED EQUIPMENT UG	51.7% 0.0%	68.7% 0.0%	46.8% 0.0%	61.0% 0.0%	76.2% 0.0%	81.1% 0.0%	84.8% 0.0%	71.2% 0.8%	60.2% 1.4%	58.8% 5.1%	0.0% 0.0%	63.8% 1.7%
EQUIPMENT OH	5.6%	4.0%	0.0%	0.2%	0.0%	2.8%	0.0%	5.2%	6.9%	4.8%	0.0%	4.5%
PLANNED	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%	5.8%	1.2%	3.0%	1.3%	0.0%	1.2%
EQUIPMENT SUB	8.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.3%	0.0%	0.0%	0.0%	1.6%
NOT OUR ROBLEM	0.0%	0.0%	0.0%	0.0%	0.0%	1.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%

CDC	Coeur d'Alene	LCC	Lewiston-Clarkston
COC	Colville	OTC	Othello
DAC	Davenport	PAC	Palouse
DPC	Deer Park	SAC	Sandpoint
GRC	Grangeville	SPC	Spokane
KEC	Kellogg/ St. Maries		

Table 5.1.1 - % MAIFI per Cause by Office (Washington only)

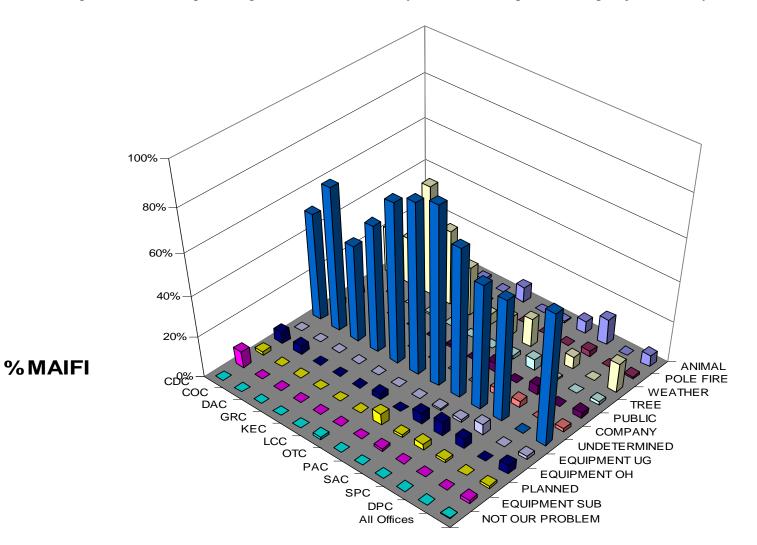
REASON	сос	DAC	отс	SPC	DPC	PAC-WA	LCC-WA	Grand Total
ANIMAL	0.0%	0.0%	0.0%	4.2%	0.0%	0.0%	4.4%	3.3%
POLE FIRE	1.4%	0.0%	0.0%	0.8%	0.0%	1.6%	5.2%	1.4%
WEATHER	26.7%	29.1%	29.8%	34.2%	100.0%	31.5%	19.1%	31.6%
TREE	1.8%	0.0%	0.0%	0.8%	0.0%	0.0%	0.0%	0.8%
PUBLIC	0.9%	0.0%	10.6%	2.7%	0.0%	0.0%	3.8%	2.6%
COMPANY	2.1%	0.0%	0.0%	2.1%	0.0%	0.7%	0.0%	1.7%
UNDETERMINED	63.0%	70.9%	59.6%	49.9%	0.0%	65.9%	52.0%	53.0%
EQUIPMENT UG	0.0%	0.0%	0.0%	2.1%	0.0%	0.3%	4.1%	1.9%
EQUIPMENT OH	3.9%	0.0%	0.0%	3.0%	0.0%	0.0%	8.9%	3.5%
PLANNED	0.1%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.1%
EQUIPMENT SUB	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2.6%	0.3%

The following table lists the percentage MAIFI contribution by causes for outages excluding major event days.

COC	Colville
DAC	Davenport

DPC

OTC Othello

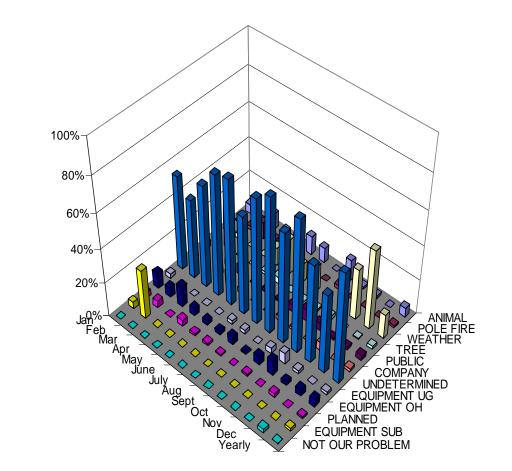

PAC-WA Palouse Washington SPC

- Spokane
- LCC-WA Lewiston-Clarkston Washington

Deer Park

Chart 5.1 - % MAIFI per Cause by Office

The following chart shows the percentage MAIFI contribution by causes for outages excluding major event days.


Table 5.2 - % MAIFI per Cause by Month

REASON	Jan	Feb	Mar	Apr	May	June	Jul	Aug	Sept	Oct	Nov	Dec	Yearly
ANIMAL	5.2%	0.0%	9.9%	4.2%	6.4%	10.8%	8.9%	0.2%	12.2%	1.6%	1.5%	0.0%	5.5%
POLE FIRE	0.0%	2.2%	9.6%	4.5%	2.7%	0.0%	0.1%	0.0%	2.5%	0.0%	0.0%	0.0%	1.1%
WEATHER	15.0%	2.9%	0.0%	0.0%	10.5%	20.9%	11.2%	14.7%	2.7%	0.0%	29.7%	46.2%	14.2%
TREE	1.3%	10.9%	0.0%	0.0%	1.6%	3.8%	0.0%	0.0%	1.1%	2.6%	0.0%	0.6%	1.6%
PUBLIC	3.3%	0.0%	4.1%	3.9%	2.2%	4.1%	2.3%	0.0%	1.3%	0.0%	8.8%	2.6%	2.8%
COMPANY	1.1%	0.0%	6.1%	7.6%	2.5%	0.0%	0.0%	2.8%	1.6%	0.0%	4.7%	0.0%	1.7%
UNDETERMINED	54.2%	45.7%	58.7%	69.7%	72.1%	56.9%	71.6%	77.5%	63.6%	76.1%	56.8%	45.7%	63.8%
EQUIPMENT UG	2.7%	0.0%	0.0%	0.0%	0.0%	2.0%	2.1%	0.0%	3.4%	6.2%	2.0%	0.0%	1.7%
EQUIPMENT OH	9.3%	5.8%	12.1%	4.6%	2.7%	2.2%	4.7%	0.9%	5.0%	8.9%	2.1%	3.8%	4.5%
PLANNED	3.5%	4.1%	0.0%	3.8%	1.4%	1.6%	0.5%	0.0%	1.1%	0.0%	2.1%	0.0%	1.2%
EQUIPMENT SUB	3.8%	28.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.6%
NOT OUR PROBLEM	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2.0%	0.2%

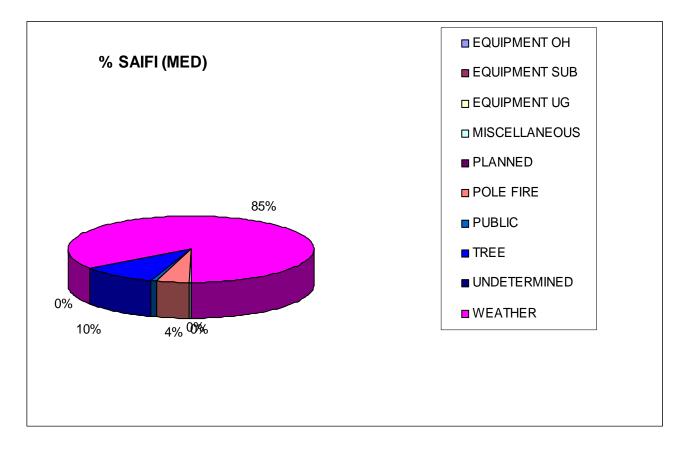
The following table lists the percentage MAIFI contribution by causes for outages excluding major event days.

Chart 5.2 – % MAIFI per Cause by Month

The following chart shows the percentage MAIFI contribution by causes for outages excluding major event days.

Maintenance Plan Summary - Overhead Equipment with Sub Category Components

With the increasing quality of the SAIFI data, Avista has completed a preliminary analysis, based on our subject matter experts, indicating that performing a preventative maintenance or an inspection program will not provide the best value to our customers in all cases. As shown in the table, the projected failure rates impact on SAIFI do not justify the expenses of a preventative maintenance program on all of this equipment. However, we continue to evaluate and monitor these to determine if and when a preventative maintenance program would be in the best interest of our customers.


Visual Inspections of the poles and crossarms is being increased in 2008 to a 20 year cycle in order to maintain a reliable system. This visual inspection along with field personnel will identify some problem equipment during the course of their work and will get them repaired or replaced, but this is not part of a scheduled preventative maintenance program.

OH Equipment/Sub	Maintenance Plan Summary	Projected Average Annual
category component		SAIFI contribution
Arrestors	No Program	0.013
Capacitor	No Program	Not calculated
Conductor – Pri	No Program	0.013
Conductor – Sec	No Program	Very Small
Crossarm – Rotten	1-2% visually inspected annually but	0.002
	planning to move to 5% annually in 2008.	
Cutout/Fuse	No specific program, but one vintage of	0.073
	cutout is being replaced on a planned	
	basis.	
Insulator	No Program	0.10
Insulator Pin	No Program	0.024
Other	No Program	Not calculated
Pole – Rotten	1-2% inspected annually but planning to	0.01
	move to 5% annually in 2008.	
Recloser	Midline Reclosers – opportunistic or	0.025
	suspect, No defined cycle program.	
	Substation Reclosers – 13 year	
	maintenance cycle and planning to move	
	to a 10 year cycle.	
	Switchgear breakers – 7 year maintenance	
	cycle.	
Regulator	Substation Regulators inspected monthly	0.003
	with most midline regulators being	
	inspected monthly.	-
Switch / Disconnect	No Program	0
Transformer - OH	No Program, but transformers that are	0.004
	removed from service for any reason and	
	are older than 1980 are not refurbished	
	and returned to service.	

Major Event Day Causes

Chart 6.1 – % SAIFI by Cause Code for the Major Event Days

The following chart shows the percentage SAIFI contribution by causes for outages during major event days

Table 6.1 – % SAIFI by Sub Cause Code for the Major Event Days

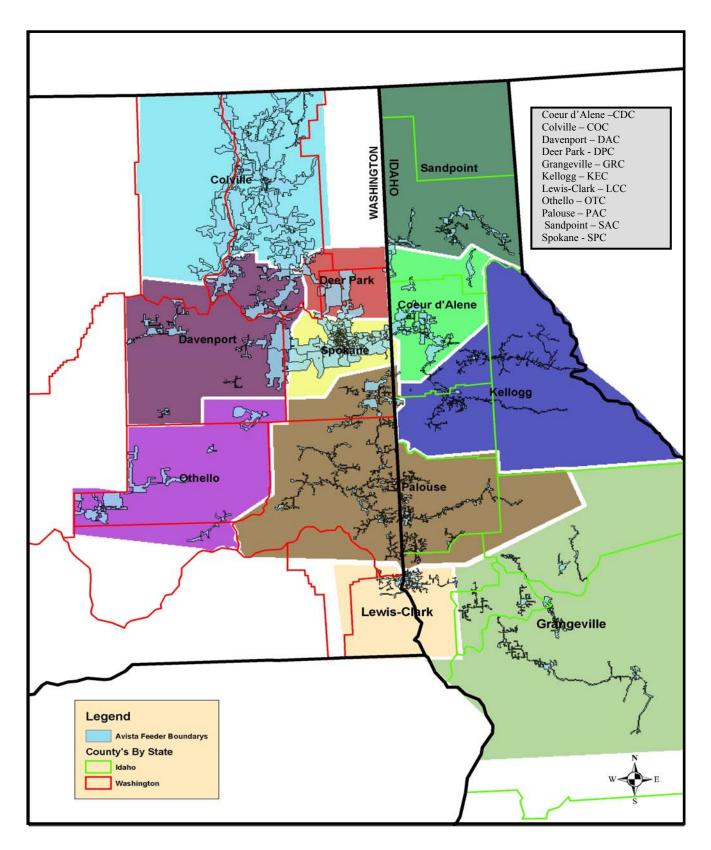
The following table shows the SAIFI contribution and Customer hours by sub causes code for the three main outage causes during major event days.

Cause Code	Sub reason	Sum of Ni	Sum of ri x Ni (hours)
Pole Fire	Pole Fire	3799	9005:24
Total		3799	9005:24
TREE	Tree Fell	71	320
	Tree Growth	6	7
	Weather	9018	50031
Total		9095	50359
WEATHER	Snow/Ice	1980	378
	Lightning	28484	120689
	Wind	44823	252280
Total		75287	373348

Table 6.2 – Yearly Summary of the Major Event Days

Table 6.2 is provided as an initial review of Major Event Day information. The main premise of the IEEE Major Event Day calculation is that using the 2.5bmethod should classify 2.3 days each year as MED's.

The following table shows the previous major event days, the daily SAIDI value and the relationship of the yearly T_{MED} .


Year	Date	SAIDI	T_{MED}	
2003	01-03-2003	5.38	4.96	
	05-24-2003	5.11		
	09-08-2003	5.47		
	10-16-2003	6.62		
	10-28-2003	9.25		
	11-19-2003	57.06		
2004	05-21-2004	7.11	6.35	
	08-02-2004	7.36		
	12-08-2004	31.00		
2005	06-21-2005	39.53	4.916	
	06-22-2005	9.03		
	08-12-2005	19.60		
2006	01-11-2006	12.10	7.058	
	03-09-2006	8.58		
	11-13-2006	30.79		
	12-14-2006	29.26		
	12-15-2006	158.31		
2007	01-06-2007	9.98	8.017	
	06-29-2007	32.64		
	07-13-2007	12.79		
	08-31-2007	21.30		
2008			9.224	

Interruption Cause Codes

MAIN CATEGORY	Proposed	SUB CATEGORY (Change	sed
	(Changes Only)	(= - 3	
ANIMAL		Bird	Outages caused by animal contacts. Specific animal called out in sub category.
		Protected	anna bailea bat in sub bategory.
		Squirrel	
		Underground	
		Other	
PUBLIC		Car Hit Pad	Underground outage due to car, truck,
			construction equipment etc. contact with pad transformer, junction enclosure etc
		Car Hit Pole	Overhead outage due to car, truck, construction equipment etc. contact with pole, guy, neutral etc.
		Dig In	Dig in by a customer, a customer's contractor, or another utility.
		Fire	Outages caused by or required for a house/structure or field/forest fire.
		Tree	Homeowner, tree service, logger etc. fells a tree into the line.
		Other	Other public caused outages
COMPANY		Dig in	Dig in by company or contract crew.
		Other	Other company caused outages
EQUIPMENT OH		Arrestors	Outages caused by equipment failure. Specific equipment called out in sub category.
		Capacitor	
		Conductor - Pri	
		Conductor - Sec	
		Connector - Pri	
		Connector - Sec	
		Crossarm- rotten	
		Cutout / Fuse	
		Insulator	
		Insulator Pin	
		Other	
		Pole - Rotten	
		Recloser	
		Regulator	
		Switch / Disconnect	
		Transformer - OH	
EQUIPMENT UG		URD Cable - Pri	Outages caused by equipment failure. Specific equipment called out in sub category.
		URD Cable- Sec	equipment caned out in sub category.
		Connector - Sec	
		Elbow	
		Junctions	
		Primary Splice	
		Termination	
		Transformer - UG	
		Other	

MAIN		SUB Bra		
CATEGORY	Proposed (Changes Only)	Pro Pro	posed anges Only)	Definition
EQUIPMENT SUB	(enangee enity)	High side fuse Bus Insulator High side PCB High side Swt / Disc Low side OCB/Recloser Low side Swt / Disc Relay Misoperation Regulator Transformer Other		
MISCELLANEOUS		SEE REMARKS		For causes not specifically listed elsewhere
NOT OUR PROBLEM (Outages in this category are not included in reported statistics)		Customer Equipment SEE REMARKS		Customer equipment causing an outage to their service. If a customer causes an outage to another customer this is covered under Public.
,		Other Utility		Outages when another utility's facilities cause an outage on our system.
POLE FIRE				Used when water and contamination causes insulator leakage current and fire. If insulator is leaking due to material failure list under equipment failure. If cracked due to gunfire use customer caused other.
PLANNED		Maintenance / Upgrade Forced		Outage, normally prearranged, needed for normal construction work Outage scheduled to repair outage damage
TREE		Tree fell Tree growth		For outages when a tree falls into distribution primary/secondary or transmission during normal weather Tree growth causes a tree to contact distribution primary/secondary or transmission during normal weather.
		Service		For outages when a tree falls or grows into a service.
		Weather		When snow and wind storms causes a tree or branch to fall into, or contact the line. Includes snow loading and unloading.
UNDETERMINED				Use when the cause can not be determined
WEATHER		Snow / Ice		Outages caused by snow or ice loading or unloading on a structure or conductor. Use weather tree for snow and ice loading on a tree.
		Lightning Wind		Lightning flashovers without equipment damage. Equipment failures reported under the equipment type. Outages when wind causes conductors to blow into each other, another structure, building etc. (WEATHER/TREE) used for tree contacts.

Office Areas

Indices Calculations

Sustained Interruption

• An interruption lasting longer than 5 minutes.

Momentary Interruption Event

• An interruption lasting 5 minutes or less. The event includes all momentary interruptions occurring within 5 minutes of the first interruption. For example, when an interrupting device operates two, three, or four times and then holds, it is considered a single event.

SAIFI – System Average Interruption Frequency Index

- The average number of sustained interruptions per customer
- = <u>The number of customers which had *sustained interruptions*</u>

Total number of customers served

 $\bullet = \underline{\sum N_i}_{N_T}$

MAIFI_E – Momentary Average Interruption Event Frequency Index

- The average number of momentary interruption events per customer
- = <u>The number of customers which had *momentary interruption events* Total number of customers served</u>
- = $\frac{\sum ID_E N_i}{N_T}$
- MAIFI can be calculated by one of two methods. Using the number of momentary interruptions or the number momentary events. This report calculates MAIFI_E using momentary events. The event includes all momentary interruptions occurring within 5 minutes of the first interruption. For example, when an automatic interrupting device opens and then recloses two, or three times before it remains closed, it is considered a single event.

SAIDI – System Average Interruption Duration Index

- Average sustained outage time per customer
- = <u>Outage duration multiplied by the customers effected for all *sustained interruptions* Total number of customers served</u>

$$\bullet = \underline{\sum r_i N_i} \\ N_T$$

CAIDI – Customer Average Interruption Duration Index

- Average restoration time
- = <u>Outage duration multiplied by the customers effected for all *sustained interruptions* The number of customers which had *sustained interruptions*</u>

$$\bullet = \frac{\sum r_i N_i}{\sum N_i}$$

Quantities

i = An interruption event; $r_i = Restoration time for each interruption event;$ T = Total; $ID_E = Number of interrupting device events;$ $N_i = Number of interrupted customers for each interruption event during the reporting period;$ $<math>N_T = Total number of customers served for the area being indexed;$

 $CEMI_n$ – Customers Experiencing Multiple Sustained Interruptions more than n.

- CEMI_n
- = <u>Total Number of Customers that experience more than *n* sustained interruptions</u> Total Number of Customers Served
- $\bullet = \underline{CN}_{(k \ge n)} \\ N_T$

 $CEMSMI_n$ – Customers experiencing multiple sustained interruption and momentary interruption events.

- CEMSMIn
- = <u>Total Number of Customers experiencing more than *n* interruptions</u> Total Number of Customers Served
- = $\frac{\text{CNT}_{(k>n)}}{N_T}$

MED - Major Event Day

A major event day is a day in which the daily system SAIDI exceeds a threshold value. Its purpose is to allow major events to be studied separately from daily operation, and in the process, to better reveal trends in daily operation that would be hidden by the large statistical effect of major events.

T_{MED} is calculated (taken from the IEEE 1366-2003 Standard)

The major event day identification threshold value, T_{MED} , is calculated at the end of each reporting period (typically one year) for use during the next reporting period as follows:

a) Collect values of daily SAIDI for five sequential years ending on the last day of the last complete reporting period. If fewer than five years of historical data are available, use all available historical data until five years of historical data are available.

b) Only those days that have a SAIDI/Day value will be used to calculate the T_{MED} (do not include days that did not have any interruptions).

c) Take the natural logarithm (ln) of each daily SAIDI value in the data set.

d) Find a(Alpha), the average of the logarithms (also known as the log-average) of the data set.

e) Find b(Beta), the standard deviation of the logarithms (also known as the log-standard deviation) of the data set.

f) Compute the major event day threshold, TMED, using equation (25).

$$T_{MED} = e^{-a2.5 b}$$
(25)

g) Any day with daily SAIDI greater than the threshold value TMED that occurs during the subsequent reporting period is classified as a major event day. Activities that occur on days classified as major event days should be separately analyzed and reported.

Numbers of Customers Served

The following numbers of customers were based on the customers served at the beginning of the year. These numbers were used to calculate indices for this report.

Office	Customers	% of Total
Coeur d'Alene	46032	13.3%
Colville	17349	5.0%
Davenport	6759	2.0%
Deer Park	10001	2.9%
Grangeville	9981	2.9%
Kellogg/St. Maries	13978	4.0%
Lewis-Clark	28713	8.3%
Othello	5949	1.7%
Palouse	37454	10.9%
Sandpoint	13793	4.0%
Spokane	155186	45.0%
System Total	345195	

2009 Electric Service Reliability Monitoring Annual Report

© 2009 Avista Corporation. All Right Reserved

Permission of the Copyright owner is granted to users to copy, download, reproduce, transmit or distribute any part of this document provided that: (1) the user includes Avista's copyright notice on all copies, and (2) the materials are not used in any misleading or inappropriate manner. Furthermore, no portion of the attached work shall be republished in printed or digital form without the written permission of the Copyright owner.

CONTENTS

	-
DATA COLLECTION AND CALCULATION CHANGES	
Data Collection	
Interruption Cause Codes	
Customers Experiencing Multiple Interruptions	
DEFINITIONS	4
Reliability Indices	
Baseline Reliability Statistics	
Major Events	
Customer Complaints	7
SYSTEM INDICES	7
Chart 1.1 – SAIFI - Sustained Interruptions / Customer	
Chart 1.2 – Sustained Interruptions / Customer Historic Comparison	
SAIFI Linear Trend Line Chart	
Chart 1.4 – Momentary Interruptions/ Customer Historic Comparison	
Chart 1.5 - SAIDI – Average Outage Time / Customer	
SAIDI Linear Trend Line Chart	
Chart 1.6 - CAIDI – Average Restoration Time	
OFFICE INDICES	14
Chart 2.1 – SAIFI - Sustained Interruptions / Customer	
Chart 2.2 - MAIFI Momentary Interruption Events / Customer	
Chart 2.3 - SAIDI – Average Outage Time / Customer	
Chart 2.4 - CAIDI – Average Restoration Time	
AREAS OF CONCERN	
Cause Information:	
Colville Area Work Plans:	
Avista System Wide Work Plans:	
Avista System Wide Vegetation Management Plan:	
CUSTOMERS EXPERIENCING MULTIPLE INTERRUPTIONS	
Avista Service Territory CEMI _n Chart	
Colville Office - CEMI	
Davenport Office - CEMI _n	
Deer Park Office - CEMI _n	
Othello Office - CEMI _n	
Palouse Office - CEMI _n	
Lewis-Clark Office - CEMI _n	
Spokane Office - CEMI _n	
Sandpoint Office - CEMI _n	
Kellogg Office - CEMI _n	
Coeur d'Alene - CEMI _n	

35 36 36
39
41
48
52
53
53
56
58
59
59
59
59
59
59

NUMBERS OF	CUSTOMERS S	ERVED		62
------------	--------------------	-------	--	----

Introduction

Washington state investor-owned electric companies are to provide statements describing their reliability monitoring in an annual report pursuant to WAC 480-100-393 and WAC 480-100-398.

This document reports Avista Utilities' reliability metrics for the calendar year 2009. All numbers in this document are based on system data. The Company's system includes eleven geographical divisions. Two of these divisions straddle the Washington and Idaho border and commingle jurisdictional customers. A map of Avista's operating area is included in a following section.

WAC 480-100-393 (3)(b) requires the establishment of baseline reliability statistics. The Company's baseline statistics are included in this report.

Avista continues to review its baseline reliability statistics in light of operational experience under this regulatory protocol. Avista may modify its baseline statistics as appropriate and will update the Commission accordingly.

Avista added a new section to the 2007 annual report which analyzes the areas where customers are experiencing multiple sustained outages. This new section provides analysis of a reliability indice called $CEMI_n$, which implies Customers Experiencing Multiple sustained Interruptions more than n times.

Data Collection and Calculation Changes

WAC 480-100-398 (2) requires the Company to report changes made in data collection or calculation of reliability information after initial baselines are set. This section addresses changes that the Company has made to data collection.

Data Collection

Since Avista's Electric Service Reliability Monitoring and Reporting Plan was filed in 2001, there have been several improvements in the methods used to collect outage data. In late 2001, centralizing the distribution trouble dispatch and data collection function for Avista's entire service territory began. The distribution dispatch office is located in the Spokane main complex. At the end of September 2005, 100% of the Company's feeders, accounting for 100% of the customers, are served from offices that employ central dispatching.

The data collected for 2009 represents the fourth full year of outage data collected through the Outage Management Tool (OMT). For 2009, all data was collected using the "Outage Management Tool" (OMT) based on the Company's Geographic Information System (GIS). The OMT system automates the logging of restoration times and customer counts.

Avista did discover a software coding error that has been within the OMT system since 2002 that will cause a small increase in the SAIDI and CAIDI for 2008. Previous years were also evaluated to determine the overall impact to the Avista baseline statistics and at this time Avista is not proposing a change to the baseline numbers. The software error only occurred during very specific outage conditions when a group of customers with an initial outage starting time were "rolled" up into another group of customers that were determined to be part of the first group outage. The second group may have had a later outage starting time. When the first group of customer outage information was rolled up, the original outage starting time was lost and the second group outage starting time. The number of customers was counted correctly.

Even as good as the OMT system is at quantifying the number of customers and duration of the outage duration, there still are areas where the data collection is not precise. Determining the exact starting time of an outage is dependent on when a customer calls in, how well the Avista Distribution Dispatcher determines where the outage is and defines the device that has opened to remove the faulted section.

As AMR/AMI metering is implemented in the future and the customer meter provides outage information to the OMT system through an interface, the SAIDI and CAIDI numbers are expected to increase. This is similar to the above discussion.

Use of the OMT system and GIS data has improved the tracking of the numbers of customers without power, allowed for better prioritization of the restoration of service and the improved dispatching of crews.

Avista has reported in the previous annual reports that the completion of the transition to the OMT system had caused an increase in the variability of the data collected from 2001 to 2007. This Annual Report continues to show that a gradual increase in the SAIFI and SAIDI numbers that cannot be attributed to the transition to the OMT system. Review the charts, on pages 9 and 12 that provide a trend line for SAIFI and SAIDI historical data.

Continued scrutiny will be important over the next year or so to determine if the increase in SAIFI/SAIDI continues, or can be slowed or reversed by reliability improvement programs implemented in 2009 and underway in 2010. If it cannot be slowed or reversed to examine if this is driven by other sources or conditions not recognized yet. See SAIFI Linear Trend Line Chart later in this document.

Interruption Cause Codes

Cause code information is provided in this report to give readers a better understanding of outage sources. Further, the Company uses cause information to analyze past outages and, if possible, reduce the frequency and duration of future outages.

• The Company made several changes in the classification of outage causes for the reporting of 2005 outages and subsequent years.

Customers Experiencing Multiple Interruptions

The IEEE Standard 1366P-2003 provides for two methods to analyze data associated with customers experiencing multiple momentary interruptions and/or sustained interruptions. Avista's Outage Management Tool (OMT) and Geographical Information System (GIS) provide the ability to geospatially associate an outage to individual customer service points. This association allows for graphically showing Customers Experiencing Multiple sustained Interruptions (CEMI_n) with Major Event Day data included onto GIS produced areas. Data can be exported to MS Excel to also create graphs representing different values of n. 2009 information is provided in the new section added to the 2007 report after the Areas of Concern Section to summarize the analysis Avista performed on the 2009 outage data. The calculation for CEMI_n and Customers Experiencing Multiple Sustained and Momentary Interruptions CEMSMI_n is provided in the Indices Section.

Definitions

Reliability Indices

SAIFI (System Average Interruption Frequency Indices), MAIFI (Momentary Average Interruption Frequency Indices), SAIDI (System Average Interruption Duration Indices), and CAIDI (Customer Average Interruption Duration Indices) are calculated consistent with industry standards as described below. Avista adopts these for purposes of tracking and reporting reliability performance. Further explanation and definitions are provided in the "Indices Calculation" section of this report. While these indices are determined using industry standard methods, it is important to note that differing utilities may use different time intervals for momentary and sustained outages. Avista defines momentary outages as those lasting five (5) minutes or less. Sustained outages are those lasting longer than five (5) minutes.

Baseline Reliability Statistics

WAC 480-100-393 (3) (b) requires the establishment of baseline reliability statistics. The Company's 2003 Electric Service Reliability Monitoring and Reporting Plan initially established Avista's Baseline Reliability Statistics. At that time, the Company selected the baseline statistics as the average of the 2001 through 2003 yearly indices plus two standard deviations (to provide 95% confidence level). In 2006 the Company reviewed the calculation of the baseline statistics in light of the completion of the transition to the OMT in 2005 and the data collected in 2006. Calculating the baseline reliability statistics including the 2004 through 2006 data show an increase in the values, which the Company believes, represents better reporting using OMT. The Company proposed the latest calculated Baseline Statistic values to reflect the best available data collection. Because the Company believes that the OMT data collection has affected the SAIFI index the most it used the years 2004 to 2006 for the SAIFI Baseline Statistic and the years 2002 to 2006 for the MAIFI and SAIDI Indices.

The baseline indices have been adjusted by removing Major Event Days, MED's, as defined in the following section.

Indices	2004-2006 Average (Excluding Major Events)	Baseline Statistic (Ave + 2 Standard Deviations)
SAIFI	1.09	1.44
Indices	2002-2006 Average	Baseline Statistic
	(Excluding Major Events)	(Ave + 2 Standard Deviations)
MAIFI	(Excluding Major Events) 4.52	(Ave + 2 Standard Deviations) 5.82

The following table summarizes the baseline statistics by indices.

Additional comparison of the Baseline Indices is provided in the System Indices section of this report.

Avista is anticipating using the different years in the Baseline Statistics for SAIFI for a few years until a full five years of data is gathered using the current Outage Management Tool.

Major Events

Major Events and Major Event Days as used in this report are defined per the IEEE Guide for Electric Power Distribution Reliability Indices, IEEE P1366-2003. The following definitions are taken from this IEEE Guide.

Major Event – Designates an event that exceeds reasonable design and or operation limits of the electric power system. A Major Event includes at least one Major Event Day (MED).

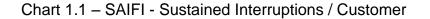
Major Event Day – A day in which the daily system SAIDI exceeds a threshold value, T_{MED} . For the purposes of calculating daily system SAIDI, any interruption that spans multiple calendar days is accrued to the day on which the interruption began. Statistically, days having a daily system SAIDI greater than T_{MED} are days on which the energy delivery system experienced stresses beyond that normally expected (such as severe weather). Activities that occur on major event days should be separately analyzed and reported.

The Company will use the process defined in IEEE P1366 to calculate the threshold value of T_{MED} and to determine MED's. All indices will be reported both including and excluding MED's. The comparisons of service reliability to the baseline statistics in subsequent years will be made using the indices calculated without MED's.

Major Event Days	SAIDI (Customer- Minutes)	Cause
2009 Major Event Day Threshold	9.925	
No Major Event Days		

The table below lists the major event days for 2009.

Additional analysis of the 2009 Major Event Days is not provided in this Annual Report as was done in previous years starting on Page 53, section Major Event Days Causes.


Customer Complaints

The Company tracks reliability complaints in two areas, Commission Complaints and Customer Complaints. Commission Complaints are informal complaints filed with and tracked by the Commission. Customer Complaints are recorded by our Customer Service Representatives when a customer is not satisfied with a resolution or explanation of their concern. See the Customer Complaints section on Page 36 for a summary of results for this year.

System Indices

The charts below show indices for Avista's Washington and Idaho ("system") electric service territory by year. Breakdown by division is included later in this report.

The Company continues to use the definition of major events as described above to be consistent with IEEE Standards. Therefore, the following charts show statistics including the effect of major events per this definition.

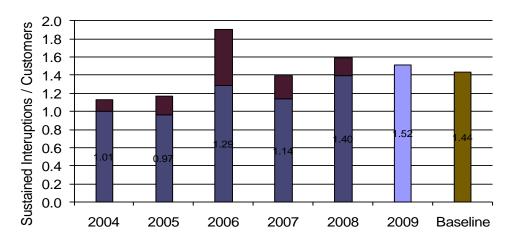
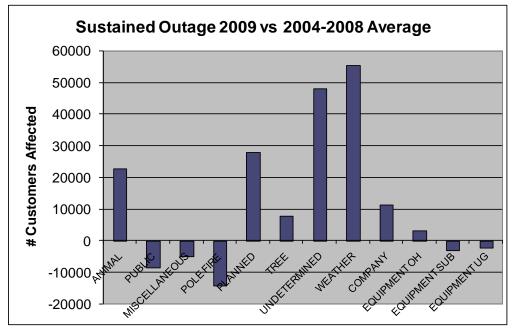
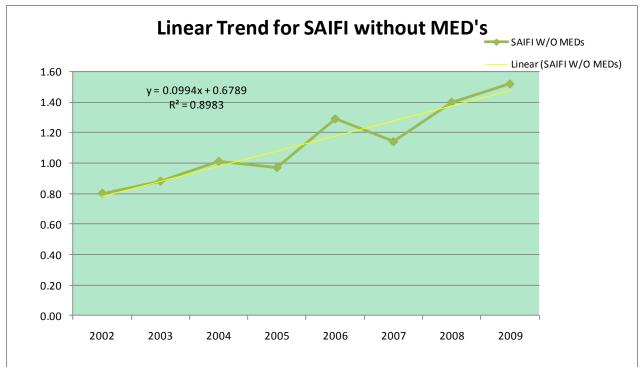
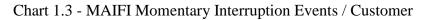



Chart 1.2 - Sustained Interruptions / Customer Historic Comparison


SAIFI for 2009 was over the existing baseline established in 2006 and represents the increasing trend. Using a simple linear regression to establish a trend line, it would look like about a 9.9% growth in number of customers affected. The R^2 coefficient of determination shows a much stronger correlation to the data than last year. A chart of this analysis has been provided just after this discussion. Major contributors to this higher number of customers affected were animals, planned outages, undetermined, and weather.

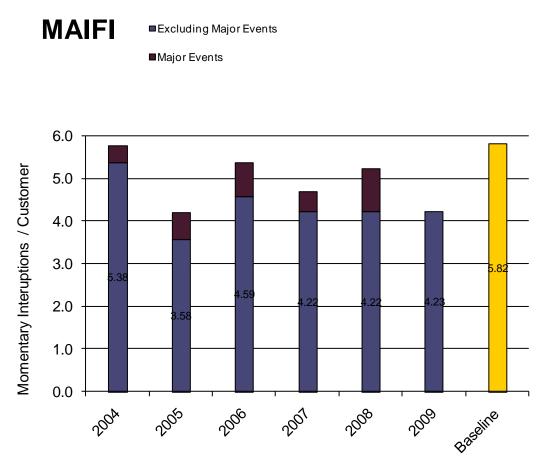
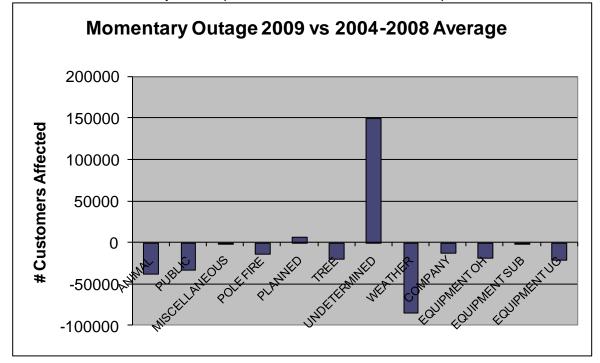
There were 138,951 customers affected by sustained outages caused by weather in 2009. This compares to the 2004–2008 average of 83,395 customers.

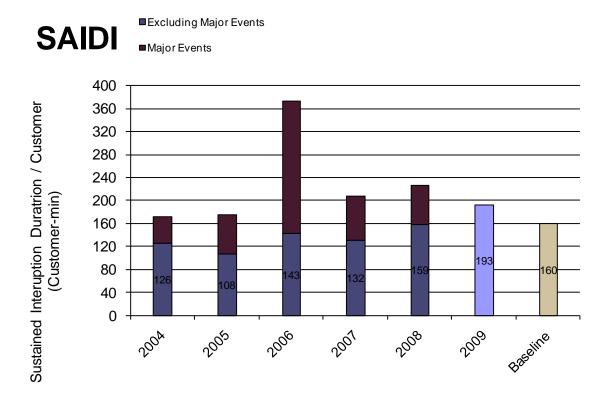

51,024 customers were affected by sustained outages associated with animal related incidents. This compares to the 2004-2008 average of 28,233 customers. The vast majority of the animal related reasons were associated with squirrel caused incidents.

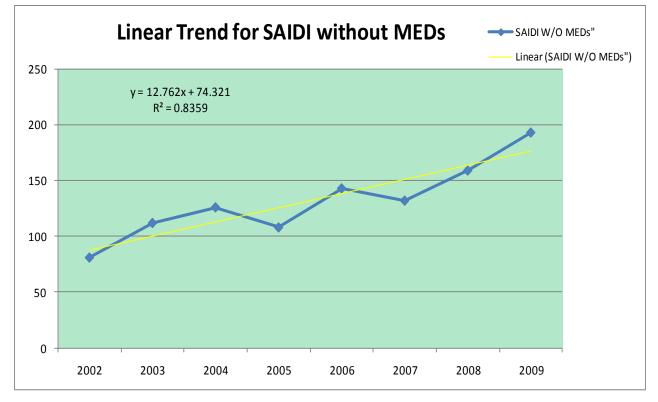
Planned maintenance activities and also forced repairs affected 52,838 customers as compared to the 2004-2008 average of 24,845 customers. Continued maintenance activities associated with the Company equipment replacement program contributed to the increase in this cause and reduced the Overhead Equipment outage causes.

An increase in the number of Undetermined Causes occurred in 2009 as compared to the 2004-2008 average. 92,117 customers had undetermined causes as compared to the average of 43,835. A large number of outages were associated with transformer fuses, but there was no known reason for the fuse to operate. Additional analysis in 2009 along with discussions with local area personnel could only suspect these maybe animal caused as the common element that is suspected. No evidence can be contributed to these outages.

SAIFI Linear Trend Line Chart

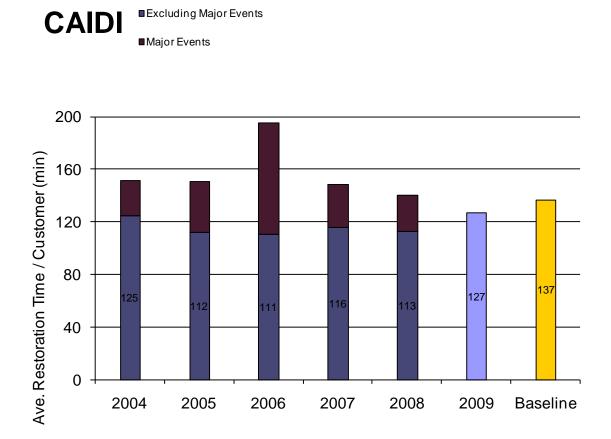




Chart 1.4 – Momentary Interruptions/ Customer Historic Comparison

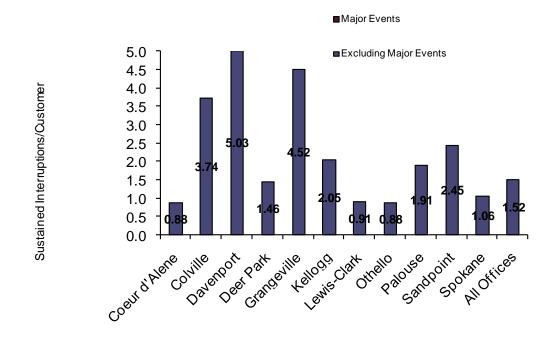

The 2009 results for MAIFI show a large decrease over 2008 and about the same as 2007 levels. There was a reduction in weather related momentary outages that cannot be explained on weather conditions alone. There was a corresponding increase in the number of undetermined outages, which can reflect that weather conditions did cause outages. Distribution Dispatch continues to make improvements in correlating the momentary outages with subsequent sustained outages, which reduces the undetermined causes.

All other categories showed either a slight decrease that would be consistent with previous years.

Chart 1.5 - SAIDI - Average Outage Time / Customer



SAIDI Linear Trend Line Chart



Avista Utilities 2009 Service and Reliability Report Draft 04/16/2009

Chart 1.6 - CAIDI – Average Restoration Time

OFFICE Indices

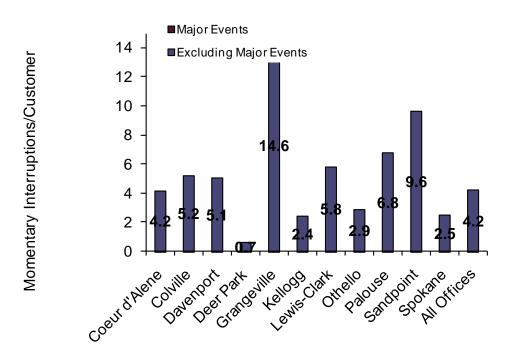
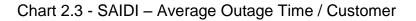




Chart 2.2 - MAIFI Momentary Interruption Events / Customer

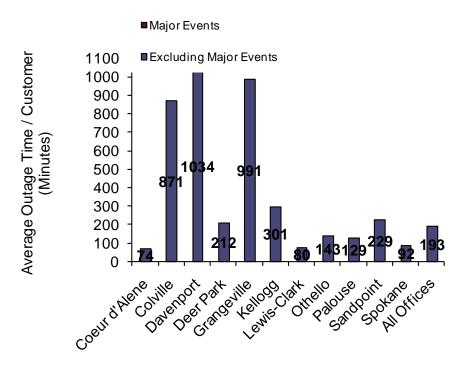
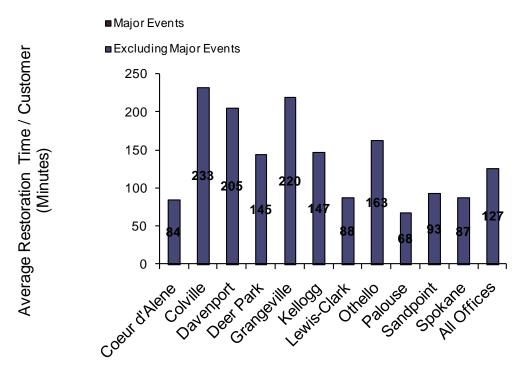



Chart 2.4 - CAIDI – Average Restoration Time

Areas of Concern

As in previous years, Colville continues to have the lowest reliability of Washington's operating areas. However, the Colville area continues to show improvement over previous years as work plans are implemented. Colville was judged lowest based on its performance in the yearly indices for SAIFI, SAIDI, CAIDI, and MAIFI. Within the Colville area, six feeders were identified as the areas of concern for 2009. These feeders are Gifford 34F1, Gifford 34F2, Colville 34F1, Colville 12F4, Valley 12F3 and Valley 12F1. For this report, these same six feeders are identified as the areas of concern for 2009.

Cause Information:

Generally rural areas have a greater number of outages per customer. Colville is a predominately rural and forested area. There are approximately 2342 miles of distribution line exposed to weather, underground cable failures and tree problems. Unlike most of the Company's system, lines in this area are built on the narrow, cross-country rights-of-way, typical of PUD construction practices prior to Avista acquiring the system. These conditions make patrolling, tree trimming, right of way clearing and other maintenance difficult. When cost effective, Avista moves sections of these overhead lines to road rights of way and/or converts them to underground.

Further, when outages occur in rural areas, the time required to repair damage is longer. More time is required for first responders to arrive and assess the damage and more time is required for the crew to reach the site. Often the damage is off road and additional time is required to transport materials and equipment to the site.

Listed below is a summary of the specific cause data for each feeder. This is a compilation of data from the Avista Outage Management Tool and the reporting from our local servicemen to Distribution Dispatch. Data from the reporting system is shown as a percentage of total customer-outages, (SAIFI) for that feeder.

Snow loading on green healthy trees growing beyond the rights-of-way often causes them to bend or break and contact distribution lines. These trees are not cut as part of our vegetation management program because they are outside our right of way and are considered healthy marketable timber.

Gifford 34F1

- 19.1% Weather: snow, wind and lightning storms
- 9.5% Equipment
- 0.0% Pole fires
- 2.4% Trees
- 19.1% Planned outages

Colville 34F1

- 35.7% Weather; snow, wind and lightning storms
- 11.4% Equipment
- 2.0% Pole fires
- 14.3% Trees
- 9.1% Planned outages

Chewelah 12F3

- 33.6% Weather: snow, wind and lightning storms
- 5.2% Equipment
- 3.5% Trees
- 15.5% Planned outages
- 7.8% Animal: birds or squirrels

Gifford 34F2

- 19.7% Weather: Wind, snow, and lightning storms
- 9.2% Equipment
- 1.3% Pole Fires
- 10.5% Trees
- 11.8% Planned outages
- 14.5% Animal: birds or squirrels

Valley 12F1

- 25.8% Weather: snow, wind and lightning storms
- 10.3% Equipment
- 11.3% Trees
- 7.2% Public
- 7.2% Planned outages
- 4.1% Animal: birds or squirrels

Valley 12F3

- 17.7% Weather: wind and lightning storms
- 5.9% Equipment
- 5.9% Trees
- 23.5% Public
- 23.5% Planned outages
- 0.0% Animal: birds or squirrels

Colville Area Work Plans:

The improvement work that has been accomplished or planned for each feeder is listed below. The Company's reliability working group is continuing to study these feeders to develop additional work plans. Each of the identified feeders also had planned outages that correspond to the maintenance and replacement activities in the area.

Gifford 34F1

- 10,300' of URD cable was replaced in 2009, and 12,850' of URD cable is planned for replacement in 2010.
- A reliability improvement project is scheduled for 2010 in the Pleasant Valley area of this feeder to replace (42) 1940 class poles with new poles and replace approximately 2.2 miles of 1-phase #6A, #6CW, and #9 1/2D wire (all in poor shape) with 2-phases of #2ACSR wire.
- Vegetation Management completed tree trimming of 698 trims and 522 tree removals in 2009. No work planned for 2010.

Colville 34F1

- 12,350 of URD cable was replaced in 2009. None is scheduled to be replaced on this feeder in 2010
- A capital improvement project was completed in 2009 to replace 2.2 miles of 3-phase #6 Crapo wire in poor condition in a difficult access area with 3-phases or URD cable.
- A reliability improvement project is planned for 2010 to perform an RF survey of the trunk of this feeder and perform follow-up work to address issues that are found.
- Vegetation Management completed 6 tree trims and 713 tree removals in 2009. No work planned for 2010.

Chewelah 12F3

- 7700' of URD cable was replaced in 2009, and 5200' of URD cable is planned for replacement in 2010.
- A reliability improvement project was completed in 2009 to split the Chewelah 12F3 into two feeders (Chewelah 12F3 and Chewelah 12F4). Also, another reliability project was completed to convert 2 miles of 1-phase overhead line with bad access with 2-phases of URD.
- Late December 2009 saw the completion of the new Chewelah 12F4 feeder, which split the existing 12F3 into two parts. The original 12F3 feeder was almost 66 miles in circuit miles and is now about 26 circuit miles. 12F4 will be about 40 circuit miles.

Gifford 34F2

- 2775' of URD cable was replaced in 2009, and 8510' of URD cable is planned for replacement in 2010.
- A reliability improvement project is planned for 2010 to convert 3.5 miles of 3-phase overhead line to URD in the Twin Lakes area near Inchelium.

Valley 12F1

• No URD cable was replaced in 2009, but 300' of URD cable is planned for replacement in 2010.

- A reliability improvement project was completed in 2009 to convert 1.9 miles of 1-phase overhead line to URD in the Hesseltine Rd. area.
- Another reliability improvement project is planned for 2010 to convert 3.2 miles of 2-phase overhead line to 1-phase URD in the Jepsen Rd area.

Valley 12F3

- 1300' of URD cable was replaced in 2009, and 700' of URD cable is planned for replacement in 2010.
- Vegetation Management completed 749 tree trims and 293 tree removals in 2009. A small amount of work is planned for 2010.

Avista typically uses several different protective devices on its feeders to isolate faulted or overloaded sections and also continue to serve the remaining customers. Generally, two different protection schemes are used to either "save" the lateral fuse or "blow" the lateral fuse by using or not using the instantaneous over current trip. Depending on the feeder, number of customers, types of faults, (temporary or permanent), customer type, time of year, etc. both of these schemes may be used on an individual feeder at different times at the discretion of the field personnel. With the better data and cause code collection that OMT provides and the customer growth on some of the Colville feeders, changes to the type of scheme used has been reviewed. Listed below are major reliability projects specifically identified by feeder. Three of these are in the State of Idaho.

Feeder	Decisions/ basis	2010	2011 and beyond
Gifford 34F1	Reliability improvements	Budgeted	Planned
Gifford 34F2	Reliability improvements	Budgeted	Planned
Colville 34F1	Reliability improvements	Budgeted	Planned
Valley 12F1	This feeder was first identified in mid 2006 as having areas that would be of concern. Capital dollars have been budgeted in 2010 to identify and implement some reliability improvement.	Budgeted	Planned
Valley 12F3	Fusing protection was revised and updated. Additional reliability improvements maybe budgeted in future years.		Planned
Wallace 542 New*	Reliability Improvement	Budgeted	
Grangeville 1273*	Engineering is on going along with Wood Pole Management related work to identify reliability improvements for this feeder.	Budgeted	Planned
Saint Maries 633*	Reliability Improvement	Budgeted	Planned

* Not included as an area of concern in this report.

Avista System Wide Work Plans:

Avista develops a detailed annual budget for various improvements to the facilities it owns and operates. For 2009, three reliability feeder projects (one has been deferred to 2010) were completed and described above. The reliability improvement should show up over the next couple of years. Additionally Asset Management has developed some specific projects that are expected to improve reliability on several feeders system wide. These projects are summarized in the table below.

Porcelain cutout replacements were completed at the end of 2009.

During 2009, Avista looked at the possibility of performing extensive construction and rehabilitation of the Ninth and Central 12F4 feeder in Spokane. This included reconductoring specific sections of line for loss improvement, changing transformers that were older than 1983, replacing many long secondary districts, and replacing many wood poles. Reliability in 2009 was degraded due to the many planned outages, however only two non planned outages have been reported in early 2010. Additional review will be done for the year end 2010.

Material records show that some wildlife guards were installed on new distribution transformers installations starting in the mid 1980's. With the recognition of increases in animal caused outages, new materials and improvements have been made in the construction standards for new distribution transformer installations to reduce these types of outages. Initial indications show that the outage reduction on a feeder after wildlife guards are installed is significant.

2009 was the start of the multiyear wildlife guard installation program to reduce the squirrel and bird related outages on approximately sixty feeders in Washington and Idaho. Most of the wildlife guards were installed with a hot stick on existing transformers that do not have an existing wildlife guard.

Avista installed a total of 4534 wildlife guards on 20 feeders in 2009. There were 2130 wildlife guards installed in Idaho on 9 feeders and 2404 wildlife guards installed in Washington on 11 feeders. One feeder (Orin 12F3) in the Colville area had wildlife guards installed last year.

Avista deferred plans to install wildlife guards on additional feeders in Washington for 2010 due to unfavorable pro-forma rate treatment of the program. Avista will continue with plans to install wildlife guards in the State of Idaho. 9 feeders are planned to have wildlife guards installed.

Asset Management in conjunction with the Wood Pole Management Program stubbed or replaced numerous poles and additionally replaced numerous pole top transformers and associated cutouts/arresters.

Avista System Wide Vegetation Management Plan:

Avista has an annual vegetation management plan and budget to accomplish the plan. The budget is allocated into distribution, transmission, administration, and gas line reclearing.

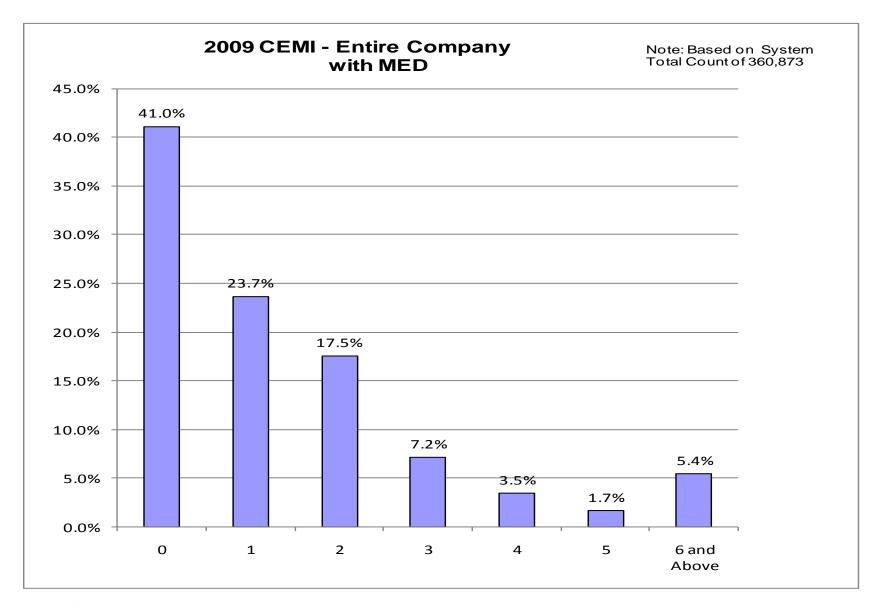
Distribution

Our current plan for Avista's distribution system is managed by Asplundh Tree Expert Co. Every distribution circuit is scheduled to be line clearance pruned on a regular maintenance cycle of four year urban and seven years rural. Other distribution vegetation management activities include hazard tree patrol and herbicide application.

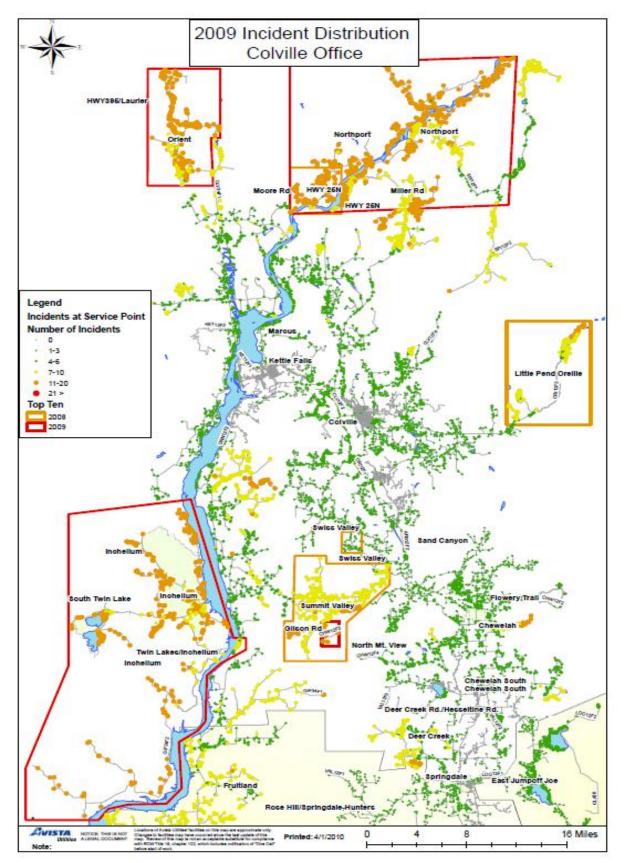
Transmission

The transmission system is managed by Avista's forester. All 230 kV lines are patrolled annually for hazard trees and other issues, and mitigation is done in that same year. Approximately one third of 115 kV transmission system is patrolled annually for hazard tree identification, and assessment of right of way clearing needs. Right of way clearing maintenance is scheduled and performed approximately every ten to fifteen years (for each line). Interim spot work is done as identified and needed. Engineering specifications for various voltages, line configurations are followed when clearing the right of way. Currently, the work is bid to a variety of contractors.

Customers Experiencing Multiple Interruptions

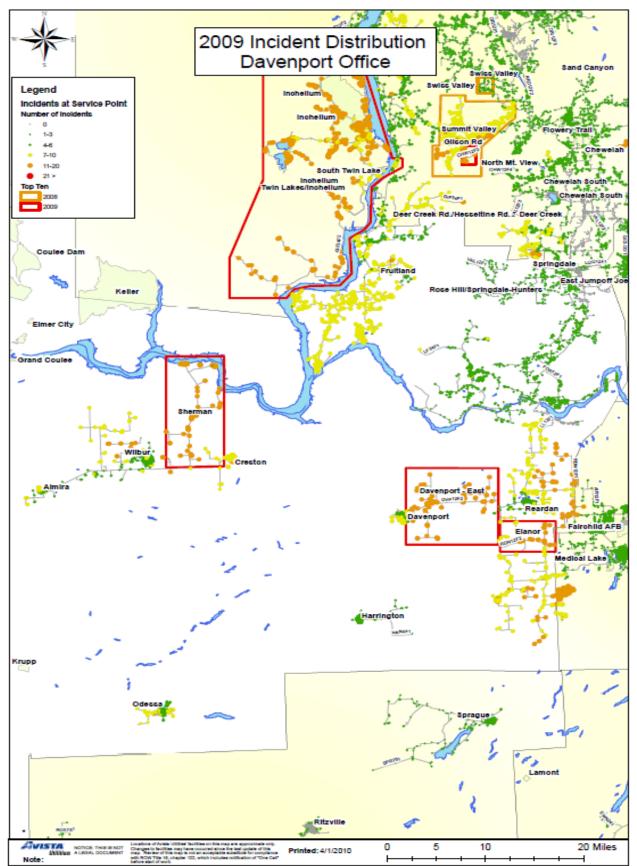

Avista has used the data from the OMT system integrated with the GIS system to geospatially display reliability data for specific conditions. The specific conditions imply looking at the number of sustained interruptions for each service point (meter point). This would be similar to the SAIFI indice, but would be related to a certain number of sustained interruptions. Avista includes all sustained interruptions including those classified under Major Event Days. This provides a view of what each customer on a specific feeder experiences on an annual basis. Momentary Interruptions are not included in the CEMI_n indice, because of the lack of indication on many of the rural feeder reclosers.

The first chart below provides a view of the percentage of customers served from the Avista system that have sustained interruptions. 65 % of Avista customers had 1 or fewer sustained interruptions and 5.4% of Avista customers had 6 or more sustained interruptions during 2009.

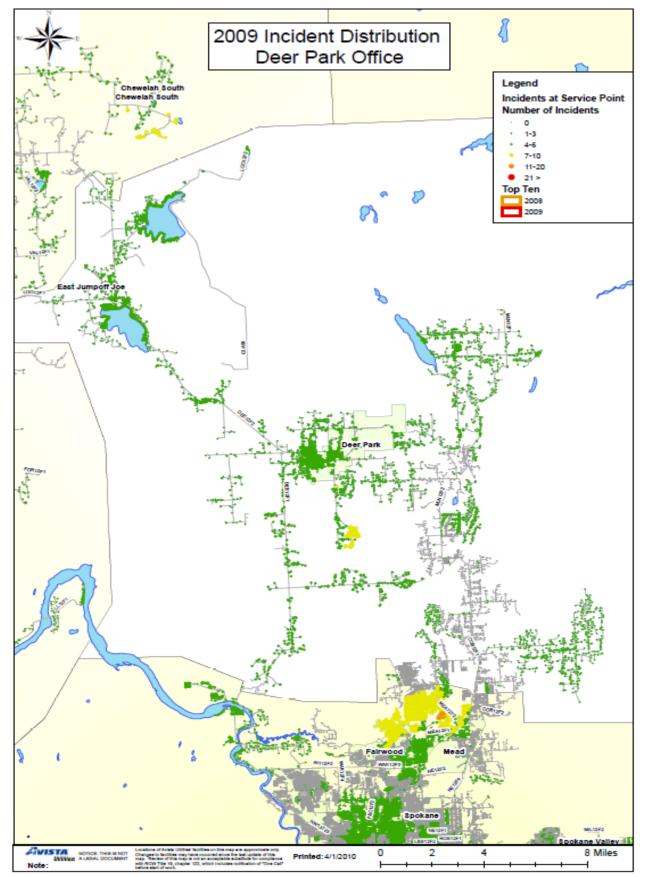

The remaining geographic plots show the sustained interruptions by color designation according to the legend on each plot for each office area. Note the office area is designated as the area in white for each plot and that there is overlap between adjacent office area plots. The adjacent office areas are shown in light yellow.

The plots provide a quick visual indication of varying sustained interruptions, but significant additional analysis is required to determine underlying cause(s) of the interruptions and potential mitigation.

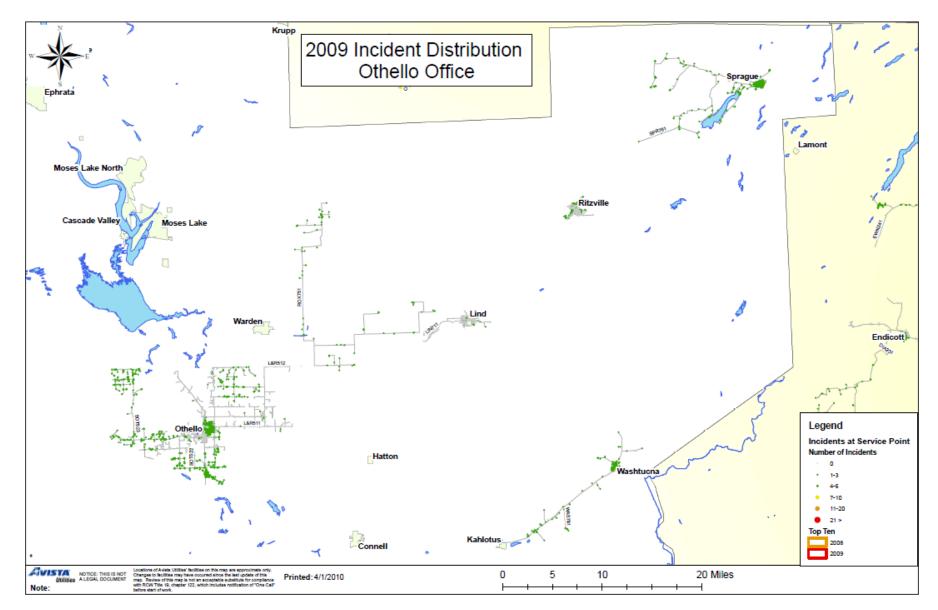
Avista Service Territory CEMI_n Chart

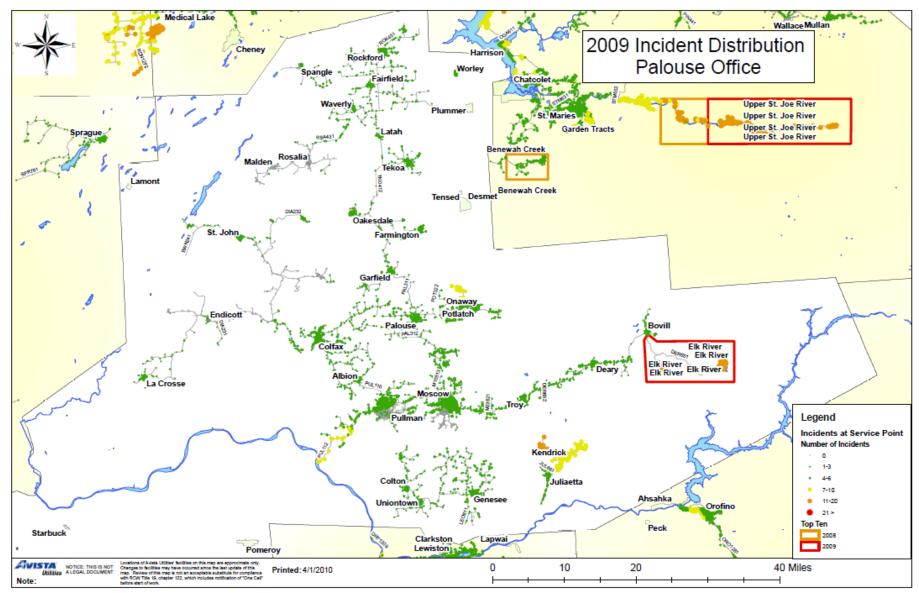


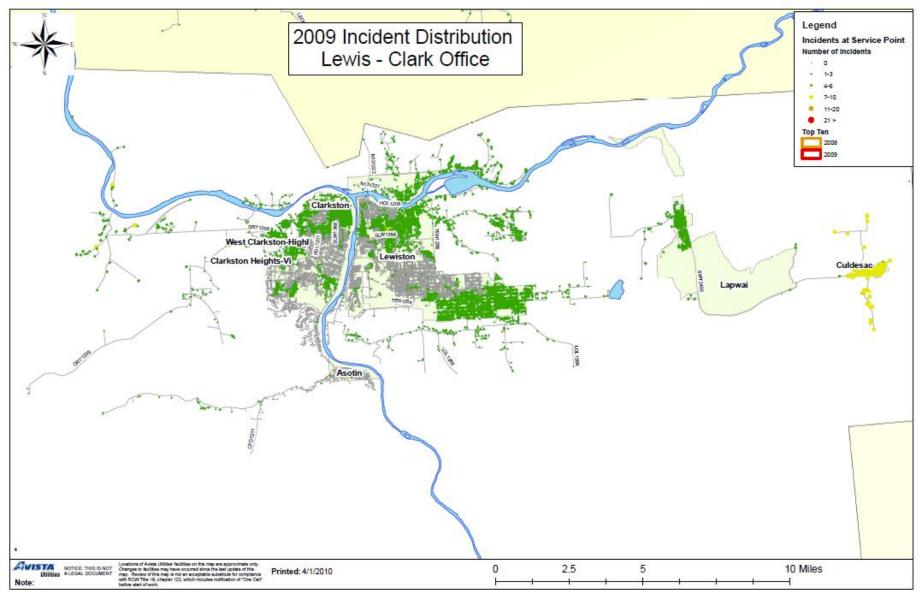
Colville Office - CEMI_n

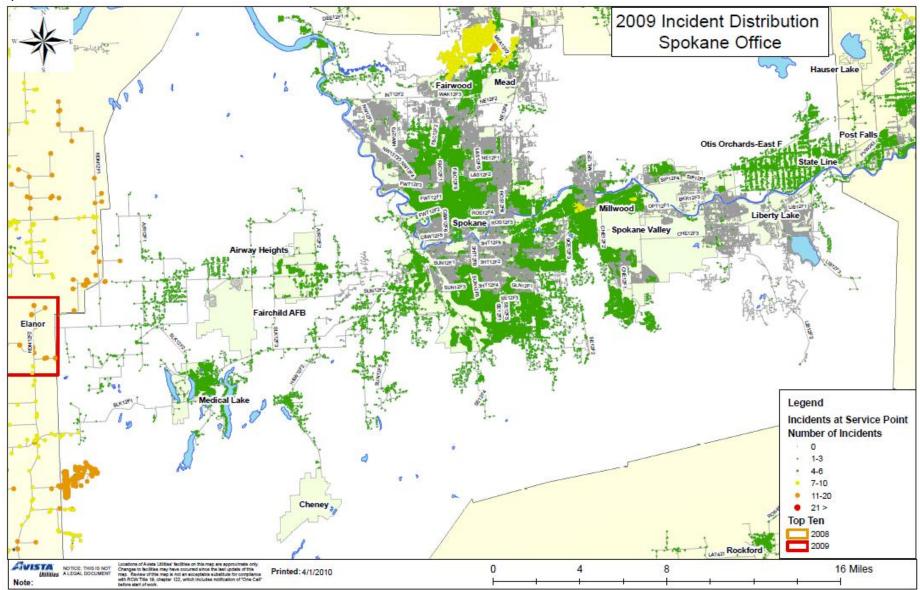


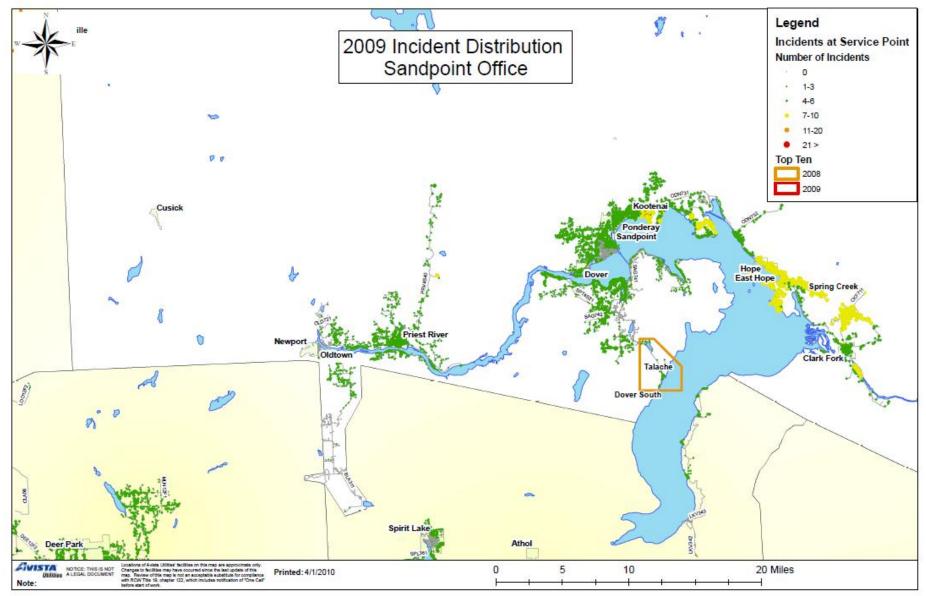
Avista Utilities 2009 Service and Reliability Report Draft 04/16/2009

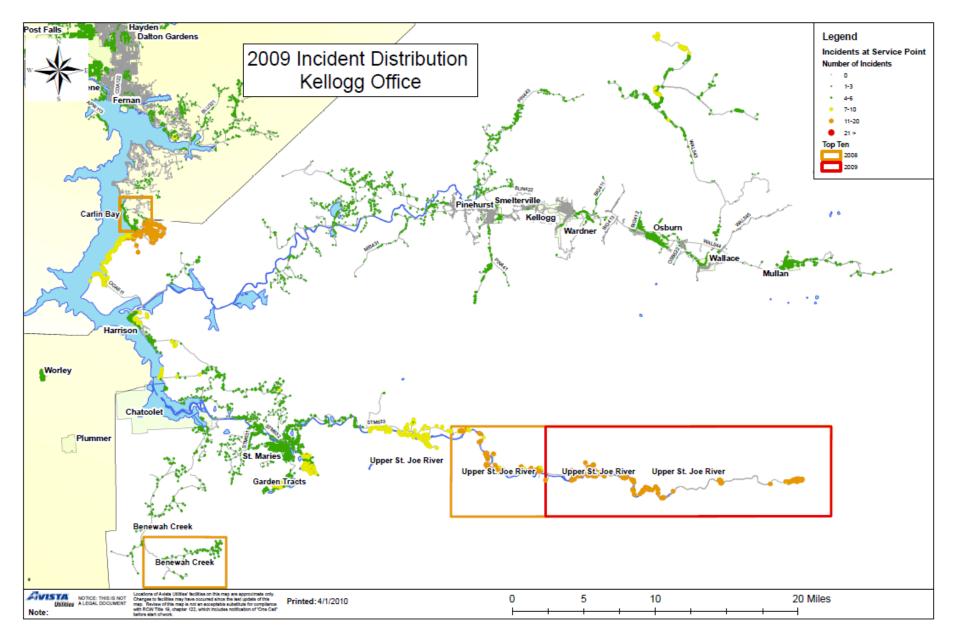

Davenport Office - CEMI_n

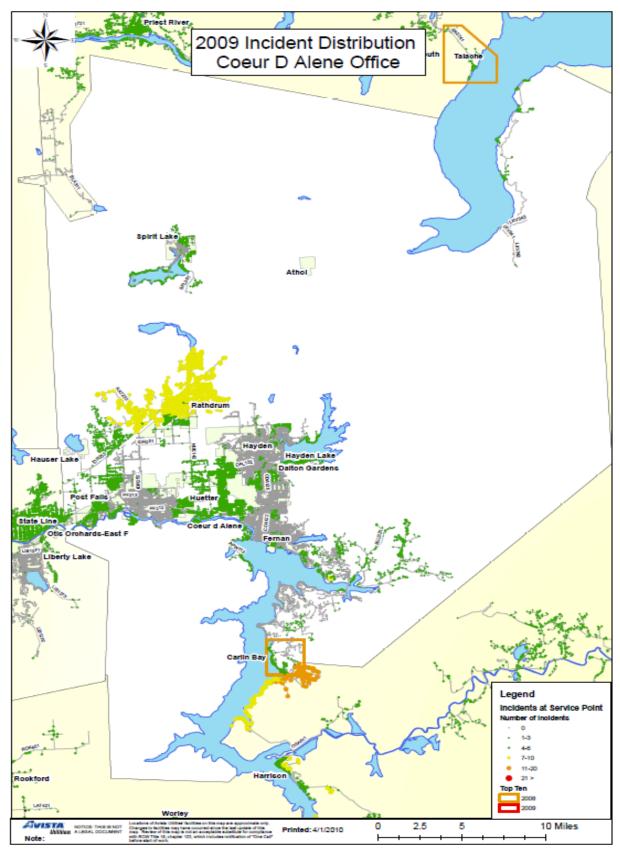

Deer Park Office - CEMIn

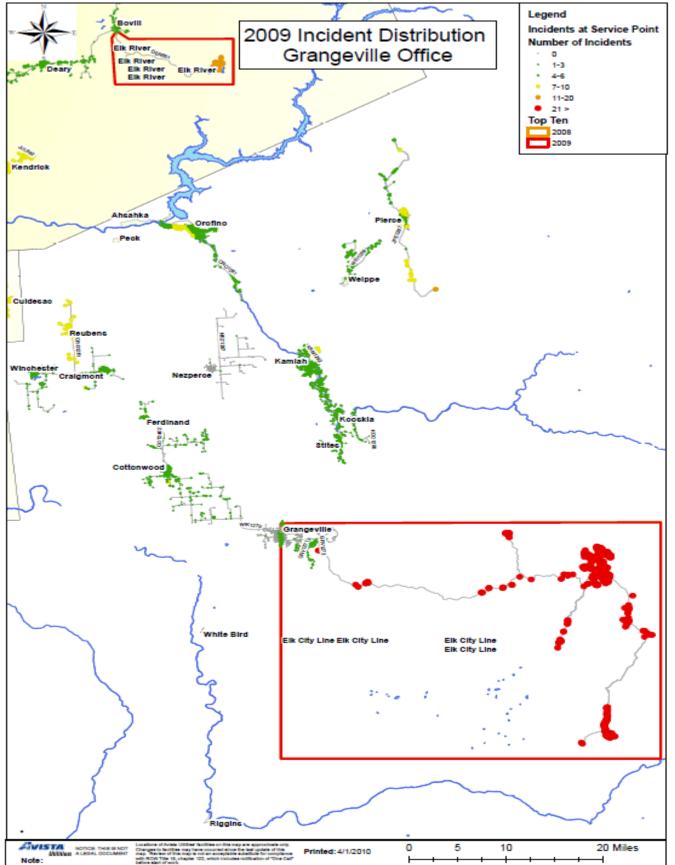

Othello Office - CEMIn


Palouse Office - CEMIn

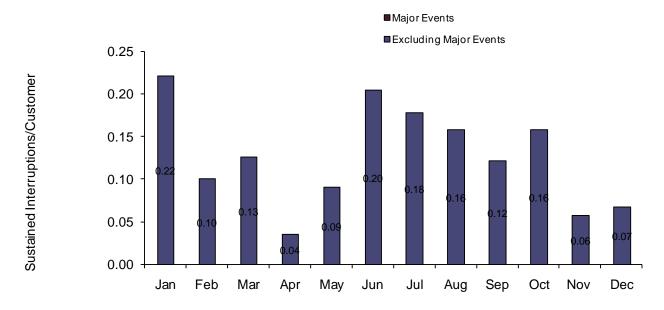

Lewis-Clark Office - CEMI_n


Spokane Office - CEMI_n


Sandpoint Office - CEMIn


Kellogg Office - CEMIn

Coeur d'Alene - CEMI_n


Grangeville Office - CEMI_n

Avista Utilities 2009 Service and Reliability Report Draft 04/16/2009

Monthly Indices

Each of the following indices, reported by month, shows the variations from month to month. These variations are partially due to inclement weather and, in some cases, reflect incidents of winter snowstorms, seasonal windstorms, and in mid- and late summer lightning storms. They also reflect varying degrees of animal activity causing disruptions in different months of the year.

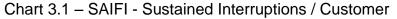
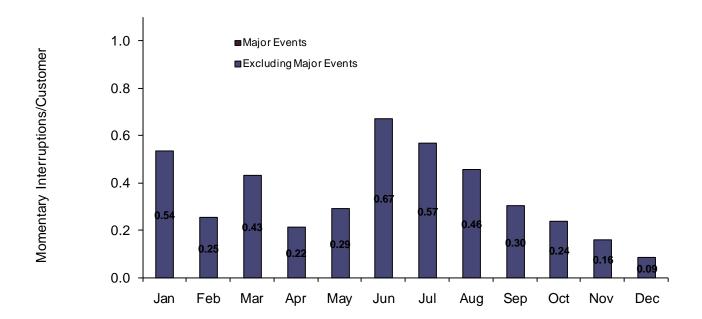
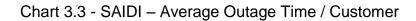




Chart 3.2 - MAIFI Momentary Interruption Events / Customer

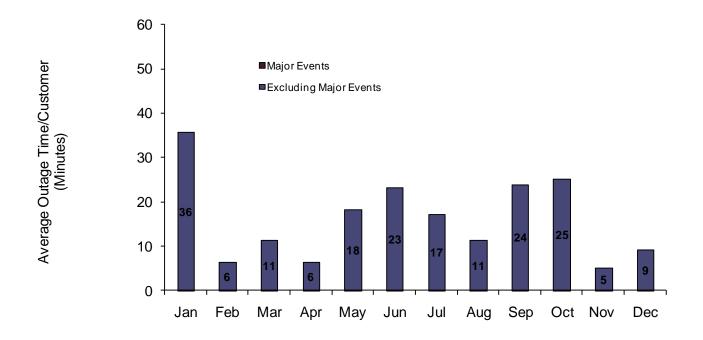
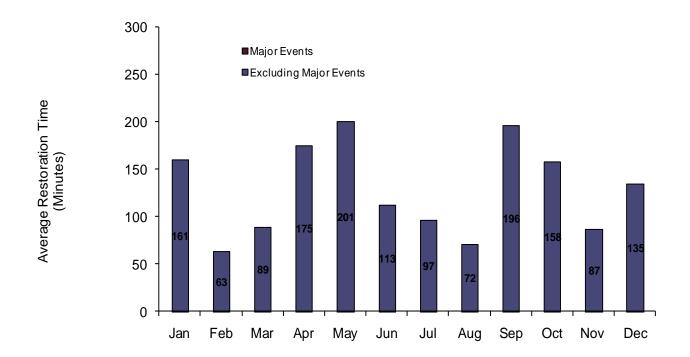



Chart 3.4 - CAIDI – Average Restoration Time

Customer Complaints

Commission Complaints

The following is a list of Complaints made to the Commission during this year.

Customer Address	Complaint	Resolution
Elk City ID Grangeville 1273	The power was to be off all week 9 to 3, which is fine. We had almost 4 feet of snow this week and it was taking the power out in the mornings and they still left it off. Thursday it went off at 6:30AM and was not restored until 7:30PM, we froze. We live in a very remote area if they would have turn it on so we could	Avista responded to service complaint 4/9/2009. No resolution documented
	get our homes warm it would have been ok. Too cold for power to be out that long on purpose.Since August 2008, customer has had 9-10 outages, one of	Complaint Closed 1/13/2009 Company Upheld.
Kettle Falls, WA Spirit 12F1	which may have surged his TV. Many of the outages were not weather related and he wants to know what Avista is doing to ensure reliable service. One of the reps told him to buy a generator. Please supply information on circuit, outage causes, number of customers affected, SAIDI/SAIFI, Condition of circuit, any improvement projects, repair history.	
Springdale, WA Valley 12F1	Customer has had several power surges, brown outs, low voltage, trips and resets in his area and has been trying to get the company to fix the problem since about August 2009. She calls repair and the company asks if she has power and when she says yes, they say they will look into it. However, the company has not fixed the problem, nor have they told her when the problem will be fixed.	Avista responded to customer 11/2/2009 Construction office is investigating and will put repairs in place – is to be scheduled.

Customer Complaints

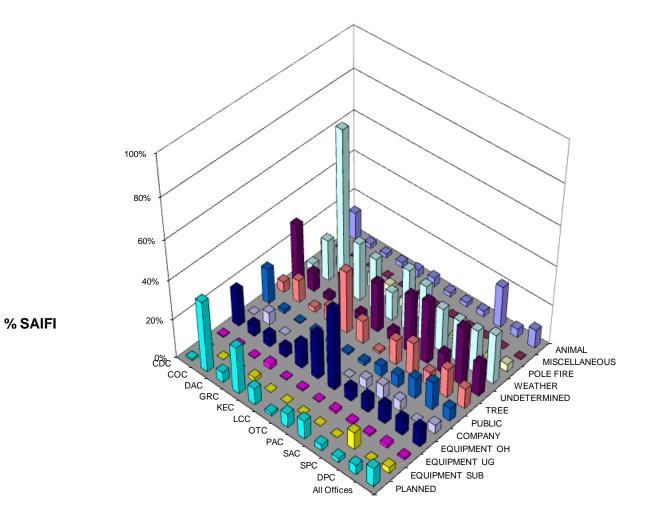
The following is a list of complaints made to our Customer Service Representatives.

Customer / Feeder	Complaint	Resolution
Spokane, WA Francis & Cedar 12F4	Customer is concerned about the frequent short power outages over the past. Says it is impacting his electronic equipment. Like to know if there is something that can be done.	No Resolution Documented.
Lewiston, ID Tenth & Stewart 1254	Lost Equipment Due to Outage	Claim Filed 6/22/09. Claim rejected, repairs made to service.
Spokane Valley, WA Beacon 12F1	Customer called to complain about recent outages, feels like she lives in 3 rd world country and higher the rates go the worse the service. Wanted to file a formal complaint and believes we need to do something about this. Last week out for 5 hours and then off and on for next few days.	Customer did not want call back just wanted to have complaint on file. 7/9/2009
No Location Given	Customer feels should not be out for this long of time since went to underground. No one else on street is out.	No Resolution Documented.
Rathdrum, ID Rathdrum 231	Customer very unhappy power keeps going out in Rathdrum Area. Says she wants to take money off on what she pays due to lack of quality of service.	No Resolution Documented.
Harrison, ID Ogara 611	Customer called for estimated restoration on outage, thought was planned outage we decided to do early. Advised customer outage was unplanned and gave estimated restoration time. Customer said that we should not go ahead with planned outage since has been out of power since 1:30AM. Advised customer outage was not reported until 7:15AM. Believes Avista should have equipment that tells us of power outages.	Supervisor notified of comment. No action or callback required. 9/03/2009
Cataldo, ID Mission 431	Customer wasn't told about planned outage. Suggests notifying customers for planned outages.	No Resolution Documented.

Lincoln County WA Unknown Feeder	Customer was part of extended outages. Believes if Avista would have performed maintenance during summer that outages would not have occurred. Says maintenance should be priority over mgmt compensation.	No Resolution Documented.
No Location Information	Customer would like rebate on all the times service has been disrupted	No Resolution Documented.
Spokane Valley, WA Liberty Lake 12F2	Customer Complaint about rates, executive pay and repeated Power Outages.	No Resolution Documented.
Liberty Lake, WA Liberty Lake 12F3	Customer wanted us to change scheduled outage because of holiday and everyone home. Noted that next time to schedule for non-holiday and wanted frustrations noted.	Advised customer could not change outage time. No Resolution Documented.
Edwall, WA Reardan 12F2	Customer upset about scheduled outage and not personally notified.	Area Manager contacted customer 6/25/2009. No Resolution Documented.
Spokane, WA Millwood 12F2	Customer wants to know why clocks were flashing last night. Says this happens frequently	No outage reported in his area on 10/6/2009. Suggested to customer probably limbs on line, small animal etc. Customer not completely satisfied. No Resolution Documented.
Wilbur, WA Wilbur 12F2	 1/15/09Customer not happy with the service. Power keeps going on and off steadily for the last 12 hours. 1/16/09 Customer upset he keeps getting same update when the service should be back up(1/17/09). States Avista should hire more crews to help in this outage. 	No Resolution Documented.
Edwall, WA Reardan 12F2	Customer upset not notified about power outage.	No Resolution Documented.
Kettle Falls, WA Greenwood 12F1	Customer notified us that we shut off power to the trailer park while we changed transformer. Upset we did not notify them.	No Resolution Documented.
Kettle Falls, WA Spirit 12F1	Customer upset about planned outage. Knew about outage but Avista is late for turning power back on. Stated we need to work at night because of huge inconvenience.	No Resolution Documented.

Sustained Interruption Causes

Table 4.1 - % SAIFI per Cause by Office


The following table lists the percentage SAIFI contribution by causes for outages excluding major event days.

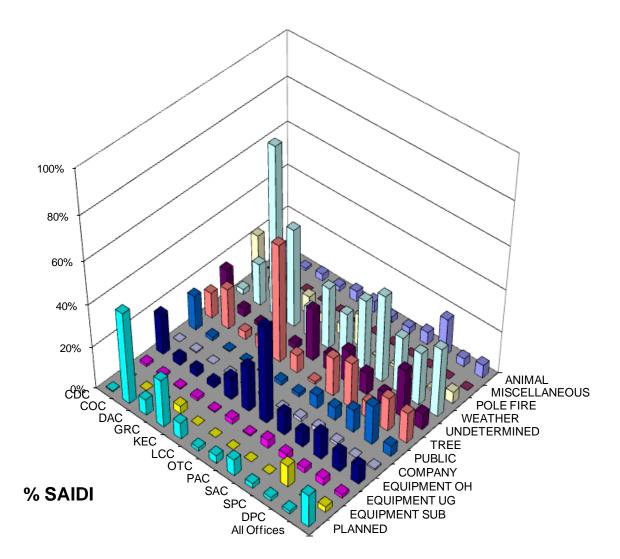
Reason	CDC	COC	DAC	GRC	KEC	LCC	отс	PAC	SAC	SPC	DPC	All Offices
ANIMAL	13.8%	2.2%	1.9%	2.5%	3.7%	4.6%	2.1%	2.1%	3.0%	21.1%	4.3%	9.3%
MISCELLANEOUS	0.2%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	0.0%	0.0%	0.1%
POLE FIRE	9.8%	5.1%	0.6%	7.4%	7.1%	4.5%	10.0%	0.0%	0.9%	2.9%	0.8%	3.8%
WEATHER	3.4%	20.9%	80.6%	29.3%	26.6%	14.5%	31.4%	28.6%	22.2%	21.5%	22.0%	25.4%
UNDETERMINED	29.5%	9.5%	2.6%	18.9%	4.0%	25.2%	5.4%	29.5%	31.8%	10.5%	29.5%	16.8%
TREE	5.4%	11.4%	2.3%	7.8%	31.8%	11.4%	1.0%	12.4%	16.7%	7.1%	14.6%	10.2%
PUBLIC	17.9%	1.6%	0.4%	1.0%	0.2%	1.0%	1.7%	5.2%	6.2%	10.5%	14.1%	6.6%
COMPANY	0.0%	6.3%	0.0%	0.0%	5.2%	13.5%	0.0%	4.8%	7.4%	5.4%	0.0%	4.5%
EQUIPMENT OH	18.7%	5.8%	6.0%	4.9%	12.7%	23.1%	41.3%	6.6%	7.6%	9.3%	8.1%	9.7%
EQUIPMENT UG	0.4%	0.8%	0.2%	2.5%	0.3%	0.6%	0.1%	1.1%	1.0%	0.9%	1.8%	0.9%
EQUIPMENT SUB	0.0%	0.0%	0.0%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%	8.8%	0.0%	2.9%
PLANNED	0.9%	36.0%	5.3%	23.9%	8.4%	1.5%	7.0%	9.5%	3.0%	2.1%	4.8%	9.7%

CDC	Coeur d'Alene	LCC	Lewiston-Clarkston
COC	Colville	OTC	Othello
DAC	Davenport	PAC	Palouse
DPC	Deer Park	SAC	Sandpoint
GRC	Grangeville	SPC	Spokane
KEC	Kellogg/ St. Maries		

Chart 4.1 – % SAIFI per Cause by Office

The following chart shows the percentage SAIFI contribution by causes for outages excluding major event days.

Table 4.2 - % SAIDI per Cause by Office

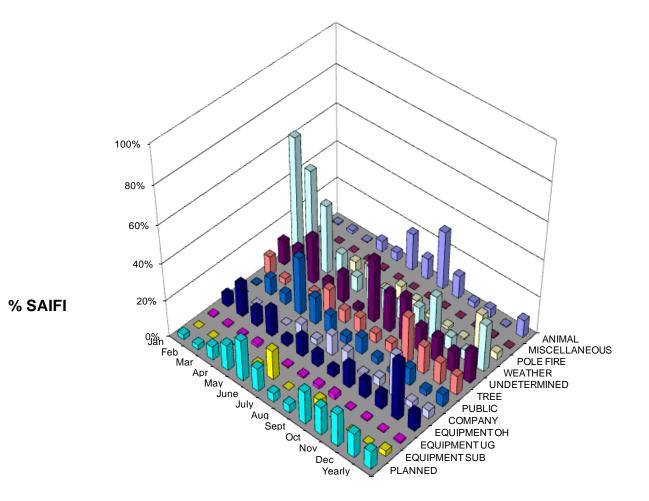

The following table lists the percentage SAIDI contribution by causes for outages excluding major event days.

Reason	CDC	COC	DAC	GRC	KEC	LCC	отс	PAC	SAC	SPC	DPC	All Offices
ANIMAL	6.8%	1.1%	3.2%	2.2%	4.9%	5.2%	2.8%	2.8%	5.8%	17.5%	3.8%	6.1%
MISCELLANEOUS	0.3%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	0.0%	0.0%	0.1%
POLE FIRE	23.2%	6.1%	0.5%	8.6%	4.4%	4.9%	14.9%	0.0%	1.2%	3.7%	0.8%	5.4%
WEATHER	2.5%	19.8%	79.1%	46.2%	13.8%	29.0%	21.9%	33.5%	40.9%	26.7%	24.9%	32.4%
UNDETERMINED	17.8%	3.7%	1.8%	6.5%	2.6%	24.5%	7.7%	15.4%	10.1%	6.2%	22.8%	7.6%
TREE	12.3%	19.1%	3.7%	6.0%	55.2%	8.4%	1.1%	18.2%	21.2%	7.7%	15.7%	14.4%
PUBLIC	16.4%	1.7%	0.3%	0.3%	0.2%	1.8%	1.6%	6.3%	6.1%	10.7%	18.4%	5.0%
COMPANY	0.0%	0.5%	0.0%	0.0%	0.3%	1.0%	0.0%	1.6%	2.4%	1.3%	0.0%	0.7%
EQUIPMENT OH	19.2%	3.6%	3.5%	2.7%	10.5%	21.4%	45.7%	10.4%	7.1%	12.3%	9.1%	8.6%
EQUIPMENT UG	1.2%	1.1%	0.5%	1.3%	0.5%	2.3%	0.5%	3.8%	3.0%	2.2%	3.2%	1.7%
EQUIPMENT SUB	0.0%	0.0%	0.0%	3.6%	0.0%	0.0%	0.0%	0.0%	0.0%	10.1%	0.0%	2.7%
PLANNED	0.4%	43.1%	7.4%	22.6%	7.6%	1.5%	3.7%	7.7%	2.2%	1.6%	1.3%	15.4%

CDC	Coeur d'Alene	LCC	Lewiston-Clarkston
COC	Colville	OTC	Othello
DAC	Davenport	PAC	Palouse
DPC	Deer Park	SAC	Sandpoint
GRC	Grangeville	SPC	Spokane
KEC	Kellogg/ St. Maries		

Chart 4.2 - % SAIDI per Cause by Office

The following chart shows the percentage SAIDI contribution by causes for outages excluding major event days.


Table 4.3 - % SAIFI per Cause by Month

The following table lists the percentage SAIFI contribution by causes for all outages, excluding major event days.

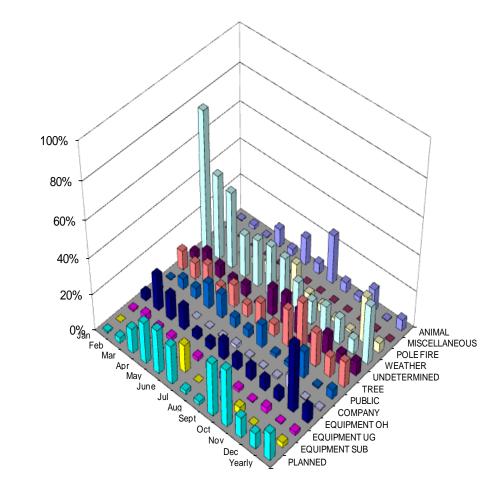
Reason	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec	Yearly
ANIMAL	0.5%	1.5%	0.4%	5.7%	4.5%	19.9%	11.3%	31.1%	12.1%	3.0%	4.7%	0.5%	9.3%
MISCELLANEOUS	0.0%	0.1%	0.0%	0.0%	0.5%	0.0%	0.0%	0.0%	0.2%	0.0%	0.0%	0.7%	0.1%
POLE FIRE	2.4%	0.3%	0.7%	5.6%	8.6%	0.3%	7.7%	5.1%	2.2%	1.4%	0.7%	19.2%	3.8%
WEATHER	63.4%	50.7%	36.9%	15.7%	8.2%	18.2%	11.1%	10.8%	12.7%	24.2%	7.4%	5.2%	25.4%
UNDETERMINED	13.0%	14.1%	25.3%	6.2%	15.6%	2.3%	34.0%	21.1%	24.5%	13.4%	13.6%	11.2%	16.8%
TREE	10.2%	3.1%	13.1%	6.0%	13.1%	6.8%	8.3%	5.0%	5.3%	25.3%	14.8%	11.7%	10.2%
PUBLIC	0.4%	9.1%	5.9%	30.9%	14.5%	10.3%	4.2%	9.1%	3.6%	2.2%	9.3%	3.2%	6.6%
COMPANY	0.7%	0.0%	0.3%	0.0%	6.0%	3.1%	11.0%	7.6%	0.9%	4.6%	23.0%	3.2%	4.5%
EQUIPMENT OH	6.4%	17.8%	9.0%	14.6%	3.8%	10.3%	6.9%	4.3%	12.2%	9.5%	8.1%	31.8%	9.7%
EQUIPMENT UG	0.6%	0.7%	0.8%	1.6%	1.1%	0.6%	0.9%	1.6%	2.5%	0.2%	0.8%	0.3%	0.9%
EQUIPMENT SUB	0.0%	0.0%	0.3%	0.0%	2.1%	15.8%	0.0%	0.0%	6.2%	1.2%	0.0%	0.0%	2.9%
PLANNED	2.5%	2.5%	7.3%	13.7%	22.0%	12.5%	4.6%	4.3%	17.6%	15.1%	17.7%	13.0%	9.7%

Chart 4.3 - % SAIFI per Cause by Month

The following chart shows the percentage SAIFI contribution by causes for all outages, excluding major event days.

Table 4.4 - % SAIDI per Cause by Month

REASON	Jan	Feb	Mar	Apr	Мау	June	Jul	Aug	Sept	Oct	Nov	Dec	Yearly
ANIMAL	0.3%	2.0%	0.6%	10.0%	3.6%	15.2%	5.8%	26.9%	5.5%	2.7%	12.4%	0.3%	6.1%
MISCELLANEOUS	0.0%	0.2%	0.0%	0.0%	0.2%	0.0%	0.0%	0.0%	0.1%	0.0%	0.0%	0.5%	0.1%
POLE FIRE	2.4%	0.7%	1.4%	4.1%	7.4%	0.8%	17.2%	5.8%	4.4%	2.0%	1.4%	25.6%	5.4%
WEATHER	76.0%	46.2%	41.9%	23.5%	25.8%	27.6%	26.3%	18.3%	13.1%	15.5%	14.3%	8.2%	32.4%
UNDETERMINED	4.2%	9.6%	7.0%	4.8%	6.5%	1.2%	15.5%	17.0%	14.0%	3.7%	11.5%	6.4%	7.6%
TREE	10.7%	9.0%	13.3%	6.3%	12.6%	6.7%	13.3%	6.7%	20.7%	30.2%	18.8%	11.1%	14.4%
PUBLIC	0.3%	5.8%	5.9%	14.0%	13.3%	5.5%	4.4%	12.6%	1.8%	2.3%	14.8%	0.7%	5.0%
COMPANY	0.1%	0.0%	0.5%	0.0%	0.2%	0.3%	2.0%	0.7%	0.2%	0.9%	7.2%	0.3%	0.7%
EQUIPMENT OH	4.3%	19.8%	14.1%	12.7%	3.8%	4.5%	10.3%	6.8%	7.4%	6.4%	5.4%	37.7%	8.6%
EQUIPMENT UG	0.8%	3.7%	1.6%	2.0%	1.5%	1.8%	3.2%	3.3%	1.6%	0.6%	3.0%	0.5%	1.7%
EQUIPMENT SUB	0.0%	0.0%	0.1%	0.0%	0.9%	15.3%	0.0%	0.0%	2.1%	4.0%	0.0%	0.0%	2.7%
PLANNED	0.9%	2.9%	13.6%	22.6%	24.2%	21.2%	2.0%	1.9%	29.1%	31.7%	11.2%	8.6%	15.4%


The following table lists the percentage SAIDI contribution by causes for outages excluding major event days.

Reason	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Yearly
ANIMAL	1:32	1:22	2:05	5:08	2:40	1:26	0:49	1:01	1:28	2:23	3:50	1:18	1:22
COMPANY	0:29	1:50	2:18	1:51	0:06	0:12	0:17	0:06	0:46	0:30	0:27	0:12	0:18
EQUIPMENT OH	1:46	1:10	2:19	2:32	3:19	0:49	2:24	1:54	1:59	1:47	0:57	2:39	1:51
EQUIPMENT SUB	1:52	0:00	0:21	0:00	1:24	1:49	0:00	0:00	1:06	8:41	0:00	0:00	1:58
EQUIPMENT UG	3:57	5:57	2:57	3:43	4:32	5:45	5:28	2:25	2:05	6:49	5:48	4:04	3:46
MISCELLANEOUS	1:29	1:52	2:23	0:13	1:46	0:00	0:00	0:00	1:38	3:41	0:00	1:32	1:40
PLANNED	0:55	1:12	2:47	4:48	3:40	3:12	0:42	0:31	5:24	5:32	0:55	1:29	3:21
POLE FIRE	2:37	2:29	3:09	2:08	2:53	4:12	3:37	1:21	6:27	3:44	2:47	2:59	3:02
PUBLIC	2:18	0:39	1:29	1:19	3:03	1:00	1:41	1:39	1:39	2:46	2:17	0:30	1:37
TREE	2:48	3:03	1:31	3:04	3:12	1:51	2:35	1:35	12:44	3:09	1:50	2:07	2:57
UNDETERMINED	0:51	0:43	0:24	2:16	1:23	0:56	0:44	0:57	1:52	0:43	1:13	1:17	0:57
WEATHER	3:12	0:57	1:41	4:21	10:28	2:51	3:48	2:01	3:22	1:41	2:48	3:34	2:41

Table 4.4.1 Ave Outage Time (HH:MM)

Chart 4.4 – % SAIDI per Cause by Month

The following chart shows the percentage SAIFI contribution by causes for outages excluding major event days.

% SAIDI

Momentary Interruption Causes

The cause for many momentary interruptions is unknown. Because faults are temporary, the cause goes unnoticed even after the line is patrolled. Momentary outages are recorded using our SCADA system (System Control and Data Acquisition). On average, about 88% of Avista's customers are served from SCADA controlled stations.

Table 5.1 - % MAIFI per Cause by Office

The following table lists the percentage MAIFI contribution by causes for outages excluding major event days.

REASON	CDC	сос	DAC	GRC	KEC	LCC	отс	PAC	SAC	SPC	DPC	All Offices
	0.0%	0.0%	0.0%	0.0%	0.0%	2.5%	0.0%	0.1%	1.8%	3.1%	0.0%	1.2%
	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	6.1%	0.0%	0.0%	0.9%	0.0%	0.3%
WEATHER	13.5%	3.4%	7.8%	35.1%	21.4%	9.6%	5.9%	11.7%	16.9%	19.9%	0.0%	15.9%
TREE	0.0%	0.0%	1.3%	0.5%	0.0%	0.0%	6.9%	0.0%	1.1%	0.0%	0.0%	0.3%
PUBLIC	1.7%	2.6%	0.0%	0.0%	0.0%	1.4%	0.0%	0.6%	1.2%	0.6%	0.0%	0.9%
COMPANY	1.5%	0.0%	0.0%	0.0%	0.0%	1.1%	0.0%	0.0%	0.0%	0.7%	0.0%	0.5%
WEATHER	1.2%	1.8%	0.0%	4.5%	3.0%	1.1%	0.0%	0.0%	1.2%	1.1%	0.0%	1.3%
UNDETERMINED	79.8%	81.0%	90.8%	56.6%	75.6%	82.9%	74.2%	84.7%	75.3%	64.6%	0.0%	75.0%
EQUIPMENT UG	1.3%	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	0.9%	0.0%	0.0%	0.3%
EQUIPMENT OH	1.0%	3.4%	0.0%	0.0%	0.0%	1.1%	6.9%	2.5%	0.9%	5.5%	0.0%	2.5%
PLANNED	0.0%	7.8%	0.0%	2.1%	0.0%	0.0%	0.0%	0.4%	0.9%	2.0%	0.0%	1.3%
EQUIPMENT SUB	0.0%	0.0%	0.0%	1.1%	0.0%	0.0%	0.0%	0.0%	0.0%	1.4%	0.0%	0.4%

CDC	Coeur d'Alene	LCC	Lewiston-Clarkston
COC	Colville	OTC	Othello
DAC	Davenport	PAC	Palouse
DPC	Deer Park	SAC	Sandpoint
GRC	Grangeville	SPC	Spokane
KEC	Kellogg/ St. Maries		

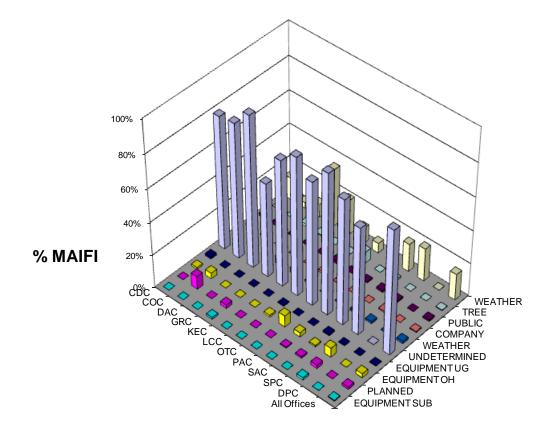
Table 5.1.1 - % MAIFI per Cause by Office (Washington only)

The following table lists the percentage MAIFI contribution by causes for outages excluding major event days.

REASON	coc	DAC	отс	SPC	DPC	PAC-WA	LCC-WA	All WA Offices
ANIMAL	2.25%	1.92%	2.05%	21.07%	4.30%	1.34%	11.31%	11.85%
COMPANY	6.27%	0.00%	0.02%	5.42%	0.00%	0.00%	0.00%	3.97%
MISCELLANEOUS	0.33%	0.00%	0.00%	0.01%	0.00%	0.00%	0.00%	0.07%
POLE FIRE	5.10%	0.64%	10.04%	2.89%	0.80%	0.00%	12.78%	2.97%
PUBLIC	1.60%	0.43%	1.69%	10.46%	14.10%	2.21%	0.13%	6.56%
TREE	11.42%	2.32%	1.04%	7.09%	14.55%	5.68%	34.65%	8.02%
UNDETERMINED	9.48%	2.61%	5.42%	10.53%	29.51%	40.85%	9.31%	13.80%
WEATHER	20.92%	80.59%	31.37%	21.47%	22.03%	36.90%	3.90%	29.06%
EQUIPMENT OH	5.84%	6.04%	41.25%	9.30%	8.12%	6.37%	24.59%	8.71%
EQUIPMENT UG	0.77%	0.18%	0.14%	0.86%	1.81%	1.04%	0.37%	0.82%
EQUIPMENT SUB	0.00%	0.00%	0.00%	8.76%	0.00%	0.01%	0.00%	4.42%
PLANNED	36.03%	5.27%	6.98%	2.13%	4.79%	5.59%	2.96%	9.76%

COCColvilleDACDavenportDPCDeer Park

OTC Othello

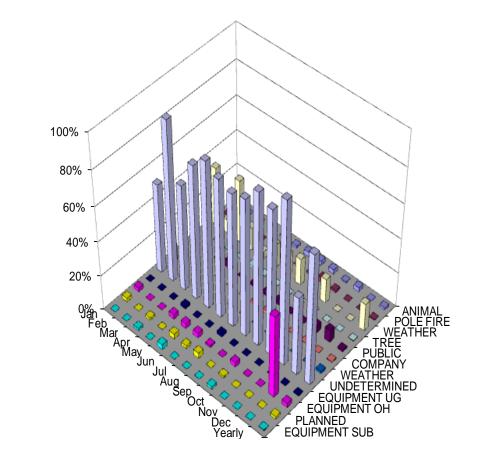

PAC-WA Palouse Washington

SPC Spokane

LCC-WA Lewiston-Clarkston Washington

Chart 5.1 - % MAIFI per Cause by Office

The following chart shows the percentage MAIFI contribution by causes for outages excluding major event days.


Table 5.2 - % MAIFI per Cause by Month

REASON	Jan	Feb	Mar	Apr	Мау	June	Jul	Aug	Sept	Oct	Nov	Dec	Yearly
ANIMAL POLE FIRE	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	1.6% 0.0%	1.2% 0.0%	2.6% 0.0%	2.5% 0.0%	2.6% 3.1%	0.6% 1.3%	2.5% 0.0%	0.0% 0.0%	1.2% 0.3%
WEATHER	34.3%	7.9%	36.5%	13.6%	4.4%	13.6%	13.0%	15.5%	0.0%	14.1%	0.0%	0.0%	15.9%
TREE	0.0%	0.0%	0.0%	0.6%	1.1%	0.7%	0.0%	0.0%	0.0%	0.8%	0.0%	0.0%	0.3%
PUBLIC	0.0%	0.0%	0.0%	4.5%	0.0%	0.7%	0.8%	1.5%	0.0%	0.0%	4.2%	7.1%	0.9%
COMPANY	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.3%	1.9%	1.9%	0.0%	0.0%	0.0%	0.5%
WEATHER	9.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.3%
UNDETERMINED	51.6%	92.1%	61.0%	77.0%	84.2%	79.4%	76.4%	78.6%	87.4%	83.2%	93.3%	45.3%	75.0%
EQUIPMENT UG	0.0%	0.0%	0.0%	1.6%	0.0%	0.0%	1.6%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%
EQUIPMENT OH	2.2%	0.0%	0.0%	2.8%	2.8%	2.8%	1.0%	0.0%	2.6%	0.0%	0.0%	47.6%	2.5%
PLANNED	2.1%	0.0%	1.3%	0.0%	2.9%	1.6%	3.1%	0.0%	0.9%	0.0%	0.0%	0.0%	1.3%
EQUIPMENT SUB	0.0%	0.0%	1.3%	0.0%	3.0%	0.0%	0.0%	0.0%	1.5%	0.0%	0.0%	0.0%	0.4%

The following table lists the percentage MAIFI contribution by causes for outages excluding major event days.

Chart 5.2 – % MAIFI per Cause by Month

The following chart shows the percentage MAIFI contribution by causes for outages excluding major event days.

% MAIFI

Major Event Day Causes

Chart 6.1 – % SAIFI by Cause Code for the Major Event Days

The following chart shows the percentage SAIFI contribution by causes for outages during major event days

No Major events in 2009

Table 6.1 – % SAIFI by Sub Cause Code for the Major Event Days

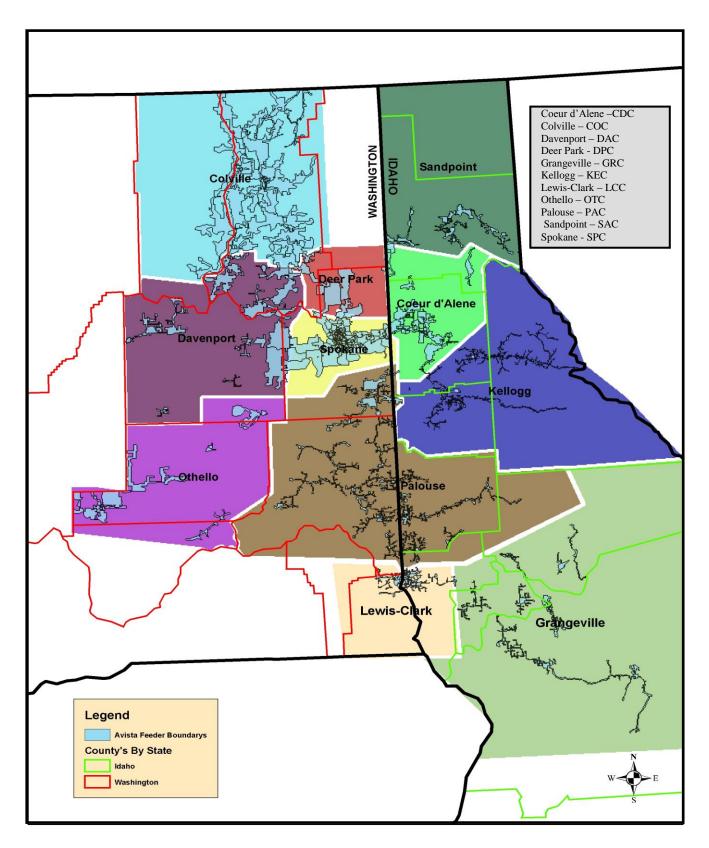
The following table shows the SAIFI contribution and Customer hours by sub causes code for the three main outage causes during major event days.

Cause Code	Sub reason	Sum of Ni	Sum of ri x Ni (hours)
POLE FIRE	Pole Fire		
Total			
		No MED in 2009	
TREE	Tree Fell Weather		
Total	Weather		
WEATHER	Snow/Ice		
	Lightning		
	Wind		
Total			

Table 6.2 – Yearly Summary of the Major Event Days

Table 6.2 is provided as an initial review of Major Event Day information. The main premise of the IEEE Major Event Day calculation is that using the 2.5bmethod should classify 2.3 days each year as MED's.

The following table shows the previous major event days, the daily SAIDI value and the relationship of the yearly T_{MED} .


Year	Date	SAIDI	T_{MED}	
2003	01-03-2003	5.38	4.96	
	05-24-2003	5.11		
	09-08-2003	5.47		
	10-16-2003	6.62		
	10-28-2003	9.25		
	11-19-2003	57.06		
2004	05-21-2004	7.11	6.35	
	08-02-2004	7.36		
	12-08-2004	31.00		
2005	06-21-2005	39.53	4.916	
	06-22-2005	9.03		
	08-12-2005	19.60		
2006	01-11-2006	12.10	7.058	
	03-09-2006	8.58		
	11-13-2006	30.79		
	12-14-2006	29.26		
	12-15-2006	158.31		
2007	01-06-2007	9.98	8.017	
	06-29-2007	32.64		
	07-13-2007	12.79		
	08-31-2007	21.30		
2008	01-27-2008	17.57	9.224	
	07-10-2008	36.74		
	08-18-2008	9.49		
2009	None		9.925	
2010			11.110	

Interruption Cause Codes

MAIN CATEGORY	Proposed (Changes Only)		Proposed (Changes Only)	Definition
ANIMAL		Bird Protected Squirrel Underground Other	<u> </u>	Outages caused by animal contacts. Specific animal called out in sub category.
PUBLIC		Car Hit Pad Car Hit Pole		Underground outage due to car, truck, construction equipment etc. contact with pad transformer, junction enclosure etc Overhead outage due to car, truck, construction equipment etc. contact with pole, guy, neutral
		Dig In Fire Tree Other		etc. Dig in by a customer, a customer's contractor, or another utility. Outages caused by or required for a house/structure or field/forest fire. Homeowner, tree service, logger etc. fells a tree into the line. Other public caused outages
COMPANY		Dig in Other		Dig in by company or contract crew. Other company caused outages
EQUIPMENT OH		Arrestors Capacitor Conductor - Pri Conductor - Sec Connector - Sec Crossarm- rotten Cutout / Fuse Insulator Insulator Pin Other Pole - Rotten Recloser Regulator Switch / Disconnect Transformer - OH Wildlife Guard		Outages caused by equipment failure. Specific equipment called out in sub category. Wildlife guard failed or caused an outage Outages caused by equipment failure. Specific
EQUIPMENT UG		URD Cable - Pri URD Cable- Sec Connector - Sec Elbow Junctions Primary Splice Termination Transformer - UG Other		equipment called out in sub category.

MAIN	Proposed	SUB	Proposed	
CATEGORY	(Changes Only)	CATEGORY		Definition
EQUIPMENT SUB		High side fuse Bus Insulator High side PCB High side Swt / Disc Low side OCB/Recloser Low side Swt / Disc Relay Misoperation Regulator Transformer Other		
MISCELLANEOUS		SEE REMARKS		For causes not specifically listed elsewhere
NOT OUR PROBLEM (Outages in this category are not included in reported statistics)		Customer Equipment SEE REMARKS		Customer equipment causing an outage to their service. If a customer causes an outage to another customer this is covered under Public.
,		Other Utility		Outages when another utility's facilities cause an outage on our system.
POLE FIRE				Used when water and contamination causes insulator leakage current and fire. If insulator is leaking due to material failure list under equipment failure. If cracked due to gunfire use customer caused other.
PLANNED		Maintenance / Upgrade Forced		Outage, normally prearranged, needed for normal construction work Outage scheduled to repair outage damage
TREE		Tree fell		For outages when a tree falls into distribution primary/secondary or transmission during normal weather
		Tree growth		Tree growth causes a tree to contact distribution primary/secondary or transmission during normal weather.
		Service		For outages when a tree falls or grows into a service.
		Weather		When snow and wind storms causes a tree or branch to fall into, or contact the line. Includes snow loading and unloading.
UNDETERMINED				Use when the cause cannot be determined
WEATHER		Snow / Ice		Outages caused by snow or ice loading or unloading on a structure or conductor. Use weather tree for snow and ice loading on a tree.
		Lightning		Lightning flashovers without equipment damage. Equipment failures reported under the equipment type.
		Wind		Outages when wind causes conductors to blow into each other, another structure, building etc. (WEATHER/TREE) used for tree contacts.
L				

Office Areas

Indices Calculations

Sustained Interruption

• An interruption lasting longer than 5 minutes.

Momentary Interruption Event

• An interruption lasting 5 minutes or less. The event includes all momentary interruptions occurring within 5 minutes of the first interruption. For example, when an interrupting device operates two, three, or four times and then holds, it is considered a single event.

SAIFI – System Average Interruption Frequency Index

- The average number of sustained interruptions per customer
- = <u>The number of customers which had *sustained interruptions* Total number of customers served</u>
- = $\frac{\sum N_i}{N_T}$

MAIFI_E – Momentary Average Interruption Event Frequency Index

- The average number of momentary interruption events per customer
- = <u>The number of customers which had *momentary interruption events* Total number of customers served</u>
- = $\frac{\sum ID_E N_i}{N_T}$
- MAIFI can be calculated by one of two methods. Using the number of momentary interruptions or the number momentary events. This report calculates $MAIFI_E$ using momentary events. The event includes all momentary interruptions occurring within 5 minutes of the first interruption. For example, when an automatic interrupting device opens and then recloses two, or three times before it remains closed, it is considered a single event.

SAIDI – System Average Interruption Duration Index

- Average sustained outage time per customer
- = <u>Outage duration multiplied by the customers effected for all *sustained interruptions* Total number of customers served</u>

• =
$$\frac{\sum r_i N_i}{N_T}$$

CAIDI – Customer Average Interruption Duration Index

- Average restoration time
- = <u>Outage duration multiplied by the customers effected for all *sustained interruptions* The number of customers which had *sustained interruptions*</u>

$$\bullet = \frac{\sum r_i N_i}{\sum N_i}$$

Quantities

i = An interruption event; $r_i = Restoration time for each interruption event;$ T = Total; $ID_E = Number of interrupting device events;$ $N_i = Number of interrupted customers for each interruption event during the reporting period;$ $<math>N_T = Total number of customers served for the area being indexed;$

 $CEMI_n$ – Customers Experiencing Multiple Sustained Interruptions more than n.

- CEMI_n
- = <u>Total Number of Customers that experience more than *n* sustained interruptions</u> Total Number of Customers Served
- = $\frac{CN_{(k>n)}}{N_T}$

 $CEMSMI_n$ – Customers experiencing multiple sustained interruption and momentary interruption events.

- CEMSMIn
- = <u>Total Number of Customers experiencing more than *n* interruptions</u> Total Number of Customers Served
- = $\frac{\text{CNT}_{(k>n)}}{N_T}$

MED - Major Event Day

A major event day is a day in which the daily system SAIDI exceeds a threshold value. Its purpose is to allow major events to be studied separately from daily operation, and in the process, to better reveal trends in daily operation that would be hidden by the large statistical effect of major events.

T_{MED} is calculated (taken from the IEEE 1366-2003 Standard)

The major event day identification threshold value, T_{MED} , is calculated at the end of each reporting period (typically one year) for use during the next reporting period as follows:

a) Collect values of daily SAIDI for five sequential years ending on the last day of the last complete reporting period. If fewer than five years of historical data are available, use all available historical data until five years of historical data are available.

b) Only those days that have a SAIDI/Day value will be used to calculate the T_{MED} (do not include days that did not have any interruptions).

c) Take the natural logarithm (In) of each daily SAIDI value in the data set.

d) Find α (Alpha), the average of the logarithms (also known as the log-average) of the data set.

e) Find β (Beta), the standard deviation of the logarithms (also known as the log-standard deviation) of the data set.

f) Compute the major event day threshold, TMED, using equation (25).

$$T_{MED} = e^{\langle \alpha + 2.5 \beta \rangle}$$
(25)

g) Any day with daily SAIDI greater than the threshold value TMED that occurs during the subsequent reporting period is classified as a major event day. Activities that occur on days classified as major event days should be separately analyzed and reported.

Numbers of Customers Served

The following numbers of customers were based on the customers served at the beginning of the year. These numbers were used to calculate indices for this report.

Office	Customers	% of Total
Coeur d'Alene	49531	13.8%
Colville	17906	5.0%
Davenport	6852	1.9%
Deer Park	10419	2.9%
Grangeville	10119	2.8%
Kellogg/St. Maries	14178	4.0%
Lewis-Clark	29055	8.1%
Othello	6672	1.9%
Palouse	38208	10.6%
Sandpoint	14422	4.0%
Spokane	161401	45.0%
System Total	358763	

2004-2012 AVA SAIDI Performance in Different Measurements

(Average number of outage minutes per customer per year)

As of December 31, 2012

Table 1: 2004-2012 AVA SAIDI Performance by Measurement by Year

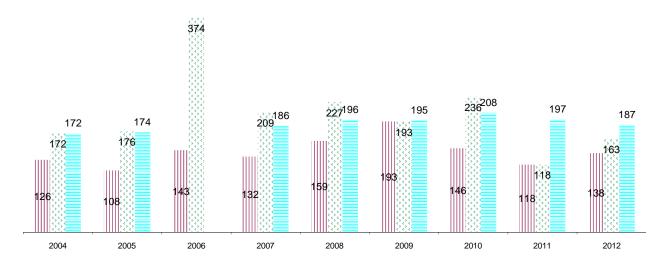

Year	Calendar Year		Annual Total SAIDI Results: All Minutes w/o Exclusion		Total SAIDI 5-Year Rolling Annual Average Excluding 2006	
1	2004	126	172	172	172	
2	2005	108	176	176	174	Baseline
3	2006	143	374			
4	2007	132	209	209	186	
5	2008	159	227	227	196	
6	2009	193	193	193	195	
7	2010	146	236	236	208	
8	2011	118	118	118	197	
9	2012	138	163	163	187	
		171				Target

Chart 1: 2004-2012 AVA SAIDI Performance in Different Measurements by Year

I Annual IEEE SAIDI Excluding Daily Results over TMED

Annual Total SAIDI Results: All Minutes w/o Exclusion

Total SAIDI 5-Year Rolling Annual Average Excluding 2006

2004 - 2012 AVA SAIFI Performance in Different Measurements (Average number of interruptions per year per customer)

As of December 31, 2012

Table 1: 2004 - 2012 AVA SAIFI Performance by Measurement by Year

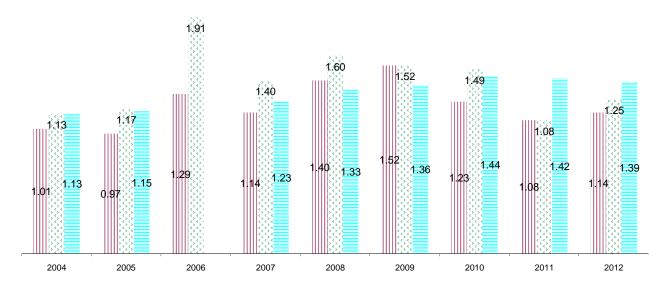

			Annual Total SAIFI		Total SAIFI 5-	
		Annual IEEE SAIFI	Results: All	Annual Total SAIFI	Year Rolling	
		Excluding Daily	Minutes w/o	Results Excluding	Annual Average	
Year	Calendar Year	Results over TMED	Exclusion	2006	Excluding 2006	
1	2004	1.01	1.13	1.13	1.13	
2	2005	0.97	1.17	1.17	1.15	Baseline
3	2006	1.29	1.91			
4	2007	1.14	1.40	1.40	1.23	
5	2008	1.40	1.60	1.60	1.33	
6	2009	1.52	1.52	1.52	1.36	
7	2010	1.23	1.49	1.49	1.44	
8	2011	1.08	1.08	1.08	1.42	
9	2012	1.14	1.25	1.25	1.39	
		1.41				Target

Chart 1: 2004-2012 AVA SAIFI Performance in Different Measurements by Year

Annual IEEE SAIFI Excluding Daily Results over TMED

Annual Total SAIFI Results: All Minutes w/o Exclusion

Total SAIFI 5-Year Rolling Annual Average Excluding 2006

Baltimore Gas and Electric Company COMAR 20.50.07.06 Reporting of Reliability Indices – CY 2005

(1) System-Wide Indices. A utility shall report SAIDI, SAIFI, and CAIDI for its system consisting of all feeders originating in Maryland. The indices shall be calculated and reported with two sets of input data.

(a) All interruption data;

SAIFI – 1.56 SAIDI – 4.02 CAIDI – 2.57

Note: System-Wide Indices are calculated using IEEE Std. 1366-1998.

(b) All interruption data minus major event interruption data.

SAIFI – 1.56 SAIDI – 4.02 CAIDI – 2.57

BGE experienced no Major events in CY 2005.

(2) District Indices. A cooperatively-owned utility shall provide SAIDI, SAIFI, and CAIDI for each operating district and identify the operating district with the poorest reliability. The indices shall be calculated and reported with two sets of input data.

(a) All interruption data;

(b) Major event interruption data excluded.

Requirements (a) & (b) are not applicable to BGE since BGE is an Investor Owned Utility.

(3) Feeder Indices. An investor-owned utility shall provide SAIDI, SAIFI, and CAIDI for 2% of feeders or 10 feeders, whichever is more, serving at least one Maryland customer that are identified by the utility as having the poorest reliability. The indices shall be calculated and reported with 2 sets of input data.

13.8 kV Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
7348	LIPINS CORNER	8.06	10.04	13.89	1.38
7711	MEADOWS	6.82	8.31	8.33	1.00
7107	MOUNT WASHINGTON	6.46	7.79	14.00	1.80
7015	BROOKHILL	6.14	7.11	16.56	2.33
8056	WAKEFIELD	6.01	7.39	16.05	2.17
7873	HIGHLANDTOWN	5.43	5.69	10.57	1.86
8474	CROWNSVILLE	5.31	5.83	27.17	4.66
7870	HIGHLANDTOWN	4.85	6.42	10.39	1.62
7420	LEVITT	4.23	5.03	13.16	2.62
7053	VAN BIBBER	4.22	5.18	7.34	1.42
7240	FINKSBURG	4.16	4.71	20.50	4.35
7838	GREENE STREET	4.13	5.04	7.38	1.46
7440	MITCHELLVILLE	4.10	4.96	12.52	2.52
8362	BAY HILLS	4.08	4.77	18.50	3.88
7845	GREENE STREET	4.05	4.78	11.76	2.46
7411	GREENBURY POINT	4.02	4.49	23.54	5.24
7735	DORSEY RUN	3.95	4.79	6.44	1.34
7683	LAUREL	3.91	5.20	7.15	1.37
7067	FALLSTON	3.89	4.22	7.63	1.81

(a) All interruption data;

4.4 kV	Substation	CRI	SAIFI	SAIDI	CAIDI
Feeder					
4154	FORT AVENUE	4.48	5.97	41.25	6.91
4405	WOODBROOK	4.10	4.32	8.80	2.04
4069	PHILADELPHIA ROAD	2.98	3.64	8.60	2.37

(b) All interruption data minus major event interruption data:

BGE experienced no Major events in 2005.

BGE's "Worst Feeder Program" consists of plans to improve reliability performance for the top 2% of the 13.8 kV distribution feeders (19 out of 953 total 13.8 kV distribution feeders) and 2% of the 4.4 kV distribution feeders (3 out of 129 total 4.4 kV distribution feeders) based on all interruption data minus major event interruption data.

13.8 kV Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
7348	LIPINS CORNER	8.06	10.04	13.89	1.38
7711	MEADOWS	6.82	8.31	8.33	1.00
7107	MOUNT WASHINGTON	6.46	7.79	14.00	1.80
7015	BROOKHILL	6.14	7.11	16.56	2.33
8056	WAKEFIELD	6.01	7.39	16.05	2.17
7873	HIGHLANDTOWN	5.43	5.69	10.57	1.86
8474	CROWNSVILLE	5.31	5.83	27.17	4.66
7870	HIGHLANDTOWN	4.85	6.42	10.39	1.62
7420	LEVITT	4.23	5.03	13.16	2.62
7053	VAN BIBBER	4.22	5.18	7.34	1.42
7240	FINKSBURG	4.16	4.71	20.50	4.35
7838	GREENE STREET	4.13	5.04	7.38	1.46
7440	MITCHELLVILLE	4.10	4.96	12.52	2.52
8362	BAY HILLS	4.08	4.77	18.50	3.88
7845	GREENE STREET	4.05	4.78	11.76	2.46
7411	GREENBURY POINT	4.02	4.49	23.54	5.24
7735	DORSEY RUN	3.95	4.79	6.44	1.34
7683	LAUREL	3.91	5.20	7.15	1.37
7067	FALLSTON	3.89	4.22	7.63	1.81

4.4 kV Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
4154	FORT AVENUE	4.48	5.97	41.25	6.91
4405	WOODBROOK	4.10	4.32	8.80	2.04
4069	PHILADELPHIA ROAD	2.98	3.64	8.60	2.37

(c) Feeders shall not be included as having the poorest reliability in two consecutive reports.

No feeders listed in the CY 2004 report as having poor reliability are included in this report.

(4) The method used by a utility to identify the district and feeders with poorest reliability shall be approved by the Commission and be included in the report.

In order to determine which distribution feeders and areas having the poorest performance, BGE utilizes a Composite Reliability Index (CRI). In the event that two feeders have identical composite reliability indices, the feeders are then ranked based on the most recent year's feeder SAIFI. The formula for the index is:

CRI = 0.75 × SAIFI₂₀₀₅ + 0.25 × SAIFI₂₀₀₄

As previously communicated with the Commission's Engineering Division, BGE changed to its current CRI methodology commencing with the CY 2004 report. However, to be consistent, the old CRI formula was utilized in this report to assess the ordinal ranking of CY 2003's "worst feeders" in section 8 (b).

(5) Feeders included in the report, which serve customers in Maryland and one or more bordering jurisdiction, shall be identified. The report shall include the percentage of customers located in Maryland and the percentage of customers located in bordering jurisdictions.

Not applicable to BGE. BGE has no feeders outside Maryland.

(6) Major Event Interruption Data. The report shall include the time periods during which major event interruption data was excluded from the indices, along with a brief description of the interruption causes during each time period.

BGE experienced no Major events in 2005.

(7) Actions for Operating District and Feeders with Poorest Reliability.

(a) An investor-owned utility shall report remedial actions taken or planned to improve reliability for all feeders reported under C.(3) of this regulation.

BGE will review the design for each feeder reported under this section to identify potential improvements. BGE will also trim the trees on feeders as needed, conduct a thorough equipment inspection on each feeder and correct any deficiencies found during the inspections. These inspections will permit the identification of potential outage causes, and will, as a result, reduce the number of customer interruptions due to unknown causes. Where the feeder interruptions were the result of underground conductor failures, the failed sections were isolated during the service restoration process, and have since been repaired or replaced. In some cases, underground cable replacement will be performed if the underground conductor experiences an excessive number of failures.

Feeder 7348

Feeder 7348 supplies approximately 2,250 customers in the Harundale area of Anne Arundel County. During 2005, 43% of the customer interruptions were caused by equipment failures, 21% were caused by unknown events (consisted mainly of 2 feeder lockouts where no system damage was identified), 20% were caused by underground conductor failures, 10% were the result of customer interferences (pole hits and dig-ins), 5% were caused by trees and 1% by other miscellaneous events. Tree trimming on this feeder was most recently completed in May 2004, and an inspection was performed which determined that localized tree trimming and overhang removals were needed which was completed in January 2005. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2006. Each failed conductor was repaired or replaced during 2005 as part of the service restoration and repair process. In addition, BGE identified cable replacement opportunities that were completed in November and December 2005. The design of this feeder was studied and Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing were installed with work being completed in December 2005.

Feeder 7711

Feeder 7711 supplies approximately 2,500 customers in the Security Square and Woodlawn areas of Baltimore County. During 2005, more than 99% of the customer interruptions were caused by underground conductor failures and the remainder caused by other miscellaneous events. Tree trimming on this feeder was most recently completed in October 2004, and a recent inspection has determined that no additional tree trimming is required at this time. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in November 2005. Each failed conductor was repaired or replaced during 2005 as part of the service restoration and repair process. In addition, BGE has identified cable replacement opportunities that will be completed in 2006.

Feeder 7107 supplies approximately 1,200 customers in the Mount Washington area of Baltimore City. During 2005, 22% of the customer interruptions were caused by unknown events (vast majority were protective devices that operated where no system damage was identified), 18% were caused by trees, 18% were caused by underground conductor failures, 16% were caused by lightning, 12% were caused by wind or rain, 10% were the result of customer interferences (pole hits and dig-ins), and 4% were caused by equipment failures. Tree trimming on this feeder was most recently completed in May 2004, and an inspection was performed which determined that localized tree trimming and overhang removals were needed which was completed in January 2005. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in January 2006. Each failed conductor was repaired or replaced during 2005 as part of the service restoration and repair process. The design of this feeder was studied and Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing were installed with work being completed in January 2006.

Feeder 7015

Feeder 7015 supplies approximately 100 customers in the Seton Park area of Baltimore City. During 2005, 89% of the customer interruptions were caused by underground conductor failures, 10% were caused by equipment failures and 1% was caused by other miscellaneous events. Each failed conductor was repaired or replaced during 2005 as part of the service restoration and repair process. In addition, BGE has identified cable replacement opportunities that will be completed in 2006. Tree trimming on this feeder was most recently completed in February 2006. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in November 2005.

Feeder 8056

Feeder 8056 supplies approximately 1,500 customers in the Bel Air area of Harford County. During 2005, 53% of the customer interruptions were caused by underground conductor failures, 27% were caused by equipment failures, 17% were caused by trees, and 3% were caused by lightning. Each failed conductor was repaired or replaced during 2005 as part of the service restoration and repair process. In addition, BGE has identified cable replacement opportunities that will be completed in 2006. Tree trimming on this feeder was most recently completed in April 2005, and an inspection was performed which determined that additional overhang removals were needed which was completed in January 2006. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in January 2006. The design of this feeder was studied and Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing were installed with work being completed in March 2006.

Feeder 7873

Feeder 7873 supplies approximately 1,600 customers in the Highlandtown area of Baltimore City. During 2005, 28% of the customer interruptions were caused by equipment failures, 27% were caused by wind or rain, 16% were caused by underground conductor failures, 14% were caused by wildlife, 14% were caused by lightning and 1% was caused by other miscellaneous events. Each failed conductor was repaired or replaced during 2005 as part of the service restoration and repair process. Tree trimming on this feeder was most recently completed in February 2005. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in January 2006. The design of this feeder has been studied and electronic resetable sectionalizing and additional fusing will be installed in 2006.

Feeder 8474 supplies approximately 680 customers in the Sherwood Forest area of Anne Arundel County. During 2005, 31% of the customer interruptions were caused by trees, 20% were the result of customer interferences (pole hits and dig-ins), 15% were caused by unknown events, 12% were caused by underground conductor failures, 11% were caused by equipment failures, 6% were caused by lightning, 4% were caused by wind or rain and 1% was caused by wildlife. Each failed conductor was repaired or replaced during 2005 as part of the service restoration and repair process. In addition, BGE has identified cable replacement opportunities that will be completed in 2006. Tree trimming on this feeder was last performed in February 2004, and an inspection performed in 2006 has determined that localized tree trimming and overhang removals are needed and will be performed in 2006. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies. The design of this feeder has been studied and Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing will be installed in 2006.

Feeder 7870

Feeder 7870 supplies approximately 2,150 customers in the Highlandtown area of Baltimore City. During 2005, 34% of the customer interruptions were the result of customer interferences (pole hits and dig-ins), 31% were caused by equipment failures, 19% were caused by unknown events, and 16% were caused by underground conductor failures. Each failed conductor was repaired or replaced during 2005as part of the service restoration and repair process. Tree trimming on this feeder was most recently completed in March 2005. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies. The design of this feeder has been studied and electronic resetable sectionalizing and fault indicators will be installed in 2006.

Feeder 7420

Feeder 7420 supplies approximately 1,350 customers in the Bowie area of Prince Georges County. During 2005, 66% of the customer interruptions were caused by unknown events (vast majority were protective devices that operated where no system damage was identified), 20% were caused by lightning, 9% were caused by trees, 4% were caused by equipment failures and 1% was caused by wildlife. Tree trimming on this feeder was most recently completed in July 2003, and an inspection performed in 2006 has determined that localized tree trimming and overhang removals are needed and will be performed in 2006. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies. The design of this feeder has been studied and Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing were installed in 2005.

Feeder 7053

Feeder 7053 supplies approximately 2,450 customers in the Edgewood area of Harford County. During 2005, 69% of the customer interruptions were caused by trees, 29% were caused by equipment failures and 2% were caused by other miscellaneous events. Tree trimming on this feeder was most recently completed in April 2006 and BGE performed aggressive tree and overhang removals along the 3 phase main. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2006. The design of this feeder has been studied and Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing will be installed in 2006.

Feeder 7240 supplies approximately 1,300 customers in the Finksburg area of Carroll County and the Reisterstown area of Baltimore County. During 2005, 35% of the customer interruptions were caused by unknown events (vast majority were protective devices that operated during storms where no system damage was identified), 30% were caused by trees, 26% were the result of customer interferences (pole hits) and 9% were caused by lightning. Tree trimming on this feeder was most recently completed in May 2004, and an inspection performed in 2006 has determined that localized tree trimming and overhang removals are needed and will be performed in 2006. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in December 2005. The design of this feeder has been studied and Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing will be installed in 2006.

Feeder 7838

Feeder 7838 supplies approximately 3,150 customers in the Druid Hill area of Baltimore City. During 2005, 55% of the customer interruptions were caused by underground conductor failures, 21% were caused by equipment failures, 13% were caused by unknown events, 9% were caused by wildlife and 2% were caused by other miscellaneous events. Each failed conductor was repaired or replaced during 2005 as part of the service restoration and repair process. In addition, BGE has identified cable replacement opportunities that will be completed in 2006. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies. Tree trimming on this feeder was most recently completed in February 2006.

Feeder 7440

Feeder 7440 supplies approximately 1,150 customers in the Bowie area of Prince Georges County. During 2005, 42% of the customer interruptions were caused by unknown events (vast majority were protective devices that operated where no system damage was identified), 34% were caused by lightning, 19% were caused by trees, 2% were the result of customer interferences (dig-ins), 2% were caused by underground conductor failures and 1% was caused by equipment failure. Each failed conductor was repaired or replaced during 2005 as part of the service restoration and repair process. In addition, BGE has identified cable replacement opportunities that will be completed in 2006. Tree trimming on this feeder was most recently completed in July 2005 and BGE performed aggressive tree and overhang removals along the 3 phase main. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2006. The design of this feeder has been studied and Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing were installed in 2005.

Feeder 8362 supplies approximately 1,200 customers in the Arnold area of Anne Arundel County. During 2005, 44% of the customer interruptions were caused by equipment failures, 25% were caused by underground conductor failures, 20% were caused by trees, 6% were the result of customer interferences (dig-ins), 4% were caused by unknown events and 1% was caused by other miscellaneous events. Each failed conductor was repaired or replaced during 2005 as part of the service restoration and repair process. In addition, BGE has identified cable replacement opportunities that will be completed in 2006. Tree trimming on this feeder was most recently completed in May 2005, and an inspection performed in 2006 has determined that localized tree trimming and overhang removals are needed and will be performed in 2006. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies. The design of this feeder has been studied and Distribution Automation reclosers and electronic resetable sectionalizing will be installed in 2006.

Feeder 7845

Feeder 7845 supplies approximately 4,150 customers in the Union Square area of Baltimore City. During 2005, 37% of the customer interruptions were caused by unknown events (consisted mainly of 1 feeder lockout where no system damage was identified), 35% were caused by equipment failures, 23% were caused by underground conductor failures, 4% were caused by lightning and 1% was caused by trees. Each failed conductor was repaired or replaced during 2005 as part of the service restoration and repair process. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in September 2005. Tree trimming on this feeder was most recently completed in December 2002 and is scheduled for cycle trimming in 2006.

Feeder 7411

Feeder 7411 supplies approximately 1,475 customers in the Arnold and Greenbury Point areas of Anne Arundel County. During 2005, 35% of the customer interruptions were caused by trees, 31% were caused by unknown events (vast majority were protective devices that operated where no system damage was identified), 24% were caused by equipment failures, 8% were caused by lightning and 2% were caused by other miscellaneous events. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies. Tree trimming on this feeder was most recently completed in December 2002, and is scheduled for cycle trimming in 2006 with aggressive tree and overhang removals being targeted. The design of this feeder has been studied and Distribution Automation reclosers will be installed in 2006.

Feeder 7735 supplies approximately 700 customers in the Severn area of Anne Arundel County. During 2005, 48% of the customer interruptions were the result of customer interferences (pole hits and dig-ins), 23% were caused by underground conductor failures, 23% were caused by unknown events (vast majority were protective devices that operated during storms where no system damage was identified), and 6% were caused by equipment failures. Each failed conductor was repaired or replaced during 2005 as part of the service restoration and repair process. In addition, BGE has identified cable replacement opportunities that will be completed in 2006. Tree trimming on this feeder was most recently completed in January 2003, and an inspection performed in 2006 has determined that no additional tree trimming is required at this time. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies. The design of this feeder has been studied and Distribution Automation reclosers and, electronic resetable sectionalizing will be installed in 2006.

Feeder 7683

Feeder 7683 supplies approximately 670 customers in the Laurel area of Prince George's County. During 2005, 78% of the customer interruptions were caused by underground conductor failures and 22% were caused by unknown events (consisted mainly of 1 feeder lockout where no system damage was identified). Each failed conductor was repaired or replaced during 2005 as part of the service restoration and repair process. In addition, BGE replaced a portion of the feeder main that was completed in March 2006. Tree trimming on this feeder was most recently completed in July 2005, and a recent inspection has determined that no additional tree trimming is required at this time. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies.

Feeder 7067

Feeder 7067 supplies approximately 1,350 customers in the Fallston area of Harford County. During 2006, 50% of the customer interruptions were caused by underground conductor failures, 30% were caused by equipment failures, 12% were caused by trees, 5% were wind or rain related and 3% were caused by unknown events. Each failed conductor was repaired or replaced during 2005 as part of the service restoration and repair process. In addition, BGE has identified cable replacement opportunities that will be completed in 2006. Tree trimming on this feeder was most recently completed in December 2005, and BGE performed aggressive tree and overhang removals along the 3 phase main. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies. The design of this feeder has been studied and Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing will be installed in 2006.

Feeder 4154

Feeder 4154 supplies approximately 350 customers in the South Baltimore area of Baltimore City. During 2005, 45% of the customer interruptions were caused by equipment failures, 39% were caused by underground conductor failures, and 16% were caused by unknown events. Each failed conductor was repaired or replaced during 2005 as part of the service restoration and repair process. BGE conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2005. Tree trimming on this feeder was most recently completed in December 2002 and is scheduled for cycle trimming in 2006.

Feeder 4405 supplies approximately 815 customers in the Mondawmin area of Baltimore City. During 2005, 53% of the customer interruptions were caused by unknown events (the major contributor was 1 lockout where no system damage was identified), 24% were caused by trees and 23% were caused by equipment failures. BGE conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in January 2006. Tree trimming on this feeder was most recently completed in February 2006, and BGE performed aggressive tree and overhang removals along the 3 phase main.

Feeder 4069

Feeder 4069 supplies approximately 700 customers in the Clifton Park area of Baltimore City. During 2005, 47% of the customer interruptions were caused by equipment failures, 28% were the result of customer interferences (dig-ins) and 25% were caused by lightning. BGE conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2006. Tree trimming on this feeder was most recently completed in December 2002, and is scheduled for cycle trimming in 2006 with aggressive tree and overhang removals being targeted.

(b) Each utility shall briefly describe the actions taken or planned to improve reliability. When the utility determines that remedial actions are unwarranted, the utility shall provide justification for this determination.

BGE plans include remedial actions for all feeders identified as worst performers.

(8) Evaluation of Remedial Actions. For the operating district and feeders identified as having the poorest reliability in an annual reliability indices report, the utility shall provide the following information in the next two annual reports.

(a) The annual report for the year following the identification of the operating district and feeders as having the poorest performance shall provide a brief description of the actions taken, if any, to improve reliability and the completion dates of these actions.

BGE reviewed the design for each feeder reported under this section to identify potential improvements. BGE also trimmed the trees on each feeder as needed, conducted a thorough equipment and conductor inspection on each feeder and corrected any deficiencies found during the inspections. Those inspections permitted the identification of potential outage causes, and, as a result, reduced the number of customer interruptions due to unknown causes. Where the feeder interruptions were the result of underground conductor failures, the failed sections were isolated during the service restoration process, and have since been repaired or replaced. In some cases, underground cable replacement was performed if the underground conductor experienced an excessive number of failures.

Feeder 7130

Feeder 7130 supplies approximately 1,000 customers in the Hereford area of Baltimore County. During 2004, 39% of the customer interruptions were caused by trees, 34% were caused by lightning, 13% were caused by unknown events, 9% were caused by equipment failures, 3% were caused by other miscellaneous events and 2% were caused by wind or rain. During 2005, BGE trimmed the entire length of the feeder as well as performing aggressive removals along the 3 phase mains (Completed 4/05). BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2005. The design of this feeder has been studied and the installation of Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing was completed in January 2006.

Feeder 7141

Feeder 7141 supplies approximately 1,090 customers in the Jacksonville area of Baltimore County. During 2004, 40% of the customer interruptions were caused by trees, 20% were the result of customer interferences (pole hits and dig-ins), 14% were caused by unknown events, 12% were caused by lightning, 12% were caused by equipment failures and 2% were caused by wind or rain. Tree trimming on this feeder was most recently completed in December 2003, and an inspection performed in 2005 determined that localized tree trimming and overhang removals were needed (Completed 5/05). BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2005. The design of this feeder has been studied and the installation of Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing was completed in March 2006.

Feeder 7419 supplies approximately 350 customers in the Bowie area of Prince George's County. During 2004, 74 % were caused by unknown events (consisted of 3 lockouts during minor storm where no system damage was identified), 25% were caused by lightning and 1% was caused by other miscellaneous events. Tree trimming on this feeder was most recently completed in March 2004, and an inspection performed in 2005 determined that no additional tree trimming was required. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2005. The design of this feeder has been studied and the installation of Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing was completed in March 2005.

Feeder 8103

Feeder 8103 supplies approximately 700 customers in the Mt Washington and Roland Park areas of Baltimore City. During 2004, 52% of the customer interruptions were caused by trees, 15% were caused by equipment failures, 12% were caused by unknown events, 12% were caused by underground conductor failures, 7% were the result of customer interferences (pole hits and digins) and 2% were caused by other miscellaneous events. Each failed conductor was repaired or replaced during 2004 as part of the service restoration and repair process. Tree trimming on this feeder was most recently completed in December 2004 and BGE performed aggressive tree and overhang removals along the 3 phase main. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2005. The design of this feeder has been studied and the installation of Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing was completed in March 2005.

Feeder 8734

Feeder 8734 supplies approximately 1380 customers in the Ashton area of Montgomery County. During 2004, 46% were caused by unknown events (the majority were caused by 3 lockouts, 2 storm related, where no cause could be identified), 40% were caused by lightning, 9% were the result of customer interferences (pole hits and dig-ins), and 5% were caused by other miscellaneous events. Tree trimming on this feeder was most recently completed in March 2005, and BGE performed aggressive tree and overhang removals along the 3 phase main. The design of this feeder has been studied and the installation of Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing was completed in March 2006.

Feeder 7105

Feeder 7105 supplies approximately 1,650 customers in the Pikesville and Brooklandville areas of Baltimore County. During 2004, 61% of the customer interruptions were caused by trees, 18% were caused by equipment failures, 17% were caused by unknown events and 4% were caused by other miscellaneous events. Tree trimming on this feeder was last performed in April 2004 and an inspection performed in 2005 determined that localized tree trimming and overhang removals were needed (Completed 7/05). BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2005. The design of this feeder has been studied and the installation of Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing was completed in May 2005.

Feeder 7132 supplies approximately 1,300 customers in the Hereford area of Baltimore County. During 2004, 27% of the customer interruptions were caused by trees, 27% were the result of customer interferences (pole hits and dig-ins), 25% were caused by unknown events, 10% were caused by lightning, 10% were caused by wind or rain and 1% was caused by other miscellaneous events. During 2005, BGE trimmed the entire length of the feeder as well as performing aggressive removals along the 3 phase mains (Completed 4/05). BGE also conducted an overhead equipment and conductor inspection and corrected the related deficiencies in February 2005. The design of this feeder has been studied and the installation of Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing was completed in February 2006.

Feeder 7730

Feeder 7730 supplies approximately 90 customers in the Jessup areas of Howard and Anne Arundel Counties. During 2004, 96% of the customer interruptions were caused by equipment failures and 4% were caused by wildlife. Tree trimming on this feeder was most recently completed in April 2004, and an inspection performed in 2005 determined that localized tree trimming and overhang removals were needed (Completed 4/05). BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2005. The design of this feeder has been studied and the installation of Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing was completed in April 2006.

Feeder 7129

Feeder 7129 supplies approximately 1,213 customers in the Hereford area of Baltimore County. During 2004, 52% of the customer interruptions were caused by equipment failures, 25% were caused by unknown events, 10% were caused by trees, 7% were caused by wildlife, 4% were caused by lightning and 2% were caused by wind or rain. Tree trimming on this feeder was most recently completed in December 2003 and an inspection performed in 2005 determined that localized tree trimming and overhang removals were needed (Completed 5/05). BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2005. The design of this feeder has been studied and the installation of Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing was completed in July 2005.

Feeder 8421

Feeder 8421 supplies approximately 675 customers in the Wayson's Corner area of Anne Arundel County and the northern part of Calvert County. During 2004, 86% of the customer interruptions were due to equipment failures, 10% were the result of customer interferences (pole hits) and 4% were caused by lightning. During 2005, BGE trimmed the entire length of the feeder as well as performing aggressive removals along the 3 phase mains (Completed 4/05). BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2005. The design of this feeder has been studied and the installation of Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing was completed in December 2005.

Feeder 8010 supplies approximately 718 customers in the Roland Park area of Baltimore City. During 2004, 40% of the customer interruptions were caused by unknown events (consisted of 2 lockouts during where no system damage was identified), 24% were caused by underground conductor failures, 23% were caused by equipment failures, 9% were the result of customer interferences (dig-ins) and 4% were caused by other miscellaneous events. Each failed conductor was repaired or replaced during 2004 as part of the service restoration and repair process. In addition, BGE identified sections of underground cable on this feeder that had experienced an excessive number of failures. A cable replacement job was designed to replace more than 4,000 feet of cable with an expected cut in date of late 2005. However, right of way and customer issues in the Village of Cross Keys delayed the start of the job, which is now underway with an expected May 2006 completion. BGE most recently conducted an overhead equipment and conductor inspection in 2004 and corrected the related deficiencies. During 2005, BGE trimmed the entire length of the feeder as well as performing aggressive removals along the 3 phase mains (Completed 8/05). The design of this feeder has been studied and the installation of Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing was completed in April 2006.

Feeder 7072

Feeder 7072 supplies approximately 1,120 customers in the Joppatowne area of Harford County. During 2004, 61% of the customer interruptions were caused by trees, 37% were caused by equipment failure and 2% were caused by other miscellaneous events. Tree trimming on this feeder was most recently completed in December 2003 and an inspection performed in 2005 determined that localized tree trimming and overhang removals were needed (Completed 5/05) BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2005. The design of this feeder has been studied and the installation of Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing was completed in December 2005.

Feeder 8783

Feeder 8783 supplies approximately 1,065 customers in the Crofton area of Anne Arundel County. During 2004, 59% of the customer interruptions were the result of customer interferences (pole hits and dig-ins), 24% were caused by unknown events, 16% were caused by equipment failures and 1% was caused by other miscellaneous events. During 2005, BGE trimmed the entire length of the feeder as well as performing aggressive removals along the 3 phase mains (Completed 4/05). BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2005. The design of this feeder has been studied and the installation of Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing was completed in January 2006.

Feeder 7123 supplies approximately 1,450 customers in the Towson area of Baltimore County. During 2004, 37% of the customer interruptions were caused by equipment failures, 24% were caused by lightning, 18% were caused by underground conductor failures, 11% were caused by trees, 8% were construction related, and 2% were caused by miscellaneous events. Each failed conductor was repaired or replaced during 2004 as part of the service restoration and repair process. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2005. Tree trimming on this feeder was most recently completed in December 2004 and BGE performed aggressive tree and overhang removals along the 3 phase main. The design of this feeder has been studied and the installation of electronic resetable sectionalizing and additional fusing was completed in April 2006.

Feeder 7692

Feeder 7692 supplies approximately 1,105 customers in the Woodbine area of Howard County. During 2004, 62% of the customer interruptions were caused by equipment failures, 17% were caused by trees, 13% were the result of customer interferences (dig-ins), 6% were caused by underground conductor failures and 2% were caused by miscellaneous events. Each failed conductor was repaired or replaced during 2004 as part of the service restoration and repair process. In addition, BGE replaced sections of underground cable on this feeder that had experienced an excessive number of failures (Completed 9/05). BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2005. During 2005, BGE trimmed the entire length of the feeder as well as performing aggressive removals along the 3 phase mains (Completed 4/05). The design of this feeder has been studied and the installation of Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing was completed in February 2006.

Feeder 7257

Feeder 7257 supplies approximately 153 customers in the Ellicott City area of Howard County. During 2004, 90% of the customer interruptions were caused by trees, 6% were caused by unknown events and 4% were caused by miscellaneous events. During 2005, BGE trimmed the entire length of the feeder as well as performing aggressive removals along the 3 phase mains (Completed 4/05). BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2005. The design of this feeder has been studied and the installation of Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing was completed in February 2006.

Feeder 8158

Feeder 8158 supplies approximately 830 customers in the Timonium area of Baltimore County. During 2004, 51% of the customer interruptions were caused by equipment failures, 25% were the result of customer interferences (dig-ins), 22% were caused by unknown events, and 2% were caused by miscellaneous events. Tree trimming on this feeder was most recently completed in December 2004, and an inspection performed in 2005 determined that no additional tree trimming was required. BGE most recently conducted an overhead equipment and conductor inspection in 2004 and corrected the related deficiencies in May 2004. The design of this feeder has been studied and the installation of Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing was completed in March 2006.

Feeder 7189 supplies approximately 1,190 customers in the Pikesville area of Baltimore County. During 2004, 58% of the customer interruptions were caused by equipment failures, 41% were caused by unknown events and 1% was wind or rain related. Tree trimming on this feeder was most recently completed in January 2004, and an inspection performed in 2005 determined that no additional tree trimming was required. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2005. The design of this feeder has been studied and the installation of Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing was completed in December 2004.

Feeder 7075

Feeder 7075 supplies approximately 725 customers in the Joppatowne area of Harford County. During 2004, 65% of the customer interruptions were caused by trees, 33% were caused by equipment failure and 2% were caused by wildlife. Tree trimming on this feeder was most recently completed in December 2003 and an inspection performed in 2005 determined that localized tree trimming and overhang removals were needed (Completed 5/05). BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2005. The design of this feeder has been studied and the installation of Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing was completed in April 2006.

Feeder 4931

Feeder 4931 supplies approximately 770 customers in the Cherry Hill area of Baltimore City. During 2004, 53% of the customer interruptions were caused by lightning, 18% were caused by unknown events, 18% were the result of customer interferences (pole hit), 10% were caused by wind or rain and 1% was caused by miscellaneous events. BGE conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2005. Tree trimming on this feeder was most recently completed in August 2003, and an inspection performed in 2005 determined that no additional tree trimming was required.

Feeder 4834

Feeder 4834 supplies approximately 395 customers in the Clifton Park area of Baltimore City. During 2004, 69% of the customer interruptions were caused by unknown events (consisted of 3 lockouts where no system damage was identified), 28% were caused by wind or rain, 2% were caused by trees, and 1% was caused by equipment failures. BGE conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2005. During 2005, BGE trimmed the entire length of the feeder as well as performing aggressive removals along the 3 phase mains (Completed 4/05).

Feeder 4801

Feeder 4834 supplies approximately 560 customers in the Calverton area of Baltimore City. During 2004, 35% of the customer interruptions were caused by wind or rain, 32% were caused by unknown events, 31% were the result of customer interferences (pole hits), 1% was caused by trees, and 1% was caused by equipment failures. BGE conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2005. During 2005, BGE trimmed the entire length of the feeder as well as performing aggressive removals along the 3 phase mains (Completed 4/05).

(b) The annual report two years after the identification of the operating district or feeders as having the poorest performance shall include the ordinal ranking representing the feeder's reliability during the current reporting period.

BGE's poorest performing 2% of the 13.8 kV distribution feeders (19 out of 953 total 13.8 kV distribution feeders) and 2% of the 4.4 kV distribution feeders (3 out of 129 total 4.4 kV distribution feeders) in 2003 had the following ordinal rankings in 2005. Ordinals for 2005 range from 1 (worst) to 129 (best) for 4.4 kV feeders and from 1 (worst) to 953 (best) for 13.8 kV feeders, ranked by Composite Reliability Index. Ranking excludes major event data.

13.8 kV Feeder	Substation	2005 Ordinal Ranking
7806	Carroll	44
7808	Carroll	46
7614	Wilde Lake	104
8366	Pleasant Hills	217
7003	Center	103
7043	Hillen Road	185
7438	Priest Bridge	291
7495	Cedar Park	309
7531	Middleborough	68
7401	NAJ	55
7493	Cedar Park	117
7008	Center	554
7473	Glenn Dale	315
8301	Round Bay Modular	68
7501	Cowenton	719
7392	Lansdowne	427
7486	Tyler Avenue	109
8453	NAJ	155
8661	Mount Wilson	272

4.4 kV Feeder	Substation	2005 Ordinal Ranking
4414	Woodbrook	118
4703	South Baltimore	58
4823	Clifton Park	21

(9) Momentary Interruptions. A utility shall maintain information which it collects on momentary interruptions for five years.

BGE meets this requirement.

Baltimore Gas and Electric Company COMAR 20.50.07.06 Reporting of Reliability Indices – CY 2008

(1) System-Wide Indices. A utility shall report SAIDI, SAIFI, and CAIDI for its system consisting of all feeders originating in Maryland. The indices shall be calculated and reported with two sets of input data.

(a) All interruption data;

SAIFI – 1.83 SAIDI – 6.40 CAIDI – 3.50

Note: System-Wide Indices are calculated using IEEE Std. 1366-1998.

(b) All interruption data minus major event interruption data.

SAIFI – 1.68 SAIDI – 5.31 CAIDI – 3.17

Data in (b) excludes customer interruptions from one Major Event experienced during 2008, further detailed in Section 6.

(2) District Indices. A cooperatively-owned utility shall provide SAIDI, SAIFI, and CAIDI for each operating district and identify the operating district with the poorest reliability. The indices shall be calculated and reported with two sets of input data.

(a) All interruption data;

(b) Major event interruption data excluded.

Requirements (a) & (b) are not applicable to BGE since BGE is an Investor Owned Utility.

(3) Feeder Indices. An investor-owned utility shall provide SAIDI, SAIFI, and CAIDI for 2% of feeders or 10 feeders, whichever is more, serving at least one Maryland customer that are identified by the utility as having the poorest reliability. The indices shall be calculated and reported with 2 sets of input data.

13.8 kV Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
7440	MITCHELLVILLE	8.53	8.70	43.79	5.03
7633	LONG REACH	8.42	10.16	29.61	2.91
8102	MOUNT WASHINGTON	7.80	9.12	15.31	1.68
8420	WAYSONS CORNER	7.69	9.52	23.46	2.46
8734	ASHTON	7.64	8.84	51.87	5.87
7348	LIPINS CORNER	7.39	8.91	8.69	0.98
8450	NAJ	6.81	6.90	9.33	1.35
7616	WILDE LAKE	6.74	7.72	41.15	5.33
7617	WILDE LAKE	6.49	8.04	55.60	6.91
7257	FREDERICK ROAD	6.27	7.40	44.98	6.08
8103	MOUNT WASHINGTON	6.13	7.44	34.41	4.63
7130	HEREFORD	5.82	6.86	21.34	3.11
7710	MEADOWS	5.53	6.74	16.57	2.46
7381	SOUTH BALTIMORE	5.46	6.59	18.45	2.80
8604	CONCORD STREET	5.40	6.59	8.61	1.31
7138	LUTHERVILLE	5.38	5.31	23.95	4.51
7129	HEREFORD	5.32	5.08	17.61	3.47
7658	COLUMBIA	5.23	6.40	7.10	1.11
8472	CROWNSVILLE	5.13	4.59	19.44	4.23
7941	LEVEL	5.10	4.22	6.15	1.46

(a) All interruption data

13000 Series Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
13971	NEWGATE	2.58	1.67	2.33	1.40
13302	ERDMAN	2.54	2.33	2.17	0.93
13921	WESTPORT	2.54	3.00	72.67	24.22

4.4 kV Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
4430	FOREST PARK	6.59	7.11	23.51	3.31
4812	CALVERTON	5.75	6.15	10.69	1.74
4828	CLIFTON PARK	5.42	7.22	18.08	2.50

(b) All interruption data minus major event interruption data:

BGE's "Worst Feeder Program" consists of plans to improve reliability performance for the top 2% of the 13.8 kV distribution feeders (20 out of 993 total 13.8 kV distribution feeders), 2% of the 13000 series 13.8 kV customer feeders (3 out of 126 total 13000 series distribution feeders) and 2% of the 4.4 kV distribution feeders (3 out of 124 total 4.4 kV distribution feeders) based on all interruption data excluding Major Event interruption data.

13.8 kV Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
8102	MOUNT WASHINGTON	7.76	9.10	14.98	1.65
7633	LONG REACH	7.56	9.02	23.04	2.55
7348	LIPINS CORNER	7.27	8.90	8.36	0.94
8420	WAYSONS CORNER	6.62	8.49	13.05	1.54
7130	HEREFORD	5.78	6.86	21.34	3.11
7257	FREDERICK ROAD	5.48	6.44	32.11	4.99
7616	WILDE LAKE	5.26	5.75	18.27	3.18
7658	COLUMBIA	5.23	6.40	7.07	1.11
7382	SOUTH BALTIMORE	5.08	6.49	18.54	2.86
8052	ROCK RIDGE	5.05	5.66	11.80	2.08
8604	CONCORD STREET	5.00	6.46	8.27	1.28
8682	TEN OAKS	4.95	5.88	7.11	1.21
7381	SOUTH BALTIMORE	4.78	5.70	13.52	2.37
7617	WILDE LAKE	4.64	5.57	30.93	5.55
8101	MOUNT WASHINGTON	4.63	5.71	11.77	2.06
7710	MEADOWS	4.62	5.53	11.20	2.02
8103	MOUNT WASHINGTON	4.61	5.43	29.57	5.44
8272	HOLLOFIELD	4.61	5.16	6.12	1.18
8556	WAUGH CHAPEL	4.41	5.61	14.73	2.63
8141	EAST TOWSON	4.44	4.89	15.07	3.08

13000 Series Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
13602	COLDSPRING	1.77	2.03	2.82	1.39
13302	ERDMAN	1.75	2.00	1.83	0.92
	MONUMENT STREET				
13936	OUTDOOR	1.61	2.14	2.98	1.39

4.4 kV Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
4430	FOREST PARK	6.59	7.11	23.51	3.31
4812	CALVERTON	5.75	6.15	10.67	1.74
4828	CLIFTON PARK	5.42	7.22	18.08	2.50

(c) Feeders shall not be included as having the poorest reliability in two consecutive reports.

No feeders listed in the CY 2007 report as having poor reliability are included in this report.

(4) The method used by a utility to identify the district and feeders with poorest reliability shall be approved by the Commission and be included in the report.

In order to determine which distribution feeders and areas having the poorest performance, BGE utilizes a Composite Reliability Index (CRI). In the event that two feeders have identical composite reliability indices, the feeders are then ranked based on the most recent year's feeder SAIFI. The formula for the index is:

CRI = 0.75 × SAIFI₂₀₀₈ + 0.25 × SAIFI₂₀₀₇

(5) Feeders included in the report, which serve customers in Maryland and one or more bordering jurisdiction shall be identified. The report shall include the percentage of customers located in Maryland and the percentage of customers located in bordering jurisdictions.

Not applicable to BGE. BGE has no feeders outside Maryland.

(6) Major Event Interruption Data. The report shall include the time periods during which major event interruption data was excluded from the indices, along with a brief description of the interruption causes during each time period.

BGE experienced 1 Major Event in 2008.

At approximately 3:00 PM on Wednesday, June 4, 2008, a strong band of storms accompanied by high winds, heavy rain and frequent lightning moved through the BGE service territory. By 5:00 PM a major storm was declared on the BGE system with a peak of 105,660 sustained customer interruptions. Cumulatively, 192,071 customer interruptions were experienced, the majority of which were in Anne Arundel, Calvert and Howard Counties. In addition to the strong storms, the National Weather Service received reports of tornado touchdowns in Severna Park, Chesapeake Beach and near the Chesapeake Bay Bridge. A total of 576 BGE personnel and BGE contractors along with 88 external contractors were involved in the restoration effort. The storm was declared over and the Storm Center closed at 5:30 AM on Saturday, June 7, 2008.

(7) Actions for Operating District and Feeders with Poorest Reliability.

(a) An investor-owned utility shall report remedial actions taken or planned to improve reliability for all feeders reported under C.(3) of this regulation.

BGE will review the design for each feeder reported under this section to identify potential improvements. BGE will also trim the trees on feeders as needed, conduct a thorough equipment inspection on each feeder and correct any deficiencies found during the inspections. These inspections will permit the identification of potential outage causes, and will, as a result, reduce the number of customer interruptions due to unknown causes. Where the feeder interruptions

were the result of underground conductor failures, the failed sections were isolated during the service restoration process, and have since been repaired or replaced. In some cases, underground cable replacement will be performed if the underground conductor experiences an excessive number of failures.

Feeder 8102

Feeder 8102 supplies approximately 1,959 customers in the Mount Washington area of Baltimore. During 2008, 40% of the customer interruptions were caused by underground conductor failures, 24% were caused by weather (23% were caused by lightning, and 1% was caused by wind/rain), 15% were caused due to equipment failures, 11% were caused by public interference (foreign objects blown by wind), 6% were caused due to trees, 2% were caused by unknown events, 1% was caused by overhead conductor failure and 1% was caused by wildlife. Tree trimming on this feeder was most recently completed in December 2008. BGE has identified three cable replacement opportunities that are currently in design and are intended to be completed by the end of the third quarter of 2009. In addition, each of the pieces of equipment that failed were repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2009. Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder were completed in March 2009 with no reliability deficiencies being found.

Feeder 7633

Feeder 7633 supplies approximately 225 customers in the Oakland Mills area in Howard County. During 2008, 54% of the customer interruptions were caused by underground conductor failures, 20% were caused by unknown events (consisted mainly of feeder lockouts where no system damage was identified), 13% were caused by weather, and 13% were caused by public interference (dig-ins). Tree trimming on this feeder was most recently completed in June 2008. BGE has identified two cable replacement opportunities that are currently in design and are intended to be completed by the end of the third quarter of 2009. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in January 2009. Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder were completed in March 2009 with no reliability deficiencies being found.

Feeder 7348

Feeder 7348 supplies approximately 2,285 customers in the Marley Creek area of Anne Arundel County. During 2008, 68% of the customer interruptions were caused by underground conductor failures, 17% were caused by overhead conductor failures, 14% were caused by trees, and 1% was caused by wildlife. Tree trimming on this feeder was most recently completed in December 2008. BGE has identified a cable replacement opportunity that is currently in design and is intended to be completed by the end of the third quarter of 2009. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in January 2009. Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder were completed in March 2009 with no reliability deficiencies being found.

Feeder 8420

Feeder 8420 supplies approximately 1,801 customers in the Harwood area of Anne Arundel County. During 2008, 34% of the customer interruptions were caused by trees, 24% were caused by weather (wind/rain), 17% were caused by equipment failures, 13% were caused by underground conductor failures, and 12% were caused by unknown events (consisted mainly of a feeder lockout where no system damage was identified). Tree trimming on this feeder was most recently completed in July 2005. An inspection performed earlier this year determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming is scheduled to occur in May 2009. In addition, each of the

pieces of equipment that failed were repaired or replaced after failure. BGE has identified a cable replacement opportunity that is currently in design and is intended to be completed by the end of the third quarter of 2009. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2009. In addition, BGE performed a Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder in March 2009 and corrected the deficiencies identified.

Feeder 7130

Feeder 7130 supplies approximately 1,028 customers in the Monkton area of Baltimore County. During 2008, 50% of the customer interruptions were caused by trees, 26% were caused by weather (15% were caused by lightning, and 11% were caused by wind/rain), 20% were caused by equipment failures, 3% were caused by overhead conductor failure, and 1% was caused by public interference (pole hits). Tree trimming on this feeder was most recently completed in June 2005. An inspection performed earlier this year determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming is scheduled to occur in May 2009. In addition, each of the pieces of equipment that failed were repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies.

Feeder 7257

Feeder 7257 supplies approximately 819 customers in the Ellicott City area of Howard County. During 2008, 74% of the customer interruptions were caused by trees, 14% were caused by underground conductor failures, 11% were caused by overhead conductor failures, and 1% was caused by unknown events. Tree trimming on this feeder was most recently completed in June 2005. An inspection performed earlier this year determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming is scheduled to occur in May 2009. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies. The design of this feeder was studied and Distribution Automation reclosers were installed in January 2008.

Feeder 7616

Feeder 7616 supplies approximately 1,739 customers in the Village of Hickory Ridge area of Howard County During 2008, 49% of the customer interruptions were caused by trees, 20% were caused by equipment failures, 13% were caused by public interference (pole hits), 12% were caused by weather (7% were caused by lightning and 5% were caused by wind/rain), 5% were caused by overhead conductor failures, and 1% was caused by underground conductor failures. Tree trimming on this feeder was most recently completed in October 2007. An inspection performed earlier this year determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming is scheduled to occur in May 2009. In addition, each of the pieces of equipment that failed were repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies. The design of this feeder has been studied, and Distribution Automation reclosers and fault indicators will be installed in 2009.

Feeder 7658

Feeder 7658 supplies approximately 1,087 customers in the Village of Owen Brown area of Howard County. During 2008, 95% of the customer interruptions were caused by underground conductor failures, and 5% were caused by equipment failures. BGE identified a cable replacement opportunity that was completed in October 2008. In addition, each of the pieces of equipment that failed were repaired or replaced after failure. Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder were completed in March 2009 with no reliability deficiencies being found.

Feeder 7382

Feeder 7382 supplies approximately 68 customers in the Fairfield area of Baltimore City. During 2008, 41% of the customer interruptions were caused by weather (40% were caused by wind/rain and 1% was caused by lightning), 36% were caused by overhead conductor failures, and 23% were caused by equipment failures. Tree trimming on this feeder was most recently completed in August 2005. An inspection performed earlier this year determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming is scheduled to occur in May 2009. In addition, each of the pieces of equipment that failed were repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies. The design of this feeder has been studied, and Distribution Automation reclosers will be installed in 2009.

Feeder 8052

Feeder 8052 supplies approximately 1,528 customers in the Jarrettsville area of Harford County. During 2008, 55% of the customer interruptions were caused by underground conductor failures, 19% were caused by trees, 19% were caused by public interferences (18% were caused by pole hits and 1% was caused by foreign objects blown by wind), 6% were caused by weather, and 1% was caused by equipment failures. Tree trimming on this feeder was most recently completed in December 2005. An inspection performed earlier this year determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming is scheduled to occur in May 2009. BGE has identified a cable replacement opportunity that is currently in construction and is intended to be completed by the end of the second quarter of 2009. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies.

Feeder 8604

Feeder 8604 supplies approximately 2,046 customers in the Federal Hill area of Baltimore City. During 2008, 29% of the customer interruptions were caused by public interferences (15% were caused by pole hits and 14% were caused by foreign objects blown by wind), 19% were caused by underground conductor failures, 19% were caused by equipment failures, 16% were caused by weather (wind/rain), 15% were caused by trees, and 2% were caused by miscellaneous events. Tree trimming on this feeder was most recently completed in September 2006. An inspection performed earlier this year determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming is scheduled to occur in May 2009. Each of the pieces of equipment that failed were repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies. In addition, BGE identified a cable replacement opportunity that was completed in January 2009. The design of this feeder has been studied, and Distribution Automation reclosers will be installed in 2009. BGE also performed a Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder in March 2009 and corrected the deficiencies identified.

Feeder 8682

Feeder 8682 supplies approximately 902 customers in the Dayton area of Howard County. During 2008, 40% of the customer interruptions were caused by trees, 39% were caused by unknown events (consisted mainly of a feeder lockout where no system damage was identified), 14% were caused by overhead conductor failures, 5% were caused by public interference and 2% were caused by equipment failures. Tree trimming on this feeder was most recently completed in December 2006. An inspection performed earlier this year determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming is scheduled to occur in May 2009. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2009.

Feeder 7381

Feeder 7381 supplies approximately 561 customers in the Brooklyn area of Baltimore City. During 2008, 49% of the customer interruptions were caused by overhead conductor failures (vast majority occurring during storms), 19% were caused by unknown events (consisted mainly of a feeder lockout where no system damage was identified), 18% were caused by trees, 8% were caused by weather, 5% were caused by miscellaneous events and 1% was caused by equipment failures. Tree trimming on this feeder was most recently completed in August 2005. An inspection performed earlier this year determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming is scheduled to occur in May 2009. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies. The design of this feeder has been studied, and Distribution Automation reclosers and additional fusing will be installed in 2009.

Feeder 7617

Feeder 7617 supplies approximately 803 customers in the Villages of Hickory Ridge area of Howard County. During 2008, 49% of the customer interruptions were caused by trees, 39% were caused by equipment failures, 4% were caused by weather, 4% were caused by unknown events (consisted mainly of a feeder lockout where no system damage was identified), 1% was caused by underground conductor failures, 1% was caused by animals and 1% was caused by miscellaneous events. Tree trimming on this feeder was most recently completed in October 2008. In addition, each of the pieces of equipment that failed were repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies. In addition, BGE also performed a Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder in March 2009 and is in the process of correcting the deficiencies identified.

Feeder 8101

Feeder 8101 supplies approximately 2,088 customers in the Rodgers Forge area of Baltimore County. During 2008, 37% of the customer interruptions were caused by trees, 22% were caused by public interference (19% were caused by pole hits and 3% were caused by foreign objects blown by wind), 21% were caused by weather (17% were caused by lightning and 4% were caused by wind/rain), 13% were caused by animals, 5% were caused by overhead conductor failures, and 2% were caused by equipment failures. Tree trimming on this feeder was most recently completed in Dec 2004. An inspection performed earlier this year determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming is scheduled to occur in May 2009. BGE has identified a cable replacement opportunity that is currently in design and is intended to be completed by the end of the third quarter of 2009. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies.

Feeder 7710

Feeder 7710 supplies approximately 2,301 customers in the Chadwick area of Baltimore County. During 2008, 84% of the customer interruptions were caused by trees, 13% were caused by miscellaneous events, 2% were caused by equipment failures, and 1% was caused by weather. Tree trimming on this feeder was most recently completed in October 2008. BGE has identified two cable replacement opportunities that are currently in design and are intended to be completed by the end of the third quarter of 2009. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2009. The design of this feeder has been studied and Distribution Automation reclosers will be installed in 2009.

Feeder 8103

Feeder 8103 supplies approximately 677 customers in the Ruxton area of Baltimore County. During 2008, 26% of the customer interruptions were caused by overhead conductor failures, 22% were caused by trees, 16% were caused weather (15% were caused by wind/rain and 1% was caused by lightning), 15% were caused by unknown events (consisted mainly of a feeder lockout where no system damage was identified), 14% were caused by public interference (13% were caused by pole hits and 1% was caused by foreign objects blown by wind), 5% were caused by equipment failures, 1% was caused by underground conductor failures and 1% was caused by animals. Tree trimming on this feeder was most recently completed in September 2008. BGE has identified a cable replacement opportunity that is currently in design and is intended to be completed by the end of the third quarter of 2009. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2009. A portion of this feeder is currently being transferred to feeder 7101. This transfer of a group of customers at the end of the feeder will reduce their vegetation exposure and move them to a better performing feeder. The transfer and related work is expected to be completed prior to the summer 2009 storm season.

Feeder 8272

Feeder 8272 supplies approximately 1,356 customers in the Windsor Mill area of Baltimore County. During 2008, 42% of the customer interruptions were caused by trees, 36% were caused by underground conductor failures, 21% were caused equipment failures, and 1% was caused by unknown events. Tree trimming on this feeder was most recently completed in March 2006. An inspection performed earlier this year determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming is scheduled to occur in May 2009. In addition, each of the pieces of equipment that failed were repaired or replaced after failure. BGE has identified a cable replacement opportunity that is currently waiting to be released to construction and is intended to be completed by the end of the third quarter of 2009. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2009. Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder were completed in March 2009 with no reliability deficiencies being found.

Feeder 8556

Feeder 8556 supplies approximately 671 customers in the Gambrills area of Anne Arundel County. During 2008, 43% of the customer interruptions were caused by trees, 37% were caused by underground conductor failures, 18% were caused by overhead conductor failures, and 2% were caused by equipment failures. An inspection performed earlier this year determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming is scheduled to occur in May 2009. In addition, BGE identified a cable replacement opportunity that was completed in August 2008. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies. The design of this feeder has been studied, and Distribution Automation reclosers will be installed in 2009.

Feeder 8141 supplies approximately 917 customers in the Hampton area fo Baltimore County. During 2008, 58% of the customer interruptions were caused by trees, 22% were caused by equipment failures, 17% were caused by underground conductor failures, 2% were caused by weather, and 1% was caused by animals. Tree trimming on this feeder was most recently completed in May 2007. An inspection performed earlier this year determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming is scheduled to occur in May 2009. In addition, each of the pieces of equipment that failed were repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies. Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder were completed in March 2008 with no reliability deficiencies being found.

Feeder 13602

Feeder 13602 supplies approximately 271 customers in the Hampden area of Baltimore City. During 2008, 50% of the customer interruptions were caused by underground conductor failures and 50% were caused by equipment failures. Each failed cable was replaced as part of the service restoration and repair process. In addition, each of the pieces of equipment that failed were repaired or replaced after failure. Tree trimming on this feeder was most recently completed in April 2005 and localized tree trimming and overhang removals is scheduled to occur in May 2009. BGE is in the process of conducting overhead equipment and conductor inspections and will correct any related deficiencies. In addition, BGE also performed a Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder in March 2009 and is in the process of correcting the deficiencies identified.

Feeder 13302

Feeder 13302 supplies approximately 6 customers in the Highlandtown area of Baltimore City. During 2008, 50% of the customer interruptions were caused by equipment failures, and 50% were caused by weather (lightning). Tree trimming on this feeder was most recently completed in February 2008. In addition, each of the pieces of equipment that failed were repaired or replaced after failure. BGE is in the process of conducting overhead equipment and conductor inspections and will correct any related deficiencies.

Feeder 13936

Feeder 13936 supplies approximately 132 customers in the Little Italy area of Baltimore City. During 2008, 99% of the customer interruptions were caused by underground conductor failures and 1% was caused by equipment failure. Each failed cable was replaced during 2008 as part of the service restoration and repair process. BGE performed a Thermovision and visual inspections of all 3-phase pad mounted equipment on this in March 2009 and corrected the deficiencies identified.

Feeder 4430

Feeder 4430 supplies approximately 888 customers in the Forest Park area of Baltimore City. During 2008, 31% of the customer interruptions were caused by trees, 24% were caused by underground conductor failures, 24% were caused by equipment failures, 18% were caused by weather (17 % were caused by wind/rain and 1% was caused by lightning) and 3% were caused by unknown events. Tree trimming on this feeder was most recently completed in October 2008. In addition, each of the pieces of equipment that failed were repaired or replaced after failure. BGE is in the process of conducting overhead equipment and conductor inspections and will correct any related deficiencies.

Feeder 4812 supplies approximately 502 customers in the Calverton area of Baltimore City. During 2008, 36% of the customer interruptions were caused by trees, 17% were caused by underground conductor failures, 17% were caused by equipment failures, 17% were caused by weather (wind/rain) and 13% were caused by miscellaneous events. Each failed cable was replaced as part of the service restoration and repair process. Tree trimming on this feeder was most recently completed in December 2005 and localized tree trimming and overhang removals is scheduled to occur in May 2009. In addition, each of the pieces of equipment that failed were repaired or replaced after failure. BGE is in the process of conducting overhead equipment and conductor inspections and will correct any related deficiencies.

Feeder 4828

Feeder 4828 supplies approximately 734 customers in the Clifton Park area of Baltimore City. During 2008, 48% of the customer interruptions were caused by equipment failures, 21% were caused by underground conductor failures, 20% were caused by weather (19% were caused by lightning and 1% was caused by wind/rain) and 11% were caused by trees. Tree trimming on this feeder was most recently completed in December 2005 and localized tree trimming and overhang removals is scheduled to occur in May 2009. In addition, each of the pieces of equipment that failed were repaired or replaced after failure. BGE is in the process of conducting overhead equipment and conductor inspections and will correct any related deficiencies. Thermovision and visual inspections of all 3 phase pad mounted equipment on this feeder were completed in March 2008 with no reliability deficiencies being found.

(b) Each utility shall briefly describe the actions taken or planned to improve reliability. When the utility determines that remedial actions are unwarranted, the utility shall provide justification for this determination.

BGE plans include remedial actions for all feeders identified as worst performers.

(8) Evaluation of Remedial Actions. For the operating district and feeders identified as having the poorest reliability in an annual reliability indices report, the utility shall provide the following information in the next two annual reports.

(a) The annual report for the year following the identification of the operating district and feeders as having the poorest performance shall provide a brief description of the actions taken, if any, to improve reliability and the completion dates of these actions.

BGE reviewed the design for each feeder reported under this section to identify potential improvements. BGE also trimmed the trees on each feeder as needed, conducted a thorough equipment and conductor inspection on each feeder and corrected any deficiencies found during the inspections. Those inspections permitted the identification of potential outage causes, and, as a result, reduced the number of customer interruptions due to unknown causes. Where the feeder interruptions were the result of underground conductor failures, the failed sections were isolated during the service restoration process, and have since been repaired or replaced. In some cases, underground cable replacement was performed if the underground conductor experienced an excessive number of failures.

Feeder 7733 supplies approximately 160 customers in the Harmans Dorsey Avenue area of Anne Arundel County and the Santa Barbara Road area of Howard County. During 2007, 58% of the customer interruptions were caused by trees, 15% were caused by miscellaneous events (consisted mainly of a feeder lockout where no system damage was identified), 13% were caused by overhead conductor failures, 6% were caused by underground conductor failures, 8% were caused by public interference (6% cable dig-ins, 2% vehicle hits). Tree trimming on this feeder was most recently completed in February 2007. An additional inspection performed determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming was completed in April 2008. BGE also conducted an overhead equipment and conductor inspection and related deficiencies were corrected in April 2008. The design of this feeder was studied and a portion of this feeder was transferred to a new Meadowridge Substation feeder in June 2007 and midpoint protection was added to create a tie with Dorsey Run Substation Feeder 7735.

Feeder 7411

Feeder 7411 supplies approximately 1,460 customers in the Arnold area of Anne Arundel County. During 2007, 39% of the customer interruptions were caused by unknown events (consisted mainly of feeder lockouts where no system damage was identified), 21% were caused by trees, 14% were caused by overhead conductor failures, 14% were caused by equipment failures, 6% were caused by animals, 5% were caused by wind/rain, and 1% was caused by lightning. Tree trimming on this feeder was most recently completed in March 2006. An additional inspection performed determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming was completed in March 2008. BGE conducted an overhead equipment and conductor inspection and related deficiencies were corrected in April 2008.

Feeder 7440

Feeder 7440 supplies approximately 1,110 customers in the Bowie area of Prince George's County. During 2007, 38% of the customer interruptions were caused by weather (24% were caused by lightning, and 14% were caused by wind/rain), 29% of the customer interruptions were caused by trees, 26% were caused by public interference (vehicle hits), 6% were caused by unknown events (consisted mainly of a feeder lockout where no system damage was identified), and 1% was caused by other miscellaneous events. Tree trimming on this feeder was most recently completed in July 2005. An additional inspection performed determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming was completed in April 2008. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in January 2008. In addition, this feeder has been redesigned and is being addressed as part of the Bowie Electric Reliability Action Plan (BERAP) in 2009 from an infrastructure and vegetation management perspective.

Feeder 7474

Feeder 7474 supplies approximately 1,210 customers in the Greenbelt area of Prince George's County. During 2007, 56% of the customer interruptions were caused by underground conductor failures, 25% were caused by overhead conductor failures, 16% were caused by trees, 2% were caused by unknown events, and 1% was caused by weather. Tree trimming on this feeder was most recently completed in March 2006. An additional inspection performed determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming was completed in February 2008. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in December 2007. BGE identified two cable replacement opportunities and

completed both in 2008 (August and November). The design of this feeder was studied and Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing were installed in January 2007. In addition, BGE performed a Thermovision inspection and replaced two single phase pad mounted transformers as a result in February 2008.

Feeder 7237

Feeder 7237 supplies approximately 1,280 customers in the Pleasant Valley Road area of Carroll County. During 2007, 40% of the customer interruptions were caused by weather (27% were caused by wind/rain, and 13% were caused by lightning), 38% were caused by overhead conductor failures, 17% were caused by equipment failures, 3% were caused by unknown events where the cause could not be identified, and 2% were caused by trees. Tree trimming on this feeder was most recently completed in April 2007. An additional inspection performed determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming was completed in May 2008. BGE also conducted an overhead equipment and conductor inspection and related deficiencies were corrected in April 2008. The design of this feeder has been studied and Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing were installed in March 2006.

Feeder 7283

Feeder 7283 supplies approximately 1,050 customers mainly in the Montpelier area of Prince George's County. During 2007, 100% of the customer interruptions were caused by underground conductor failures. Each failed cable was repaired or replaced during 2007 as part of the service restoration and repair process. In addition, BGE identified a cable replacement opportunity and was completed in November 2008. The design of this feeder has been studied and a Vacuum Fault Interrupter (VFI) switchgear was installed in January 2007.

Feeder 8450

Feeder 8450 supplies approximately 2,660 customers in the Severn area of Anne Arundel County. During 2007, 38% of the customer interruptions were caused by underground conductor failures, 28% were caused by trees, 26% were caused by overhead conductor failures, and 8% were caused by public interference (dig-ins). Each failed cable was repaired or replaced during 2007 as part of the service restoration and repair process. In addition, BGE has identified three cable replacement opportunities; two of which have been completed and construction has recently begun on the third with the intent to be completed by the end of the third quarter of 2009. Tree trimming on this feeder was most recently completed in June 2007. An additional inspection performed determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming was completed in March 2008. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in January 2008. The design of this feeder has been studied and Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing were installed in May 2007, and a VFI switchgear was installed in October 2007.

Feeder 7390

Feeder 7390 supplies approximately 340 customers in the Arbutus Avenue area of Baltimore City and the Rosemont area of Baltimore County. During 2007, 38% of the customer interruptions were caused by weather (37% were caused by wind/rain, and 1% was caused by lightning), 36% were caused by equipment failures, 16% were caused by public interference (vehicle-hits), and 10% were caused by miscellaneous other events. Tree trimming on this feeder was most recently completed in April 2005. An additional inspection performed determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming was completed in February 2008. BGE also conducted an overhead equipment and conductor inspection and related deficiencies were corrected in April 2008. The design of this feeder has been studied and Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing were installed with work being completed in November 2008.

Feeder 8463

Feeder 8463 supplies approximately 510 customers in the Bowie area of Prince George's County. During 2007, 53% of the customer interruptions were caused by overhead conductor failures, 21% were caused by unknown events where the cause could not be identified, 17% were caused by weather (wind/rain), and 9% were caused by underground conductor failures. Each failed cable was repaired or replaced during 2007 as part of the service restoration and repair process. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2008. The design of this feeder has been studied and Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing were installed in 2006, and a VFI switchgear was installed in November 2006. In addition, this feeder has been redesigned and is being addressed as part of the Bowie Electric Reliability Action Plan (BERAP) from an infrastructure perspective in 2009. Tree trimming on this feeder was most recently completed in April 2008 as part of the BERAP.

Feeder 7129

Feeder 7129 supplies approximately 1,150 customers in the Hereford area of Baltimore County. During 2007, 53% of the customer interruptions were caused by trees, 26% were caused by equipment failures, 13% were caused by miscellaneous events, 3% were caused by weather, 3% were caused by public interference (vehicle-hits), 1% was caused by animals, and 1% was caused by unknown events. Tree trimming on this feeder was last performed in August 2007, and an inspection performed determined that localized tree trimming and overhang removals were needed and completed in April 2008. BGE also conducted an overhead equipment and conductor inspection and related deficiencies were corrected in April 2008. The design of this feeder has been studied and Distribution Automation reclosers and electronic resetable sectionalizing were installed with work being completed on mains in 2005 and on taps in 2007.

Feeder 7138

Feeder 7138 supplies approximately 1,000 customers in the Lutherville area of Baltimore County. During 2007, 76% of the customer interruptions were caused by trees, 10% were caused by unknown events where the cause could not be identified, 6% were caused by overhead conductor failures, 5% were caused by weather, 2% were caused by underground conductor failures, and 1% was caused by animals. Tree trimming on this feeder was last performed in December 2006. An additional inspection performed determined that localized tree trimming and overhang removals were needed and completed in May 2008. BGE also conducted an overhead equipment and conductor inspection and related deficiencies were corrected in May 2008. In addition, BGE completed the identified cable replacement opportunity in April 2008. The design of this feeder has been studied and Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing were installed with work being completed in 2007.

Feeder 7609

Feeder 7609 supplies approximately 1,810 customers in the Columbia area of Howard County. During 2007, 100% of the customer interruptions were caused by underground conductor failures. Each failed cable was repaired or replaced during 2007 as part of the service restoration and repair process. In addition, BGE has identified four cable replacement opportunities, two of which have been completed (May 2008 and March 2009) and the remaining are in various stages of the process and are intended to be completed by the end of the third

quarter of 2009. The design of this feeder has been studied, and a VFI switchgear was installed in October 2007. This feeder was scheduled for routine cycle trimming which was completed in April 2008. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2008.

Feeder 7832

Feeder 7832 supplies approximately 1,980 customers in the Hollins Market and Union Square areas of Baltimore City. During 2007, 56% of the customer interruptions were caused by unknown events where the cause could not be identified, 17% were caused by underground conductor failures, 17% were caused by overload, 9% were caused by overhead conductor failures, and 1% was caused by animals. Tree trimming on this feeder was most recently completed in May 2006. An additional inspection performed determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this trimming was completed in February 2008. BGE conducted an overhead equipment and conductor inspection in March 2008 and related deficiencies were corrected in April 2008. The overload issue was resolved in August 2007 through a load transfer from C phase to A phase on feeder 7832.

Feeder 8072

Feeder 8072 supplies approximately 1,525 customers in the Glen Arm and Long Green areas of Baltimore County. During 2007, 39% of the customer interruptions were caused by trees, 33% were caused by weather (18% were caused by lightning, and 15% were caused by wind/rain), 14% were caused by equipment failures, 12% were caused by unknown events where the cause could not be identified, 1% was caused by animals, and 1% was caused by public interference. Tree trimming on this feeder was most recently completed in February 2006. An additional inspection performed determined that localized tree trimming and overhang removals were needed and completed in May 2008. BGE also conducted an overhead equipment and conductor inspection and related deficiencies were corrected in April 2008. The design of this feeder has been studied and Distribution Automation reclosers, electronic resetable sectionalizing, and additional fusing were installed with work being completed in 2006.

Feeder 7003

Feeder 7003 supplies approximately 1,575 customers in the Baker Street area of Baltimore City. During 2007, 39% of the customer interruptions were caused by trees, 23% were caused by public interference (cable dig-ins), 20% were caused by foreign objects, 9% were caused by overhead conductor failures, 6% were caused by weather, 2% were caused by unknown events where the cause could not be identified, and 1% was caused by animals. Tree trimming on this feeder was most recently completed in September 2007. BGE also conducted an overhead equipment and conductor inspection and related deficiencies were corrected in August 2008. The design of this feeder has been studied and Distribution Automation reclosers and additional fusing were installed in April 2008.

Feeder 7232

Feeder 7232 supplies approximately, 1,520 customers in the Hampstead area of Carroll County, and the Upperco area of Baltimore County. During 2007, 48% of the customer interruptions were caused by unknown events where the cause could not be identified, 19% were caused by conductor contact, 18% were caused by underground conductor failure, 7% were caused by overhead conductor failures, 3% were caused by public interference (vehicle-hits), 2% were caused by trees, 2% were caused by weather, and 1% was caused by animals. Tree trimming on this feeder was most recently performed in November 2007. BGE also conducted an overhead equipment and conductor inspection and related deficiencies were corrected in November 2008.

The design of this feeder was studied and Distribution Automation reclosers and additional fusing were installed in November 2006.

Feeder 7123

Feeder 7123 supplies approximately 1,425 customers in the Campus Hills and Hampton areas of Baltimore County. During 2007, 44% of the customer interruptions were caused by trees, 28% were caused by overhead conductor failures, 13% were caused by unknown events where the cause could not be identified, 8% were caused by miscellaneous events, 5% were caused by underground conductor failures, 1% was caused by animal,s and 1% was caused by weather. This feeder was scheduled for routine cycle trimming which was completed in October 2008. BGE conducted an overhead equipment and conductor inspection and related deficiencies were corrected in August 2008. The design of this feeder has been studied and Distribution Automation reclosers and additional fusing were installed in June 2006.

Feeder 8425

Feeder 8425 supplies approximately 930 customers in the Highland Beach area of Anne Arundel County. During 2007, 53% of the customer interruptions were caused by trees, 21% were caused by animals, 19% were caused by overhead conductor failures, 5% were caused by weather, 1% was caused by equipment failures, and 1% was caused by miscellaneous events. Tree trimming on this feeder was most recently completed in July 2007. In addition, BGE inspected this feeder for enhanced trimming opportunities beyond the routine trimming standards and identified that no additional work is required. BGE also conducted an overhead equipment and conductor inspection and related deficiencies were corrected in August 2008. The design of this feeder has been studied and Distribution Automation reclosers and additional fusing were installed in December 2007.

Feeder 7555

Feeder 7555 supplies approximately 2,780 customers in the Middle River and Victory Villa areas of Baltimore County. During 2007, 47% of the customer interruptions were caused by overhead conductor failures, 28% were caused by public interferences (vehicle-hits), 21% were caused by trees, 3% were caused by underground conductor failures, and 1% was caused by weather. Tree trimming on this feeder was most recently completed in May 2007. BGE conducted an overhead equipment and conductor inspection and related deficiencies were corrected in July 2008. The design of this feeder was studied, and Distribution Automation reclosers and additional fusing were recommended to be installed in 2008. However, the job was redesigned to resolve the permitting issues and will be completed in 2009.

Feeder 8734

Feeder 8734 supplies approximately 1,440 customers in the New Hampshire Avenue area of Montgomery County. During 2007, 49% of the customer interruptions were caused by trees, 25% were caused by unknown events (consisted mainly of feeder lockouts where no system damage was identified), 10% were caused by overload, 10% were caused by overhead conductor failures, 3% were caused by underground conductor failures, and 3% were caused by public interference. Tree trimming on this feeder was most recently completed in March 2005. An additional inspection performed determined that localized tree trimming and overhang removals were needed and completed in April 2008. BGE conducted an overhead equipment and conductor inspection and related deficiencies were corrected in April 2008. The design of this feeder was studied and Distribution Automation reclosers, electronic resetable sectionalizing and additional fusing were installed in December 2006. A new feeder 8735 was completed in April 2009 to provide load relief to Feeder 8734 with cut-in pending. This new feeder also significantly reduces the exposure of feeder 8734 resulting in improved reliability.

Feeder 13330 supplies approximately 26 customers in the Highlandtown area of Baltimore City. During 2007, 100% of the customer interruptions were caused by underground conductor failures. Each failed cable was replaced during 2007 as part of the service restoration and repair process. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2008. Thermovision and visual inspection of this feeder was completed in August 2007 with no reliability deficiencies being found.

Feeder 13971

Feeder 13971 supplies approximately 8 customers in the Dundalk area of Baltimore County and Point Breeze area of Baltimore City. During 2007, 50% of the customer interruptions were caused by underground conductor failures, and 50% were caused by unknown events where the cause could not be identified. Each failed cable was replaced during 2007 as part of the service restoration and repair process. Tree trimming on this feeder was completed in May 2006 and localized tree trimming and overhang removals were completed in February 2008. BGE also conducted an overhead equipment and conductor inspection and related deficiencies were corrected in April 2008. Thermovision and visual inspection of this feeder was most recently completed in April 2008 with no reliability deficiencies being found.

Feeder 13928

Feeder 13928 supplies approximately 16 customers in the Front Street area of Baltimore City. During 2007, 100% of the customer interruptions were caused by underground conductor failures. Each failed cable was replaced during 2007 as part of the service restoration and repair process. Thermovision and visual inspection of this feeder was completed in January 2007 with no reliability deficiencies being found.

Feeder 4371

Feeder 4371 supplies approximately 535 customers in the Washington Hill area of Baltimore City. During 2007, 54% were caused by underground conductor failures, 29% of the customer interruptions were caused by weather (lightning), 12% were caused by miscellaneous events and 5% were caused by public interference. Each failed cable was repaired or replaced during 2007 as part of the service restoration and repair process. Tree trimming on this feeder was most recently completed in May 2006 and localized tree trimming and overhang removals were completed in February 2008 with BGE performing aggressive hazard tree removals along the three phase main. BGE also conducted an overhead equipment and conductor inspection and related deficiencies were corrected in April 2008.

Feeder 4405

Feeder 4405 supplies approximately 770 customers in the Mondawmin area of Baltimore City. During 2007, 59% of the customer interruptions were caused by unknown events (consisted mainly of a feeder lockout where no system damage was identified), 20% were caused by weather (wind/rain), 19% were the result of public interferences (conductor contact) and 2% were caused by miscellaneous events. Tree trimming on this feeder was most recently completed in February 2006 and localized tree trimming and overhang removals were completed in February 2008. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2008.

Feeder 4806

Feeder 4806 supplies approximately 215 customers in the Franklin and Calverton Street area of Baltimore City. During 2007, 74% of the customer interruptions were caused by weather events (wind/rain), 25% were caused by overhead conductor failures, and 1% was caused by unknown events. Tree trimming on this feeder was most recently completed in February 2008. BGE also

conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2008.

(b) The annual report two years after the identification of the operating district or feeders as having the poorest performance shall include the ordinal ranking representing the feeder's reliability during the current reporting period.

BGE's poorest performing 2% of the 13.8 kV distribution feeders (19 out of 966 total 13.8 kV distribution feeders), 2% of the 13000 series 13.8 kV customer feeders (3 out of 121 total 13000 series distribution feeders and 2% of the 4.4 kV distribution feeders (3 out of 128 total 4.4 kV distribution feeders) in 2006 had the following ordinal rankings in 2008. Ordinals for 2008 range from 1 (worst) to 124 (best) for 4.4 kV feeder, from 1 (worst) to 126 (best) for 13000 series feeders and from 1 (worst) to 993 (best) for 13.8 kV feeders, ranked by Composite Reliability Index. Ranking excludes major event data.

13.8 kV Feeder	Substation	2008 Ordinal Ranking
7610	WILDE LAKE	140
7776	HIGH RIDGE	815
7285	WILLIS SCHOOL	391
7236	UNION MILLS	282
7757	BEAR BRANCH	26
7443	MITCHELLVILLE	96
7446	MITCHELLVILLE	220
7434	PRIEST BRIDGE	62
7614	WILDE LAKE	49
7750	SANDY SPRING	904
8445	BESTGATE	452
8301	ROUND BAY MODULAR	64
7089	KINGSVILLE	344
7243	FINKSBURG	37
8074	GLENARM	136
7062	HAVRE DE GRACE	365
8462	PRIEST BRIDGE	313
8464	PRIEST BRIDGE	379
8413	LEVITT	644

13000 series Feeder	Substation	2008 Ordinal Ranking
13987	NEWGATE	61
13758	SOUTH BALTIMORE	10
13933	MONUMENT STREET OUTDOOR	174

4.4 kV Feeder	Substation	2008 Ordinal Ranking
4703	SOUTH BALTIMORE	Retired
4812	CALVERTON	2
4268	CENTER	57

Feeder 4812 on the above list did not register significant reliability improvements. Explanations of recent outage causes are listed below. Because BGE is committed to improving the reliability of this feeder, we will be more aggressive in our analysis to identify and correct the poor performance and will include its progress in future reports.

Feeder 4812

Feeder 4812 supplies approximately 502 customers in the Calverton area of Baltimore City. During 2008, 36% of the customer interruptions were caused by trees, 17% were caused by underground conductor failures, 17% were caused by equipment failures, 17% were caused by weather (wind/rain) and 13% were caused by miscellaneous events.

(9) Momentary Interruptions. A utility shall maintain information which it collects on momentary interruptions for five years.

BGE collects momentary outage information on devices that are monitored by SCADA (e.g., Distribution Automation reclosers, substation breakers, etc.). However, BGE does not routinely collect counter readings from hydraulic reclosers.

Baltimore Gas and Electric Company COMAR 20.50.07.06 Reporting of Reliability Indices – CY 2009

(1) System-Wide Indices. A utility shall report SAIDI, SAIFI, and CAIDI for its system consisting of all feeders originating in Maryland. The indices shall be calculated and reported with two sets of input data.

(a) All interruption data;

SAIFI – 1.28 SAIDI – 3.60 CAIDI – 2.81

Note: SAIFI, SAIDI and CAIDI are calculated using COMAR 20.50.01.03 Definitions.

(b) All interruption data minus major event interruption data.

SAIFI – 1.28 SAIDI – 3.60 CAIDI – 2.81

BGE experienced no major events during 2009; therefore, the data in (b) are the same as in (a).

(2) District Indices. A cooperatively-owned utility shall provide SAIDI, SAIFI, and CAIDI for each operating district and identify the operating district with the poorest reliability. The indices shall be calculated and reported with two sets of input data.

(a) All interruption data;

(b) Major event interruption data excluded.

Requirements (a) & (b) are not applicable to BGE since BGE is an Investor Owned Utility.

(3) Feeder Indices. An investor-owned utility shall provide SAIDI, SAIFI, and CAIDI for 2% of feeders or 10 feeders, whichever is more, serving at least one Maryland customer that are identified by the utility as having the poorest reliability. The indices shall be calculated and reported with 2 sets of input data.

13.8 kV Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
8783	SUMMERS RUN	6.19	7.33	17.12	2.34
8734	ASHTON MODULAR	6.00	6.09	8.15	1.34
8472	CROWNSVILLE	5.69	6.12	31.55	5.16
7903	SNOWDEN RIVER	5.40	5.80	21.80	3.76
7236	UNION MILLS	5.18	6.43	15.03	2.34
7351	MILL CREEK	4.79	6.34	9.78	1.54
7696	COOKSVILLE	4.43	4.78	15.24	3.19
7593	FULLERTON	4.41	5.42	9.85	1.82
7849	GREENE STREET	4.36	5.05	6.95	1.38
7446	MITCHELLVILLE	4.32	5.06	3.25	0.64
7534	BAYNESVILLE	4.22	4.75	12.29	2.58
8463	PRIEST BRIDGE	3.96	3.91	16.14	4.12
7844	GREENE STREET	3.93	4.55	7.62	1.67
7070	JOPPATOWNE	3.82	3.97	7.60	1.91
7555	MIDDLE RIVER	3.82	4.23	6.59	1.56
8521	BENGIES #10 MOBILE	3.72	3.52	8.65	2.46
7141	JACKSONVILLE	3.57	3.04	9.44	3.10
8451	NAJ	3.52	4.24	5.19	1.22
7352	MILL CREEK	3.52	4.60	22.38	4.87
8799	REISTERSTOWN	3.45	3.86	11.86	3.07
7693	COOKSVILLE	3.37	2.83	10.99	3.89

(a) All interruption data

13000 Series Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
13758	SOUTH BALTIMORE	4.71	6.14	13.48	2.19
13946	WESTPORT BROOM FACTORY	2.88	3.33	16.33	4.90
13913	WESTPORT	2.80	3.30	74.00	22.42

4.4 kV Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
4823	CLIFTON PARK	6.54	8.33	16.10	1.93
4416	WOODBROOK	5.20	5.28	11.22	2.12
4403	WOODBROOK	5.05	6.53	9.02	1.38

(b) All interruption data minus major event interruption data:

BGE's "Worst Feeder Program" consists of plans to improve reliability performance for the top 2% of the 13.8 kV distribution feeders (21 out of 1025 total 13.8 kV distribution feeders), 2% of the 13000 series 13.8 kV customer feeders (3 out of 119 total 13000 series distribution feeders) and 2% of the 4.4 kV distribution feeders (3 out of 112 total 4.4 kV distribution feeders) based on all interruption data minus major event interruption data. There were no major events experienced during 2009.

13.8 kV Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
8783	SUMMERS RUN	6.19	7.33	17.12	2.34
8734	ASHTON MODULAR	6.00	6.09	8.15	1.34
8472	CROWNSVILLE	5.69	6.12	31.55	5.16
7903	SNOWDEN RIVER	5.40	5.80	21.80	3.76
7236	UNION MILLS	5.18	6.43	15.03	2.34
7351	MILL CREEK	4.79	6.34	9.78	1.54
7696	COOKSVILLE	4.43	4.78	15.24	3.19
7593	FULLERTON	4.41	5.42	9.85	1.82
7849	GREENE STREET	4.36	5.05	6.95	1.38
7446	MITCHELLVILLE	4.32	5.06	3.25	0.64
7534	BAYNESVILLE	4.22	4.75	12.29	2.58
8463	PRIEST BRIDGE	3.96	3.91	16.14	4.12
7844	GREENE STREET	3.93	4.55	7.62	1.67
7070	JOPPATOWNE	3.82	3.97	7.60	1.91
7555	MIDDLE RIVER	3.82	4.23	6.59	1.56
8521	BENGIES #10 MOBILE	3.72	3.52	8.65	2.46
7141	JACKSONVILLE	3.57	3.04	9.44	3.10
8451	NAJ	3.52	4.24	5.19	1.22
7352	MILL CREEK	3.52	4.60	22.38	4.87
8799	REISTERSTOWN	3.45	3.86	11.86	3.07
7693	COOKSVILLE	3.37	2.83	10.99	3.89

13000 Series Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
13758	SOUTH BALTIMORE	4.71	6.14	13.48	2.19
13946	WESTPORT BROOM FACTORY	2.88	3.33	16.33	4.90
13913	WESTPORT	2.80	3.30	74.00	22.42

4.4 kV Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
4823	CLIFTON PARK	6.54	8.33	16.10	1.93
4416	WOODBROOK	5.20	5.28	11.22	2.12
4403	WOODBROOK	5.05	6.53	9.02	1.38

(c) Feeders shall not be included as having the poorest reliability in two consecutive reports.

No feeders listed in the CY 2008 report as having poor reliability are included in this report.

(4) The method used by a utility to identify the district and feeders with poorest reliability shall be approved by the Commission and be included in the report.

In order to determine which distribution feeders and areas have the poorest performance, BGE utilizes a Composite Reliability Index (CRI). In the event that two feeders have identical composite reliability indices, the feeders are then ranked based on the most recent year's feeder SAIFI. The formula for the index is:

$CRI = 0.75 \times SAIFI_{2009} + 0.25 \times SAIFI_{2008}$

(5) Feeders included in the report, which serve customers in Maryland and one or more bordering jurisdiction shall be identified. The report shall include the percentage of customers located in Maryland and the percentage of customers located in bordering jurisdictions.

Not applicable to BGE. BGE has no feeders outside Maryland.

(6) Major Event Interruption Data. The report shall include the time periods during which major event interruption data was excluded from the indices, along with a brief description of the interruption causes during each time period.

BGE experienced no major events in 2009.

(7) Actions for Operating District and Feeders with Poorest Reliability.

(a) An investor-owned utility shall report remedial actions taken or planned to improve reliability for all feeders reported under C.(3) of this regulation.

BGE will review the design for each feeder reported under this section to identify potential improvements. BGE will also trim the trees on feeders as needed, conduct a thorough equipment inspection on each feeder and correct any deficiencies found during the inspections. These inspections will permit the identification of potential outage causes and will, as a result, reduce the number of customer interruptions due to unknown causes. Where the feeder interruptions were the result of underground conductor failures, the failed sections were isolated during the service restoration process and have since been repaired or replaced. In some cases, underground cable replacement will be performed if the underground conductor experiences an excessive number of failures.

Feeder 8783

Feeder 8783 supplies approximately 1,109 customers in the Woodwardville area of Anne Arundel County. During 2009, 91% of the customer interruptions were caused by trees, 7% were caused by overhead conductor failures and 2% were caused by weather (wind/rain). Tree trimming on this feeder was most recently completed in July 2009. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010.

Feeder 8734

Feeder 8734 supplies approximately 529 customers in the Ashton area of Montgomery County. During 2009, 93% of the customer interruptions were caused by weather (47% were caused by wind/rain and 46% were caused by ice/snow), 5% were caused by trees, 1% were caused by overhead conductor failures and 1% were caused by miscellaneous events. Tree trimming on this feeder was most recently completed in July 2009. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. The design of this feeder was studied, and Distribution Automation reclosers and additional fusing were installed on a portion of the feeder in February 2010. Station relays were reset in April 2010 to coordinate with the Distribution Automation reclosers. In addition, a project completed in 2009 created a new feeder that reduced the length and exposure of this feeder.

Feeder 8472

Feeder 8472 supplies approximately 1,183 customers in the Severn Run area of Anne Arundel County. During 2009, 81% of the customer interruptions were caused by trees, 16% were caused by a vehicle-hit, 2% were caused by wildlife and 1% were caused by weather (lightning). Tree trimming on this feeder was most recently completed in October 2006 and is due for routine cycle trimming in 2010. To further improve reliability, enhanced trimming beyond BGE's routine trimming standards will be performed in 2010. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in January 2010. The design of this feeder has been studied, and Distribution Automation reclosers and additional fusing will be installed in 2010.

Feeder 7903

Feeder 7903 supplies approximately 670 customers in the Dickinson area of Howard County. During 2009, 56% of the customer interruptions were caused by underground cable failures, 20% were caused by underground equipment failures, 20% were caused by trees and 4% were caused by a company dig-in. Tree trimming on this feeder was most recently completed in May 2007. It has been determined that reliability gains can be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this work will be completed in 2010. BGE has identified one cable replacement opportunity that is currently in design and is scheduled for completion by the end of the third quarter of 2010. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2010. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2010 and any identified deficiencies will be corrected. The design of this feeder has been studied, and Distribution Automation reclosers and additional fusing will be installed in 2010.

Feeder 7236

Feeder 7236 supplies approximately 1,352 customers in Union Mills in Carroll County. During 2009, 36% of the customer interruptions were caused by trees, 22% were due to unknown causes (consisted mainly of a feeder lockout where no system damage was identified), 21% were caused by weather (wind/rain), 9% were caused by public interference (vehicle-hits), 8% were caused by overhead equipment failures and 4% were caused by underground cable failures. Tree trimming on this feeder was most recently completed in April 2007. It has been determined that reliability gains can be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this work will be completed in 2010. BGE has identified three cable replacement opportunities that are currently in design or construction and are scheduled for completion by

the end of the fourth quarter of 2010. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2010 and any identified deficiencies will be corrected. The design of this feeder has been studied, and Distribution Automation reclosers and additional fusing will be installed in 2010.

Feeder 7351

Feeder 7351 supplies approximately 1,013 customers in Severna Park in Anne Arundel County. During 2009, 42% of the customer interruptions were due to unknown causes (consisted mainly of feeder lockouts where no system damage was identified), 35% were caused by overhead equipment failures, 18% were caused by trees and 5% were caused by overhead conductor failures. Tree trimming on this feeder was most recently completed in April 2008. It has been determined that reliability gains can be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this work will be completed in 2010. BGE has identified two cable replacement opportunities that are currently in initiation or design and are scheduled for completion by the end of the fourth quarter of 2010. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in November 2009 and January 2010.

Feeder 7696

Feeder 7696 supplies approximately 1,077 customers in the Glenwood area of Howard County. During 2009, 81% of the customer interruptions were caused by trees, 10% were due to unknown causes (consisted mainly of a feeder lockout where no system damage was identified), 7% were caused by public interference (vehicle-hits), 1% were caused by underground cable failures and 1% were caused by weather (lightning). Tree trimming on this feeder was most recently completed in 2007. It has been determined that reliability gains can be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this work will be completed in 2010. BGE has identified one cable replacement opportunity that is currently in design and is scheduled for completion by the end of the third quarter of 2010. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2010. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2010 and any identified deficiencies will be corrected.

Feeder 7593

Feeder 7593 supplies approximately 1,921 customers in Fullerton in Baltimore County. During 2009, 37% of the customer interruptions were caused by underground equipment failures, 35% were caused by weather (lightning), 17% were from an unknown cause (a feeder lockout where no system damage was identified) and 11% were caused by underground cable failures. Tree trimming on this feeder was most recently completed in September 2006 and is due for routine cycle trimming in 2010. To further improve reliability, enhanced trimming beyond BGE's routine trimming standards will be performed in 2010. BGE has identified two cable replacement opportunities that are currently in construction and are scheduled for completion by the end of the second quarter of 2010. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. In addition, BGE performed Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder in March 2010 and is in the process of correcting the deficiencies identified.

Feeder 7849 supplies approximately 1,231 customers in the Franklin Square area of Baltimore City. During 2009, 52% of the customer interruptions were caused by underground cable failures, 25% were caused by underground equipment failures, 21% were from an unknown cause (a feeder lockout where no system damage was identified), 1% were caused by trees and 1% were caused by public interference (foreign objects blown by wind). Tree trimming on this feeder was most recently completed in 2006 and is due for routine cycle trimming in 2010. To further improve reliability, enhanced trimming beyond BGE's routine trimming standards will be performed in 2010. Each failed cable was repaired or replaced during 2009 as part of the service restoration and repair process. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2010. In addition, BGE performed Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder in March 2010 and corrected the deficiencies identified.

Feeder 7446

Feeder 7446 supplies approximately 1,048 customers in the Pointer Ridge area of Prince George's County. During 2009, 28% of the customer interruptions were caused by trees, 21% were due to unknown causes (consisted mainly of a feeder lockout where no system damage was identified), 20% were caused by weather (wind/rain), 20% were caused by overhead conductor failures, 9% were caused by public interference (vehicle-hit), 1% were caused by overhead equipment failures and 1% were due to other causes. Tree trimming on this feeder was most recently completed in April 2007. It has been determined that reliability gains can be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this work will be completed in 2010. BGE has identified one cable replacement opportunity that is currently in design and is scheduled for completion by the end of the fourth quarter of 2010. In addition, each of the pieces of equipment and conductor inspection and all related deficiencies were corrected in March 2010.

Feeder 7534

Feeder 7534 supplies approximately 473 customers in the Cromwood area of Baltimore County. During 2009, 45% of the customer interruptions were caused by trees, 34% were caused by overhead equipment failures and 21% were caused by weather (lightning). The feeder was trimmed during the routine maintenance schedule in January 2010 and trimming beyond routine trimming standards was performed. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. The design of this feeder has been studied and Distribution Automation reclosers and additional fusing will be installed in 2010.

Feeder 8463

Feeder 8463 supplies approximately 551 customers in Bowie in Prince George's County. During 2009, 42% of the customer interruptions were caused by underground cable failures, 32% were from underground equipment failures and 26% were caused by weather (wind/rain). Tree trimming on this feeder was most recently completed in June 2008 as part of the Bowie Electric Reliability Action Plan (BERAP). BGE has identified one cable replacement opportunity that is currently in construction and is scheduled for completion by the end of the second quarter of 2010. This includes the replacement of a switchgear. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. A project that will reconfigure the feeder and create additional feeder tie capabilities is scheduled for completion in June 2010. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2010. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2010 and any identified deficiencies will be corrected.

Feeder 7844

Feeder 7844 supplies approximately 1,137 customers in the Lexington Terrace area of Baltimore City. During 2009, 80% of the customer interruptions were caused by underground cable failures, 15% were caused by wildlife, 3% were caused by trees, 1% were caused by weather (wind/rain) and 1% were due to other causes. Each failed cable was repaired or replaced during 2009 as part of the service restoration and repair process. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2010. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2010 and any identified deficiencies will be corrected.

Feeder 7070

Feeder 7070 supplies approximately 1,727 customers in Edgewood in Harford County. During 2009, 55% of the customer interruptions were caused by trees, 31% were caused by unknown events (consisted mainly of feeder lockouts where no system damage was identified), 6% were caused by public interference (vehicle-hit), 5% were caused by underground cable failures and 3% were caused by weather. Tree trimming on this feeder was most recently completed in December 2007. It has been determined that reliability gains can be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this work will be completed in 2010. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2010 and any identified deficiencies will be corrected.

Feeder 7555

Feeder 7555 supplies approximately 3,012 customers in Middle River in Baltimore County. During 2009, 28% of the customer interruptions were caused by underground cable failures, 24% were caused by weather (wind/rain), 24% were caused by underground equipment failures and 24% were caused by public interference (vehicle-hits and a dig-in). Tree trimming on this feeder was most recently completed in May 2007. It has been determined that reliability gains can be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this work will be completed in 2010. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE has identified one cable replacement opportunity that is currently in design and is scheduled for completion by the end of the third quarter of 2010. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2010 and any identified deficiencies will be corrected. The design of this feeder has been studied, and Distribution Automation reclosers and additional fusing will be installed and overhead reconductoring will be completed in 2010.

Feeder 8521

Feeder 8521 supplies approximately 2,399 customers in Bowleys Quarters in Baltimore County. During 2009, 26% of the customer interruptions were caused by company interference (new pole was undermined and leaned into the feeder), 17% were due to miscellaneous causes (consisted mainly of an outage due to a crossarm fire), 15% were caused by trees, 15% were caused by overhead conductor failures, 13% were caused by public interference (vehicle-hit), 8% were caused by weather (lightning), 4% were caused by overhead equipment failures and 2% were

caused by wildlife. Tree trimming on this feeder was most recently completed in March 2006 and is due for routine cycle trimming in 2010. To further improve reliability, enhanced trimming beyond BGE's routine trimming standards will be performed in 2010. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010.

Feeder 7141

Feeder 7141 supplies approximately 1,056 customers in the Jacksonville area of Baltimore County. During 2009, 68% of the customer interruptions were caused by trees, 15% were caused by overhead equipment failures, 6% were due to unknown causes, 5% were caused by weather (lightning), 3% were caused by overhead conductor failures, 1% were caused by wildlife, 1% were caused by underground cable failures and 1% were due to other causes. Tree trimming on this feeder was most recently completed in December 2007. It has been determined that reliability gains can be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this work will be completed in 2010. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2010 and any identified deficiencies will be corrected.

Feeder 8451

Feeder 8451 supplies approximately 1,285 customers in the Severn Run area of Anne Arundel County. During 2009, 71% of the customer interruptions were caused by public interference (vehicle-hit), 22% were caused by trees, 5% were caused by weather (lightning) and 2% were caused by underground cable failures. Tree trimming on this feeder was most recently completed in June 2007. It has been determined that reliability gains can be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this work will be completed in 2010. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2010. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2010 and any identified deficiencies will be corrected.

Feeder 7352

Feeder 7352 supplies approximately 803 customers in the Arnold area of Anne Arundel County. During 2009, 68% of the customer interruptions were caused by trees, 22% were caused by company interference (dig-in), 6% were caused by overhead equipment failures and 4% were caused by overhead conductor failures. Tree trimming on this feeder was most recently completed in March 2006 and is due for routine cycle trimming in 2010. To further improve reliability, enhanced trimming beyond BGE's routine trimming standards will be performed in 2010. BGE identified one cable replacement opportunity which was completed in April 2010. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in December 2009 and February 2010. The design of this feeder has been studied, and Distribution Automation reclosers and additional fusing will be installed in 2010.

Feeder 8799

Feeder 8799 supplies approximately 1,134 customers in Glyndon in Baltimore County. During 2009, 33% of the customer interruptions were due to unknown causes (consisted mainly of a feeder lockout and a recloser lockout where no system damage was identified), 31% were caused by trees, 27% were caused by public interference (vehicle-hits and dig-ins), 5% were caused by weather (4% was caused by lightning and 1% were caused by wind/rain), 2% were caused by

underground cable failures, 1% were caused by wildlife and 1% were due to other causes. Tree trimming on this feeder was most recently completed in December 2006 and is due for routine cycle trimming in 2010. To further improve reliability, enhanced trimming beyond BGE's routine trimming standards will be performed in 2010. BGE has identified two cable replacement opportunities. One is currently in design and is scheduled for completion by the end of the fourth quarter of 2010. The other was completed in February 2010. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2010 and any identified deficiencies will be corrected.

Feeder 7693

Feeder 7693 supplies approximately 1,163 customers in the Woodbine area on the border between Carroll and Howard Counties. During 2009, 35% of the customer interruptions were caused by public interference (vehicle-hits and dig-ins), 30% were caused by trees, 26% were caused by overhead conductor failure, 6% were caused by weather (wind/rain), 2% were caused by underground cable failure and 1% were due to miscellaneous causes. Tree trimming on this feeder was most recently completed in July 2006 and is due for routine cycle trimming in 2010. To further improve reliability, enhanced trimming beyond BGE's routine trimming standards will be performed in 2010. BGE has identified one cable replacement opportunity that is currently in design and is scheduled for completion by the end of the fourth quarter of 2010. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2010 and any identified deficiencies will be corrected.

Feeder 13758

Feeder 13758 supplies approximately 21 customers in the Brooklyn area of South Baltimore City. During 2009, 49% of the customer interruptions were caused by overhead cable failures, 43% were caused by wildlife, 7% were caused by weather (6% were caused by lightning and 1% were caused by wind/rain) and 1% were caused by overhead equipment failures. Poles and equipment were replaced in February 2010 to improve customer reliability. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010.

Feeder 13946

Feeder 13946 supplies approximately 3 customers in the Carroll Park area of Baltimore City. During 2009, 50% of the customer interruptions were caused by overhead conductor failures, 40% were caused by public interference (vehicle-hit) and 10% were due to unknown causes (consisted of a blown fuse where no system damage was identified). Tree trimming on this feeder was most recently completed in July 2009. Failed overhead conductors were repaired or replaced during 2009 as part of the service restoration and repair process. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies.

Feeder 13913

Feeder 13913 supplies approximately 10 customers in Mount Vernon in Baltimore City. During 2009, 100% of the customer interruptions were caused by underground cable failures in duct. Each failed cable was replaced during 2009 as part of the service restoration and repair process. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2010 and any identified deficiencies will be corrected.

Feeder 4823 supplies approximately 546 customers in Broadway East in Baltimore City. During 2009, 50% of the customer interruptions were caused by unknown events (consisted mainly of feeder lockouts where no system damage was identified), 13% were caused by weather (lightning), 13% were caused by wildlife, 12% were caused by underground cable failures and 12% were caused by underground equipment failures. Tree trimming on this feeder was most recently completed in July 2009. Each failed cable was replaced during 2009 as part of the service restoration and repair process. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspections of all underground oil switches and oil fuse cut-outs on this feeder will be performed in May 2010 and any identified deficiencies will be corrected. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2010 and any identified deficiencies will be corrected.

Feeder 4416

Feeder 4416 supplies approximately 865 customers in the Druid Heights area of Baltimore City. During 2009, 60% of the customer interruptions were caused by unknown events (consisted mainly of feeder lockouts where no system damage was identified), 24% were caused by underground cable failures and 16% were caused by overhead equipment failures. Tree trimming on this feeder was most recently completed in December 2006 and is due for routine cycle trimming in 2010. To further improve reliability, enhanced trimming beyond BGE's routine trimming standards will be performed in 2010. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies. Thermovision and visual inspections of all underground oil switches and oil fuse cut-outs on this feeder will be performed in May 2010 and any identified deficiencies will be corrected. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2010 and any identified deficiencies will be corrected.

Feeder 4403

Feeder 4403 supplies approximately 672 customers in the Penn North area of Baltimore City. During 2009, 83% of the customer interruptions were caused by unknown events (consisted mainly of feeder lockouts where no system damage was identified) and 17% were caused by underground equipment failures. Tree trimming on this feeder was most recently completed in December 2006 and is due for routine cycle trimming in 2010. To further improve reliability, enhanced trimming beyond BGE's routine trimming standards will be performed in 2010. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. Thermovision and visual inspections of all underground oil switches and oil fuse cut-outs on this feeder will be performed in May 2010 and any identified deficiencies will be corrected. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2010 and any identified will be corrected.

(b) Each utility shall briefly describe the actions taken or planned to improve reliability. When the utility determines that remedial actions are unwarranted, the utility shall provide justification for this determination.

BGE plans include remedial actions for all feeders identified as worst performers.

(8) Evaluation of Remedial Actions. For the operating district and feeders identified as having the poorest reliability in an annual reliability indices report, the utility shall provide the following information in the next two annual reports.

(a) The annual report for the year following the identification of the operating district and feeders as having the poorest performance shall provide a brief description of the actions taken, if any, to improve reliability and the completion dates of these actions.

BGE reviewed the design for each feeder reported under this section to identify potential improvements. BGE also trimmed the trees on each feeder as needed, conducted a thorough equipment and conductor inspection on each feeder and corrected any deficiencies found during the inspections. Those inspections permitted the identification of potential outage causes and, as a result, reduced the number of customer interruptions due to unknown causes. Where the feeder interruptions were the result of underground conductor failures, the failed sections were isolated during the service restoration process and have since been repaired or replaced. In some cases, underground cable replacement was performed if the underground conductor experienced an excessive number of failures.

Feeder 8102

Feeder 8102 supplies approximately 1,959 customers in the Mount Washington area of Baltimore. During 2008, 40% of the customer interruptions were caused by underground conductor failures, 24% were caused by weather (23% were caused by lightning, and 1% were caused by wind/rain), 15% were caused due to equipment failures, 11% were caused by public interference (foreign objects blown by wind), 6% were caused due to trees, 2% were caused by unknown events, 1% were caused by overhead conductor failure and 1% were caused by wildlife. Tree trimming on this feeder was most recently completed in December 2008. BGE identified three cable replacement opportunities: one cable replacement job was completed in December 2009 and the other two are currently in construction to be completed by the end of the second quarter of 2010. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2009. Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder were completed in March 2009 with no reliability deficiencies being found.

Feeder 7633

Feeder 7633 supplies approximately 225 customers in the Oakland Mills area in Howard County. During 2008, 54% of the customer interruptions were caused by underground conductor failures, 20% were caused by unknown events (consisted mainly of feeder lockouts where no system damage was identified), 13% were caused by weather, and 13% were caused by public interference (dig-ins). Tree trimming on this feeder was most recently completed in June 2008. BGE identified two cable replacement opportunities: one is currently in construction and the other is currently in design and both are intended to be completed by the end of the second quarter of 2010. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in January 2009. Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder were completed in March 2009 with no reliability deficiencies being found.

Feeder 7348 supplies approximately 2,285 customers in the Marley Creek area of Anne Arundel County. During 2008, 68% of the customer interruptions were caused by underground conductor failures, 17% were caused by overhead conductor failures, 14% were caused by trees, and 1% were caused by wildlife. Tree trimming on this feeder was most recently completed in December 2008. BGE identified a cable replacement opportunity that is currently in construction and is intended to be completed by the end of the second quarter of 2010. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in January 2009. Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder were completed in March 2009 with no reliability deficiencies being found. The design of this feeder was studied, and Distribution Automation reclosers and additional fusing will be installed and reconductoring will occur in 2010.

Feeder 8420

Feeder 8420 supplies approximately 1,801 customers in the Harwood area of Anne Arundel County. During 2008, 34% of the customer interruptions were caused by trees, 24% were caused by weather (wind/rain), 17% were caused by equipment failures, 13% were caused by underground conductor failure, and 12% were caused by unknown events (consisted mainly of a feeder lockout where no system damage was identified). An inspection performed in 2009 determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards. The feeder was trimmed during the routine maintenance schedule in April 2009 and trimming beyond routine trimming standards was performed. BGE identified a cable replacement opportunity that was completed in October 2009. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2009. In addition, BGE also performed a Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder in March 2009 and corrected the deficiencies identified.

Feeder 7130

Feeder 7130 supplies approximately 1,028 customers in the Monkton area of Baltimore County. During 2008, 50% of the customer interruptions were caused by trees, 26% were caused by weather (15% were caused by lightning, and 11% were caused by wind/rain), 20% were caused by equipment failures, 3% were caused by overhead conductor failure, and 1% were caused by public interference. An inspection performed in 2009 determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards. The feeder was trimmed during the routine maintenance schedule in July 2009 and trimming beyond routine trimming standards was performed. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in May 2009. The design of this feeder was studied, and Distribution Automation reclosers and additional fusing will be installed in 2010.

Feeder 7257

Feeder 7257 supplies approximately 819 customers in the Ellicott City area of Howard County. During 2008, 74% of the customer interruptions were caused by trees, 14% were caused by underground conductor failures, 11% were caused by overhead conductor failures, and 1% were caused by unknown events. An inspection performed in 2009 determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards. The feeder was trimmed during the routine maintenance schedule in May and November 2009 and trimming beyond routine trimming standards was performed. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2009. The design of this feeder was studied and Distribution Automation reclosers were installed in January 2008.

Feeder 7616

Feeder 7616 supplies approximately 1,739 customers in the Village of Hickory Ridge area of Howard County During 2008, 49% of the customer interruptions were caused by trees, 20% were caused by equipment failures, 13% were caused by public interference (vehicle-hits), 12% were caused by weather (7% were caused by lightning and 5% were caused by wind/rain), 5% were caused by overhead conductor failures, and 1% were caused by underground conductor failures). An inspection performed in 2009 determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards. "Hot-spot" trimming on this feeder was completed in March and April 2009 and trimming beyond BGE's routine trimming standards was performed. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2009. The design of this feeder was studied and Distribution Automation reclosers and fault indicators were installed in May 2009.

Feeder 7658

Feeder 7658 supplies approximately 1,087 customers in the Village of Owen Brown area of Howard County. During 2008, 95% of the customer interruptions were caused by underground conductor failures, and 5% were caused by equipment failures. BGE identified a cable replacement opportunity that was completed in October 2008. Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder were completed in March 2009 with no reliability deficiencies being found.

Feeder 7382

Feeder 7382 supplies approximately 68 customers in the Fairfield area of Baltimore City. During 2008, 41% of the customer interruptions were caused by weather (39% were caused by wind/rain and 1% were caused by lightning), 36% were caused by overhead conductor failures, and 23% were caused by equipment failures. An inspection performed in 2009 determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards. The feeder was trimmed during the routine maintenance schedule in April 2009 and trimming beyond routine trimming standards was performed. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2009. The design of this feeder was studied and Distribution Automation reclosers were installed in August 2009.

Feeder 8052

Feeder 8052 supplies approximately 1,528 customers in the Jarrettsville area of Harford County. During 2008, 55% of the customer interruptions were caused by underground conductor failures, 19% were caused by trees, 19% were caused by public interferences (18% were caused by vehicle-hits and 1% were caused by foreign objects blown by wind), 6% were caused by weather, and 1% were caused by equipment failures. An inspection performed in 2009 determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards. The feeder mains were trimmed during the routine maintenance schedule in May 2009 and trimming of the taps was completed in June. Trimming beyond routine trimming standards was performed. BGE identified a cable replacement opportunity and the job was completed in June 2009. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in May 2009.

Feeder 8604 supplies approximately 2,046 customers in the Federal Hill area of Baltimore City. During 2008, 29% of the customer interruptions were caused by public interferences (15% were caused by vehicle-hits and 15% were caused by foreign objects blown by wind), 19% were caused by underground conductor failures, 19% were caused by equipment failures, 16% were caused by weather (wind/rain), 15% were caused by trees, and 2% were caused by miscellaneous events. An inspection performed in 2009 determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards. "Hot-spot" trimming on this feeder was completed in March and April 2009 and trimming beyond BGE's routine trimming standards was performed. Two hazard trees were removed as part of the trimming effort. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2009. In addition, BGE identified a cable replacement opportunity that was completed in January 2009. The design of this feeder was studied and Distribution Automation reclosers were installed in July 2009. BGE also performed a Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder in March 2009 and corrected the deficiencies identified.

Feeder 8682

Feeder 8682 supplies approximately 902 customers in the Dayton area of Howard County. During 2008, 40% of the customer interruptions were caused by trees, 39% were caused by unknown events (consisted mainly of a feeder lockout where no system damage was identified), 14% were caused by overhead conductor failures, 5% were caused by public interference and 2% were caused by equipment failures. An inspection performed in 2009 determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards. "Hot-spot" trimming on this feeder was completed in May 2009 and trimming beyond BGE's routine trimming standards was performed. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2009.

Feeder 7381

Feeder 7381 supplies approximately 561 customers in the Brooklyn area of Baltimore City. During 2008, 49% of the customer interruptions were caused by overhead conductor failures (vast majority occurring during storms), 19% were caused by unknown events (consisted mainly of a feeder lockout where no system damage was identified), 18% were caused by trees, 8% were caused by weather, 5% were caused by miscellaneous events and 1% were caused by equipment failures. An inspection performed in 2009 determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards. The feeder was trimmed during the routine maintenance schedule in April 2009 and trimming beyond routine trimming standards was performed. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2009. The design of this feeder was studied and Distribution Automation reclosers and additional fusing were installed in September 2009. Station relays were reset in April 2010 to coordinate with the new Distribution Automation reclosers.

Feeder 7617

Feeder 7617 supplies approximately 803 customers in the Villages of Hickory Ridge area of Howard County. During 2008, 49% of the customer interruptions were caused by trees, 39% were caused by equipment failures, 4% were caused by weather, 4% were caused by unknown events (consisted mainly of a feeder lockout where no system damage was identified), 1% were caused by underground conductor failures, 1% were caused by animals and 1% were caused by miscellaneous events. Tree trimming on this feeder was most recently completed in October 2008. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2009. In addition, BGE also performed a Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder in March 2009 and corrected the deficiencies identified. The design of this feeder was studied, and Distribution Automation recloser installations and an underground main reconductoring project are currently in construction with expected completion in May 2010.

Feeder 8101

Feeder 8101 supplies approximately 2,088 customers in the Rodgers Forge area of Baltimore County. During 2008, 37% of the customer interruptions were caused by trees, 22% were caused by public interference (19% were caused by vehicle-hits and 3% were caused by foreign objects blown by wind), 21% were caused by weather (17% were caused by lightning and 4% were caused by wind/rain), 13% were caused by animals, 5% were caused by overhead conductor failures, and 2% were caused by equipment failures. An inspection performed in 2009 determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards. The feeder was trimmed during the routine maintenance schedule in February 2009 and trimming beyond routine trimming standards was performed. BGE identified a cable replacement opportunity and intends to be completed by the end of the third quarter of 2010 (construction will impact a school who requested a delay until summer). BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2009.

Feeder 7710

Feeder 7710 supplies approximately 2,301 customers in the Chadwick area of Baltimore County. During 2008, 84% of the customer interruptions were caused by trees, 13% were caused by miscellaneous events, 2% were caused by equipment failures, and 1% were caused by weather. Tree trimming on this feeder was most recently completed in October 2008. BGE identified two cable replacement opportunities: one was completed in October 2009 and the second is currently in construction and is intended to be completed by the end of the third quarter of 2010. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2009. The design of this feeder was studied, and Distribution Automation reclosers were installed in May 2009.

Feeder 8103

Feeder 8103 supplies approximately 677 customers in the Ruxton area of Baltimore County. During 2008, 26% of the customer interruptions were caused by overhead conductor failures, 22% were caused by trees, 16% were caused weather (15% were caused by wind/rain and 1% were caused by lightning), 15% were caused by unknown events (consisted mainly of a feeder lockout where no system damage was identified), 14% were caused by public interference (13% were caused by vehicle-hits and 1% were caused by foreign objects blown by wind), 5% were caused by equipment failures, 1% were caused by underground conductor failures and 1% were caused by animals. Tree trimming on this feeder was most recently completed in September 2008. BGE identified a cable replacement opportunity that is currently in scheduling and is intended to be completed by the end of the second quarter of 2010. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2009. A portion of this feeder was transferred to feeder 7101. This transfer of a group of customers at the end of the feeder reduces their vegetation exposure and moves them to a better performing feeder. The transfer and related work was completed prior to the 2009 storm season.

Feeder 8272

Feeder 8272 supplies approximately 1,356 customers in the Windsor Mill area of Baltimore County. During 2008, 42% of the customer interruptions were caused by trees, 36% were caused by underground conductor failures, 21% were caused equipment failures, and 1% were

caused by unknown events. An inspection performed in 2009 determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards. "Hot-spot" trimming on this feeder was completed in May 2009 and trimming beyond BGE's routine trimming standards was performed. BGE identified a cable replacement opportunity that was completed in November 2009. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2009. Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder were completed in March 2009 with no reliability deficiencies being found.

Feeder 8556

Feeder 8556 supplies approximately 671 customers in the Gambrills area of Anne Arundel County. During 2008, 43% of the customer interruptions were caused by trees, 37% were caused by underground conductor failures, 18% were caused by overhead conductor failures, and 2% were caused by equipment failures. An inspection performed in 2009 determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards. "Hot-spot" trimming on this feeder was completed in April 2009 and trimming beyond BGE's routine trimming standards was performed. In addition, BGE identified a cable replacement opportunity that was completed in August 2008. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2009. The design of this feeder was studied, and Distribution Automation reclosers were installed in September 2009.

Feeder 8141

Feeder 8141 supplies approximately 917 customers in the Hampton area of Baltimore County. During 2008, 58% of the customer interruptions were caused by trees, 22% were caused by equipment failures, 17% were caused by underground conductor failures, 2% were caused by weather, and 1% were caused by animals. An inspection performed in 2009 determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards. "Hot-spot" trimming on this feeder was completed in May 2009 and trimming beyond BGE's routine trimming standards was performed. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in May 2009. Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder were completed in March 2008 with no reliability deficiencies being found.

Feeder 13602

Feeder 13602 supplies approximately 271 customers in the Hampden area of Baltimore City. During 2008, 50% of the customer interruptions were caused by underground conductor failures and 50% were caused by equipment failures. Each failed cable was replaced as part of the service restoration and repair process. In addition, each of the pieces of equipment that failed was replaced after failure. The feeder was trimmed during the routine maintenance schedule in February 2009 and trimming beyond routine trimming standards was performed. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in September 2009. In addition, BGE performed a Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder in March 2009 and corrected the deficiencies identified.

Feeder 13302

Feeder 13302 supplies approximately 6 customers in the Highlandtown area of Baltimore City. During 2008, 50% of the customer interruptions were caused by equipment failures, and 50% were caused by weather (lightning). Tree trimming on this feeder was most recently completed in February 2008. In addition, each of the pieces of equipment that failed was replaced after

failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2009.

Feeder 13936

Feeder 13936 supplies approximately 132 customers in the Little Italy area of Baltimore City. During 2008, 99% of the customer interruptions were caused by underground conductor failures and 1% were caused by equipment failure. Each failed cable was replaced during 2008 as part of the service restoration and repair process. BGE performed a Thermovision and visual inspections of all 3-phase pad mounted equipment on this in March 2009 and corrected the deficiencies identified.

Feeder 4430

Feeder 4430 supplies approximately 888 customers in the Forest Park area of Baltimore City. During 2008, 31% of the customer interruptions were caused by trees, 24% were caused by underground conductor failures, 24% were caused by equipment failures, 18% were caused by weather (17 % were caused by wind/rain and 1% were caused by lightning) and 3% were caused by unknown events. Tree trimming on this feeder was most recently completed in October 2008. Each failed cable was repaired or replaced during 2008 as part of the service restoration and repair process. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2009.

Feeder 4812

Feeder 4812 supplies approximately 502 customers in the Calverton area of Baltimore City. During 2008, 36% of the customer interruptions were caused by trees, 17% were caused by underground conductor failures, 17% were caused by equipment failures, 17% were caused by weather (wind/rain) and 13% were caused by miscellaneous events. Each failed cable was repaired or replaced during 2008 as part of the service restoration and repair process. The feeder was trimmed during the routine maintenance schedule in February 2009 and trimming beyond routine trimming standards was performed. BGE also conducted an overhead equipment and conductor inspection and no related deficiencies were found.

Feeder 4828

Feeder 4828 supplies approximately 734 customers in the Clifton Park area of Baltimore City. During 2008, 48% of the customer interruptions were caused by equipment failures, 21% were caused by underground conductor failures, 20% were caused by weather (19% were caused by lightning and 1% were caused by wind/rain) and 11% were caused by trees. The feeder was trimmed during the routine maintenance schedule in February 2009 and trimming beyond routine trimming standards was performed. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in July 2009. Thermovision and visual inspections of all 3 phase pad mounted equipment on this feeder were completed in March 2008 with no reliability deficiencies being found. (b) The annual report two years after the identification of the operating district or feeders as having the poorest performance shall include the ordinal ranking representing the feeder's reliability during the current reporting period.

BGE's poorest performing 2% of the 13.8 kV distribution feeders (20 out of 979 total 13.8 kV distribution feeders), 2% of the 13000 series 13.8 kV customer feeders (3 out of 123 total 13000 series distribution feeders and 2% of the 4.4 kV distribution feeders (3 out of 123 total 4.4 kV distribution feeders) in 2007 had the following ordinal rankings in 2009. Ordinals for 2009 range from 1 (worst) to 112 (best) for 4.4 kV feeder, from 1 (worst) to 119 (best) for 13000 series feeders and from 1 (worst) to 1025 (best) for 13.8 kV feeders, ranked by Composite Reliability Index. Ranking excludes major event data.

13.8 kV Feeder	Substation	2009 Ordinal Ranking
7733	DORSEY RUN	639
7411	GREENBURY POINT	426
7440	MITCHELLVILLE	58
7474	GLENN DALE	423
7237	UNION MILLS MOD	536
7283	MONTPELIER	675
8450	NAJ	153
7390	LANSDOWNE	695
8463	PRIEST BRIDGE	12
7129	HEREFORD	167
7138	LUTHERVILLE	31
7609	WILDE LAKE	720
7832	GREENE STREET	62
8072	GLENARM	30
7003	CENTER	408
7232	HAMPSTEAD	333
7123	EAST TOWSON	354
8425	BAY RIDGE	268
7555	MIDDLE RIVER	15
8734	ASHTON MODULAR	2

13000 Series Feeder	Substation	2009 Ordinal Ranking
13330	HIGHLANDTOWN	4
13971	NEWGATE	7
13928	MONUMENT STREET OUTDOOR	115

4.4 kV Feeder	Substation	2009 Ordinal Ranking
4371	BROADWAY	8
4405	WOODBROOK	13
4806	CALVERTON	79

Feeders 8463, 7555 and 8734 on the above list did not register significant reliability improvements. Explanations of recent outage causes are listed below. Because BGE is committed to improving the reliability of this feeder, we will be more aggressive in our analysis to identify and correct the poor performance and will include its progress in future reports.

Feeder 8463

Feeder 8463 supplies approximately 551 customers in Bowie in Prince George's County. During 2009, 42% of the customer interruptions were caused by underground cable failures, 32% were from underground equipment failures and 26% were caused by weather (wind/rain). Tree trimming on this feeder was most recently completed in June 2008 as part of the Bowie Electric Reliability Action Plan (BERAP). BGE has identified one cable replacement opportunity that is currently in construction and is scheduled for completion by the end of the second quarter of 2010. This includes the replacement of a switchgear. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. A project that will reconfigure the feeder and create additional feeder tie capabilities is scheduled for completion in June 2010. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2010. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2010 and any identified deficiencies will be corrected.

Feeder 7555

Feeder 7555 supplies approximately 3,012 customers in Middle River in Baltimore County. During 2009, 28% of the customer interruptions were caused by underground cable failures, 24% were caused by weather (wind/rain), 24% were caused by underground equipment failures and 24% were caused by public interference (vehicle-hits and a dig-in). Tree trimming on this feeder was most recently completed in May 2007. It has been determined that reliability gains can be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this work will be completed in 2010. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE has identified one cable replacement opportunity that is currently in design and is scheduled for completion by the end of the third quarter of 2010. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2010 and any identified deficiencies will be corrected. The design of this feeder has been studied, and Distribution Automation reclosers and additional fusing will be installed and overhead reconductoring will be completed in 2010.

Feeder 8734

Feeder 8734 supplies approximately 529 customers in the Ashton area of Montgomery County. During 2009, 93% of the customer interruptions were caused by weather (47% were caused by wind/rain and 46% were caused by ice/snow), 5% were caused by trees, 1% were caused by overhead conductor failures and 1% were caused by miscellaneous events. Tree trimming on this feeder was most recently completed in July 2009. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. The design of this feeder was studied, and Distribution Automation reclosers and additional fusing were installed on a portion of the feeder in February 2010. Station relays were reset in April 2010 to coordinate with the Distribution Automation reclosers. In addition, a project completed in 2009 created a new feeder that reduced the length and exposure of this feeder. (9) Momentary Interruptions. A utility shall maintain information which it collects on momentary interruptions for five years.

BGE collects momentary outage information on devices that are monitored by SCADA (e.g., Distribution Automation reclosers, substation breakers, etc.). However, BGE does not routinely collect counter readings from hydraulic reclosers.

Baltimore Gas and Electric Company COMAR 20.50.07.06 Reporting of Reliability Indices – CY 2010

(1) System-Wide Indices. A utility shall report SAIDI, SAIFI, and CAIDI for its system consisting of all feeders originating in Maryland. The indices shall be calculated and reported with two sets of input data.

(a) All interruption data;

SAIFI – 1.58 SAIDI – 5.46 CAIDI – 3.45

Note: SAIFI, SAIDI and CAIDI are calculated using COMAR 20.50.01.03 Definitions.

(b) All interruption data minus major event interruption data.

SAIFI – 1.48 SAIDI – 4.52 CAIDI – 3.05

Data in (b) above exclude customer interruptions from one Major Event experienced during July 2010, further detailed in Section 6.

All interruption data minus July 2010 major event interruption data and interruption data from the February 2010 snow storms.¹

SAIFI – 1.37 SAIDI – 3.60 CAIDI – 2.63

All interruption data minus interruption data for all weather events.

SAIFI – 0.77 SAIDI – 1.56 CAIDI – 2.04

Note: The data sets showing SAIFI, SAIDI and CAIDI excluding July 2010 major event interruption data and interruption data from the February 2010 snow storms as well as excluding interruption data for all weather events are provided to demonstrate the impact of weather events on system-wide reliability.

¹ While the two snow storms in February 2010 were separate events and neither met the Major Storm definition in COMAR 20.50.01.03, the Commission directed BGE to file a Major Storm report in Case No. 9220 providing the information set forth in COMAR 20.50.07.07 for both storms.

(2) District Indices. A cooperatively-owned utility shall provide SAIDI, SAIFI, and CAIDI for each operating district and identify the operating district with the poorest reliability. The indices shall be calculated and reported with two sets of input data.

(a) All interruption data;

(b) Major event interruption data excluded.

Requirements (a) & (b) are not applicable to BGE since BGE is an Investor Owned Utility.

(3) Feeder Indices. An investor-owned utility shall provide SAIDI, SAIFI, and CAIDI for 2% of feeders or 10 feeders, whichever is more, serving at least one Maryland customer that are identified by the utility as having the poorest reliability. The indices shall be calculated and reported with 2 sets of input data.

13.8 kV Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
7583	RIVERSIDE	6.52	8.33	13.70	1.64
8445	BESTGATE	6.02	7.20	20.66	2.87
7497	CEDAR PARK	5.29	6.23	32.77	5.26
8144	EAST TOWSON	5.00	5.73	13.95	2.43
7407	CEDAR PARK	4.99	6.48	33.11	5.11
8010	COLDSPRING	4.91	6.45	16.10	2.50
7483	HUNT CLUB	4.88	5.96	37.59	6.31
8475	CROWNSVILLE	4.74	5.60	24.42	4.36
8411	BEVERLY BEACH	4.60	5.73	13.53	2.36
8004	COLDSPRING	4.53	5.26	7.68	1.46
8152	TEXAS	4.46	5.05	27.48	5.44
7105	MOUNT WASHINGTON	4.41	5.58	11.28	2.02
8474	CROWNSVILLE	4.40	4.66	34.59	7.42
7423	TRACEYS LANDING	4.34	5.73	30.21	5.27
7656	COLUMBIA	4.32	5.29	6.31	1.19
8158	TEXAS	4.23	4.17	4.55	1.09
8556	WAUGH CHAPEL	4.11	4.55	23.73	5.21
8072	GLENARM	4.05	4.00	19.26	4.82
7481	HUNT CLUB	3.97	4.36	28.42	6.52
8387	RIVA ROAD	3.93	4.81	13.40	2.78
7111	MOUNT WASHINGTON	3.90	5.06	12.44	2.46

(a) All interruption data

13000 Series Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
13991	MIDDLE RIVER	3.75	5.00	9.50	1.90
13947	WESTPORT BROOM				
13947	FACTORY	3.33	3.33	32.67	9.80
13330	HIGHLANDTOWN	2.35	2.08	10.16	4.88

4.4 kV Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
4067	PHILADELPHIA ROAD	6.79	9.05	22.27	2.46
4816	CALVERTON	4.28	5.10	52.89	10.37
4068	PHILADELPHIA ROAD	4.07	5.40	36.79	6.82

(b) All interruption data minus major event interruption data:

BGE's "Worst Feeder Program" consists of the Company's plans to improve reliability performance for the top 2% of the 13.8 kV distribution feeders (21 out of 1048 total 13.8 kV distribution feeders), 2% of the 13000 series 13.8 kV customer feeders (3 out of 133 total 13000 series distribution feeders) and 2% of the 4.4 kV distribution feeders (3 out of 107 total 4.4 kV distribution feeders) based on all interruption data minus major event interruption data. There was one major event experienced during July 2010.

13.8 kV Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
7583	RIVERSIDE	6.34	8.09	13.10	1.62
8445	BESTGATE	5.77	6.87	14.90	2.17
7497	CEDAR PARK	5.29	6.22	32.59	5.24
8144	EAST TOWSON	5.00	5.73	13.95	2.43
8010	COLDSPRING	4.91	6.45	16.10	2.50
8004	COLDSPRING	4.53	5.26	7.68	1.46
7105	MOUNT WASHINGTON	4.41	5.58	11.28	2.02
8411	BEVERLY BEACH	4.32	5.37	12.32	2.30
7656	COLUMBIA	4.32	5.29	6.31	1.19
8475	CROWNSVILLE	4.28	4.99	11.33	2.27
8158	TEXAS	4.21	4.14	4.50	1.09
8474	CROWNSVILLE	4.12	4.28	24.00	5.61
8072	GLENARM	3.94	3.86	18.51	4.79
8387	RIVA ROAD	3.91	4.80	12.61	2.63
7111	MOUNT WASHINGTON	3.90	5.06	12.44	2.46
7972	HONEYGO	3.84	3.84	3.56	0.93
8425	BAY RIDGE	3.81	4.88	15.59	3.20
8074	GLENARM	3.78	4.07	21.79	5.35
8121	KAUFFMAN	3.76	3.81	12.28	3.22
8073	GLENARM	3.75	5.00	13.00	2.60
7483	HUNT CLUB	3.71	4.40	20.94	4.76

13000 Series Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
13991	MIDDLE RIVER	3.75	5.00	9.50	1.90
13947	WESTPORT BROOM FACTORY	3.33	3.33	32.67	9.80
13330	HIGHLANDTOWN	2.35	2.08	10.16	4.88

4.4 kV Feeder	Substation	CRI	SAIFI	SAIDI	CAIDI
4067	PHILADELPHIA ROAD	6.79	9.05	22.27	2.46
4816	CALVERTON	4.28	5.10	52.89	10.37
4262	CENTER	3.54	4.72	44.84	9.50

(c) Feeders shall not be included as having the poorest reliability in two consecutive reports.

Feeders listed in the CY 2009 report as having poor reliability are not included in this report, which allows time for reliability data to reflect corrective actions performed in 2009 and 2010.

(4) The method used by a utility to identify the district and feeders with poorest reliability shall be approved by the Commission and be included in the report.

In order to determine which distribution feeders and areas have the poorest performance, BGE utilizes a Composite Reliability Index (CRI). In the event that two feeders have identical composite reliability indices, the feeders are then ranked based on the most recent year's feeder SAIFI. The formula for the index is:

$CRI = 0.75 \times SAIFI_{2010} + 0.25 \times SAIFI_{2009}$

(5) Feeders included in the report, which serve customers in Maryland and one or more bordering jurisdiction shall be identified. The report shall include the percentage of customers located in Maryland and the percentage of customers located in bordering jurisdictions.

Not applicable to BGE. BGE has no feeders outside Maryland.

(6) Major Event Interruption Data. The report shall include the time periods during which major event interruption data was excluded from the indices, along with a brief description of the interruption causes during each time period.

BGE experienced one Major Event in 2010.

On Sunday, July 25, 2010, beginning approximately 3:30 PM, portions of the BGE territory were impacted by lightning, wind and rain. Localized heavy rains, wind gusts and lightning experienced were due to a few strong thunderstorms that moved through Anne Arundel, Prince George's, Baltimore, Howard, Montgomery, Howard, Harford, Carroll and Calvert Counties as well as Baltimore City. A major storm was declared on the BGE system at 1:45 PM on July 25 with a peak of 78,534 sustained customer interruptions occurring at 6:42 PM. Cumulatively, BGE experienced 122,234 customer interruptions. A total of 1,313 BGE personnel and BGE contractors along with 185 external contractors were involved in the restoration effort. The storm was declared over and the Storm Center closed at 6:00 PM on Tuesday, July 27, 2010.

While not a Major Event on BGE's system, BGE prepared and filed a Major Storm Report for the dual blizzards of February 2010 at the request of the Commission. Between February 5 and February 12, 2010, the BGE service territory was impacted by two significant snow storms. Between them, these storms dumped nearly four feet of snow on Central Maryland. Nearly 97,000 customers lost service during the first storm that began on Friday, February 5 and intensified rapidly in the early morning hours of Saturday, February 6. At 4:00 PM on Friday, February 5, a minor storm was declared on the BGE electric distribution system in anticipation of the impending blizzard. The peak number of sustained customer interruptions was 45,158 and occurred on February 6, 2010 at 11:11AM. By the late evening on Monday, February 8, all but 800 customers had been restored. The second storm started Tuesday, February 9 and caused approximately 45,000 additional service interruptions. Most were restored by Thursday, February 11, with a very small number of customer outages extending into Friday, February 12. The storm was declared over and the Storm Center closed at 3:00 PM on Friday, February 12, 2010.Between the two storms, BGE experienced a total of 142,001 customer interruptions.

(7) Actions for Operating District and Feeders with Poorest Reliability.

(a) An investor-owned utility shall report remedial actions taken or planned to improve reliability for all feeders reported under C.(3) of this regulation.

BGE will review the design for each feeder reported under this section to identify potential improvements. BGE will also trim the trees on feeders as needed, conduct a thorough equipment inspection on each feeder and correct any deficiencies found during the inspections. These inspections will permit the identification of potential outage causes and will, as a result, reduce the number of customer interruptions due to unknown causes. Where the feeder interruptions were the result of underground conductor failures, the failed sections were isolated during the service restoration process and have since been repaired or replaced. In some cases, underground cable replacement will be performed if the underground conductor experiences an excessive number of failures.

Feeder 7583

Feeder 7583 supplies approximately 1,403 customers in the Dundalk area on the Baltimore City/County line. During 2010, 37% of the customer interruptions were caused by weather (32% due to wind/rain, 5% due to lightning), 37% were caused by unknown reasons (consisted mainly of blown fuses where no system damage was identified), 15% were caused by overhead conductor failures, 5% were caused by miscellaneous events, 4% were caused by overhead equipment failures, and 2% were caused by wildlife. Tree trimming on this feeder was most recently completed in May 2007 and the feeder is due for routine cycle trimming in May 2011. To further improve reliability, enhanced trimming beyond BGE's routine trimming standards will be performed in 2011. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE renewed poles and modified the design of a pole to improve overhead conductor tension and sag in December 2010. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2011. The design of this feeder has been studied, and Distribution Automation reclosers will be installed in 2011.

Feeder 8445

Feeder 8445 supplies approximately 1,236 customers in the Heritage Harbour area of Anne Arundel County. During 2010, 35% of the customer interruptions were caused by unknown reasons (consisted mainly of feeder lockouts where no system damage was identified), 32% were caused by trees, 29% were caused by underground equipment failures, 3% were caused by underground cable failures, and 1% were caused by weather (wind/rain and ice/snow). Tree trimming on this feeder was most recently completed in February 2011. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2011. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected. A project to reduce the length and exposure of this feeder and add Distribution Automation reclosers will be completed in 2013 in conjunction with expected load increases.

Feeder 7497 supplies approximately 1,103 customers in the Annapolis area of Anne Arundel County. During 2010, 61% of the customer interruptions were caused by weather (36% due to ice/snow, 25% due to wind/rain), 36% were caused by trees, 2% were caused by underground equipment failures, and 1% were caused by unknown reasons (consisted mainly of blown fuses where no system damage was identified). Tree trimming on this feeder was most recently completed in December 2010. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2011. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected.

Feeder 8144

Feeder 8144 supplies approximately 96 customers in the Towson area of Baltimore County. During 2010, 53% of the customer interruptions were caused by underground equipment failures, 40% were caused by underground cable splice failures, and 7% were caused by trees. Tree trimming on this feeder was most recently completed in February 2011. In addition, each of the cable splices and each of the pieces of equipment that failed were repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2011. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected.

Feeder 8010

Feeder 8010 supplies approximately 892 customers in the Roland Park area of Baltimore City. During 2010, 56% of the customer interruptions were caused by trees, 18% were caused by unknown reasons (consisted mainly of feeder lockouts where no system damage was identified), 17% were caused by weather (wind/rain), 6% were caused by wildlife, and 3% were caused by overhead equipment failures. Tree trimming on this feeder was most recently completed in January 2011. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2011. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected.

Feeder 8004

Feeder 8004 supplies approximately 2,116 customers in the Roland Park area of Baltimore City. During 2010, 33% of the customer interruptions were caused by weather (wind/rain), 23% were caused by trees, 22% were caused by unknown reasons (consisted mainly of a feeder lockout where no system damage was identified), 20% were caused by a splice failure, and 2% were caused by wildlife. Tree trimming on this feeder was most recently completed in May 2009. It has been determined that reliability gains can be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this work will be completed in 2011. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2011. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected.

Feeder 7105

Feeder 7105 supplies approximately 1,484 customers in the Stevenson area of Baltimore County. During 2010, 32% of the customer interruptions were caused by trees, 27% were caused by

weather (wind/rain), 18% were caused by unknown reasons (consisted mainly of a feeder lockout where no system damage was identified), 14% were caused by underground cable failures, 7% were caused by public interference (vehicle-hits), and 2% were caused by underground equipment failures. Tree trimming on this feeder was most recently completed in February 2011. BGE completed one cable replacement job in October 2010 and one in February 2011. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2011. In addition, Thermovision and visual inspections of all 3phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected.

Feeder 8411

Feeder 8411 supplies approximately 1,457 customers in the Mayo area of Anne Arundel County. During 2010, 61% of the customer interruptions were caused by weather (38% due to wind/rain, 20% due to lightning, and 3% due to ice/snow), 27% were caused by trees, 9% were caused by unknown reasons (consisted mainly of blown fuses where no system damage was identified), 1% were caused by wildlife, 1% were caused by overhead conductor failures, and 1% were caused by underground equipment failures. Tree trimming on this feeder was most recently completed in June 2008. It has been determined that reliability gains can be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this work will be completed in 2011. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in January 2011. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected. A project to reduce the length and exposure of this feeder and add Distribution Automation reclosers will be completed by the end of the second quarter of 2011.

Feeder 7656

Feeder 7656 supplies approximately 742 customers in the Columbia area of Howard County. During 2010, 88% of the customer interruptions were caused by underground cable failures, 9% were caused by a partial feeder lockout as a result of an overload, 2% were caused by underground equipment failures, and 1% were caused by a dig-in. BGE identified one cable replacement opportunity. The construction work is complete and an outage is pending for cut-in. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected.

Feeder 8475

Feeder 8475 supplies approximately 731 customers in the Crownsville area of Anne Arundel County. During 2010, 45% of the customer interruptions were caused by unknown reasons (consisted mainly of feeder lockouts where no system damage was identified), 30% were caused by trees, 21% were caused by weather (19% due to ice/snow and 2% due to wind/rain), 3% were caused by overhead equipment failures, and 1% were caused by underground cable failures. Tree trimming on this feeder was most recently completed in October 2007 and is due for routine cycle trimming in 2011. To further improve reliability, enhanced trimming beyond BGE's routine trimming standards will be performed in 2011. BGE identified one cable replacement opportunity that was completed in March 2011. In addition, each of the pieces of equipment and conductor inspection and all related deficiencies were corrected in April 2011. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected.

Feeder 8158 supplies approximately 872 customers in the Timonium area of Baltimore County. During 2010, 23% of the customer interruptions were caused by a defective splice, 20% were caused by equipment failures, 15% were caused by overhead conductor failures, 14% were caused by unknown reasons (consisted mainly of feeder lockouts where no system damage was identified), 15% were caused by trees, 10% were caused by a defective underground cable, 1% were caused by a dig-in, 1% were caused by weather (wind/rain), and 1% were caused by wildlife. Tree trimming on this feeder was most recently completed in October 2008. It has been determined that reliability gains can be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this work will be completed in 2011. BGE identified three cable replacement opportunities. One was completed in February 2011. Construction work on the remaining two is complete and outages are pending for cut-in. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in January 2011. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected.

Feeder 8474

Feeder 8474 supplies approximately 634 customers in the Sherwood Forest area of Anne Arundel County. During 2010, 63% of the customer interruptions were caused by trees, 23% were caused by weather (wind/rain), 10% were caused by unknown reasons (consisted mainly of feeder lockouts where no system damage was identified), 2% were caused by wildlife, 1% were caused by a dig-in, and 1% were caused by overhead equipment failures. Tree trimming on this feeder was most recently completed in February 2011. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2011. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected.

Feeder 8072

Feeder 8072 supplies approximately 1,530 customers in the Baldwin area of Baltimore County. During 2010, 58% of the customer interruptions were caused by weather (28% due to lightning, 19% due to wind/rain and 11% due to ice/snow), 36% were caused by trees, 2% were caused by unknown reasons (consisted mainly of blown fuses where no system damage was identified), 2% were caused by overhead equipment failures, 1% were caused by foreign objects blown by wind, and 1% were caused by wildlife. Tree trimming on this feeder was most recently completed in April 2010. It has been determined that reliability gains can be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this work will be completed in 2011. BGE identified two cable replacement opportunities. One was completed in February 2011. The other is currently in design and is scheduled for completion by the end of the fourth quarter of 2011. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2011. The design of this feeder has been studied, and Distribution Automation reclosers will be installed and a portion of the feeder will be reconductored in 2011.

Feeder 8387

Feeder 8387 supplies approximately 664 customers in the Riva area of Anne Arundel County. During 2010, 64% of the customer interruptions were caused by trees, 28% were caused by weather (wind/rain), 7% were caused by underground equipment failures, and 1% were caused by underground cable failures. Tree trimming on this feeder was most recently completed in December 2009. It has been determined that reliability gains can be achieved by performing enhanced trimming beyond BGE's routine trimming standards; this work will be completed in 2011. BGE identified one cable replacement opportunity that is currently in design and is scheduled for completion by the end of the fourth quarter of 2011. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2011. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected.

Feeder 7111

Feeder 7111 supplies approximately 2,074 customers in the Mt. Washington area on the Baltimore City/County line. During 2010, 21% of the customer interruptions were caused by underground cable failures, 21% were caused by public interference (vehicle-hits), 20% were caused by overhead equipment failures, 16% were caused by weather (lightning), 15% were caused by overhead conductor failures, 5% were caused by trees, 1% were caused by wildlife, and 1% were caused by unknown reasons (consisted mainly of a blown fuse where no system damage was identified). Tree trimming on this feeder was most recently completed in January 2011. In addition, each of the pieces of equipment and conductor inspection and all related deficiencies were corrected in April 2011. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected.

Feeder 7972

Feeder 7972 supplies approximately 81 customers in the White Marsh area of Baltimore County. During 2010, 51% of the customer interruptions were caused by underground cable failures and 49% were caused by underground equipment failures. BGE identified one cable replacement opportunity that was completed in March 2011. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected.

Feeder 8425

Feeder 8425 supplies approximately 928 customers in the Highland Beach area of Anne Arundel County. During 2010, 34% of the customer interruptions were caused by unknown reasons (consisted mainly of a feeder lockout where no system damage was identified), 26% were caused by trees, 23% were caused by weather (ice/snow), 14% were caused by an overhead conductor failure, 2% were caused by overhead equipment failures, and 1% were caused by wildlife. Tree trimming on this feeder was most recently completed in February 2011. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2011. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected.

Feeder 8074

Feeder 8074 supplies approximately 1,178 customers in the Carney area of Baltimore County. During 2010, 69% of the customer interruptions were caused by trees, 17% were caused by weather (14% due to wind/rain and 3% due to lightning), 6% were caused by unknown reasons (consisted mainly of blown fuses where no system damage was identified), 5% were caused by

public interference (vehicle-hit), 2% were caused by overhead conductor failures, and 1% were caused by overhead equipment failures. Tree trimming on this feeder was most recently completed in January 2011. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2011. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected. The design of this feeder has been studied, and Distribution Automation reclosers and additional fusing will be installed, a portion of the feeder will be reconductored, and an overhead portion will be relocated underground in 2011.

Feeder 8121

Feeder 8121 supplies approximately 1,140 customers in the Freeland area of Baltimore County. During 2010, 37% of the customer interruptions were caused by weather (22% due to wind/rain and 15% due to lightning), 32% were caused by trees, 26% were caused by overhead equipment failures, 3% were caused by unknown reasons (consisted mainly of blown fuses where no system damage was identified), 1% were caused by foreign objects blown by wind, and 1% were caused by wildlife. Tree trimming on this feeder was most recently completed in August 2007 and the feeder is due for routine cycle trimming in August 2011. To further improve reliability, enhanced trimming beyond BGE's routine trimming standards will be performed in 2011. BGE identified three cable replacement opportunities based on performance in 2009. One was completed in January 2011. The remaining two are currently in construction and are scheduled for completion by the end of the second quarter of 2011. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2011. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected.

Feeder 8073

Feeder 8073 supplies 2 customers in the Glen Arm area of Baltimore County. During 2010, 60% of the customer interruptions were caused by underground equipment failures and 40% were caused by underground cable failures. Tree trimming on this feeder was most recently completed in January 2011. BGE identified one cable replacement opportunity that is currently in construction and is scheduled for completion by the end of the third quarter of 2011. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2011. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected.

Feeder 7483

Feeder 7483 supplies approximately 1,148 customers in the Cape Saint Claire area of Anne Arundel County. During 2010, 72% of the customer interruptions were caused by trees, 18% were caused by unknown reasons (consisted mainly of blown fuses and a feeder lockout where no system damage was identified), 5% were caused by weather (3% due to ice/snow and 2% due to wind/rain), 3% were caused by overhead conductor failures, 1% were caused by underground cable failures, and 1% were caused by wildlife. Tree trimming on this feeder was most recently completed in January 2011. BGE identified one cable replacement opportunity that is currently in scheduling and is planned for completion by the end of the fourth quarter of 2011. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2011. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected.

Feeder 13991

Feeder 13991 supplies 2 customers in the Middle River area of Baltimore County. During 2010, 40% of the customer interruptions were caused by wildlife in the substation, 40% were caused by unknown reasons (a feeder lockout where no system damage was identified), and 20% were caused by an underground cable failure. Each of the pieces of equipment and the underground cable segment that failed were repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2011. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected.

Feeder 13947

Feeder 13947 supplies 6 customers in the Westport area of Baltimore City. During 2010, 70% of the customer interruptions were caused by equipment failures and 30% were caused by weather (ice/snow). Each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies have been corrected except one correction that will be completed in May 2011. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected. Station relays were reset in March 2011 to coordinate with a commercial customer on the feeder.

Feeder 13330

Feeder 13330 supplies approximately 25 customers in the Highlandtown area of Baltimore City. During 2010, 48% of the customer interruptions were caused by wildlife in a customer substation, 48% were caused by an underground cable failure in duct, and 4% were caused by public interference (vandalism). Each of the pieces of equipment and the underground cable segment that failed were repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2011. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected.

Feeder 4067

Feeder 4067 supplies approximately 743 customers in the Highlandtown area of Baltimore City. During 2010, 88% of the customer interruptions were caused by an underground cable splice failure, 11% were caused by an unknown reason (consisted of a blown fuse where no system damage was identified), and 1% were caused by overhead conductor failures. Tree trimming on this feeder was most recently completed in November 2010. In addition, each splice and each of the pieces of equipment that failed were repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2011. In addition, Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder will be performed in 2011 and any identified deficiencies will be corrected. A project to transfer all customers on feeder 4067 to 13 kV feeders was completed in March 2011. Customers previously supplied by #6 copper 4 kV cable and sections of 4/0 and 350 copper paper-lead 4 kV feeder main cable are now supplied by new sections of overhead or underground 13 kV cable. This project will improve the reliability of the feeder as well as increase the emergency load capacity.

Feeder 4816 supplies approximately 90 customers in the Shipley Hill area of Baltimore City. During 2010, 39% of the customer interruptions were caused by underground equipment failures, 20% were caused by unknown reasons (consisted mainly of a blown fuse where no system damage was identified), 20% were caused by weather (ice/snow), 20% were caused by an underground cable failure, and 1% were caused by overhead conductor failures. Each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2011. Thermovision and visual inspections of all underground oil switches and oil fuse cut-outs on this feeder will be performed in 2011 and any identified deficiencies will be corrected.

Feeder 4262

Feeder 4262 supplies approximately 451 customers in the Station North area of Baltimore City. During 2010, 40% of the customer interruptions were caused by underground equipment failures, 37% were caused by weather (lightning), and 23% were due to unknown causes (consisted mainly of a feeder lockout where no system damage was identified). Tree trimming on this feeder was most recently completed in August 2010. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2011. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. Thermovision and visual inspections of all underground oil switches and oil fuse cut-outs on this feeder were performed in December 2010 and the identified deficiencies are scheduled to be corrected in May 2011.

(b) Each utility shall briefly describe the actions taken or planned to improve reliability. When the utility determines that remedial actions are unwarranted, the utility shall provide justification for this determination.

BGE plans include remedial actions for all feeders identified as worst performers.

(8) Evaluation of Remedial Actions. For the operating district and feeders identified as having the poorest reliability in an annual reliability indices report, the utility shall provide the following information in the next two annual reports.

(a) The annual report for the year following the identification of the operating district and feeders as having the poorest performance shall provide a brief description of the actions taken, if any, to improve reliability and the completion dates of these actions.

BGE reviewed the design for each feeder reported under this section to identify potential improvements. BGE also trimmed the trees on each feeder as needed, conducted a thorough equipment and conductor inspection on each feeder and corrected any deficiencies found during the inspections. Those inspections permitted the identification of potential outage causes and, as a result, reduced the number of customer interruptions due to unknown causes. Where the feeder interruptions were the result of underground conductor failures, the failed sections were isolated during the service restoration process and have since been repaired or replaced. In some cases, underground cable replacement was performed if the underground conductor experienced an excessive number of failures.

Feeder 8783 supplies approximately 1,109 customers in the Woodwardville area of Anne Arundel County. During 2009, 91% of the customer interruptions were caused by trees, 7% were caused by overhead conductor failures, and 2% were caused by weather (wind/rain). Tree trimming on this feeder was most recently completed in July 2009. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010.

Feeder 8734

Feeder 8734 supplies approximately 529 customers in the Ashton area of Montgomery County. During 2009, 93% of the customer interruptions were caused by weather (47% were caused by wind/rain and 46% were caused by ice/snow), 5% were caused by trees, 1% were caused by overhead conductor failures, and 1% were caused by miscellaneous events. Tree trimming on this feeder was most recently completed in July 2009. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. The design of this feeder was studied, and Distribution Automation reclosers were installed on a portion of the feeder in February 2010. Station relays were reset in April 2010 to coordinate with the Distribution Automation reclosers. In addition, a project completed in 2009 created a new feeder that reduced the length and exposure of this feeder.

Feeder 8472

Feeder 8472 supplies approximately 1,183 customers in the Severn Run area of Anne Arundel County. During 2009, 81% of the customer interruptions were caused by trees, 16% were caused by a vehicle-hit, 2% were caused by wildlife, and 1% were caused by weather (lightning). The feeder was trimmed during the routine maintenance schedule in May 2010 and trimming beyond routine trimming standards was performed. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in January 2010. The design of this feeder was studied and Distribution Automation reclosers were installed in April 2010.

Feeder 7903

Feeder 7903 supplies approximately 670 customers in the Dickinson area of Howard County. During 2009, 56% of the customer interruptions were caused by underground cable failures, 20% were caused by underground equipment failures, 20% were caused by trees, and 4% were caused by a dig-in. Tree trimming on this feeder was most recently completed in May 2007. An inspection performed in 2010 determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards. "Hot-spot" trimming on this feeder was completed in 2010 and trimming beyond BGE's routine trimming standards was performed. BGE identified one cable replacement opportunity that was completed in March 2011. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2010. Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder were completed in November 2010 with no reliability deficiencies being found. The design of this feeder was studied and Distribution Automation reclosers were installed in May 2010.

Feeder 7236

Feeder 7236 supplies approximately 1,352 customers in Union Mills in Carroll County. During 2009, 36% of the customer interruptions were caused by trees, 22% were due to unknown causes (consisted mainly of a feeder lockout where no system damage was identified), 21% were caused by weather (wind/rain), 9% were caused by public interference (vehicle-hits), 8% were caused by overhead equipment failures, and 4% were caused by underground cable failures. The feeder was trimmed during the routine maintenance schedule in December 2010 and trimming beyond

routine trimming standards was performed. BGE identified three cable replacement opportunities. One was completed in June 2010, one was completed in October 2010, and the third is currently in construction and is scheduled for completion by the end of the second quarter of 2011. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. Thermovision and visual inspections of all 3phase pad mounted equipment on this feeder were completed in November 2010 with no reliability deficiencies being found. The design of this feeder was studied and Distribution Automation reclosers were installed in May 2010.

Feeder 7351

Feeder 7351 supplies approximately 1,013 customers in Severna Park in Anne Arundel County. During 2009, 42% of the customer interruptions were due to unknown causes (consisted mainly of feeder lockouts where no system damage was identified), 35% were caused by overhead equipment failures, 18% were caused by trees, and 5% were caused by overhead conductor failures. The feeder was trimmed during the routine maintenance schedule in July 2010 and trimming beyond routine trimming standards was performed. BGE identified one cable replacement opportunity that was completed in April 2011. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in November 2009 and January 2010.

Feeder 7696

Feeder 7696 supplies approximately 1,077 customers in the Glenwood area of Howard County. During 2009, 81% of the customer interruptions were caused by trees, 10% were due to unknown causes (consisted mainly of a feeder lockout where no system damage was identified), 7% were caused by public interference (vehicle-hits), 1% were caused by underground cable failures, and 1% were caused by weather (lightning). The feeder was trimmed during the routine maintenance schedule in October 2010 and trimming beyond routine trimming standards was performed. BGE identified one cable replacement opportunity that was completed in December 2010. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in February 2010. Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder were completed in November 2010 with no reliability deficiencies being found.

Feeder 7593

Feeder 7593 supplies approximately 1,921 customers in Fullerton in Baltimore County. During 2009, 37% of the customer interruptions were caused by underground equipment failures, 35% were caused by weather (lightning), 17% were from an unknown cause (a feeder lockout where no system damage was identified), and 11% were caused by underground cable failures. The feeder was trimmed during the routine maintenance schedule in October 2010 and trimming beyond routine trimming standards was performed. BGE identified two cable replacement opportunities. One was completed in April 2010 and the second is currently in construction and is scheduled for completion by the end of the second quarter of 2011. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder were completed in November 2010 with no reliability deficiencies being found.

Feeder 7849

Feeder 7849 supplies approximately 1,231 customers in the Franklin Square area of Baltimore City. During 2009, 52% of the customer interruptions were caused by underground cable

failures, 25% were caused by underground equipment failures, 21% were from an unknown cause (a feeder lockout where no system damage was identified), 1% were caused by trees, and 1% were caused by public interference (foreign objects blown by wind). The feeder was trimmed during the routine maintenance schedule in May 2010 and trimming beyond routine trimming standards was performed. Each failed cable was repaired or replaced during 2009 as part of the service restoration and repair process. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2010. In addition, BGE performed Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder in March 2010 and corrected the deficiencies identified.

Feeder 7446

Feeder 7446 supplies approximately 1,048 customers in the Pointer Ridge area of Prince George's County. During 2009, 28% of the customer interruptions were caused by trees, 21% were due to unknown causes (consisted mainly of a feeder lockout where no system damage was identified), 20% were caused by weather (wind/rain), 20% were caused by overhead conductor failures, 9% were caused by public interference (vehicle-hit), 1% were caused by overhead equipment failures, and 1% were due to other causes. Tree trimming on this feeder was most recently completed in April 2007. An inspection performed in 2010 determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards. "Hot-spot" trimming on this feeder was completed in 2010 and trimming beyond BGE's routine trimming standards was performed. BGE identified one cable replacement opportunity that was completed in October 2010. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2010.

Feeder 7534

Feeder 7534 supplies approximately 473 customers in the Cromwood area of Baltimore County. During 2009, 45% of the customer interruptions were caused by trees, 34% were caused by overhead equipment failures, and 21% were caused by weather (lightning). The feeder was trimmed during the routine maintenance schedule in January 2010 and trimming beyond routine trimming standards was performed. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. The design of this feeder was studied and Distribution Automation reclosers were installed in November 2010.

Feeder 8463

Feeder 8463 supplies approximately 551 customers in Bowie in Prince George's County. During 2009, 42% of the customer interruptions were caused by underground cable failures, 32% were from underground equipment failures, and 26% were caused by weather (wind/rain). An inspection performed in 2010 determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards. "Hot-spot" trimming on this feeder was completed in April 2010 and trimming beyond BGE's routine trimming standards was performed. BGE identified one cable replacement opportunity that was completed in April 2010. This job included the replacement of a switchgear. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. A project to reconfigure the feeder and create additional feeder tie capabilities was completed in March 2010. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2010. Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder were completed in November 2010 with no reliability deficiencies being found.

Feeder 7844 supplies approximately 1,137 customers in the Lexington Terrace area of Baltimore City. During 2009, 80% of the customer interruptions were caused by underground cable failures, 15% were caused by wildlife, 3% were caused by trees, 1% were caused by weather (wind/rain), and 1% were due to other causes. Each failed cable was repaired or replaced during 2009 as part of the service restoration and repair process. The feeder was trimmed during the routine maintenance schedule in June 2010 and trimming beyond routine trimming standards was performed. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2010. In addition, BGE performed Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder in November 2010 and the identified deficiencies are being corrected.

Feeder 7070

Feeder 7070 supplies approximately 1,727 customers in Edgewood in Harford County. During 2009, 55% of the customer interruptions were caused by trees, 31% were caused by unknown events (consisted mainly of feeder lockouts where no system damage was identified), 6% were caused by public interference (vehicle-hit), 5% were caused by underground cable failures, and 3% were caused by weather. Tree trimming on this feeder was most recently completed in December 2007. An inspection performed in 2010 determined that reliability gains could be achieved by performing enhanced trimming beyond BGE's routine trimming standards. "Hotspot" trimming on this feeder was completed in April 2010 and trimming beyond BGE's routine trimming beyond BGE's routine trimming beyond BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. In addition, BGE performed Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder in November 2010 and corrected the deficiencies identified.

Feeder 7555

Feeder 7555 supplies approximately 3,012 customers in Middle River in Baltimore County. During 2009, 28% of the customer interruptions were caused by underground cable failures, 24% were caused by weather (wind/rain), 24% were caused by underground equipment failures, 23% were caused by a vehicle-hit, and 1% were caused by dig-ins. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE identified one cable replacement opportunity that was completed in July 2010. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder were completed in November 2010 with no reliability deficiencies being found. The design of this feeder has been studied, and Distribution Automation reclosers will be installed and overhead reconductoring will be completed by the end of the second quarter of 2011.

Feeder 8521

Feeder 8521 supplies approximately 2,399 customers in Bowleys Quarters in Baltimore County. During 2009, 26% of the customer interruptions were caused by company interference (new pole was undermined and leaned into the feeder), 17% were due to miscellaneous causes (consisted mainly of an outage due to a crossarm fire), 15% were caused by trees, 15% were caused by overhead conductor failures, 13% were caused by public interference (vehicle-hit), 8% were caused by weather (lightning), 4% were caused by overhead equipment failures, and 2% were caused by wildlife. The feeder was trimmed during the routine maintenance schedule in April 2010 and trimming beyond routine trimming standards was performed. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010.

Feeder 7141 supplies approximately 1,056 customers in the Jacksonville area of Baltimore County. During 2009, 68% of the customer interruptions were caused by trees, 15% were caused by overhead equipment failures, 6% were due to unknown causes, 5% were caused by weather (lightning), 3% were caused by overhead conductor failures, 1% were caused by wildlife, 1% were caused by underground cable failures, and 1% were due to other causes. Tree trimming on this feeder was most recently completed in October 2009. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. In addition, BGE performed Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder in November 2010 and corrected the deficiencies identified.

Feeder 8451

Feeder 8451 supplies approximately 1,285 customers in the Severn Run area of Anne Arundel County. During 2009, 71% of the customer interruptions were caused by public interference (vehicle-hit), 22% were caused by trees, 5% were caused by weather (lightning), and 2% were caused by underground cable failures. The feeder was trimmed during the routine maintenance schedule in September 2010 and trimming beyond routine trimming standards was performed. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in March 2010. In addition, BGE performed Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder in November 2010 and corrected the deficiencies identified.

Feeder 7352

Feeder 7352 supplies approximately 803 customers in the Arnold area of Anne Arundel County. During 2009, 68% of the customer interruptions were caused by trees, 22% were caused by a dig-in, 6% were caused by overhead equipment failures, and 4% were caused by overhead conductor failures. The feeder was trimmed during the routine maintenance schedule in March 2010 and trimming beyond routine trimming standards was performed. BGE identified one cable replacement opportunity which was completed in April 2010. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in December 2009 and February 2010. The design of this feeder was studied and Distribution Automation reclosers were installed in June 2010.

Feeder 8799

Feeder 8799 supplies approximately 1,134 customers in Glyndon in Baltimore County. During 2009, 33% of the customer interruptions were due to unknown causes (consisted mainly of a feeder lockout and a recloser lockout where no system damage was identified), 31% were caused by trees, 26% were caused by vehicle-hits, 5% were caused by weather (4% was caused by lightning and 1% were caused by wind/rain), 2% were caused by underground cable failures, 1% were caused by wildlife, 1% were caused by dig-ins, and 1% were due to other causes. The feeder was trimmed during the routine maintenance schedule in May 2010 and trimming beyond routine trimming standards was performed. BGE identified two cable replacement opportunities. One was completed in February 2010. The second was completed in November 2010. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. In addition, BGE performed Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder in November 2010 and corrected the deficiencies identified.

Feeder 7693 supplies approximately 1,163 customers in the Woodbine area on the border between Carroll and Howard Counties. During 2009, 30% of the customer interruptions were caused by trees, 27% were caused by a vehicle-hit, 26% were caused by overhead conductor failure, 8% were caused by dig-ins, 6% were caused by weather (wind/rain), 2% were caused by underground cable failure, and 1% were due to miscellaneous causes. The feeder was trimmed during the routine maintenance schedule in May 2010 and trimming beyond routine trimming standards was performed. BGE identified one cable replacement opportunity that was completed in February 2011. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in June 2010. In addition, BGE performed Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder in November 2010 and corrected the deficiencies identified.

Feeder 13758

Feeder 13758 supplies approximately 21 customers in the Brooklyn area of South Baltimore City. During 2009, 49% of the customer interruptions were caused by overhead cable failures, 43% were caused by wildlife, 7% were caused by weather (6% were caused by lightning, and 1% were caused by wind/rain) and 1% were caused by overhead equipment failures. Poles and equipment were replaced in February 2010 to improve customer reliability. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010.

Feeder 13946

Feeder 13946 supplies approximately 3 customers in the Carroll Park area of Baltimore City. During 2009, 50% of the customer interruptions were caused by overhead conductor failures, 40% were caused by public interference (vehicle-hit), and 10% were due to unknown causes (consisted mainly of a blown fuse where no system damage was identified). Tree trimming on this feeder was most recently completed in July 2009. Failed overhead conductors were repaired or replaced during 2009 as part of the service restoration and repair process. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010.

Feeder 13913

Feeder 13913 supplies approximately 10 customers in Mount Vernon in Baltimore City. During 2009, 100% of the customer interruptions were caused by underground cable failures in duct. Each failed cable was replaced during 2009 as part of the service restoration and repair process.

Feeder 4823

Feeder 4823 supplies approximately 546 customers in Broadway East in Baltimore City. During 2009, 50% of the customer interruptions were caused by unknown events (consisted mainly of feeder lockouts where no system damage was identified), 13% were caused by weather (lightning), 13% were caused by wildlife, 12% were caused by underground cable failures, and 12% were caused by underground equipment failures. Tree trimming on this feeder was most recently completed in July 2009. Each failed cable was replaced during 2009 as part of the service restoration and repair process. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. Thermovision and visual inspections of all underground oil switches and oil fuse cut-outs on this feeder were performed in May 2010 with no reliability deficiencies being found. Thermovision and visual

inspections of all 3-phase pad mounted equipment on this feeder were completed in November 2010 with no reliability deficiencies being found.

Feeder 4416

Feeder 4416 supplies approximately 865 customers in the Druid Heights area of Baltimore City. During 2009, 60% of the customer interruptions were caused by unknown events (consisted mainly of feeder lockouts where no system damage was identified), 24% were caused by underground cable failures, and 16% were caused by overhead equipment failures. The feeder was trimmed during the routine maintenance schedule in December 2010 and trimming beyond routine trimming standards was performed. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and is in the process of correcting the related deficiencies. Thermovision and visual inspections of all underground oil switches and oil fuse cut-outs on this feeder were performed in July 2010 with no reliability deficiencies being found. Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder were completed in November 2010 with no reliability deficiencies being found.

Feeder 4403

Feeder 4403 supplies approximately 672 customers in the Penn North area of Baltimore City. During 2009, 83% of the customer interruptions were caused by unknown events (consisted mainly of feeder lockouts where no system damage was identified), and 17% were caused by underground equipment failures. The feeder was trimmed during the routine maintenance schedule in December 2010 and trimming beyond routine trimming standards was performed. In addition, each of the pieces of equipment that failed was repaired or replaced after failure. BGE also conducted an overhead equipment and conductor inspection and all related deficiencies were corrected in April 2010. Thermovision and visual inspections of all underground oil switches and oil fuse cut-outs on this feeder were performed in September 2010 with no reliability deficiencies being found. Thermovision and visual inspections of all 3-phase pad mounted equipment on this feeder were completed in November 2010 with no reliability deficiencies being found.

(b) The annual report two years after the identification of the operating district or feeders as having the poorest performance shall include the ordinal ranking representing the feeder's reliability during the current reporting period.

BGE's poorest performing 2% of the 13.8 kV distribution feeders (20 out of 993 total 13.8 kV distribution feeders), 2% of the 13000 series 13.8 kV customer feeders (3 out of 126 total 13000 series distribution feeders and 2% of the 4.4 kV distribution feeders (3 out of 124 total 4.4 kV distribution feeders) in 2008 had the following ordinal rankings in 2010. Ordinals for 2010 range from 1 (worst) to 107 (best) for 4.4 kV feeder, from 1 (worst) to 133 (best) for 13000 series feeders and from 1 (worst) to 1048 (best) for 13.8 kV feeders, ranked by Composite Reliability Index. Ranking excludes major event data.

13.8 kV Feeder	Substation	2010 Ordinal Ranking
8102	MOUNT WASHINGTON	151
7633	LONG REACH	126
7348	LIPINS CORNER	299
8420	WAYSONS CORNER	483
7130	HEREFORD	69
7257	FREDERICK ROAD	181
7616	WILDE LAKE	127
7658	COLUMBIA	835
7382	SOUTH BALTIMORE	166
8052	ROCK RIDGE	275
8604	CONCORD STREET	428
8682	TEN OAKS	624
7381	SOUTH BALTIMORE	742
7617	WILDE LAKE	157
8101	MOUNT WASHINGTON	270
7710	MEADOWS	399
8103	MOUNT WASHINGTON	31
8272	HOLLOFIELD	560
8556	WAUGH CHAPEL	68
8141	EAST TOWSON	32

13000 Series Feeder	Substation	2010 Ordinal Ranking
13602	COLDSPRING	68
13302	ERDMAN	57
13936	MONUMENT STREET OUTDOOR	50

4.4 kV Feeder	Substation	2010 Ordinal Ranking
4430	FOREST PARK	25
4812	CALVERTON	27
4828	CLIFTON PARK	56

(9) Momentary Interruptions. A utility shall maintain information which it collects on momentary interruptions for five years.

BGE collects momentary outage information on devices that are monitored by SCADA (e.g., Distribution Automation reclosers, substation breakers, etc.). However, BGE does not routinely collect counter readings from hydraulic reclosers.

BEFORE THE

PUBLIC SERVICE COMMISSION

OF MARYLAND

*

*

REVIEW OF 2013 ANNUAL PERFORMANCE				
REPORTS ON ELECTIC SERVICE				
RELIABILITY FILED PURSUANT TO				
COMAR 20.50.12.11				

CASE NO. 9353

STAFF REVIEW OF ANNUAL

ELECTRIC RELIABILITY REPORTS

RELIABILITY TEAM MEMBERS:

JOHN H. HELM JR., TEAM LEAD

FELICIA SHELTON

DEANDRE WILSON

STAFF OF THE

PUBLIC SERVICE COMMISSION OF MARYLAND

JULY 10, 2014

I.	Exe	ecutive Summary	. 1
II.	Inti	oduction	. 3
	A.	Background	. 3
	B.	Overview	. 4
III.	Ele	ctric Company Service Reliability Standards, Results, and Analysis	. 7
	A.	System-Wide Reliability Standards (20.50.12.02)	. 7
		1. COMAR Reporting Standards	. 7
		2. Three Year Analysis	. 8
		3. Two Year Trend Analysis	. 9
	B.	Poorest Performing Feeder Standards (20.50.12.03)	10
		1. Method to Determine PPF	11
		2. Performance Comparison and Average	12
	C.	Multiple Device Activation Standards (20.50.12.04)	12
	D.	Additional Reliability Indices (20.50.12.05)	13
	E.	Service Interruption Standards (20.50.12.06)	14
	F.	Downed Wire Response Standards (20.50.12.07)	15
	G.	Customer Communication Standards (20.50.12.08)	15
	H.	Vegetation Management Standards (20.50.12.09)	16
	I.	Outage Types & Causes	17
IV.	Exp	penditures	17
V.	Rel	iability Objectives, Planned Actions, Projects and Programs	18
VI.	Ass	sessment of Results and Effectiveness	19
VII.		Staff Comments & Conclusions	22
VIII.		Observations and Recommendations	23
IX.	Glo	ssary of Terms	25
X.	Ap	pendices	26
	A.	Appendix 1: BGE	26
	B.	Appendix 2: Choptank	32
	C.	Appendix 3: Delmarva	39
	D.	Appendix 4: P.E.	49
	E.	Appendix 5: Pepco	59
	F.	Appendix 6: SMECO	69
	G.	Appendix 7: Delmarva 2013 Corrective Action Plan Review	78

Table of Contents

List of Figures

Figure 1: SAIFI 2-Year Average Forecast	
Figure 2: SAIDI 2-Year Average Forecast	
Figure 3: 2013 Overall Utility Performance Chart	6
Figure 4: 2013 System-Wide Reliability Standards	7
Figure 5: 3-Year Average SAIFI Performance (2011-2013)	
Figure 6: 3-Year Average SAIDI Performance (2011-2013)	
Figure 7: 3-Year Average CAIDI Performance (2011-2013)	9
Figure 8: 2-Year Trend on Average System-Wide Performance (2010-2013)	9
Figure 9: 2-Year SAIFI Trend	10
Figure 10: 2-Year SAIDI Trend	
Figure 11: 2013 Poorest Performing Feeders (PPF)	
Figure 12: Multiple Device Activations (October 1, 2012 - September 30, 2013)	
Figure 13: 2012-2013 CEMI Performance Data	
Figure 14: 2012-2013 Service Interruption Standards	
Figure 15: 2013 Downed Wire Response Standards	15
Figure 16: 2012-2013 Customer Communication Standards	
Figure 17: 2012-2013 Vegetation Management Activities	
Figure 18: Non-Planned Outage Causes	
Figure 19: Capital and Operation and Maintenance (O&M) Expenditures	

I. Executive Summary

The 2013 reporting year is the first full year under the COMAR 20.50.12 standards. The reporting requirements were standardized to allow for each utility company to report information in the same format and in a manner that could be analyzed by the Commission Staff. All annual reports were received on or prior to the required filing date, and all subsequent data request to the utility companies submitted by Commission Staff were answered in a timely manner.

Five of the six utility company met all COMAR standards for 2013, with only Delmarva falling short of the system average interruption frequency index (SAIFI) and system average interruption duration index (SAIDI) requirements. Delmarva filed a corrective action plan (CAP) as required by COMAR and is already taking action to improve overall system reliability immediately. The corrective actions being taken by Delmarva Power and Light Company (Delmarva) are identified in Appendix 7.

Looking at a trend emerging from two consecutive years, all utility companies are showing improvement. This is reflective of the utility companies beginning the implementation of the new COMAR standards during the 2011 calendar year. The current trend should continue with improvements in reliability for all utility companies.

The poorest performing feeder (PPF) program is in its first full year under the new COMAR, and second year overall. There were only three feeders from the previous year that would have been considered repeat feeders if there was no 12-month remediation period. Next year will be the first year to assess the PPF program and identify if there are any repeat feeders for all utility companies.

All six utility companies met the COMAR standards for multiple device activations, downed wire response, and communication response times. Baltimore Gas and Electric Company (BGE) and Potomac Edison Company (P.E.) improved their communication performance standard after missing one or two of the requirements from 2012. P.E. also improved the downed wire response time to meet the COMAR standard.

All utility companies are ahead of the required COMAR vegetation management trim cycle. All companies implemented the COMAR vegetation management standards during the 2012 calendar year and had at least 44% of their systems trimmed by the end of 2013. Southern Maryland Electric Cooperative (SMECO) is well ahead of the COMAR standard with 78% of the overhead vegetation trimmed. The aggressive approach from all utility companies is critical to overall reliability as vegetation is the leading cause of outages by all companies.

The leading causes of outages for all utility companies were vegetation and animals. The aggressive vegetation management programs and animal guards on the overhead and underground equipment will reduce the overall system outages. Automated reclosers will also have an impact on system reliability by resetting the faults caused by an animal in most cases, without having to send out a technician to reset the failed device.

The top two programs identified by the utility companies to improve overall reliability are vegetation management and distribution automation. Vegetation management has been addressed by COMAR and embraced by all six utility companies. All companies are also installing distribution automation devices and upgrading systems to allow for remote monitoring and activation of reclosers and other system devices. This improves response time to outages, isolates outages and reduces the amount of customers without power, and allows for quicker restoration of outages, many times restoring power directly from the control center.

All six Maryland utility companies showed improvements in system reliability, implemented reliability plans that will allow the utility to continue to improve the overall system, or filed a CAP to address shortfalls and increase the ability of the company to meet COMAR standards and improve reliability.

II. Introduction

A. Background

The Maryland's General Assembly enacted the Maryland Electricity Service Quality and Reliability Act requiring the Commission to adopt regulations by July 1, 2012 establishing service quality and reliability standards for the delivery of electricity to retail customers by electric companies. Codified at Pub. Utils. §7-213, the Act established the goal that "each electric company provides its customers with high levels of service quality and reliability in a cost-effective manner, as measured by objective and verifiable standards…"¹

In 2012, the Commission established specific standards for reliability for each electric company in COMAR 20.50.12.02D(1). Each electric company serving a total number of 40,000 or more customers in Maryland must file an annual performance report pursuant to COMAR 20.50.12.11. The report is to include:²

• The reliability indices as defined COMAR 20.50.12, which includes, at a minimum, the reliability index information and results from the previous year, the actual values of the reliability indices for each of the preceding 3 calendar years.

• A table showing the annual year end and three year average performance results.³

• The time periods during which major outage event (MOE) interruption data and the outage data resulting from an outage event occurring on another utility's electric system (cooperatively owned utility) was excluded from the SAIFI, SAIDI, and customer average interruption duration index (CAIDI) indices and a brief description of each interruption cause.

• A description of the utility's reliability objectives, planned action and projects, and programs for providing reliable service.

• An assessment of the utility's reliability objectives, planned action and projects, and programs for achieving an acceptable reliability level, to include SAIFI, SAIDI, and CAIDI indices, other reliability index considered, and the method for estimating or determining any impact on any reliability index.⁴

• Current year expenditures, an estimate or budget amount for the following two calendar years, current year labor resource hours (if available), and progress measures for each capital and maintenance program designed to support the maintenance of reliable electric service.⁵

• The number of outages by outage type including planned outages, non-planned outages minus MOEs, and MOEs.⁶

• The number of outages by outage cause including, but not limited to, animals, overhead (OH) equipment failure, and underground (UG) equipment failure.⁷

• The total number of customers that experienced an outage.⁸

¹ Public Utilities Article, §7-213(b), Annotated Code of Maryland

² COMAR 20.50.12.11A

³ Public Utilities Article, §7-213(g)(2)(i) and (ii), Annotated Code of Maryland

⁴ Public Utilities Article, §7-213(g)(2)(iii), Annotated Code of Maryland

⁵ Public Utilities Article, §7-213(g)(2)(iv)(1), Annotated Code of Maryland

⁶ Public Utilities Article, §7-213(g)(2)(iv)(2), Annotated Code of Maryland

⁷ Public Utilities Article, §7-213(g)(2)(iv)(3), Annotated Code of Maryland

⁸ Public Utilities Article, §7-213(g)(2)(iv)(4), Annotated Code of Maryland

The total number of customer minutes of outage time.⁹ ٠

A breakdown of the number of customers that experienced an outage by the number of • days each customer was without electric service (to the maximum extent practicable).¹⁰

- PPF information and results.
- Multiple device activation information and results.

Each utility is also required to file a supplemental annual performance report which shall include, at a minimum:¹¹

The actual operation and maintenance and capital expenditures for the past three calendar years for each of the utility's reliability programs, including, but not limited to UG and OH distribution plant inspection, maintenance, and replacement programs, vegetation management, sub-transmission maintenance programs, and distribution substation plant inspection and maintenance programs.

- Service restoration requirement information and results.
- Downed wire response performance information and results. •
- Vegetation management information. •
- Periodic equipment inspection information and results. •
- For the preceding calendar year under normal operating conditions only:
 - The number of downed electric utility wires to which the utility responded in:
 - Four hours or less
 - More than four hours but less than eight hours
 - Eight hours or more
 - The total number of downed electric utility wires reported to the utility.
- Any CAP required.¹²

B. Overview

The review of the utility company annual reports for 2012 covered the period from July 1, 2012 – December 31, 2012 where the COMAR 20.50.12 standards were required, as well as the period from January 1, 2012 – June 30, 2012, where reporting was required but no specific standards to meet. This, 2013, was the first full year of the utility companies operating under the COMAR 20.50.12 standards. The results for 2013 were compared to the COMAR standard as well as the results from 2012, to analyze company trends associated with operating under the new standards. The data and results were analyzed to determine if each utility company was on track to meet the COMAR standards set for 2014 and 2015. As seen by Figures 1 and 2, if the utility companies continue to improve reliability at the same rate that has occurred over the past four years, all utility companies are projected to reduce their SAIFI and SAIDI index to meet COMAR 2014 and 2015 standards. One company, Delmarva, was on track to miss both SAIFI and SAIDI for 2014 and 2015, but with the implementation of the CAP, is now on track to meet the COMAR standards.

 ⁹ Public Utilities Article, §7-213(g)(2)(iv)(5), Annotated Code of Maryland
 ¹⁰ Public Utilities Article, §7-213(g)(2)(iv)(6), Annotated Code of Maryland

¹¹ COMAR 20.50.12.11.B

¹² Public Utilities Article, §7-213(e)(1)(iii), Annotated Code of Maryland

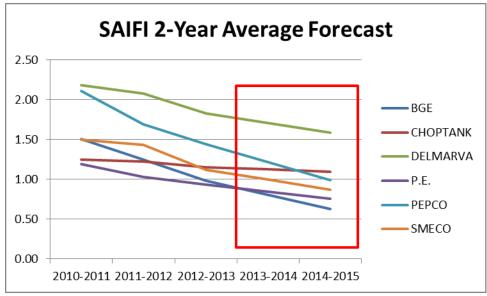
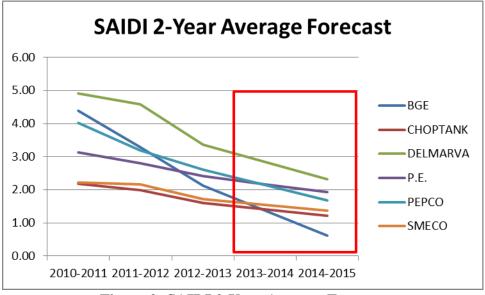
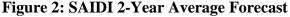




Figure 1: SAIFI 2-Year Average Forecast

For 2013, the only utility that failed to meet the COMAR SAIFI and SAIDI standards was Delmarva. Delmarva filed the required CAP which is addressed under the CAP analysis in Appendix 7. Potomac Edison failed to meet four COMAR standards from 2012 regarding response time to outages and customer call response. The company did meet the standards for 2013. BGE failed to meet the abandoned call standard for 2012, but met the standard in 2013.

						Ut	ility					
	В	GE	Choptank		Delmarva		Potoma	c Edison	Pe	pco	SM	ECO
COMAR Standard	2012	2013	2012	2013	2012	2013	2012	2013	2012	2013	2012	2013
SAIFI*												
SAIDI*												
Interruption restored												
within 8 hours												
MOE resotred within		NT/A		NT/A		NT/A		NT/A		NT/A		NT/A
50 hours**		N/A		N/A		N/A		N/A		N/A		N/A
Downed Wire												
Response												
% Calls answered												
within 30 sec												
% Annual Abandoned												
Calls												
% Vegetation												
Management												
Performed												
*1017 Dro rotad from July 1 1	Dag 21	**N. MOD	0012				Matchast				Difference	41
*2012 Pro-rated from July 1 - I	Dec 31	**No MOE f	or 2013		11 7 7		Met the stan				Dia not meet	the standard

Detailed analysis of utility performance in meeting each required standard in COMAR 20.50.12 are provided in the analysis section of the report.

Figure 3: 2013 Overall Utility Performance Chart

III. Electric Company Service Reliability Standards, Results, and Analysis

A. System-Wide Reliability Standards (20.50.12.02)

COMAR 20.50.12.02D(1) outlines the minimum SAIFI and SAIDI standards that each utility is required to meet for each of the calendar years 2012-2015. The SAIFI represents the number of service outages experienced by the "average" customer of a group, or system, of customers over a period of time. SAIFI can also be calculated for a subset of customers, such as all the customers served by a particular distribution feeder. The SAIDI represents the total service outage time experienced by the "average" customer of a system of customers within an overall time period. As with the SAIFI, the SAIDI is typically calculated using the system of all Maryland customers served by the utility, but can also be calculated for a subset of customers such as those served by a particular feeder. CAIDI is a measure of duration that provides the average amount of time a customer is without power per interruption.

This was a unique year in that there were no MOEs. The analysis focuses on how the utility companies performed under normal operating conditions, and how the performance from 2013 compares to the COMAR standards, other Maryland utility companies, and past performance of the utility.

1. COMAR Reporting Standards

Five of the six reporting utilities, BGE, P.E., Potomac Electric Power Company (Pepco), Choptank Electric Cooperative (Choptank) and SMECO met the system-wide utility-specific reliability standards (SAIDI and SAIFI)¹³ for 2013 while Delmarva fell short of the SAIDI and SAIFI for the standards. Delmarva filed a CAP as required by COMAR 20.50.12.2E. The analysis of Delmarva's CAP is in Appendix 7.

T Itility	SAIFI (Inte	erruptions)	SAIDI	(Hours)	CAIDI (Hours)
Utility	COMAR	Reported	COMAR	Reported	Reported
BGE	1.47	0.93	3.96	1.67	1.79
CHOPTANK	1.49	1.33	2.92	1.58	1.18
DELMARVA	1.65	1.95	2.99	3.54	1.82
P.E.	1.10	1.01	3.05	2.38	2.36
PEPCO	1.81	1.49	2.82	2.46	1.65
SMECO	1.38	0.93	2.35	1.36	1.46

Figure 4: 2013 System-Wide Reliability Standards

A three year average for SAIFI, SAIDI, and CAIDI for each utility is required for overall reliability and reliability minus MOEs and interruptions caused by other utility companies. The results of Figures 5 through 7 show the performance of each utility over the past three years under normal operating conditions. The three year average is used to determine how each utility

¹³ The indices of SAIFI and SAIDI in COMAR are calculated using all interruption data excluding major outage event data and interruptions caused by other utility companies, which means these indices measure the system reliability under normal conditions.

performed this year compared to the average and what level of improvement was made or is needed to meet the future COMAR standards.

2. Three Year Analysis

The SAIFI performance chart shows that five of the six utility companies performed better than their three year average. Choptank performed 6% below the three year average due to a low SAIFI performance value for 2012, where the company had an exceptional performance. Two of the utilities, BGE and SMECO, showed an improvement in SAIFI over all three years.

Utility	SAI	FI (All Interrupti	ons: Minus MOI	E)
Othicy	2011	2012	2013	3-Year Ave
BGE	1.46	1.03	0.93	1.14
CHOPTANK	1.46	0.98	1.33	1.26
DELMARVA	2.45	1.70	1.95	2.03
P.E.	1.21	0.85	1.01	1.02
PEPCO	2.00	1.39	1.49	1.63
SMECO	1.55	1.31	0.93	1.26

Figure 5: 3-Year Average SAIFI Performance (2011-2013)

The SAIFI performance chart shows that all six utility companies performed better than their three year average. Five of the six utility companies showed improvements over the entire three year period. One company, Delmarva, showed an increase for 2013, but did not exceed the three year average.

I Itility	SAIDI (Hours: Minus MOE)								
Utility	2011	2012	2013	3-Year Ave					
BGE	3.98	2.58	1.67	2.74					
CHOPTANK	2.35	1.64	1.58	1.86					
DELMARVA	5.98	3.18	3.54	4.23					
P.E.	3.19	2.43	2.38	2.67					
PEPCO	3.60	2.77	2.46	2.94					
SMECO	2.28	2.06	1.36	1.90					

Figure 6: 3-Year Average SAIDI Performance (2011-2013)

The CAIDI performance chart shows that all six utility companies performed better than their three year average. Two of the utility companies, BGE and Delmarva, showed improvement over all three years.

I Itility		CAIDI (Hours:	Minus MOE)	
Utility	2011	2012	2013	3-Year Ave
BGE	2.73	2.52	1.79	2.35
CHOPTANK	1.50	1.67	1.18	1.45
DELMARVA	2.45	1.87	1.82	2.05
P.E.	2.64	2.85	2.36	2.62
PEPCO	1.80	2.00	1.65	1.82
SMECO	1.47	1.57	1.46	1.50

Figure 7: 3-Year Average CAIDI Performance (2011-2013)

The trend for all utility companies over the past three years has been a steady improvement in SAIFI, SAIDI, and CAIDI performance, with the lone exception being Choptank which exceeded the three year SAIFI average by 6% in 2013. Staff determined that the overall trend for Maryland utilities is an improvement in reliability during normal operating conditions.

The full chart and analysis showing each utility's three year performance data which includes overall SAIFI, SAIDI, and CAIDI performance, performance minus MOEs, performance minus MOEs and outage data caused by other utilities (if cooperatively owned), and performance minus IEEE MOE data¹⁴, 0are included in the individual company reports in Appendices 1-6. The charts include all data listed for both planned and unplanned outages.

3. Two Year Trend Analysis

Two-year trends are used to show the utility company average performance over the first two years of the new COMAR standards, and how the COMAR standards had an impact on reliability starting in 2010. The improvements in both SAIFI and SAIDI can be seen in the 2011-2012 two year period. Staff assessed that this is due to the utility company's preparing for the implementation of the new COMAR standard prior to 2012. Utility companies were working towards the new standards which are reflected in the performance trends for both SAIFI and SAIDI. Two consecutive years were analyzed and the data shown in Figure 6.

Utility	SAIFI (Int	terruptions: Minu	IS MOE)	SAIDI (Hours: Minus MOE)				
Othicy	2010-2011	2011-2012	2012-2013	2010-2011	2011-2012	2012-2013		
BGE	1.51	1.25	0.98	4.40	3.28	2.13		
CHOPTANK	1.25	1.22	1.16	2.19	2.00	1.61		
DELMARVA	2.19	2.08	1.83	4.92	4.58	3.36		
P.E.	1.19	1.03	0.93	3.13	2.81	2.41		
PEPCO	2.11	1.70	1.44	4.02	3.19	2.62		
SMECO	1.50	1.43	1.12	2.22	2.17	1.71		

Figure 8: 2-Year Trend on Average System-Wide Performance (2010-2013)

¹⁴ IEEE Standard 1366TM – 2012.

The two year trend shows that all companies are improving reliability with SAIFI and SAIDI The two year analysis supports the three year trend that all utility companies are reducing the number outages and the duration of outages.

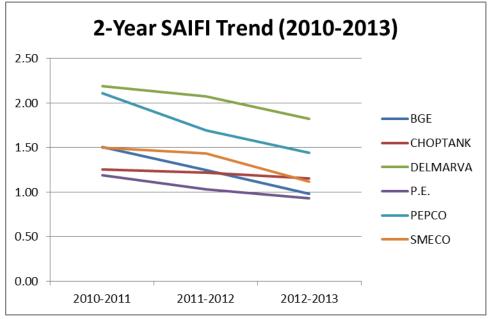


Figure 9: 2-Year SAIFI Trend

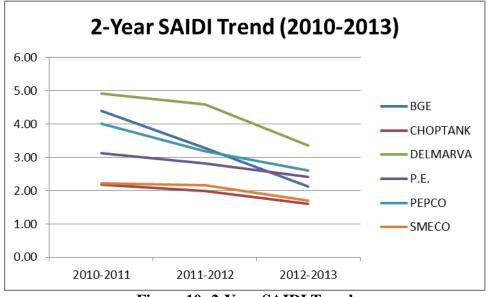


Figure 10: 2-Year SAIDI Trend

B. Poorest Performing Feeder Standards (20.50.12.03)

COMAR 20.50.12.03 outlines the PPF standard for feeders assigned to Maryland. Under this requirement, each electric company is required to report annual SAIDI, SAIFI and CAIDI indices for the 3% of feeders assigned to Maryland that have been identified by the Electric

Companies as having the poorest reliability. In calculating these indices, the "system" is limited to the group of customers served by the feeder circuits. Two sets of each index are reported for each least reliable feeder: 1) All Interruption Data; and 2) All Interruption Data (Minus MOEs). These two sets of data are used to give an overall evaluation of an electric company's system reliability during both normal and catastrophic events. The information used to determine the PPF list for each year is all interruption data minus MOEs. Prior to COMAR 20.50.12, electric cooperatives did not report these two sets of the SAIDI and the SAIFI for least reliable feeder circuits, but instead provided the two sets of indices for each operating district. In calculating these indices, the "system" is the group of customers served within each operating district.

1. Method to Determine PPF

Each utility company determines the method for identifying their PPFs based on their data collection methods and recommendations from the Commissioners from the 2012 Annual Report Review. To allow for year-to-year comparisons, COMAR 20.50.12.03A(4) does not allow a utility to change the method used to determine its PPF without Commission approval. The formula that each utility company uses is:

• BGE determines the bottom 3% of all feeders by first identifying the bottom 4% using individual feeder SAIFI performance values (minus MOEs). BGE selects the bottom 75% of the feeders based on the individual feeder SAIDI performance values (minus MOEs). This gives BGE the 3% PPFs for the year.¹⁵

• Choptank ranks all feeders by SAIFI and SAIDI separately. The company assigns a rank to each feeder, with #1 being the worst performance for each category. The rank of each feeder for SAIFI and SAIDI is added together to determine the PPF list.¹⁶

• Delmarva uses a feeder composite index, which is 75% of the feeder contribution to SAIFI plus 25% of feeder contribution to SAIDI to determine the PPF list.¹⁷

• P.E. takes the worst 20% of the feeders based on SAIFI (minus MOEs). The worst 15% of these feeders are selected based on SAIDI (minus MOEs) to get the 3% PPFs.¹⁸

• Pepco uses a feeder composite index, which is 75% of the feeder contribution to SAIFI plus 25% of feeder contribution to SAIDI to determine the PPF list.¹⁹

• SMECO determines the PPFs using a feeder index value which is equal to 50% of the SAIFI index for each feeder plus 50% of the SAIDI index for each feeder.²⁰

This is the second year of the COMAR standards requiring the utility companies to report the 3% of their PPFs. COMAR states that:²¹

"No feeder ranked in the poorest performing 3 percent of feeders shall perform in the poorest performing 3 percent of feeders during either of the two subsequent 12-month reporting periods,

¹⁵ BGE Annual Performance Report, pg. 18, Mail Log No: 153730

¹⁶ Choptank Annual Performance Report, pg. 8, Mail Log No: 153648

¹⁷ Delmarva Annual Performance Report, pg. 11, Mail Log No: 153728

¹⁸ P.E. Annual Performance Report, pg. 12, Mail Log No: 153593

¹⁹ Pepco Annual Performance Report, pg. 13, Mail Log No: 153734

²⁰ SMECO Annual Performance Report, pg. 6, Mail Log No: 153738

²¹ COMAR 20.50.12.03A(5)

after allowing one 12-month reporting period for the utility to implement remediation measures, unless the utility has undertaken reasonable remediation measures to improve the performance of the feeder."

Currently three companies, BGE, Pepco, and Delmarva, have feeders that are in remediation and would have qualified for the PPF list this year. The corrective action plans for these feeders are identified in the individual company report Appendices. Next year will be the third year of the new COMAR PPF standard, meaning that there will be a basis to identify repeat PPFs.

2. Performance Comparison and Average

Figure 12 shows the 2013 performance for each utility company and the average performance for all. The overall SAIFI average for the Maryland utilities is high due to the extremely poor performance of two of Pepco's feeders. The complete list of each company PPFs is in the individual company Appendix.

		Total # of	Average # of Customers per PPF	2013 Inte	rruption Data (Mi	nus MOE)	% Above	% Above
Utility	# of PPF	Feeders in Maryland		Average SAIFI	Average SAIDI (Hours)	Average CAIDI	System Average	System Average
		iviai ykiiki	111	(Interruptions)	(110013)	(Hours)	SAIFI	SAIDI
BGE	39	1,265	918	3.02	6.48	2.13	240%	314%
CHOPTANK	4	112	453	3.01	4.68	1.62	240%	227%
DELMARVA	10	184	2937	2.56	3.98	1.50	204%	193%
P.E.	10	344	1152	2.67	9.26	3.65	213%	449%
PEPCO	21	697	1380	51.81	7.07	1.46	4123%	343%
SMECO	7	237	641	4.31	5.67	1.44	343%	275%
Summary	91	2839	1247	11.23	6.19	1.96	894%	300%

Figure 11: 2013 Poorest Performing Feeders (PPF)

Overall 91 feeders were chosen out of the 2,839 Maryland feeders as PPFs (3.2%). The average PPF SAIFI was 8.9 times higher than the overall average for all utility companies in Maryland. The average PPF SAIDI was 3 times higher than the overall average for all utility companies in Maryland. The average PPF CAIDI was 1.2 times higher than the overall average for all utility companies in Maryland. Staff noticed that the extreme difference in SAIFI was due to the few Pepco PPFs that raised the overall PPF SAIFI average.

C. Multiple Device Activation Standards (20.50.12.04)

COMAR 20.50.12.04 states that each utility shall report the number of protective devices that activated five or more times during the prior 12-month reporting period causing sustained interruptions in electric service to more than ten Maryland customers. The six utilities reported a total of 91 devices that were activated for five or more times during the prior 12-month time period. Utilities are required to implement remediation measures on all multiple activation devices reported in 2013. The information is provided in the individual company analysis in the Appendices.

Utility	Sum of Device (activated 5	Protective Device Type								
	or more times)	Line or Tap Fuse	Recloser	Circuit Breaker	Transformer	Substation				
BGE	34	25	6	3	0	0				
Choptank	3	1	0	0	0	2				
DPL	7	4	1	2	0	0				
PE	21	16	3	0	2	0				
Pepco	26	14	0	11	1	0				
SMECO	0	0	0	0	0	0				
Total	91	60	10	16	3	2				

Figure 12: Multiple Device Activations (October 1, 2012 - September 30, 2013)

The type of devices that has the highest number of multiple activations are line or tap fuses. There were multiple causes for the activations such as vegetation, circuit overloads, overhead and underground conductors, animals, and weather. Compared to 2012, there were 72 fewer multiple device activations in 2013, for a 44% improvement. The comparison shows that the remediation conducted by the utility companies for 2012 has made a positive impact and, along with the fact there were no MOEs for 2012, produced a reduction in multiple device activations for 2013.

D. Additional Reliability Indices (20.50.12.05)

COMAR 20.50.12.05 states that in addition to providing SAIFI, SAIDI, and CAIDI system-wide index averages for their entire system throughout Maryland from the previous calendar year (2012) and from the 3 previous calendar years, utilities are also required to calculate and report Customers Experiencing Multiple Interruptions ("CEMI_n") and Momentary Average Interruption Frequency Index ("MAIFI_E") information which also give a measure of electric service reliability from the customer's perspective, unless it does not have the means to make the calculations, in which case the utility must provide an explanation of the reason why it cannot, and an estimate of the cost to provide this information in the future. Three of the six utility companies did not file MAIFI_E reports for 2013, therefore a comparative analysis was not used in the review. The individual utility company MAIFI_E analysis or reason for not filing is included in the individual utility Appendices.

 $CEMI_n$ is the ratio of the total number of customers experiencing sustained interruptions equal to or greater than "n", where **n** is equal to the number of interruptions, divided by the total number of customers served:

$CEMI_n = \frac{\# of \ customers \ experiencing \ sustained \ interruptions > "n"}{Total \ \# \ of \ customers \ served \ on \ system}$

The overall trend for 2013 was an improvement with fewer multiple electric outages that customers experienced in Maryland. Four of the six utility companies, BGE, Choptank, Pepco,

and SMECO, showed improvement from 2012 in almost every category. Delmarva and P.E. showed an increase in multiple customer interruptions, which correlates with the higher SAIFI numbers reported for 2013. The radial nature of both Delmarva and P.E. reduce the ability to provide redundancy in their systems, causing customers on isolated feeders to experience a higher number of repeat outages. Upgrading feeders and installing automated devices such as automated circuit reclosers will reduce the number of multiple outages.

I Teller		2012: All Int	erruptions		2013 All In	terruptions	2013 All Interruptions		
Utility	CEMI ₂	CEMI ₄	CEMI ₆	CEMI ₈	CEMI ₂	CEMI ₄	CEMI ₄	CEMI ₆	CEMI ₈
BGE	25.50%	7.10%	1.80%	0.50%	8.31%	1.30%	1.30%	23.00%	5.00%
CHOPTANK	9.07%	1.72%	0.35%	0.20%	6.77%	2.80%	2.80%	0.18%	0.00%
DELMARVA	38.90%	14.40%	5.46%	1.29%	47.30%	16.50%	16.50%	7.10%	2.50%
P.E.	7.02%	1.31%	0.12%	0.03%	12.25%	1.87%	1.87%	0.29%	0.03%
PEPCO	53.80%	22.80%	7.38%	2.52%	38.70%	10.10%	10.10%	2.20%	1.00%
SMECO	35.70%	10.70%	2.11%	0.51%	10.67%	1.75%	1.75%	0.38%	0.03%

Figure 13: 2012-2013 CEMI Performance Data

E. Service Interruption Standards (20.50.12.06)

COMAR 20.50.12.06 states that "an Electric Company shall restore service within 8 hours, measured from when the utility knew or should have known of the outage, to at least 92 percent of its customers experiencing sustained interruptions during normal conditions; within 50 hours to at least 95 percent of its customers experiencing sustained interruptions is less than or equal to 400,000 or 40 percent of the utility's total number of customers, and as quickly and safely as permitted to its customers experiencing sustained interruptions during event in which the total number of sustained interruptions during each major outage event in which the total number of sustained interruptions is greater than 400,000 or 40 percent of the Electric Companies' total number of customers, whichever is less."

	2012 Normal	Conditions	2013 Normal	l Conditions	
	% of		% of		
Utility	Interruptions	> 92%	Interruptions	> 92%	
	Restored within 8	COMAR	Restored	COMAR	
	Hours	Standard	within 8 Hours	Standard	
BGE	95.50%	Y	97.00%	Y	
CHOPTANK	98.00%	Y	99.70%	Y	
DELMARVA	99.28%	Y	98.92%	Y	
P.E.	95.00%	Y	96.80%	Y	
PEPCO	98.21%	Y	98.36%	Y	
SMECO	99.31%	Y	99.71%	Y	

Figure 14: 2012-2013 Service Interruption Standards

All utility companies met the COMAR standard for service interruption restoration under normal operating conditions for the second consecutive year. There were no MOEs reported for 2013, therefore no report on service restoration for MOEs.

F. Downed Wire Response Standards (20.50.12.07)

COMAR 20.50.12.07 states that each Electric Company shall respond to a government emergency responder guarded downed electric utility wire within 4 hours after notification by a fire department, police department, or 911 emergency dispatcher at least 90 percent of the time.

All utility companies are required to report on the total number of downed electric wires that are report by any source to the company. The utility is required to respond to all reported downed wires, although many of the reported wires are not electric. For Pepco only 34% of the wires reported belong to the utility, for Delmarva 49%, and BGE 80%.

Utility	Total Reported Downed Wires	Total Utility Responsible Wires	% of Reported Wires Belonging to the Utility	4 Hours or Less	More than 4 Hours but Less than 8 Hours	8 Hours or More	2013 % Responded to in 4 Hours or Less	Met COMAR Standard Guarded Wires 90%
BGE	8355	6677	80%	6020	519	138	90.16%	99.00%
CHOPTANK	3	3	100%	3	0	0	100.00%	100.00%
DELMARVA	809	393	49%	358	29	6	91.09%	100.00%
P.E.	240	240	100%	239	1	0	99.58%	99.58%
PEPCO	3401	1168	34%	801	215	152	68.58%	97.00%
SMECO	300	300	100%	247	39	14	82.33%	99.71%

Figure 15: 2013 Downed Wire Response Standards

All six utility companies were well above the COMAR standard of 90%, with the lowest performance being Pepco at 97%. Staff noted that there is a large difference in the response for guarded downed wires and downed wires reported from all sources for four of the six utility companies. The largest difference is Pepco, which responded to all downed wires in four hours or less 68.58% of the time, but to guarded downed wires 97% of the time. Two-thirds of the Pepco extended response times for downed wires occurred during low level storms: a small tornado that touched down in Rockville on June 13, 2013 and ice storm that occurred in December. SMECO responded to all downed wires in four hours or less 82.33% of the time, but to guarded downed wires in four hours or less 82.33% of the time, but to guarded downed wires in four hours or less 0.71% of the time. Staff noted that it was reasonable for the delay in response to the downed wires due to the severity of the storms that Pepco experienced during 2013.

G. Customer Communication Standards (20.50.12.08)

COMAR 20.50.12.08 states that each Electric Company shall answer a customer outage call within 30 seconds, on an annual basis, at least 75 percent of all calls offered to the utility for customer service or outage reporting purposes. It also states that each Electric Company shall achieve an annual average abandoned call percentage rate of 5 percent or less. Electric Companies are also required to provide:

- The percentage of calls that are answered within 30 seconds;
- The abandoned call percentage rate; and
- The average speed of answer.

In 2013, all utility companies met the COMAR standards for answering calls within 30 seconds and annual abandoned calls. For the percent of calls answered within 30 seconds, three

companies, Choptank, P.E., and SMECO showed improvement from 2012. BGE showed a small decline of 1.4% from 2012. Delmarva and Pepco had the biggest decline in performance, with Delmarva dropping from 90.8% to 83.1% (7.7% decrease) and Pepco a drop from 89.7% to 78.6% (11.1% decrease). At the current rate of decline, if Pepco does not improve performance for 2014, they may not meet the COMAR standards. Delmarva is currently projected to just meet the COMAR standard for 2014. For the percent of abandoned calls, Pepco was close to the COMAR standard, dropping 4.3% of the calls (standard is >5%).

Utility	% of Calls Answ seconds (COM 759	IAR Standard	Met COMAR or Gr		% Annual Ab	andoned Calls			% of Calls Answered Within 30 Seconds by a	% of Abandoned Calls Received by a Representative	Call
	2012	2013	2012	2013	2012	2013	2012	2013	Representative	Representative	(seconds)
BGE	89	87.6			6.8	2.11			76.1	3.46	25
CHOPTANK	91.2	95.9			1.4	0.79			94.3	1.1	11
DELMARVA	90.79	83.1			0.26	0.4			70.4	0.71	26
P.E.	70.87	80.34			6.93	3.19			61.18	6.3	45.5
PEPCO	89.66	78.55			1.93	4.31			57.96	8.44	74
SMECO	80.52	88.98			2.36	1.07			86.83	1.4	12
			Met the COMA	AR Standard		Did not Meet C Did not Meet the COMAR Standa			d		

Figure 16: 2012-2013 Customer Communication Standards

H. Vegetation Management Standards (20.50.12.09)

Vegetation Management was the leading cause for system outages and system disruptions in 2013. All electric companies were scheduled to begin the vegetation management cycle in 2013. All companies took a proactive approach and began implementing their vegetation management programs in 2012. As seen in Figure 18, all companies exceeded the vegetation management requirement for 2013.

SMECO took the most proactive approach, trimming 37% of the overhead circuit vegetation for 2013 (12% required), for a total of 78% of the system trimmed over the past two years. The least amount of vegetation trimmed was P.E., with 22% for 2013 (15% required), and 46% over the past two years. P.E. is still way ahead of the required vegetation management trim cycle requirements. Vegetation management should result in significantly less outages occurring, though it is not expected to completely eliminate these likely occurrences.

Cost for vegetation management varies from \$4,091 to \$16,608 per mile. Compared to 2012, there was a slight increase in cost per mile for five of the six companies. The vast difference in cost is due to many factors such as the density of the vegetation, the type of vegetation, the amount of voltage for the power line, if the vegetation is located on a rural road or in a densely populated community within the city, and if the vegetation is located on a right of way for the utility or privately owned land. Each of these factors can have a significant impact on the personnel required, equipment required, and time required to properly trim the vegetation to meet the COMAR standard.

Utility	Overhead C	fircuit Miles	# of Miles of Management	U	% of Total System Trimmed to Standard	% of Total System Trimmed to Standard	Trim Cycle and Current Year (X of Y Years)	COMAR Minimum Required Trimming (%)	Vegetation Management Expenditures		Vegetation Management Cost Per Mile		ent Cost
	2012	2013	2012	2013	2012	2013	2013	2013	2012	2013	2012	20	013
BGE	9,404	9,404	2,863	2,338	30%	25%	1 of 4	15%	\$28,605,626	\$21,509,600	\$ 9,991	\$	9,200
CHOPTANK	2,063	2,046	445	489	22%	24%	1 of 5	12%	\$ 2,622,089	\$ 3,291,292	\$ 5,892	\$	6,731
DELMARVA	3,493	3,493	847	906	24%	26%	1 of 4	15%	\$ 5,161,269	\$ 7,077,726	\$ 6,094	\$	7,812
P.E.	6,059	6,059	1,431	1,311	24%	22%	1 of 4	15%	\$ 8,511,360	\$10,318,072	\$ 5,948	\$	7,870
PEPCO	3,990	3,966	1,550	1,011	39%	25%	1 of 4	15%	\$24,642,714	\$16,790,465	\$ 15,899	\$	16,608
SMECO	3,576	3,576	1,451	1,310	41%	37%	1 of 5	12%	\$ 5,686,399	\$ 5,359,013	\$ 3,919	\$	4,091

Figure 17: 2012-2013 Vegetation Management Activities

I. Outage Types & Causes

In order to improve overall system reliability for the utility systems, the causes of the outages needs to be determined. The greatest cause of non-planned outages for Maryland utility companies is vegetation. Animals are the second greatest cause on average for outages. For the companies that broke down the weather factors into lightning and non-lightning events, lightning strikes were a major cause of the outages. There was a significant drop in the amount of outages that Choptank reported caused by vegetation for 2013 from 2012 (down to 10.8% from 22%). This is a sign that the vegetation management plan Choptank is currently executing is having a positive effect on reliability.

Utility		OH Equipment	UG Equipment	Weather (not						
	Vegetation	Failure	Failure	lightning)	Lightning Strike	Equipment Hit	Animals	Overload	Other*	Unknown
BGE	18.8%	5.5%	3.2%	4.9%	**	**	16.3%	**	3.6%	3.3%
CHOPTANK	10.8%	4.1%	17.7%	1.8%	8.2%	7.1%	14.7%	2.1%	21.7%	11.9%
DELMARVA	17.3%	16.5%	13.8%	11.7%	**	4.5%	12.4%	3.3%	7.1%	13.4%
P.E.	19.0%	10.0%	2.0%	**	**	3.0%	17.0%	**	1.0%	14.0%
PEPCO	18.1%	16.8%	28.6%	1.6%	3.4%	5.3%	13.2%	1.5%	5.9%	5.6%
SMECO	22.3%	13.4%	18.1%	0.8%	4.3%	2.5%	21.4%	**	0.1%	3.4%

* Includes employees, fire, source lost, loadshed, vandalism, other utility ** The information was requested but not provided by the utility

Figure 18: Non-Planned Outage Causes

IV. Expenditures

COMAR 20.50.12.11.A.(6) requires each of the electric companies to report current year expenditures and estimate or projected expenditures for the following two calendar years, current year labor hours if available, and progress measures for each capital and maintenance program. COMAR 20.50.12.11.B.(1) requires each of the utilities to report reliability program operation and maintenance and capital expenditures for the current year and the 2 previous years.

Individual company analyses for expenditures are listed in the company Appendices. A trend noted for all utility companies is the increase in capital expenditures to improve system reliability and a reduction in operation and maintenance cost to maintain and operate the systems. The only company that did not follow the same spending trend is Choptank, which decreased capital expenditure and increased operation and maintenance spending.

Utility	Capital Expenditures (designed to Support Maintenance of Reliable Electric Service)		Operating and Maintenance Expenditures (designed to Support Maintenance of Reliable Electric Service)		Projected Capit	al Expenditures	Projected Operation and Maintenance Expenditures		
	2012	2013	2012	2013	2014	2015	2014	2015	
BGE	\$138,996,410	\$150,819,591	\$141,661,372	\$102,279,836	\$122,283,325	\$125,100,280	\$109,931,404	\$116,022,079	
CHOPTANK	\$6,048,731	\$5,107,372	\$3,037,066	\$3,537,440	\$5,415,000	N/A	\$3,765,000	\$3,765,000	
DELMARVA	\$27,153,576	\$46,644,711	\$49,630,296	\$31,312,652	\$48,080,829	\$36,350,274	\$33,060,567	N/A	
P.E.	\$6,877,294	\$21,794,451	\$18,841,781	\$10,389,798	\$27,770,507	\$29,399,667	\$8,514,905	\$7,795,707	
PEPCO	\$125,598,029	\$142,327,396	\$119,797,033	\$76,139,008	\$131,160,520	\$113,822,013	\$74,797,240	N/A	
SMECO	\$38,058,996	\$45,410,353	\$28,555,168	\$29,135,277	\$82,776,108	\$61,140,280	\$9,434,409	N/A	

Figure 19: Capital and Operation and Maintenance (O&M) Expenditures

V. Reliability Objectives, Planned Actions, Projects and Programs

COMAR 20.50.12.11(A)(4) states that each Electric Company is required to provide in its annual report a description of the reliability objectives, planned actions and projects, and programs which are designed to improve its electric service and system.

Individual company reports are located in the Appendices. Each company was asked by the Commission Staff to identify the three biggest programs that will have the greatest impact on long-term reliability. The purpose was to detect common trends for all utility companies. The common program for all six utility companies is vegetation management. The answers each utility company provided:

• BGE – Replace aging equipment, satisfy the regulatory requirements, maintain operating conditions, and minimize customer outages and durations. The critical programs for long-term reliability are vegetation management and cable replacement programs. BGE cannot rank the effectiveness of each program because each program compliments or supplement another.²²

• Choptank – Choptank states the three programs that will have the greatest long-term reliability impact are selective undergrounding, vegetation management, and regular pole inspections. The company states that vegetation management will have a large impact on system reliability, but will take two to four year to accurately assess the vegetation management impacts on SAIFI and SAIDI.²³

• Delmarva – The top three programs for Delmarva are vegetation management, feeder improvements, and distribution automation. The greatest impact projected on SAIFI and SAIDI is vegetation management. Feeder improvements are projected to eliminate faults and reinforce infrastructure with newer materials and standards. Distribution automation is designed to mitigate fault impact to decrease customers affected and durations of outages.²⁴

• Pepco – The top three programs for Pepco are vegetation management, feeder improvements, and distributions automation. Feeder improvements are projected to eliminate faults and reinforce infrastructure with newer materials and standards. Distribution automation is designed to mitigate fault impact to decrease customers affected and durations of outages.²⁵

²² Case No. 9353 – Staff Data Request No. 1, BGE

²³ Case No. 9353 – Staff Data Request No. 1, Choptank

²⁴ Case No. 9353 – Staff Data Request No. 1, Delmarva

²⁵ Case No. 9353 – Staff Data Request No. 1, Pepco

• P.E. – P.E. states the top three programs impacting SAIFI and SAIDI are vegetation management, underground cable replacement, and overhead circuit inspections. Vegetation management will have the largest impact on overall system reliability. Underground cable replacement will provide long-term reliability replacing current cables that have reached the projected end of their service reliability. Overhead circuit inspections will identify deteriorating materials and components and enable these items to be repaired or replaced prior to causing outages.²⁶

• SMECO – SMECO has three main components in the company interrelated system reliability programs: re-conductoring, vegetation management, and sectionalization. The re-conductoring program involves installing greater capacity wire, new stronger pole-line structures, fortification of circuit mechanical systems, and circuit right-of-way widening and clearing. The sectionalization program will reduce the number of customer affected by each outage. The program involves installing coordinated line protective devices to break up the long overhead circuit miles into smaller sections with fewer customers. The vegetation management program ties into all other programs and is designed to improve reliability throughout the service territory.²⁷

VI. Assessment of Results and Effectiveness

Pursuant to COMAR 20.50.12.11A(5), each Electric Company must provide an assessment of the results and effectiveness of the programs, projects, or planned actions and their impact on the reliability indices, including CAIDI, SAIDI, and SAIFI and any other reliability indices. The assessments provided by each of the utilities in their respective annual reliability performance reports.

All utilities, with the exception of Delmarva, met all of the COMAR requirements for 2013. From a pure regulatory standpoint, the programs, projects, and planned actions of five of the six utility companies were effective for 2013. Delmarva did not meet the required COMAR SAIFI and SAIDI targets for 2013, but met all other annual requirements.

Each of the six utility companies stated the biggest challenges for reliability listed below:

• BGE – The frequency of the unpredictable nature of the weather has presented numerous challenges for BGE. The intensity of these storms has exposed the electric system to conditions that exceed the design limits. An example would be a tropical storm or a Derecho with high winds. Even though BGE trims vegetation to COMAR standards, under these weather conditions, tree limbs and branches that are normally situated outside the normal clearance zones could interfere with power lines. The erratic nature of these storms makes it extremely challenging to predict where and when a particular part of the electric system will be impacted, making it difficult to determine which portions of the system to harden.²⁸

• Choptank – The challenges for overall system reliability for Choptank are power supply reliability, vegetation, and lightning. Choptank assesses that 17% of all vegetation management issues are required to be trimmed above and beyond the COMAR regulations, and continues to

²⁶ Case No. 9353 – Staff Data Request No. 1, P.E.

²⁷ Case No. 9353 – Staff Data Request No. 1, SMECO

²⁸ Case No. 9353 – Staff Data Request No. 1, BGE

address vegetation management by exceeding the required standards. Choptank is spending \$1.0 million per year on selective undergrounding to improve reliability in high vegetation areas. Sectional ground rods and additional lightning arrestors are being installed as well as distribution automation equipment to reduce the number of outages and improve response time to outages.²⁹

• Delmarva – The top three challenges for reliability are aging infrastructure, the lack of ties between feeders, and vegetation management. The company has addressed these issues in the CAP as well as in other reliability enhancement programs (Salisbury Plan, North East Plan) as well as economic alternatives in design such as under grounding strategies (extending the life of current underground cables by injecting silicon into the cables), advanced technologies (automated circuit reclosers (ACRs), and sturdier materials (fiberglass cross arms).³⁰

• Pepco – The top three challenges for reliability are vegetation management, aging infrastructure, and the design and operational challenges of serving a high density urban/suburban environment. These issues are currently being addressed by Pepco in the Reliability Enhancement Plan (REP). The company routinely evaluates and employs economic alternatives in design such as under grounding strategies (extending the life of current underground cables by injecting silicon into the cables), advanced technologies (automated circuit reclosers (ACRs), and sturdier materials (fiberglass cross arms).³¹

• P.E. – The challenges for P.E. are the mountainous and rural nature of the service territory, the radial nature of the system, and high failures in underground cables. The company plans to use helicopters during major outage events to assist in patrolling rural feeders and determining outage points. P.E. is building circuit ties and a more robust system to allow for switching to alternate feeds during outages at peak loads. The company underground cable replacement program is addressing the aging and failing cables. Staff feels that under severe weather conditions, such as high winds and low visibility, helicopters will not be able to assess the outage points. The installation of distribution automation, if reasonably achievable, will allow for P.E. to identify and isolate outages in a timely manner.³²

• SMECO – Unpredictable weather, long radial transmission and distribution circuits, and the nature of the rural electric system constructed in close proximity to properties with abundant trees (vegetation management).³³

The utility companies identified the areas that need improvement in order to improve system reliability. The answer for each company:

• BGE – BGE states that all current programs are required in order to continue to improve in three critical areas: safety, reliability, and cost efficiency.³⁴

• Choptank – The ability to accelerate selective undergrounding is limited by environmental permits and funding. Choptank is installing a fiber optic communication backbone for the company distribution automation system, but is limited by current staffing, contractors, and funds. The lack of an AMI system has slowed down response time to outages. The

²⁹ Case No. 9353 – Staff Data Request No. 1, Choptank

³⁰ Case No. 9353 – Staff Data Request No. 1, Delmarva

³¹ Case No. 9353 – Staff Data Request No. 1, Pepco

³² Case No. 9353 – Staff Data Request No. 1, P.E.

³³ Case No. 9353 – Staff Data Request No. 1, SMECO

³⁴ Case No. 9353 – Staff Data Request No. 1, BGE

installation of the AMI system late 2014 to early 2016 will help Choptank identify trouble areas and help prevent equipment failure and tree contacts.³⁵

• Delmarva – Delmarva states that improvements in storm response and overall system reliability are the two areas to show improvement. Process changes in the area of storm response have improved customer communications, and system upgrades have reduced the number and duration of outages. The Delmarva webpage now keeps customers informed of outages and projected restoration times. Technicians and first responders are doing a better job of identifying the causes of the outages and reducing the amount of "unknown causes".³⁶

• Pepco – Pepco states that improvements in storm response and overall system reliability are the two areas to show improvement. Process changes in the area of storm response have improved customer communications, and system upgrades have reduced the number and duration of outages. The Pepco webpage now keeps customers informed of outages and projected restoration times. Technicians and first responders are doing a better job of identifying the causes of the outages and reducing the amount of "unknown causes".³⁷

• P.E. – P.E. has not identified any specific area that needs improving. P.E. states that addressing the mountainous and rural nature of the service territory, the radial nature of the system, and high failures in underground cables, the company will improve overall system reliability.³⁸

• SMECO – The greatest need for improvement is providing redundant distribution circuits to the electric system. The service territory is peninsula shaped and creates a radial based electric distribution network. Improving response time to system outages and trouble issues is an aspect of SMECO that is being addressed. An AMI metering project will enable SMECO to get real-time feedback on system outages and improve response time to outages.³⁹

Each company has a set of best business practices that enables the company to meet strategic and regulatory objectives. The best practices, as identified be each utility company, are:

• BGE – BGE has a wide variety of best practices in areas such as safety, reliability, environmental responsibility, energy conservation, cost efficiency, and community outreach. BGE does not rank their programs and the contribution to the industry.⁴⁰

• Choptank – The best business practices for Choptank are selective undergrounding (proactive approach), enhanced vegetation management (going beyond the COMAR standard), and restoration speed by locating service personnel close to the area of the outage.⁴¹

• Delmarva – The top three best business practices for Delmarva are vegetation management, an automated provision of the estimated time of restoration to customers during outages, and a comprehensive safety program.⁴²

³⁵ Case No. 9353 – Staff Data Request No. 1, Choptank

³⁶ Case No. 9353 – Staff Data Request No. 1, Delmarva

³⁷ Case No. 9353 – Staff Data Request No. 1, Pepco

³⁸ Case No. 9353 – Staff Data Request No. 1, P.E.

³⁹ Case No. 9353 – Staff Data Request No. 1, SMECO

⁴⁰ Case No. 9353 – Staff Data Request No. 1, BGE

⁴¹ Case No. 9353 – Staff Data Request No. 1, Choptank

⁴² Case No. 9353 – Staff Data Request No. 1, Delmarva

• Pepco - The top three best business practices for Delmarva are vegetation management, an automated provision of the estimated time of restoration to customers during outages, and a comprehensive safety program.⁴³

• P.E. – Customer communication, storm handling process, and the customer contact center are the three best practices for P.E. P.E. has a 24/7 system for reporting system outages. Customers can also subscribe to receive alert notification when outage events occur. Customers can use text messages to report outages. In-house meteorologists, a new outage management system, and lessons learned reviews after each storm, allows P.E. to identify what worked and where to improve. Customer service representatives now have real-time information to share with customers during outage events to keep all in the service area informed.⁴⁴

• SMECO – SMECO has a well-established electric system maintenance practices which greatly contribute to overall safety and reliability. Many of the inspection intervals established in COMAR 20.50.12.10.H are based on SMECO pre-existing maintenance practices. SMECO has a methodical systematic planning approach to developing capital improvement projects in tandem with on-going perpetual system review and configuration changes as necessary to best ensure the electric system can meet demanding normal and contingency situations. SMECO uses a four year vegetation management cycle as well as ground inspections of the transmission system by a contract Forester to identify vegetation issues before they arise.⁴⁵

VII. Staff Comments & Conclusions

Since there were no MOEs for 2013, the reliability under major storms could not be assessed for 2013 and the performance could not be compared to 2012. There were several storms such as microburst thunderstorms, storms with large amount of lightning strikes, and high wind storms that occurred in various Maryland service territories, but were not large enough to cause enough outages to be considered MOEs. These storms had an impact on several of the Maryland utilities, with four of the six having a higher amount of outages than the year before. One of the utility companies, Delmarva, did not meet the COMAR standards for SAIFI and SAIDI, and filed a CAP as required. Staff concludes that the overall reliability of Maryland utilities is susceptible to significant storms that do not meet the COMAR standard for a MOE, but are large enough to cause sustained outages that directly impacts utility SAIFI and SAIDI indices. Staff notes that vegetation management, selective undergrounding, distribution automation, and upgrading aging feeders will enable Maryland utility companies to improve performance during such events.

All utility companies met the downed wire response standards. There was a large difference in the response time for two utility companies when the wires were reported and guarded by police, fire personnel, or reported by 911, and downed wires reported by all sources. Staff notes that there should not have been a large discrepancy in response time for guarded and non-guarded electric downed wires.

The vegetation management programs for all six utility companies are aggressive and ahead of the required vegetation management timeline as required by COMAR. All utility

⁴³ Case No. 9353 – Staff Data Request No. 1, Pepco

⁴⁴ Case No. 9353 – Staff Data Request No. 1, P.E.

⁴⁵ Case No. 9353 – Staff Data Request No. 1, SMECO

companies began the vegetation management program in 2012, trimming vegetation according to the COMAR standard. The accelerated vegetation management has all utilities at 44% or above for current overhead vegetation trimming, well ahead of the 15% (4-year trim cycle) or 15% (5-year trim cycle) required by COMAR. Staff concludes that the accelerated vegetation management from all six utility companies should show a reduction in outages caused by vegetation and an improvement in system reliability.

The main causes of outages for all Maryland utility companies are vegetation and animals. Lightning was the major cause of weather outages, ahead of wind and other storm related causes. Staff notes that vegetation management, animal guards on overhead and underground equipment, and lightning arresters are all reliability improvements that may have a substantial impact on overall system reliability.

Programs that all six utility companies focus on for improving reliability are vegetation management and distribution automation. Vegetation management is the program that has been identified by all six utilities as the best way to improve system reliability. Distribution automation will have an impact on outages and the duration of outages. This program will allow for outages to be identified quickly, isolated, and power restored to customers faster. Staff notes that both the vegetation management program and distribution automation should have a positive impact on system wide reliability.

Several utility companies identify the radial nature of their service territory as a weakness in their systems. The utility companies are working on programs to tie current feeder into other existing feeders to improve reliability and provide redundancy in the system, allowing for outages or system overloads to be supported by other feeders while the outage is being addressed. Staff notes that the radial nature of three of the six Maryland utility systems (Delmarva, P.E., and SMECO) is a valid concern and a controlling factor in improving overall system reliability.

VIII. Observations and Recommendations

Based on the review of the six Electric Companies' 2013 performance reports, Staff renders the following observations and recommendations:

• Utilities made a commendable effort to structure a common reporting template that facilitates Staff evaluations and comparison of the annual report data. Staff will continue to work with the utilities to refine the template to include the data requests made to support the 2013 review. Staff will also work with the utilities to ensure there is a software format identified and process to submit data that the Staff needs to complete the analysis of the annual reports.

• Overall all six Maryland utility companies improved system reliability and implemented reliability plans that will allow the utility to continue to improve the overall system. The one utility, Delmarva, that did not meet the COMAR standards, has submitted a corrective action plan and is already taking steps to improve their system, and meet the COMAR standards in the future.

• Staff recommends that the Commission note the CAP filing and direct Delmarva to file mid-September, after the summer storm season, an assessment of the Delmarva's CAP including 2014 year to date SAIFI and SAIDI and updated 2014 SAIFI and SAIDI projections.

IX. **Glossary of Terms**

Term	Definition ⁴⁶
CAIDI – Customer Average	A reliability indicator, usually measured in minutes or hours, used by electric
Interruption Duration Index	companies to represent the average outage duration that any given customer would experience in a given year.
CEMI – Customers Experiencing	A reliability indicator used by electric companies which represents the
Multiple Interruptions	number of interruptions that a customer would experience in a given year.
CAP – Corrective Action Plan	A plan required by COMAR when a utility fails to meet one or more of the required standards, to remediate the system or systems that did not meet the standard or were a direct cause for the shortfall.
Cross Arm	A horizontal member attached to a pole, post, tower or other structure and equipped with means for supporting the conductors.
Cutout	An electric device used manually tor automatically to interrupt the flow of current though any particular apparatus or instrument.
Fuse	An overcurrent protective device with a circuit-opening fusible part that is heated and severed by the passage of overcurrent through it.
Lightning Arrestor ⁴⁷	A device for protecting an electrical apparatus from damage from lightning.
MAIFI – Momentary Average Interruption Frequency Index	A reliability indicator, measured in units of interruptions or events per customer, used by electric companies to represent the average number of momentary interruptions that a customer would experience during a given year.
MEO – Major Outage Event ⁴⁸	An event, defined by COMAR as Both: More than 10 percent or 100,000, whichever is less, of the electric utility's Maryland customers experience a sustained interruption of electric service; and restoration of electric service to any of these customers takes more than 24 hours; or the federal, State, or local government declares an official state of emergency in the utility's service territory and the emergency involves interruption of electric service.
PPF – Poorest Performing Feeder	An electric plant that emanates from a substation, serves customers, and is normally electrically isolated at all endpoints, that is performing in the bottom 3% for the utility.
Recloser (Reclosing Device)	A control device which initiates the reclosing of a circuit after it has been opened by a protective relay.
SAIDI – System Average Interruption Duration Index	A reliability indicator, usually measured in minutes or hours, used by electric companies to represent how much total time a customer may not have service in a given year.
SAIFI – System Average Interruption Frequency Index	A reliability indicator, usually measured in interruptions or events per customer, used by electric companies to represent how often a customer may experience an interruption in a given year.
Switch (or Switchgear)	A general term covering switching and interrupting devices and their combination with associated control, instrumentation, metering, protective and regulating devices.
Тар	An available connection that permits changing the active portion of the device in the circuit (i.e. voltage, current, ratio).
Tie (or Tie Feeder)	A feeder that connects together two or more independent sources of power and has no tapped load between the terminals.

 ⁴⁶ Frank, Jay; *IEEE Standard Dictionary of Electrical and Electronics Terms, Second Edition;* The Institute of Electrical and Electronics Engineers, Inc., Dec. 1, 1977. Print
 ⁴⁷ http://www.merriam-webster.com/dictionary/lightning%20arrester
 ⁴⁸ COMAR 20.50.01.03

X. Appendices

A. Appendix 1: BGE

Pursuant to COMAR 20.50.12.11, on or before April 1st of each year, BGE is required to file with the Commission their annual reliability performance report which reflects the company's reliability performance. This report marks the second annual report since the adoption of RM43.

BGE has met the system-wide reliability standards (SAIDI and SAIFI) in both 2012 and 2013. In comparison to 2012, BGE experienced improvements in their SAIFI, SAIDI, and CAIDI indexes for all interruption data minus major outage event data. BGE has implemented several distribution circuit reliability improvements that have resulted in a system wide decrease over the last three years in the SAIFI index for all interruption data.

1. 20.50.12.02 System-Wide Reliability Standards

COMAR 20.50.12.02 requires that each electric company shall collect and maintain reliability data and use system-wide indices SAIDI and SAIFI as performance measurements of system reliability. The SAIDI and SAIFI reliability standards set forth for BGE for the 2013 calendar year is 3.96 for SAIDI and 1.47 for SAIFI. BGE's annual SAIDI and SAIFI results are required to be equal to or less than these established numbers, and the indices are measured on all interruption data minus major outage event interruption data and minus outage data resulting from an outage event occurring on another utility's electric system.

BGE's system-wide SAIFI, SAIDI, and CAIDI indices for all interruption data minus major outage events, all showed a downward trend over the last three years. Since 2011, the SAIFI index has decreased by 0.53, the SAIDI index has decreased by 2.31, and the CAIDI index has decreased by 0.94. When looking at the SAIDI and CAIDI indices that include major outage event interruption data, BGE experienced a spike in these indices in 2012 due to the severity of the major events during that time period. Both BGE's SAIDI and SAIFI index met the system-wide reliability standards set forth in COMAR 20.50.12.02D(1)(a) and no corrective action plans were required.

Figure 1 outlines the reliability index results for SAIDI, SAIFI, and CAIDI for BGE.

2013 COMAR Reliability 3 Year Standard^{4,5} Index 2011 2012 2013 Average 2.26 1.92 0.93 N/A 1.70 SAIFI¹ (Events) Including Planned Outages All Interruption Data SAIDI² (Hours) 28.41 30.40 1.67 20.14 N/A 12.59 15.84 1.79 N/A 11.83 CAIDI³ (Hours) SAIFI (Events) 1.46 1.03 0.93 1.47 1.14 All Interruption Data Minus Major Outage Event SAIDI (Hours) 3.98 2.58 1.67 2.74 3.96 Interruption Data 2.52 2.41 CAIDI (Hours) 2.73 1.79 N/A SAIFI (Events) 1.04 N/A 1.09 1.29 0.93 All Interruption Data Minus IEEE Major Event Day 2.41 SAIDI (Hours) 3.07 2.48 1.67 N/A Interruption Data CAIDI (Hours) 2.38 2.40 1.79 2.22 N/A **Exduding Planned Outages** SAIFI (Events) 2.20 1.86 0.87 N/A 1.64 All Interruption Data SAIDI (Hours) 28.23 30.05 19.85 1.39 N/A CAIDI (Hours) 12.82 16.18 1.60 12.10 N/A 1.40 SAIFI (Events) 0.96 0.87 N/A 1.08 All Interruption Data Minus Major Outage Event 2.23 SAIDI (Hours) 3.75 1.39 2.45 N/A Interruption Data CAIDI (Hours) 2.68 2.31 2.28 1.60 N/A SAIFI (Events) 1.23 0.97 0.87 N/A 1.02 All Interruption Data Minus IEEE Major Event Day

Case No. 9353: Staff Review of Annual Electric Reliability Reports

Figure 1: Reliability Index Information

SAIDI (Hours)

CAIDI (Hours)

2.83

2.32

2.22

2.27

1.39

1.60

N/A

N/A

2.15

2.10

2. 20.50.12.03 Poorest Performing Feeder Standard

Interruption Data

COMAR 20.50.12.03 requires that electric companies report SAIDI, SAIFI, and CAIDI indices for the 3% of feeders identified as having the poorest reliability. BGE identified a total of 39 feeders as having the poorest reliability. BGE identified its poorest performing feeders by the following method:

- First, feeders were ranked by SAIFI, using all interruption data excluding major outage event interruption data, planned outage data, and substation event data for the twelve month period ending September 30, 2013.
- Next, the poorest performing 4% of feeders based on the SAIFI rankings, would then be ranked by SAIDI.
- Finally, the top 3% of the final rankings were selected as the poorest performing feeders, warranting remediation efforts.

BGE has completed, and in some cases scheduled, reasonable remediation efforts for the poorest performing feeders. BGE's remediation efforts include replacement or repair of conductor segments, vegetation trimming, installation of distribution automation reclosers, installation of sectionalizing switches, cable replacement, and undergrounding overhead circuitry.

COMAR 20.50.12.03A(5) states that no feeder identified as a poorest performing 3 percent of feeders shall perform in the poorest performing 3 percent of feeders during either or the two subsequent 12 month reporting periods unless reasonable remediation measures were taken to improve the performance of the feeder. This regulation also states that the electric company is allowed one 12-month reporting period to implement remediation measures. There were a few feeders that continued to rank low, however, BGE is still in the process of

remediation efforts within the allowed 12-month period and therefore those feeders are not considered repeat feeders in the worst performing feeders category, and they were not included on the current list for worst performing feeders.

3. 20.50.12.04 Multiple Device Activation Standard

COMAR 20.50.12.04 requires that each electric company report all protective devices that activated five or more times causing sustained interruptions to at least ten customers during the reporting period. BGE had a total of thirty-four protective devices that were activated five or more times during the prior 12-month reporting period. Twenty-five of the protective devices were line or tap fuses, ranging from five to ten outage events each. Also, there were 6 reclosers that experienced five to six outage events each and three circuit breakers that experienced five to six outage events each. Approximately 50% of the remedial actions were completed in 2013. Remediation efforts includes, but is not limited to, the replacement or repair of conductor segments, vegetation trimming, installation of distribution automation reclosers, installation of sectionalizing switches, cable replacement, and undergrounding overhead circuitry. The remaining remedial actions are scheduled for completion in 2014 except for two feeders that will be converted to 13kV to increase system capacity, scheduled for completion in 2015 for one and 2016 for the other.

4. 20.50.12.05 Additional Reliability Indices Reporting Standard

COMAR 20.20.12.05 requires that each electric company use additional indices for reliability in its annual performance report for its Maryland service territory, in addition to providing SAIFI, SAIDI, and CAIDI system-wide index averages. Each electric company is also required to calculate and report Customers Experiencing Multiple Interruptions ("CEMIn") and Momentary Average Interruption Frequency Index ("MAIFIE") information which also give a measure of electric service reliability from the customer's perspective. If the electric company does not have the means to make the required calculations, then the utility must provide an explanation as to why it cannot supply this information, and an estimate of the cost to provide this information in the future.

BGE calculated that 8.31% of their customers experienced three or more sustained interruptions during the reporting period. This number has decreased from 25.5% reported for 2012. Consequently, they calculated 1.3% of their customers experienced five or more sustained interruptions, and 0.23% of their customers experienced seven or more sustained interruptions. Again, these numbers have also decreased from 2012. The number of customers that experienced five or more sustained interruptions last year was 7.1% and the number of customers that experienced seven or more sustained interruptions in 2012 was 1.8%. Finally, BGE calculated 0.05% of their customers experienced nine or more sustained interruptions during the reporting period, which decreased from 0.5% in 2012 for all interruption data.

BGE also calculated an annual MAIFIE index for its Maryland service territory of 4.13 for the reporting period. This index had a downward trend from 2012 where BGE calculated this index at 8.57 for all interruption data and 5.29 for all interruption data excluding major outage event interruption data.

5. 20.50.12.06 Service Interruption Standard

COMAR 20.50.12.06 states that an electric company shall restore service within 8 hours to at least 92 percent of its customers experiencing sustained interruptions during normal conditions and within 50 hours to at least 95 percent of its customers experiencing sustained interruptions during major outage events (where the total number of sustained interruptions is less than or equal to 400,000 or 40 percent of the utility's total number of customers). The required time duration for restoration is measured from when the utility knew or should have known of an outage. This standard also requires that service is restored quickly and safely as permitted to its customers experiencing sustained interruptions during each major outage event in which the total number of sustained interruptions is greater than 400,000 or 40 percent of the electric company's total number of customers, whichever is less.

BGE met this standard and restored service to 97% of their customers experiencing sustained interruptions during normal conditions within 8 hours. They did not experience any major outage events during the reporting period.

6. 20.50.12.07 Downed Wire Response Standard

COMAR 20.50.12.07 states that each electric company shall respond to a government emergency responder guarded downed electric utility wire within 4 hours after notification by a fire department, police department, or 911 emergency dispatcher at least 90 percent of the time.

BGE met the requirements of this standard and reported a 99% response rate within the required 4 hour time frame after notification of a guarded downed wire from a government emergency responder. There were a total of 8,355 downed wires reported to BGE during the reporting period, of which 6,677 belonged to the utility. BGE responded to 90% of these downed wires within 4 hours, 8% within 4 to 8 hours, and the remaining 2% had a greater than 8 hour response time.

7. 20.50.12.08 Customer Communications Standard

COMAR 20.50.12.08 states that each electric company shall answer within 30 seconds, on an annual basis, at least 75 percent of all calls offered to the utility for customer service or outage reporting purposes. It also states that each electric company shall achieve an annual average abandoned call percentage rate of 5 percent or less. For calls offered to the utility for customer service or outage reporting purposes, BGE met this requirement by answering 87.6% of the calls within 30 seconds with a 2.11% abandoned call rate. For calls solely offered to its customer service representatives, BGE met the requirement by answering 76.1% of calls within 30 seconds with a 3.46% abandoned call rate and an average answer speed of 25 seconds. This is a dramatic improvement from 2012, where BGE failed to meet the requirement by answering 58.5% of calls solely offered to its customer service representatives within 30 seconds with a 14.9% abandoned call rate and an average answer speed of 64 seconds.

8. 20.50.12.09 Vegetation Management Requirements

COMAR 20.50.12.09 outlines the scope, technical standards, record keeping, and reporting requirements for vegetation management. BGE has 9,404 miles of overhead distribution circuit lines for their system. This standard requires that within 12 months of the effective date of this regulation, an electric company on a 4 year trim cycle is required to perform vegetation management on at least 15% of its total distribution miles. BGE trimmed 2,338 miles of their distribution lines in 2013 and 2,353.02 miles in 2012 for a total of 4,691.02 distribution miles trimmed, which is more than the required 15% (see Figure 2).

BGE		Distribution	Distribution	Total	% of	
Distribution		Miles	Miles	Distribution	System	
OH Circuit	Trim	Trimmed	Trimmed	Miles	Trimmed	COMAR
Miles	Cycle	2012	2013	Trimmed	To Date	Standard
9404	4-year	2,353.02	2338	4,691.02	49.9%	15%

Figure 2: Vegetation Management Requirements

BGE spent \$32,767,011 in 2013 performing vegetation management duties resulting in an approximate cost per circuit mile trimmed of \$9,200. BGE has projected a budget of \$36,778,288 in 2014 for vegetation management.

9. Outage Types & Causes

During the reporting period, BGE experienced 18,572 outages, with 2,394 planned outages, 16,178 non-planned outages, and no major outage events. These outages affected 1,161,856 customers with 124,572,498 customer outage minutes. Vegetation accounted for approximately 18% of the outages, both underground and overhead (OH) equipment failure accounted for approximately 22% of the outages, and approximately 13% of the outages were planned. In comparison to 2012, BGE had a downward trend in total outages, planned outages, and non-planned outages excluding major outage events. Approximately 99.96% of the customers experienced an outage that was less than 24 hours in duration.

10. 20.50.12.11A(4) Reliability Objectives, Planned Actions, Projects and Programs

BGE's objective is to focus on minimizing the number and duration of electric service outages experienced by customers each year. As a result, BGE has established a variety of projects and programs that address outage issues at the system, feeder, community, and individual customer levels. These programs implemented for distribution circuit reliability improvements include, but are not limited to, cable replacement, electric system redesign, recloser replacement program, poorest performing feeders remediation, utility pole relocations, and multiple device activation remediation.

11. 20.50.12.11A(5) Assessment of Results and Effectiveness

Pursuant to COMAR 20.50.12.11A(5), each electric company must provide an assessment of the results and effectiveness of the programs, projects, or planned actions and their

impact on the reliability indices, including CAIDI, SAIDI, and SAIFI and any other reliability indices.

BGE's reliability programs have supported their efforts to replace aging equipment and maintain operating conditions that minimize customer outages. To gauge the effectiveness of its reliability programs, BGE looked at feeders that had at least 12 months of data following the completion of reliability construction work, and found that there was an improvement in customer interruptions by approximately 63% and an improvement in customer minutes of interruption by approximately 75%.

12. Expenditures

COMAR 20.50.12.11.A.(6) requires each of the electric companies to report current year expenditures and estimate or projected expenditures for the following two calendar years, current year labor hours if available, and progress measures for each capital and maintenance program. COMAR 20.50.12.11.B(1) requires each of the utilities to report reliability program operation and maintenance and capital expenditures for the current year and the 2 previous years.

For distribution corrective and reliability improvement work, BGE had an upward trend in spending from 2012 to 2013, spending \$110,102,576 in capital expenditures and \$12,602,082 in operating and maintenance expenditures. The money spent on routine and reactive distribution work remained constant from 2012 to 2013 and money spent on storm work trended downward. The capital expenditures for substation inspection, maintenance, and repairs doubled from 2012 to 2013. The operating and maintenance expenditures for vegetation work in 2013 were \$32,767,011. Projected amounts for 2014 and 2015 for vegetation management have a gradual upward trend. All other projected expenditures amounts for 2014 and 2015 are similar to either the actual or budgeted expenditures for 2013, except for the projected capital expenditures for planned distribution work and reliability improvement work which trends downward by approximately \$30,000,000.

13. Conclusion

Overall, BGE showed an improvement in 2013 for reliability indices used for all interruption data, and all standards were met. BGE is continuing efforts in their reliability programs, vegetation management, and in implementing corrective measures to create a more resilient electric distribution system.

B. Appendix 2: Choptank

Pursuant to COMAR 20.50.12.11, on or before April 1st of each year, Choptank is required to file with the Commission their annual reliability performance report which reflects the company's reliability performance. This report marks the second annual report since the adoption of RM43.

Choptank has met the system-wide reliability standards (SAIDI and SAIFI) in both 2012 and 2013. In comparison to 2012, Choptank experienced improvements in their CAIDI and SAIDI indexes for all interruption data minus major outage event data and outage data resulting from another utility's electric system.

Choptank has implemented several reliability projects that have resulted in a system wide decrease in SAIDI and SAIFI indexes for all interruption data.

1. 20.50.12.02 System-Wide Reliability Standards

COMAR 20.50.12.02 requires that each electric company shall collect and maintain reliability data and use system-wide indices SAIDI and SAIFI as performance measurements of system reliability. The SAIDI and SAIFI reliability standards set forth for Choptank for the 2013 calendar year is 2.92 for SAIDI and 1.49 for SAIFI. Choptank's annual SAIDI and SAIFI results are required to be equal to or less than these established numbers, and the indices are measured on all interruption data minus major outage event interruption data and minus outage data resulting from an outage event occurring on another utility's electric system.

Choptank's system-wide SAIFI index for all interruption data for 2013 showed improvement from their numbers in 2012, going from 2.64 to 2.43. However, their SAIFI for all interruption data minus major outage events and outage events occurring on another utility's electric system did not follow that same trend. In looking at the preceding three years, Choptank experienced a dip in 2012 for their SAIFI index for this category and a downward trend for their SAIDI index. Both Choptank's SAIDI and SAIFI index met the system-wide reliability standards set forth in COMAR 20.50.12.02D(1)(b) and no corrective action plans were required.

		Reliability				2013 COMAR	3 Year
		Index	2011	2012	2013	Standard ^{4,5}	Average
es		SAIFI ¹ (Events)	2.04	2.64	2.43	N/A	2.37
Including Planned Outages	All Interruption Data	SAIDI ² (Hours)	3.02	10.68	5.47	N/A	6.39
Юр		CAIDI ³ (Hours)	1.48	4.05	2.25	N/A	2.59
ne	All Indonesian Data Minus Maiay Outage Frank	SAIFI (Events)	2.01	1.92	2.43	N/A	2.12
Plar	All Interruption Data Minus Major Outage Event Interruption Data	SAIDI (Hours)	2.95	2.71	5.47	N/A	3.71
lgu	Interruption Data	CAIDI (Hours)	1.47	1.42	2.25	N/A	1.71
Iudi	All Interruption Data Minus Major Outage Event	SAIFI (Events)	1.46	0.98	1.33	1.49	1.26
Inc	Interruption Data & Minus Outage Data Resulting from an	SAIDI (Hours)	2.35	1.64	1.58	2.92	1.86
	Outage Event Occurring on Another Utility's Electric	CAIDI (Hours)	1.50	1.67	1.18	N/A	1.45
		SAIFI (Events)	2.02	2.25	2.43	N/A	2.23

Figure 1 was provided by Choptank, outlining the reliability index results for SAIDI, SAIFI, and CAIDI.

Case No. 9353:	Staff Review o	of Annual Ele	ectric Reliability	Reports
----------------	----------------	---------------	--------------------	---------

	All Interruption Data Minus IEEE Major Event Day	SAIDI (Hours)	2.96	5.52	5.18	N/A	4.55
	Interruption Data	CAIDI (Hours)	1.47	2.45	2.13	N/A	2.02
		SAIFI (Events)	1.76	2.47	2.38	N/A	2.20
	All Interruption Data	SAIDI (Hours)	2.41	9.82	5.02	N/A	5.75
ges		CAIDI (Hours)	1.37	3.98	2.11	N/A	2.49
d Outage:	All Internution Data Minus Major Outage Front	SAIFI (Events)	1.72	2.06	2.38	N/A	2.05
	All Interruption Data Minus Major Outage Event Interruption Data	SAIDI (Hours)	2.34	4.57	5.02	N/A	3.98
Planne	Interruption Data	CAIDI (Hours)	1.36	2.22	2.11	N/A	1.90
Plai	All Interruption Data Minus Major Outage Event	SAIFI (Events)	1.17	0.93	1.13	N/A	1.08
ing	Interruption Data & Minus Outage Data Resulting from an	SAIDI (Hours)	1.75	1.52	2.30	N/A	1.86
Excluding	Outage Event Occurring on Another Utility's Electric	CAIDI (Hours)	1.50	1.64	2.02	N/A	1.72
Exc	All Intermetics Data Minus IEEE Major Event Day	SAIFI (Events)	1.72	2.06	2.33	N/A	2.04
	All Interruption Data Minus IEEE Major Event Day Interruption Data	SAIDI (Hours)	2.34	4.57	4.63	N/A	3.85
	interruption Data	CAIDI (Hours)	1.36	2.22	1.99	N/A	1.86
**	There were no Major Events in 2013						

** There were no Major Events in 2013.

Figure 1: Reliability Index Information

2. 20.50.12.03 Poorest Performing Feeder Standard

COMAR 20.50.12.03 requires that electric companies report SAIDI, SAIFI, and CAIDI indices for the 3% of feeders identified as having the poorest reliability. Since Choptank currently has 112 feeders, 3% of that total is approximately 4 feeders. Choptank identified the following feeders as having the poorest reliability: Feeder #131 (Barclay substation), Feeder #123 (Kennedyville substation), Feeder #312 (Hillsboro substation), and Feeder #112 (Clough substation). Choptank identified its poorest performing feeders by using the same method they used last year:

- First, a ranking number was assigned to each feeder using the SAIDI index for each feeder.
- Next, a ranking number was assigned to each feeder using the SAIFI index for each feeder.
- Both ranking numbers are added together for each feeder to determine the Total Rank.
- The 4 feeders with the highest Total Rank were chosen as the worst performing feeders.
- These calculations were performed using the indices that do not include outage data from major events or outage data from another utility's electric system.

Adequate remediation efforts have been performed where reasonable and have been summarized in Figure 2 submitted by Choptank.

Feeder Name/#	Substation	Remedial Action Description	Estimated Completion Date
		This circuit had 5 hot-line tag operations while a contractor was reconductoring a portion of the circuit. 1 Operation was caused by the contractor. The other operations were caused by downline faults that interrupted the entire circuit because it was in hot-line tag mode for the contractor. No remediation is necessary.	
131	Barclay		n/a

12:	Kennedyville	Install additional reclosers at 123-62 so faults downline don't trip all the way back at the substation. Assess trouble areas for possible spot trimming.	1-Jun-14
312	Hillsboro	Circuit is mostly underground. The circuit had one cable splice failure. It also had 2 outages due to trees within the same area within a very short time span. That area was selectively undergrounded (312-59-566 to 312-59-566-9).	1-Dec-13
117	Clough	This circuit was interrupted 3 times for vehicular accidents. It was also interrupted due to imbalance by a large industrial customer twice. The breaker at the industrial site was reprogrammed after the second outage to trip just the industrial customer if they should cause a large imbalance again. The accident locations were not of the type that could be easily adjusted to minimize future accident possibilities.	n/a

Figure 2: Remediation For Poorest Performing Feeders

COMAR 20.50.12.03A(5) states that no feeder identified as a poorest performing 3 percent of feeders shall perform in the poorest performing 3 percent of feeders during either or the two subsequent 12 month reporting periods unless reasonable remediation measures were taken to improve the performance of the feeder. Choptank's Feeder #123 was identified as one of the poorest performing feeders in both the 2012 report and the 2013 report. Reasonable remediation measures were taken to improve the feeder's 2012 performance resulting in a section of the feeder being rebuilt underground and aggressive vegetation trimming. In Choptank's 2013 report, this feeder was identified as a poorest performing feeder for different reasons than that of 2012. This feeder contained no downstream devices, and a recloser at the substation along with fuses on the taps. There were vegetation issues along the second half of the feeder. Since there were no downstream devices on this feeder, the vegetation issues caused the recloser to open at the substation, resulting in many customers experiencing the outage although the vegetation issues were only in a small section of the feeder. As a result, Choptank installed a set of reclosers at the mid-point on this feeder so that vegetation near the end of the feeder will only affect that portion of the feeder and not the entire feeder. The reclosers were installed in May 2014. Also, the trees along the second half of this feeder were trimmed in March 2014.

Although Choptank experienced a repeat feeder in the poorest performing 3 percent of feeders category, the utility has shown that reasonable remediation measures were taken to improve the performance of the feeder and is therefore in compliance with COMAR 20.50.12.03A(5) and no corrective action plan is required.

3. 20.50.12.04 Multiple Device Activation Standard

COMAR 20.50.12.04 requires that each electric company report all protective devices that activated five or more times causing sustained interruptions to at least ten customers during the reporting period. Choptank had a total of three protective devices that were activated five or more times during the prior 12-month reporting period. Two of the protective devices at the

substations experienced five outages each and the third device experienced six outages. All remedial actions were completed in 2013.

4. 20.50.12.05 Additional Reliability Indices Reporting Standard

COMAR 20.20.12.05 requires that each electric company use additional indices for reliability in its annual performance report for its Maryland service territory, in addition to providing SAIFI, SAIDI, and CAIDI system-wide index averages. Each electric company is also required to calculate and report Customers Experiencing Multiple Interruptions ("CEMIn") and Momentary Average Interruption Frequency Index ("MAIFIE") information which also give a measure of electric service reliability from the customer's perspective. If the electric company does not have the means to make the required calculations, then the utility must provide an explanation as to why it cannot supply this information, and an estimate of the cost to provide this information in the future.

Choptank calculated that 6.77% of their customers experienced three or more sustained interruptions during the reporting period. This number has decreased from 9% reported for 2012. Consequently, they calculated 2.8% of their customers experienced five or more sustained interruptions, and 0.18% of their customers experienced seven or more sustained interruptions. The number of customers that experienced five or more sustained interruptions increased slightly from last year, which was 1.72%. The number of customers that experienced seven or more sustained interruptions decreased from 0.35% reported for 2012. Choptank did not have any customers that experienced nine or more sustained interruptions during the reporting period.

Choptank did not provide calculations for 2013 MAIFIE data because the company would need to install and fully implement a system-wide automated metering information (AMI) system to accurately report this metric. Choptank is currently evaluating AMI systems/vendors and may begin implementation in the latter half of 2014. The Company estimates a cost of approximately \$12 million for implementation.

5. 20.50.12.06 Service Interruption Standard

COMAR 20.50.12.06 states that an electric company shall restore service within 8 hours to at least 92 percent of its customers experiencing sustained interruptions during normal conditions and within 50 hours to at least 95 percent of its customers experiencing sustained interruptions during major outage events (where the total number of sustained interruptions is less than or equal to 400,000 or 40 percent of the utility's total number of customers). The required time duration for restoration is measured from when the utility knew or should have known of an outage. This standard also requires that service is restored quickly and safely as permitted to its customers experiencing sustained interruptions during each major outage event in which the total number of sustained interruptions is greater than 400,000 or 40 percent of the electric company's total number of customers, whichever is less.

Choptank met this standard and restored service to 99.7% of their customers experiencing sustained interruptions during normal conditions within 8 hours. They did not experience any major outage events during the reporting period.

6. 20.50.12.07 Downed Wire Response Standard

COMAR 20.50.12.07 states that each electric company shall respond to a government emergency responder guarded downed electric utility wire within 4 hours after notification by a fire department, police department, or 911 emergency dispatcher at least 90 percent of the time.

Choptank reported a 100% response rate within the required 4 hour time frame after notification from a government emergency responder of a guarded downed wire. There were a total of 3 downed wires reported to Choptank during the reporting period, all of which were found to belong to the utility. Choptank responded to all within 4 hours, therefore meeting the standard.

7. 20.50.12.08 Customer Communications Standard

COMAR 20.50.12.08 states that each electric company shall answer within 30 seconds, on an annual basis, at least 75 percent of all calls offered to the utility for customer service or outage reporting purposes. It also states that each electric company shall achieve an annual average abandoned call percentage rate of 5 percent or less. For calls offered to the utility for customer service or outage reporting purposes, Choptank met this requirement by answering 95.9% of the calls within 30 seconds with a 0.79% abandoned call rate. For calls solely offered to its customer service representatives, Choptank met the requirement by answering 94.3% of calls within 30 seconds with a 1.10% abandoned call rate and an average answer speed of 11 seconds.

8. 20.50.12.09 Vegetation Management Requirements

COMAR 20.50.12.09 outlines the scope, technical standards, record keeping, and reporting requirements for vegetation management. Choptank has 2,046 miles of overhead circuit lines for their system. This standard requires that within 24 months of the effective date of this regulation, an electric company on a 5 year trim cycle is required to perform vegetation management on at least 12% of its total distribution miles. Choptank trimmed 489 miles of their distribution lines in 2013 and 445.16 miles in 2012 for a total distribution miles of 934.16 miles trimmed, which is more than the required 12%.

Choptank set aside a budget of \$3,400,000 for vegetation management in 2013, and they actually spent \$3,291,292 performing this duty resulting in an average cost per circuit mile trimmed of \$6,731. Choptank has projected 626.45 overhead circuit miles will be trimmed in 2014.

9. Outage Types & Causes

Choptank filed a corrected chart outlining their outage data under Mail Log No. 156132, dated June 20, 2014. During the reporting period, Choptank experienced 1,664 outages, with 66

planned outages, and no major outage events. These outages affected 134,888 customers with 17,371,428 customer outage minutes. Underground equipment failure led to 17% of the outages, and 14% of the outages were due to animals. Although there were more planned outages this year, Choptank had a downward trend in total number of outages for 2013 in comparison to 2012. There was also a downward trend in the total number of customers affected and the total customer outage minutes. All 134,888 customers were without electrical service for less than 24 hours.

10. 20.50.12.11A(4) Reliability Objectives, Planned Actions, Projects and Programs

Choptank's objective is to pursue reliability enhancements on multiple levels by performing more aggressive tree trimming to obtain larger clearances between trees and overhead conductors, having Osmose Utilities Services, Inc. (Osmose) perform system-wide inspections and implement a pole treatment program, and to have one employee solely dedicated to performing system inspections. Also, Choptank will be selectively undergrounding or relocating sections of line that are "repeat offenders". The company will focus on improvements that will have the most impact on the frequency of outages, number of customers affected, and outage durations.

11. 20.50.12.11A(5) Assessment of Results and Effectiveness

Pursuant to COMAR 20.50.12.11A(5), each electric company must provide an assessment of the results and effectiveness of the programs, projects, or planned actions and their impact on the reliability indices, including CAIDI, SAIDI, and SAIFI and any other reliability indices.

Choptank has chosen to focus on projects in areas that are prone to many outages and affect many customers. As a result, recently completed projects have reduced overall SAIDI by 0.10 minutes and SAIFI by 0.02.

12. Expenditures

COMAR 20.50.12.11.A.(6) requires each of the electric companies to report current year expenditures and estimate or projected expenditures for the following two calendar years, current year labor hours if available, and progress measures for each capital and maintenance program. COMAR 20.50.12.11.B.(1) requires each of the utilities to report reliability program operation and maintenance and capital expenditures for the current year and the 2 previous years.

In 2013, Choptank spent \$220,971 on pole and padmount equipment inspections and treating utility poles with a preservative. The work was performed by Osmose, the utility services company which has been performing inspections on Choptank's system since 2010. The company abruptly lost their System Inspector, an employee who was solely responsible for inspecting poles and padmounted equipment for reliability and safety issues, which resulted in Choptank being under budget in 2013 for their operating and maintenance expenditures.

Figure 3 shows the actual operation and maintenance and capital expenditures for Choptank's reliability programs over the past 3 calendar years, and the projected budget for 2014.

	2011	2012	2013	2014 (Projected)	
Pole and Padmount					
Equipment	\$319,638	\$300,535	\$220,971	\$300,000	
Inspection and	JJJJ,030	\$300,333	ŞZZ0,371	\$300,000	
Maintenance					
Chief Lineman	\$112,563	\$112,231	\$25,177	\$125,000	
(System Inspector)	Ş112,505	Ş112,231	Ş23,177	\$125,000	
Vegetation	\$2,248,554	\$2,622,089	\$3,291,292	\$3,260,000	
Management	γ <i>2,2</i> +0,33+	<i>\$2,022,005</i>	<i>\$5,251,252</i>	\$5,200,000	
Recloser	\$256,504	\$208,208	\$781,657	\$560,000	
Replacement	Ş230,304	\$200,200	\$701,037	\$500,000	
Selective	\$3,408,657	\$5,557,198	\$4,033,358	\$4,575,000	
Undergrounding	ç5, 4 00,007	<i>43,337,130</i>	ŶŦ,033,330	Ş - , <i>3</i> , 3,000	
Distribution	\$279,835	\$283,325	\$292,357	\$280,000	
Automation	<i>7213,</i> 033	7203,323	<i>72,22,337</i>	Υ 200,000	

Figure 3: Choptank's Expenditures

Choptank projects include:

- "Recloser Replacement involves replacing older hydraulic reclosers with electronic Distribution Automation (DA) capable reclosers.
- Selective Undergrounding involves line sections that are relocated underground to improve reliability and/or sections that are due for replacement/improvement and have a significant portion relocated underground.
- Distribution Automation involves the installation of communications equipment and reclosers at normal open points between feeders to facilitate DA."

Projected amounts for 2014 show a gradual upward trend for pole/padmount equipment inspection and maintenance, selective undergrounding, and for the System Inspector position. The projected amounts for vegetation management and distribution automation remain relatively constant, and there's a downward trend in the projected 2014 amounts for recloser replacements.

13. Conclusion

Overall, Choptank showed an improvement in 2013 for all interruption data for both frequency and duration, and all standards were met. Choptank is continuing efforts in their reliability programs, vegetation management, and in implementing corrective measures to create a more resilient electric distribution system.

C. Appendix 3: Delmarva

Pursuant to COMAR 20.50.12.11, on or before April 1st of each year, Delmarva is required to file with the Commission their annual reliability performance report which reflects the company's reliability performance. This report marks the second annual report since the adoption of COMAR 20.50.12.

Delmarva did not meet all COMAR required standards for 2013. Delmarva fell short of the SAIFI and SAIDI requirements set forth by COMAR, but was able to meet all other required COMAR standards for 2013. Delmarva filed a corrective action plan (CAP) as required by COMAR on April 1, 2014. The Staff analysis of the CAP is in Appendix 7.

	Annual		% Over
	Requirement	Results	COMAR
SAIDI	2.99	3.54	18.4%
SAIFI	1.65	1.95	18.2%

Figure 1: 2013 Delmarva SAIFI and SAIDI Performance

1. 20.50.12.02 System-Wide Reliability Standards

COMAR 20.50.12.02 requires that each electric company shall collect and maintain reliability data and use system-wide indices SAIDI and SAIFI as performance measurements of system reliability. The SAIFI and SAIDI reliability standards set forth for Delmarva for the 2013 calendar year are 1.65 for SAIFI and 2.99 for SAIDI. Delmarva's annual SAIFI and SAIDI results are required to be equal to or less than these established numbers, and the indices are measured on all interruption data minus major outage event interruption data and minus outage data resulting from an outage event occurring on another utility's electric system.

The system-wide performance data for Delmarva is listed below in Figure 1. The report for 2013 is unique in that it does not include any major outage events (MOEs). Delmarva did not meet the COMAR standard for 2013 for SAIFI (performing 18.2% worse than the standard), and SAIDI (performing 18.4% worse than the standard).

		Reliability Index	2011	2012	2013	2013 COMAR Standard ^{4,5}	3 Year Average
		SAIFI ¹ (Events)	3.20	2.38	1.95	N/A	2.51
1000	All Interruption Data	SAIDI ² (Hours)	16.20	9.73	3.54	N/A	9.83
Outages		CAIDI ³ (Hours)	5.07	4.10	1.82	N/A	3.66
uta	All Laboration Data Miles Maria Ontaria Esset Internetion	SAIFI (Events)	2.45	1.70	1.95	1.65	2.03
OP	All Interruption Data Minus Major Outage Event Interruption	SAIDI (Hours)	5.98	3.18	3.54	2.99	4.24
au	Data	CAIDI (Hours)	2.45	1.87	1.82	N/A	2.05
Planned	All Interruption Data Minus Major Outage Event Interruption	SAIFI (Events)					
Bu	Data & Minus Outage Data Resulting from an Outage Event	SAIDI (Hours)	-	-			
ipi	Ocurring on Another Utility's Electric System	CAIDI (Hours)	-	-	-	N/A 1 N/A 1 N/A 3 N/A 1 N/A 2	-
Including		SAIFI (Events)	2.23	1.73	1.88	N/A	1.95
-	All Interruption Data Minus IEEE Major Event Day Interrupti Data	SAIDI (Hours)	4.30	3.38	3.38	N/A	3.69
	Data	CAIDI (Hours)	1.93	1.95	1.81	N/A	1.90
		SAIFI (Events)	3.17	2.37	1.92	N/A	2.49
	All Interruption Data	SAIDI (Hours)	16.15	9.72	3.50	N/A	9.79
Outages		CAIDI (Hours)	5.10	4.10	1.82	N/A	3.67
uta		SAIFI (Events)	2.42	1.69	1.92	N/A	2.01
P	All Interruption Data Minus Major Outage Event Interruption	SAIDI (Hours)	5.93	3.17	3.50	N/A	4.20
anc	Data	CAIDI (Hours)	2.45	1.87	1.82	N/A	2.05
Planned	All Interruption Data Minus Major Outage Event Interruption	SAIFI (Events)				N/A	-
Bu	Data & Minus Outage Data Resulting from an Outage Event	SAIDI (Hours)	-			N/A	
ipn	Ocurring on Another Utility's Electric System	CAIDI (Hours)	-	•	-	N/A	-
Excluding	All Internetion Date Minus (FFF Malor Front Day Internetion	SAIFI (Events)	2.20	1.73	1.85	N/A	1.93
-	All Interruption Data Minus IEEE Major Event Day Interruption	SAIDI (Hours)	4.25	3.38	3.35	N/A	3.66
	Data	CAIDI (Hours)	1.93	1.95	1.81	N/A	1.90

Figure 2: Delmarva System-Wide Reliability Table 2011-2013

The Delmarva performance for SAIFI, SAIDI, and CAIDI were all better than the three year average from 2011-2013.

2. 20.50.12.03 Poorest Performing Feeder Standard

COMAR 20.50.12.03 requires that electric companies report SAIDI, SAIFI, and CAIDI indices for the 3% of feeders identified as having the poorest reliability. Delmarva identified a total of 10 feeders as having the poorest reliability. Delmarva identified its poorest performing feeders by the following method:

Delmarva⁴⁹ uses a feeder composite index, which is 75% of the feeder contribution to SAIFI plus 25% of feeder contribution to SAIDI to determine the PPF list.

		Total # of	Average # of	2013 Inte	rruption Data (Mi	nus MOE)	2013 Interr	uption Data (Minu	is MOE)
Utility	# of PPF	Feeders in Maryland	Customers per PPF	Average SAIFI (Interruptions)	Average SAIDI (Hours)	Average CAIDI (Hours)	Average SAIFI (Interruptions)	Average SAIDI (Hours)	Average CAIDI (Hours)
DELMARVA	10	184	2937	2.56	3.98	1.50	2.56	3.98	1.50

Figure 3: Delmarva 2013 Poorest Performing Feeder Summary

The 10 selected PPF accounted for 24% of total Delmarva system SAIFI and 19% of system SAIDI. Delmarva had one feeder that was a repeat feeder from 2012, Feeder MD2245. No other feeder from 2012 fell into the bottom 3% for 2013.

⁴⁹ Delmarva Annual Performance Report, pg. 11, Mail Log No: 153728

Feeder MD245 is a long radial feeder in Delmarva Power, extending 164.38 miles. The backbone of this feeder, approximately 20 miles, is adjacent to the two-lane heavily travelled Chestertown - Rock Hall Road (MD Rte. 20). The information for Feeder MD2245 is listed in Figure 4.

					Relia	ability In	dices	Fe	eder M	Miles	
District	Substation	Circuit	cuit Customers Served	Number of Outages	SAIFI	SAIDI	CAIDI	он	UG	TOTAL	REPEATED LAST 2 YEARS
Centreville	Chestertown	MD2245	3106	83	3.31	8.83	2.67	53%	47%	164.38	Yes

Figure 4: Feeder MD2245 Data

During the 2013 performance year (October 2012 to September 2013), this feeder experienced multiple outages due to poles hit from motor vehicle accidents (poles along Rte. 20) and lightning that caused a pole fire. Those outage causes (equipment hit, weather and the pole fire included in other) contributed to 91.7% of the 3.31 SAIFI. Vegetation only caused 6.2% of the outages associated with this feeder.

Outage cause by SAIFI	SAIFI	% of Feeder SAIF
Equipment Hit	1.35	40.7%
Weather	1.10	33.1%
Other*	0.59	17.9%
Tree	0.21	6.2%
Equipment Failure	0.04	1.3%
Unknown	0.02	0.7%
Animal	0.00	0.1%

* Other includes employee, fire, source lost, vandalism, load shed Figure 5: Fooder MD2245 Outogo Courses

Figure 5: Feeder MD2245 Outage Causes

The remediation planned for Feeder MD2245 is as follows:

- Replace 41 poles at various vulnerable locations throughout the feeder.
- Install fused cutouts for coordination and sectionalization.
- Install reclosers for sectionalization.

3. 20.50.12.04 Multiple Device Activation Standard

COMAR 20.50.12.04 requires that each electric company report all protective devices that activated five or more times causing sustained interruptions to at least ten customers during the reporting period. Delmarva had a total of 7 protective devices that were activated five or more times during the prior 12-month reporting period. Four of the protective devices were line or tap fuses, two devices were circuit breakers, and one recloser.

Utility	Sum of Device (activated								
	5 or more	Line or	Doologon	Circuit	Transfor	Substatio			
	times)	Tap Fuse	Recloser	Breaker	mer	n			
Delmarva	7	4	1	2	0	0			

Figure 6: Multiple Device Activations

The number of devices was down 7 from 12 in 2012, a 42% reduction. The primary remediation actions for the devices are vegetation management, pole, cross arm, and cable replacement, animal guards, and conversion of overhead to underground lines to reduce vegetation-related outages.

4. 20.50.12.05 Additional Reliability Indices Reporting Standard

COMAR 20.20.12.05 requires that each electric company use additional indices for reliability in its annual performance report for its Maryland service territory, in addition to providing SAIFI, SAIDI, and CAIDI system-wide index averages. Each electric company is also required to calculate and report Customers Experiencing Multiple Interruptions ("CEMI_n") and Momentary Average Interruption Frequency Index ("MAIFI_E") information which also give a measure of electric service reliability from the customer's perspective.

	CEMI ₂	CEMI ₄	CEMI ₆	CEMI ₈
All Interruption Data	0.473	0.165	0.071	0.025
All Interruption Data Minus Major Outage Event Data	0.473	0.165	0.071	0.025

Figure 7: 2013 Delmarva CEMI Data

Delmarva showed a decrease in performance all CEMI categories compared to 2012. The number of customers experiencing multiple outages is up from 39% in 2012 to 47% in 2013. Delmarva has developed a negative trend that needs to be corrected to prevent customers from experiencing multiple outages in the future. The Delmarva CAP addresses programs and action to improve overall system reliability, therefore reducing the amount of multiple outages.

Delmarva also calculated an annual $MAIFI_E$ index for its Maryland service territory of 0.75, up slightly from 0.68 in 2012. Delmarva has remained steady in the amount of momentary outages for customers in their service territory.

	MAIFIE	
All Interruption Data	0.75	
All Interruption Data Minus Major		
Outage Event Data	0.75	

Figure 8: 2013 MAIFI Index

5. 20.50.12.06 Service Interruption Standard

COMAR 20.50.12.06 states that an electric company shall restore service within 8 hours to at least 92 percent of its customers experiencing sustained interruptions during normal conditions and within 50 hours to at least 95 percent of its customers experiencing sustained interruptions during major outage events (where the total number of sustained interruptions is less than or equal to 400,000 or 40 percent of the utility's total number of customers). The required time duration for restoration is measured from when the utility knew or should have known of an outage. This standard also requires that service is restored quickly and safely as permitted to its customers experiencing sustained interruptions during each major outage event in which the total number of sustained interruptions is greater than 400,000 or 40 percent of the electric company's total number of customers, whichever is less.

Normal Co	nditions	Major Outage Events ²				
% of Customers Resto	red Within 8 Hours ¹	% Of Customers Restored Within 50 Hou				
Actual	COMAR Standard	Actual	COMAR Standard			
98.92%	≥ 92%	N/A	≥ 95%			

Figure 9: 2013 Service Interruption Performance

Delmarva met the COMAR standard for restoration under normal conditions with 98.92%, similar to the 99.28% from 2012. Delmarva has performed well above the COMAR standard for the past two years. There were no MOEs for 2013, therefore no performance data for Delmarva for such events.

6. 20.50.12.07 Downed Wire Response Standard

COMAR 20.50.12.07 states that each electric company shall respond to a government emergency responder guarded downed electric utility wire within 4 hours after notification by a fire department, police department, or 911 emergency dispatcher at least 90 percent of the time. Delmarva met the performance standard for guarded downed wires with a 100% response rate within 4 hours.

Government Emergency Responder Guarded Downed Wires							
% Responded to Within 4 Hours After Notification by a Fire Department, Police Department or 911 Emergency Dispatcher	COMAR Standard						
100%	≥ 90%						

Figure 10: 2013 Guarded Downed Wire Response Performance

There were a total of 809 downed wires reported to Delmarva during the reporting period, of which 393 belonged to the utility (49%). Delmarva responded to 91.1% of these downed wires within 4 hours, 7.4% within 4 to 8 hours, and the remaining 1.5% had a greater than 8 hour response time. Delmarva responded to all downed wire calls in a timely manner.

Utility	Total Reported Downed Wires	Total Utility Responsible Wires	% of Reported Wires Belonging to the Utility	4 Hours or	More than 4 Hours but Less than 8 Hours	8 Hours or More	2013 % Responded to in 4 Hours or Less	Met COMAR Standard Guarded Wires 90%
DELMARVA	809	393	49%	358	29	6	91.09%	100.00%

Figure 11: All Downed Wire Response Performance

7. 20.50.12.08 Customer Communications Standard

COMAR 20.50.12.08 states that each electric company shall answer within 30 seconds, on an annual basis, at least 75 percent of all calls offered to the utility for customer service or outage reporting purposes. It also states that each electric company shall achieve an annual average abandoned call percentage rate of 5 percent or less.

For calls offered to the utility for customer service or outage reporting purposes, Delmarva met this requirement by answering 83.1% of the calls within 30 seconds with a 0.4% abandoned call rate. This is a decrease in performance in 2012 where Delmarva answered 90.8% of the calls within 30 seconds and had 0.26% of calls abandoned. If Delmarva continues this performance trend, it will be possible for the company not to meet the call response time standard in COMAR for 2014.

Customer Telephone	e Call Answer Time ¹	Abandoned Call Rate ²				
% of Calls Answered Within 30 Seconds	COMAR Standard	% Abandoned Calls	COMAR Standard			
83.10%	≥ 75%	0.40%	≤ 5%			

Figure 12: 2013 Customer Communication Performance

For calls solely offered to its customer service representatives, Delmarva answered 70.4% of calls within 30 seconds with a 0.71% abandoned call rate and an average answer speed of 26 seconds. These are non-outage related calls.

% of Calls Answered Within 30 Seconds ³	% Abandoned Calls ³	Average Speed of Answer ⁴ (Seconds)		
70.40%	0.71%	26		

Figure 13: 2013

8. 20.50.12.09 Vegetation Management Requirements

COMAR 20.50.12.09 outlines the scope, technical standards, record keeping, and reporting requirements for vegetation management. Delmarva has 3,493 miles of overhead distribution circuit lines for their system. This standard requires that within 12 months of the effective date of this regulation, an electric company on a 4 year trim cycle is required to perform vegetation management on at least 15% of its total distribution miles. Delmarva trimmed 906 miles of their distribution lines in 2013, or 26% of total distribution miles. Delmarva took an aggressive approach to the new COMAR standard and began vegetation management in 2012,

trimming 847 distribution miles, or 24% of the service territory. Delmarva is well ahead of the required 15% vegetation management for 2013 by cutting a total of 50% over the past two years.

Utility	Overhead C	ircuit Miles	# of Miles of Management	0	% of Total System Trimmed to Standard	% of Total System Trimmed to Standard	Trim Cycle and Current Year (X of Y Years)	COMAR Minimum Required Trimming (%)	Vegetation 1 Expen	v	Vegetation Mar Per M	U
	2012	2013	2012	2013	2012	2013	2013	2013	2012	2013	2012	2013
DELMARVA	3,493	3,493	847	906	24%	26%	1 of 4	15%	\$ 5,161,269	\$ 7,077,726	\$ 6,094	\$ 7,812

The cost per mile for vegetation management for Pepco is \$7,812, up from the 2012 cost of \$6,094 per mile. The high cost is due to long radial distribution feeders, the type of vegetation along the feeders, and the equipment and personnel required to perform the trimming.

9. Outage Types & Causes

During the reporting period, Delmarva experienced 4,542 outages, with 34 planned outages, 4,508 non-planned outages, and no major outage events. These outages affected 389,960 customers with 42,621,192 customer outage minutes, or 109 outage minutes per customer.

Outage Type	# of Outages	# of Customers Affected	Customer Outage Minutes	
Planned	34	4,345	459,323	
Non-Planned Minus				
Major Outage Event	4,508	385,615	42,161,869	
Major Outage Event	0	0	0	
TOTALS	4,542	389,960	42,621,192	

Figure 15: 2013 Outages

Vegetation accounted for approximately 17.3% of the outages, overhead (OH) equipment accounted for 16.5% of the outages, underground (UG) equipment failure accounted for approximately 13.8% of the outages, and animals 12.4% of outages.

Utility		OH Equipment	UG Equipment	Weather (not						
Otmty	Vegetation	Failure	Failure	lightning)	Lightning Strike	Equipment Hit	Animals	Overload	Other*	Unknown
DELMARVA	17.3%	16.5%	13.8%	11.7%	**	4.5%	12.4%	3.3%	7.1%	13.4%
* Includes employee	es, fire, source lost	, loadshed, vand	alism, other utilit	у						

Figure 16: Types of Outages

10. Expenditures

COMAR 20.50.12.11.A(6) requires each of the electric companies to report current year expenditures and estimate or projected expenditures for the following two calendar years, current year labor hours if available, and progress measures for each capital and maintenance program. COMAR 20.50.12.11.B(1) requires each of the utilities to report reliability program operation and maintenance and capital expenditures for the current year and the 2 previous years.

	2011	2012	201	13	2013	2014	2015
	Actual	Actual	Budget	Actual	Labor Hours (Utility)	Projected	Projected
Priority Feeder Upgrades	2,991,966	2,588,657	4,043,984	11,144,381	15,339	\$7,138,445	\$6,151,906
Underground Residential Distribution Cable Upgrades (URD)	7,372,645	9,401,269	5,363,738	6,433,622	7,923	6,235,800	5,527,765
Distribution Automation	214,896	2,632,331	9,088,904	9,788,286	20,854	12,877,536	7,674,018
Feeder Reliability Improvements	3,426,153	8,585,870	11,794,142	12,281,079	27,961	11,967,298	12,024,798
Conversions	-	-	375,921	228,590	595	382,659	387,836
Substation Reliability Improvements	-	1,273,127	3,049,135	3,274,066		4,531,395	2,511,839
Feeder Load Relief	5,027,348	2,672,323	1,545,115	3,494,688	1,413	4,947,696	2,072,112
TOTAL	\$19,033,008	\$27,153,576	\$35,260,939	\$46,644,711	74,085	\$48,080,829	\$36,350,274

Figure 17: 2013 Delmarva Capital Expenditures

The capital expenditure for priority feeder upgrades greatly exceeded the projected budget for 2013. This can be directly related to the new COMAR standard set in 2012 and the long-term objective of improving system reliability. Delmarva has struggled over the past two years meeting COMAR reliability standards, and took an aggressive approach to upgrading feeders in 2013 to improve reliability.

	2011	2012	20	13	2013	2014	2015
	Actual	Actual	Budget	Actual	Labor Hours (Utility)	Projected	Projected
Transmission							
Scheduled Maintenance	\$5,229,901	\$4,213,286	\$5,347,304	\$3,200,286	15,557	\$4,138,505	
Corrective Maintenance	\$1,662,661	\$1,209,629	\$988,350	\$1,137,248	7,262	\$1,272,097	
Vegetation Management	\$616,220	\$501,453	\$862,160	\$630,783	111	\$1,938,440	
Sub-total	\$7,508,782	\$5,924,368	\$7,197,814	\$4,968,317	22,930	\$7,349,042	
Distribution							
Scheduled Maintenance	\$6,006,441	\$8,582,198	\$7,026,851	\$5,458,267	33,586	\$8,646,345	
Corrective Maintenance	\$31,059,323	\$29,646,159	\$15,634,479	\$13,169,421	36,089	\$16,841,894	
Vegetation Management	\$4,522,062	\$5,477,571	\$5,995,775	\$7,716,647	3,951	\$7,572,328	_
Sub-total	\$41,587,826	\$43,705,928	\$28,657,105	\$26,344,335	73,626	\$33,060,567	
Total	\$49,096,608	\$49,630,296	\$35,854,919	\$31,312,652	96,556	\$40,409,609	

Figure 18: 2013 Operation and Maintenance Expenditures

There are no real changes in the Delmarva operation and maintenance budget projections and execution. There was a slight savings in corrective maintenance, most likely due to no MOEs for 2013, and a slight increase in vegetation management spending which supports the aggressive program and the CAP.

11. 20.50.12.11A(4) Reliability Objectives, Planned Actions, Projects and Programs

COMAR 20.50.12.11(A)(4) states that each Electric Company is required to provide in its annual report a description of the reliability objectives, planned actions and projects, and programs which are designed to improve its electric service and system.

The top three programs for Delmarva are vegetation management, feeder improvements, and distribution automation. The greatest impact projected on SAIFI and SAIDI is vegetation management. Feeder improvements are projected to eliminate faults and reinforce infrastructure with newer materials and standards. Distribution automation is designed to mitigate fault impact to decrease customers affected and durations of outages.

12. 20.50.12.11A(5) Assessment of Results and Effectiveness

Pursuant to COMAR 20.50.12.11A(5), each electric company must provide an assessment of the results and effectiveness of the programs, projects, or planned actions and their impact on the reliability indices, including CAIDI, SAIDI, and SAIFI and any other reliability indices.

The top three challenges for reliability are aging infrastructure, the lack of ties between feeders, and vegetation management. The company has addressed these issues in the CAP as well as in other reliability enhancement programs (Salisbury Plan, North East Plan) as well as economic alternatives in design such as under grounding strategies (extending the life of current underground cables by injecting silicon into the cables), advanced technologies (automated circuit reclosers (ACRs), and sturdier materials (fiberglass cross arms).

Pepco states that improvements in storm response and overall system reliability are the two areas to show improvement. Process changes in the area of storm response have improved customer communications, and system upgrades have reduced the number and duration of outages. The Pepco webpage now keeps customers informed of outages and projected restoration times. Technicians and first responders are doing a better job of identifying the causes of the outages and reducing the amount of "unknown causes".

The top three best business practices for Delmarva are vegetation management, an automated provision of the estimated time of restoration to customers during outages, and a comprehensive safety program.

13. Conclusions

Delmarva did not meet all COMAR standards for 2013. Delmarva fell short of the SAIFI and SAIDI requirements set forth by COMAR, but was able to meet all other required COMAR standards for 2013. Delmarva filed a corrective action plan (CAP) as required by COMAR on April 1, 2014.Delmarva had one repeat feeder for 2013, and has a corrective action plan for the feeder to improve overall reliability and keep the feeder out of the bottom 3% in the future.

Delmarva has two major areas to focus on in the near future. The SAIFI and SAIDI performance indices were 18% above the COMAR standards. The CAP and the ongoing reliability enhancement programs that Delmarva is conducting need to be aggressive and provide immediate improvements to overall system reliability. Delmarva also needs to work on the customer communication performance, which dropped from 90% to 83% for customer outage calls answered within 30 seconds.

Delmarva has exceeded the requirements for vegetation management beginning in 2012 by cutting 24% of the required service territory. With the additional 26% cut in 2013, Delmarva is currently at 50% of the service territory cut to COMAR standards, will ahead of the required 15% by the end of 2013.

Delmarva is focused on vegetation management and distribution automation as the two programs that will have the greatest impact on long-term system-wide reliability. These programs along with replacing and upgrading aging infrastructure and undergrounding key vulnerable areas will improve system reliability.

D. Appendix 4: P.E.

1. System-Wide Reliability Standards (20.50.12.02)

PE's system-wide SAIFI, SAIDI, and CAIDI indices for all interruption data minus major outage events, showed a downward trend over the last three years. Since 2011, prior to RM43, PE's SAIFI index decreased by 0.26, and SAIDI by .96. PE experienced a spike in these indices in 2012 due to the major events which occurred during that time period. Both PE's SAIDI and SAIFI index met the system-wide reliability standards set forth in COMAR and are not required to provide a corrective action plan.

The following table provides the required reliability index results (SAIFI, SAIDI, and CAIDI) for PE's system.

		Reliability Index	2011	2012	2013	2013 COMAR Standard ^{4,} ⁵	3 Year Average
		SAIFI ¹ (Events)	1.50	1.55	1.01	N/A	1.35
	All Interruption Data	SAIDI ² (Hours)	5.89	23.71	2.38	N/A	10.64
ş		CAIDI ³ (Hours)	3.94	15.34	2.36	N/A	7.87
age	All Interruption Data Minus Major	<mark>SAIFI (Events)</mark>	<mark>1.27</mark>	<mark>0.85</mark>	<mark>1.01</mark>	<mark>1.10</mark>	<mark>1.05</mark>
Out	Outage Event Interruption Data	<mark>SAIDI (Hours)</mark>	<mark>3.34</mark>	<mark>2.43</mark>	<mark>2.38</mark>	<mark>3.05</mark>	<mark>2.72</mark>
ed	• • • • • • • • • • • • • • • • • • •	CAIDI (Hours)	2.62	2.86	2.36	N/A	2.60
ann	All Interruption Data Minus Major	SAIFI (Events)	N/A	N/A	N/A	N/A	N/A
g Pl	Outage Event Interruption Data &	SAIDI (Hours)	N/A	N/A	N/A	N/A	N/A
Including Planned Outages	Minus Outage Data Resulting from an Outage Event Occurring on Another Utility's Electric System	CAIDI (Hours)	N/A	N/A	N/A	N/A	N/A
_	All Interruption Data Minus IEEE	SAIFI (Events)	1.11	0.86	1.01	N/A	0.99
	Major Event Day Interruption	SAIDI (Hours)	2.44	2.80	2.38	N/A	2.54
	Data	CAIDI (Hours)	2.20	3.26	2.36	N/A	2.56
		SAIFI (Events)	1.50	1.51	0.95	N/A	1.32
ses	All Interruption Data	SAIDI (Hours)	5.89	23.66	2.17	N/A	10.55
utag		CAIDI (Hours)	3.94	15.66	2.30	N/A	8.02
0 P	All Intermention Data Minus Major	SAIFI (Events)	1.27	0.81	0.95	N/A	1.01
Excluding Planned Outages	All Interruption Data Minus Major Outage Event Interruption Data	SAIDI (Hours)	3.34	2.38	2.17	N/A	2.63
Plai		CAIDI (Hours)	2.62	2.92	2.30	N/A	2.60
ing	All Interruption Data Minus Major	SAIFI (Events)	N/A	N/A	N/A	N/A	N/A
clud	Outage Event Interruption Data &	SAIDI (Hours)	N/A	N/A	N/A	N/A	N/A
Exc	Minus Outage Data Resulting from an Outage Event Occurring on Another Utility's Electric System	CAIDI (Hours)	N/A	N/A	N/A	N/A	N/A

All Interruption Data Minus IEEE	SAIFI (Events)	N/A	N/A	N/A	N/A	N/A
Major Event Day Interruption	SAIDI (Hours)	N/A	N/A	N/A	N/A	N/A
Data	CAIDI (Hours)	N/A	N/A	N/A	N/A	N/A

Figure 1: System Wide Reliability Indices

2. Poorest Performing Feeder Standards (20.50.12.03)

PE has a total of 344 distribution feeders serving at least one customer in Maryland and has identified 10 distribution feeders that have the poorest reliability based on their ranking method. An additional circuit (#11) was added to PE's lists for informational purposes. It was ranked in the poorest performing 3 percent of feeders during the prior 12-month period. Although it has been identified as a "repeater", PE states that it is not a true repeater. In accordance with 20.50.12.03 (B), PE did not have any poorest performing feeders not assigned to Maryland.

The methodology used by PE to identify its poorest performing feeders is based on both SAIFI and SAIDI indices and consists of the following steps:

- 1) For each feeder calculate a circuit SAIFI using only distribution-caused outages;
- 2) Select the worst 20% of feeders based on the highest circuit SAIFI;
- 3) Rank the selected feeders based on SAIDI using only distribution-caused customer minutes; and
- 4) Select the required number of feeders based on the highest customer minutes. These feeders are then identified as the poorest performing.

All remedial work planned for feeders identified as poorest performing are scheduled to be completed no later than September 30, 2014. The following table is a list of the Poorest Performing Feeders PE has listed by rank for 2013.

Rank	Feeder	Substation	# of Customers
1	Waverly	McCain	1,078
2	Turkey Neck	Thayerville	2,127
3	Hoyes Run Road	Garrett	820
4	Sugarloaf Center	Fairhill	924
5	Centertown	Frostburg #1	1,737
6	Poolesville	Beallsville	1,180
7	Zittlestown	Boonsboro	660
8	New Midway	Legore	967
9	Barkhill Road	Carroll	1,103
10	Howard Chapel	Damascus	1,119
11	CW-12	Carroll	1,439

Figure 2: 2013 Poorest Performing Feeders

The following table is a lists of PE's Poorest Performing Feeders and there reliability indices for 2013.

Feeder	All	Interruption I	Data	-	ption Data N Dutage Even									
	SAIFI	SAIDI	CAIDI	SAIFI	SAIDI	CAIDI								
Waverly	2.92	13.42	4.60	2.92	13.42	4.60								
Turkey Neck	5.18	135.49	26.14	4.09	12.58	3.08								
Hoyes Run Road	3.6	181.34	50.32	2.58	14.51	5.61								
Sugarloaf Center	3.36	12.74	3.79	3.36	12.74	3.79								
Centertown	<mark>4.53</mark>	63.24	13.97	1.81	4.51	2.49								
Poolesville	<mark>4.53</mark>	9.30	2.05	4.48	7.41	1.66								
Zittlestown	2.24	9.91	4.42	2.24	9.79	4.37								
New Midway	1.67	31.36	18.79	1.26	6.62	5.27								
Barkhill Road	1.73	5.78	3.33	1.73	5.78	3.33								
Howard Chapel	2.29	6.33	2.77	2.27	5.22	2.30								
CW-12	4.13	12.98	3.15	4.11	<mark>11.38</mark>	2.90								
Figu	no 3. 2013 D	agreet Darfor	ming Foodo	n Doliobility	Indiana	Figure 3: 2013 Decrest Parforming Feeder Polishility Indices								

Figure 3: 2013 Poorest Performing Feeder Reliability Indices

3. Multiple Device Activation Standards (20.50.12.04)

Figure 4 provides a list of PE protective devices that activated five or more times resulting in sustained interruptions in electric service to more than 10 Maryland customers.

		Protective	Device T	уре	Total # of	
COMPANY	Recloser	Circuit Breaker	Line Or Tap Fuse	Transformer	Devices that Activated Five or More Times	Total # of Activation Events
PE	3	0	16	2	21	N/A

T ¹	4.	2012	N/T14!			Activatio	
HIGHTP 4	т.	2013	VIIIII		VICE	Δετινατι	nne
I ILUI V	т.	4010	TATATATA	\mathbf{n}	VILL	1 LUI Vau	

4. Additional Reliability Indices (20.50.12.05)

COMAR 20.50.12.05 states that in addition to providing SAIFI, SAIDI, and CAIDI system-wide index averages for their entire system throughout Maryland from the previous calendar year (2012) and from the 3 previous calendar years, utilities are also required to calculate and report Customers Experiencing Multiple Interruptions⁵⁰ ("CEMI_n") and Momentary Average Interruption Frequency Index⁵¹ ("MAIFI_E") information which also give a measure of electric service reliability from the customer's perspective, unless it does not have the means to make the calculations, in which case the utility must provide an explanation of the reason why it cannot, and an estimate of the cost to provide this information in the future.

All Interruption Data					ia je če stala se		
CEMI ₃	CEMI ₅	CEMI ₇	CEMI ₉	CEMI ₃	CEMI ₅	CEMI ₇	CEMI ₉
12.1%	1.8%	0.3%	0.03%	12.1%	1.8%	0.3%	0.03%
	CEMI ₃	CEMI ₃ CEMI ₅	CEMI ₃ CEMI ₅ CEMI ₇	CEMI ₃ CEMI ₅ CEMI ₇ CEMI ₉	All Interruption Data Event Data CEMI ₃ CEMI ₅ CEMI ₇ CEMI ₉ CEMI ₃	All Interruption Data Event Data CEMI ₃ CEMI ₅ CEMI ₇ CEMI ₉ CEMI ₃ CEMI ₅	CEMI3 CEMI5 CEMI7 CEMI9 CEMI3 CEMI5 CEMI7

Figure 5: 2013 CEMI Performance Data

PE reports that it does not have the ability to provide MAIFI results for its Maryland service territory, because the data required is not currently collected for other purposes, and collecting it in order to calculate MAIFI would be a new, entirely manual field process. The cost of providing this annually in the future would be approximately \$32,000 and 400 man hours which includes time to obtain recloser readings, data entry and engineer review.

5. Service Interruption Standards (20.50.12.06)

COMAR 20.50.12.06 states that an Electric Company shall restore service within 8 hours, measured from when the utility knew or should have known of the outage, to at least 92 percent of its customers experiencing sustained interruptions during normal conditions; within 50 hours to at least 95 percent of its customers experiencing sustained interruptions is less than or equal to 400,000 or 40 percent of the utility's total number of customers, and as quickly and safely as permitted to its customers experiencing sustained interruptions during event in which the total number of sustained interruptions during each major outage event in which the total number of sustained interruptions is greater than 400,000 or 40 percent of the Electric Companies' total number of customers, whichever is less.

⁵⁰ CEMI_n is the ratio of the total number of customers experiencing sustained interruptions equal to or greater than "n"", where **n** is equal to the number of interruptions, divided by the total number of customers served.

⁵¹ MAIFI_E is the ratio of the total number of customer momentary interruption events divided by the total number of customers served, where \mathbf{E} is equal to the number of interruption events.

	Normal Conditions		Major Outage Even	ts^{52}	
COMPANY	% Of Interruptions Restored w/in 8 Hours	Meets COMAR Interruption Standard (92%)	% Of Interruptions Restored w/in 50 hours	Meets COMAR Interruption Standard (95%)	Corrective Action Plan Required?
PE	96.8%	Yes	N/A	N/A	No

Figure 6: 2013 Service Interruption Performance

During normal conditions, PE restored service to 96.8% of its customers that experienced a sustained outage within 8 hours or less. PE experienced no major outage events in 2013. PE satisfied this standard and does not need to provide a corrective action plan.

6. Downed Wire Response Standards (20.50.12.07)

COMAR 20.50.12.07 states that each Electric Company shall respond to a government emergency responder guarded downed electric utility wire within 4 hours after notification by a fire department, police department, or 911 emergency dispatcher at least 90 percent of the time.

PE exceeded the 90 percent within 4 hours standard by responding to 99.58 percent of government emergency responder guarded downed electric utility wire within 4 hours after notification.

COMPANY	4 Hours Or Less	More Than 4 Hours But Less Than 8 Hours	8 Hours or More	Total Found to Be Electric Utility Wires	Total # of Downed Wires Reported
PE	239	1	0	N/A	240

Figure 7: Guarded Downed Wire Response

COMPANY	% Of Downed Wire Notifications Resulting In Responses w/in 4 Hours	Meets COMAR Downed Wire Response Standard (90%)	Corrective Action Plan Required?
PE	99.58%	Yes	No

Figure 8: All Downed Wire Response

7. Customer Communications Standards (20.50.12.08)

COMAR 20.50.12.08 states that each Electric Company shall answer within 30 seconds, on an annual basis, at least 75 percent of all calls offered to the utility for customer service or outage reporting purposes. It also states that each Electric Company shall achieve an annual average abandoned call percentage rate of 5 percent or less. Electric Companies are also required to provide:

- The percentage of calls that are answered within 30 seconds;
- The abandoned call percentage rate; and

⁵² PE reported no Major Outage Events occurring on its system in 2013.

The average speed of answer.

•

PE's customer telephone call answer time and abandoned call rate includes calls offered to a customer service representative, IVR or the overflow system. In 2013, PE answered 80.34% of all calls offered within 30 seconds, with an abandoned call percentage rate of 3.19%.

Based solely upon those calls offered to its customer service representatives, PE answered 61.18% of calls within 30 seconds. PE also reported an abandoned call percentage rate of 6.30% with an average speed of answer of 45.5 seconds.

COMPANY	% Of Calls Answered w/in 30 seconds	Meets COMAR Call Answer Time Standard (75%)	Annual Abandoned Call % ⁵³	Meets COMAR Annual Abandoned Call Standard (< 5%)	% Of Calls Answered w/in 30 seconds by Rep	% of Abandoned Calls Received by Rep	Average Speed of Answer (seconds)
PE	80.34%	Yes	3.19%	Yes	61.18%	6.30%	45.5

Figure 9: Customer Communication Performance

8. Vegetation Management Standards (20.50.12.09)

When performing VM, PE physically performs the following methods: brush removal by cutting or mowing, brush control utilizing hydraulic foliage, low volume basal, and cut surface herbicide applications techniques, off and on corridor tree removal, including off corridor hazard trees, property owner notification, and the pruning of trees which can originate either from off or on the corridor.

Total circuit miles trimmed in 2013 were 1,310 miles with a total cost of approximately \$10,318,072. The average cost per circuit mile trimmed was \$7,876.

Company	Overhead Circuit Miles in MD	Total # of Miles of VM Performed	Trim Cycle (Years)	COMAR ⁵⁴ Minimum Required Trimming 1 st - 12 Months	2013 VM Expenditures ⁵⁵	2013 Avg. VM Cost (\$/Mile)
PE	6,059	1,310	5	12%	\$10,318,072	\$7,876

Figure 10:	2013 Vegetation	Management	Completed
0	8		1

⁵³ The abandoned call rate is calculated by dividing the total number of abandoned calls by the total number of calls offered to the utility of customer service or outage reporting purposes.

⁵⁴ COMAR 20.50.12.09F (1) states that this regulation initially begins on January 1 of the year immediately following the effective date of the regulation (i.e. January 1, 2013).

⁵⁵ VM cost includes both Capital and O&M Expenditures for "Vegetation Management" work.

Company	# of Miles of Veg. Management Planned to be Trimmed	# of Substations Affected	# of Feeders/Circuits Affected	% of System	2014 Projected Vegetation Management Expenditures	2014 Planned Avg. VM Cost (\$/Mile)
PE	1,305	30	98	22%	\$10,024,196	\$7,681

Figure 11: 2014 Projected Vegetation Management

PE uses a 5-year trim cycle when performing VM and has approximately 6,059 total OH circuit miles throughout Maryland on its system.

In 2013, PE trimmed a total of 1,310 OH circuit miles on feeders at 93 substations. 31 34.5kV Sub-Transmission Substations were also trimmed in 2013. Approximately 22% of its OH circuit miles were trimmed in 2013. PE's expenditures for VM in 2013 totaled \$10,318,072.

For 2014, PE plans to trim 1,305 OH circuit miles at 97 substations, 21-34.5kV Sub-Transmission Substations are included. If completed, PE will have trimmed approximately 22% of its total system in 2014. PE proposes a budget of \$10,024,196 to complete all planned VM for 2014.

9. Reliability Objectives & Planned Actions

Over the past two years, in order to improve system reliability, PE invested into all facets of its system such as new technologies, refurbishment or replacement of equipment, and rigorous inspection and maintenance activities such as: circuit and pole inspections, underground equipment inspections and vegetation management. As a result, the Company has improved its service reliability performance by 25% since 2011. In addition to those activities listed above, PE plans to pursue its overall reliability goals by placing focus on four specific COMAR requirements.

The first COMAR reliability requirement that PE is placing additional emphasis on in order to achieve its reliability goals is 20.50.12.09 (Vegetation Management Requirements). PE states that continuing to emphasis its rigorous vegetation management program will ensure continued and safe operation of the subtransmission and distribution systems. PE estimates a 8.5 minute reduction in SAIDI as a result of this work.

The second COMAR reliability requirement that PE is placing additional focus on in order to achieve its reliability goals is 20.50.12.03 (Poorest Performing Feeder Standard). PE is emphasizing this program because it estimates a 4.2 minute overall reduction in SAIDI as a result.

The third and fourth COMAR reliability requirement that PE is placing additional focus on in order to achieve its reliability goals are 20.50.12.10.D(2) & H(2) (Periodic Equipment Inspections). As required, PE conducts visual inspections of distribution circuits and equipment from the substation to the first protective device every two years, as well as a total circuit line and equipment inspection every six years. This program identifies, uncovers and addresses through appropriate preventative or corrective maintenance, problems that could impact service

reliability and problems with equipment such as deterioration. PE is emphasizing these equipment inspections because it is estimated to produce a 4.3 minute overall reduction in SAIDI as a result.

In addition, PE also has plans to place additional emphasis on three reliability improvement programs in order to achieve its reliability goals moving forward:

Wood pole inspection: PE has a 10-year inspection program which identifies poles in need of repair or replacement prior to failure. Special emphasis is being placed on this program because PE estimates a 0.6 minute overall improvement in SAIDI;

CEMI: PE has a program that examines customers experiencing multiple interruptions ("CEMI"). In this program, reliability improvement teams, led by reliability engineers, meet to review poor performing circuits and devices, any device that has operated three or more times in the past twelve months and any circuit that has locked out two or more times in the past twelve months. PE estimates a 0.7 minute overall improvement in SAIDI;

Underground cable replacement: PE has a reactive program that replaces underground cable that show a history of failures. Projects are identified and ranked based on the number of customers affected, the number of failures and the impact on customer satisfaction. PE estimates a 5.8 minute overall improvement in SAIDI.

PE has also made significant improvements to the downed wire response process by installing supplementary monitors in its hazard dispatch room where an individual to monitor these calls.

When inquired by Staff, PE stated that the top three programs that will have the greatest impact on long-term reliability were:

- Vegetation Management
 - 8.5 minutes projected SAIDI impact
 - 0.06 projected SAIFI impact
 - \$10,318,072 in 2013
- Underground Cable Replacement
 - 5.8 minutes projected SAIDI impact
 - 0.04 projected SAIFI impact
 - \$348,005 in 2013
- Overhead Circuit Inspections
 - 3 minutes projected SAIDI impact
 - o 0.03 projected SAIFI impact
 - \$2,044,973 in 2013

10. Expenditures and Projects

COMAR 20.50.12.11.A.(6) requires each of the electric companies to report current year expenditures and estimate or projected expenditures for the following two calendar years, current year labor hours if available, and progress measures for each capital and maintenance program. COMAR 20.50.12.11B(1) requires each of the utilities to report reliability program operation and maintenance and capital expenditures for the current year and the 2 previous years.

The following are the actual capital and operation and maintenance expenditures for PE for 2013, including a historical overview of the money spent the previous 2 calendar years.

	2011 ⁵⁶	2012	2013		2013	2014	2015
Investment Reason	Actual	Actual	Budget	Actual	Labor Hours ⁵⁷ (Utility)	Projected	Projected
Condition		8,733,658	8,758,813	3,761,598	20,078	5,604,173	7,180,588
Forced		37,063,077	13,014,304	6,408,486	87,198	10,703,518	10,826,352
Miscellaneous		1,862,452	1,502,954	1,718,713	14,015	2,085,061	2,482,220
System Reinforcement		706,747	1,959,137	1,090,930	8,608	1,133,013	784,795
Vegetation Management		8,511,360	8,957,030	8,814,724	5,819	8,244,742	8,125,712
Total	29,747,118	56,877,294	34,192,238	21,794,451	135,718	27,770,507	29,399,667

Figure 12: Maintenance of Reliable Electric Service Capital Expenditures

PE defines each of its Capital expenditures investment reasons as such:

- Condition Costs associated with the replacement of outdated and/or poor performing equipment and reliability related costs.
- Forced Costs associated with storm outage restoration, failed substation or line equipment and devices, regulatory required and relocations of facilities associated with roadways and bridge projects.
- Miscellaneous Costs associated with corrective maintenance, operations, lighting and meter.
- System Reinforcement Costs associated with system reinforcement.
- Vegetation Management Costs associated with planned and unplanned tree trimming and vegetation management programs.

⁵⁶ PE states that due to system conversion that took place as a result of the merger between Allegheny Energy and FirstEnergy in 2011, the 2011 actual capital and operations expenditures are only available as a total amount.

⁵⁷ Note that the hours worked in 2013 do not include contractor hours.

	2011	2012	2 2013		2013	2014	2015
	Actual	Actual	Budget	Actual	Labor Hours ⁵⁸ (Utility)	Projected	Projected
Condition		2,053,444	952,014	1,739,376	18,549	2,306,982	1,847,219
Corrective Maintenance		1,599,895	414,720	2,069,178	19,002	447,360	447,360
Forced		11,601,584	3,306,974	3,620,298	22,166	2,935,321	2,712,420
Miscellaneous		1,241,577	536,488	1,457,598	17,648	1,045,188	1,006,072
Vegetation Management		2,345,231	2,704,934	1,503,348	1,845	1,779,454	1,782,636
Total	7,363,913	18,841,731	7,915,130	10,389,798	79,210	8,514,305	7,795,707

Figure 13: Reliable Electric Service Operating & Maintenance Expenditures

PE defines each of its Operation & Maintenance expenditures investment reasons as such:

- Condition Costs associated with obsolete equipment, fix-it-now, and reliability
- Corrective Maintenance Costs associated with corrective maintenance, operations and preventative maintenance
- Forced Costs associated with failures, IPP/Municipal connect, relocations, storms and substation failures
- Miscellaneous Costs associated with system reinforcement, lighting and meter.
- Operations Costs associated with operations
- Preventative Maintenance Costs associated with preventative maintenance
- Vegetation Management Costs associated with planned and unplanned vegetation management activities.

⁵⁸ Note that the hours worked in 2013 do not include contractor hours.

E. Appendix 5: Pepco

Pursuant to COMAR 20.50.12.11, on or before April 1st of each year, Pepco is required to file with the Commission their annual reliability performance report which reflects the company's reliability performance. This report marks the second annual report since the adoption of COMAR 20.50.12.

Pepco has met all COMAR required standards for 2013, as it did in 2012. In comparison to 2012, Pepco experienced improvements in their SAIDI, and CAIDI indexes for all interruption data minus major outage event data, but had an increase in SAIFI.

Pepco has used the company's top three best business practices: vegetation management, an automated provision of the estimated time of restoration to customers during outages, and a comprehensive safety program, to improve overall system reliability. These practices along with system upgrades and distribution automation will improve Pepco system reliability.

1. 20.50.12.02 System-Wide Reliability Standards

COMAR 20.50.12.02 requires that each electric company shall collect and maintain reliability data and use system-wide indices SAIDI and SAIFI as performance measurements of system reliability. The SAIFI and SAIDI reliability standards set forth for Pepco for the 2013 calendar year is 1.81 for SAIFI and 2.82 for SAIDI. Pepco's annual SAIFI and SAIDI results are required to be equal to or less than these established numbers, and the indices are measured on all interruption data minus major outage event interruption data and minus outage data resulting from an outage event occurring on another utility's electric system.

The system-wide performance data for Pepco is listed below in Figure 1. The report for 2013 is unique in that it does not include any major outage events (MOEs). Pepco met the COMAR standard for 2013 for SAIFI (performing 17.7% better than the standard), and SAIDI (performing 12.8% better than the standard).

		Reliability Index	2011	2012	2013	2013 COMAR Standard ^{4,5}	3 Year Average
		SAIFI ¹ (Events)	3.43	3.16	1.49	N/A	2.69
	All Interruption Data	SAIDI ² (Hours)	23.95	43.07	2.46	N/A	23.16
Outages		CAIDI ³ (Hours)	6.98	13.63	1.65	N/A	7.42
nta		SAIFI (Events)	2.00	1.39	1.49	1.81	1.63
9 P	All Interruption Data Minus Major Outage Event Interruption	SAIDI (Hours)	3.60	2.77	2.46	2.82	2.94
au	Data	CAIDI (Hours)	1.80	2.00	1.65	N/A	1.82
Planned	All Interruption Data Minus Major Outage Event Interruption	SAIFI (Events)	•	(2)			
	Data & Minus Outage Data Resulting from an Outage Event	SAIDI (Hours)	-				•
Including	Ocurring on Another Utility's Electric System	CAIDI (Hours)				N/A	
2		SAIFI (Events)	1.91	1.41	1.49	N/A	1.60
-	An interruption bata minus iEEE major Event bay interruption	SAIDI (Hours)	3.40	2.55	2.46	N/A	2.80
_	Data	CAIDI (Hours)	1.78	1.80	1.65	N/A	1.74
		SAIFI (Events)	3.43	3.12	1.43	N/A	2.66
	All Interruption Data	SAIDI (Hours)	23.93	42.95	2.26	N/A	23.05
Outages		CAIDI (Hours)	6.98	13.75	1.59	N/A	7.44
nta		SAIFI (Events)	1.99	1.36	1.43	N/A	1.59
P	All Interruption Data Minus Major Outage Event Interruption	SAIDI (Hours)	3.58	2.65	2.26	N/A	2.83
au	Data	CAIDI (Hours)	1.80	1.95	1.59	N/A	1.78
Planned	All Interruption Data Minus Major Outage Event Interruption	SAIFI (Events)	-	-	-	-	-
Bu	Data & Minus Outage Data Resulting from an Outage Event	SAIDI (Hours)	-	1.24	-	-	-
Excluding	Ocurring on Another Utility's Electric System	CAIDI (Hours)	-			N/A	+
Excl	All Intermetion Date Minus (FFF Mains Front Day Intermetion	SAIFI (Events)	1.91	1.38	1.43	N/A	1.57
-	All Interruption Data Minus IEEE Major Event Day Interruption Data	SAIDI (Hours)	3.38	2.42	2.26	N/A	2.69
	Data	CAIDI (Hours)	1.78	1.75	1.59	N/A	1.71

Figure 1: Pepco System-Wide Reliability Table 2011-2013

The Pepco performance for SAIFI, SAIDI, and CAIDI were all better than the three year average from 2011-2013.

2. 20.50.12.03 Poorest Performing Feeder Standard

COMAR 20.50.12.03 requires that electric companies report SAIDI, SAIFI, and CAIDI indices for the 3% of feeders identified as having the poorest reliability. Pepco identified a total of 21 feeders as having the poorest reliability. Pepco identified its poorest performing feeders by the following method:

Pepco⁵⁹ uses a feeder composite index, which is 75% of the feeder contribution to SAIFI plus 25% of feeder contribution to SAIDI to determine the PPF list.

		Total # of	Fotal # of Average # of		2013 Interruption Data (Minus MOE)			2013 Interruption Data (Minus MOE)		
Utility	# of PPF	Feeders in Maryland	Customers per PPF	Average SAIFI (Interruptions)	Average SAIDI (Hours)	Average CAIDI (Hours)	Average SAIFI (Interruptions)	Average SAIDI (Hours)	Average CAIDI (Hours)	
PEPCO	21	697	1380	51.81	7.07	1.46	51.81	7.07	1.46	

Figure 2: Pepco 2013 Poorest Performing Feeder Summary

The 21 selected PPF for Pepco accounted for 18% of total Pepco system SAIFI and 16% of system SAIDI. Pepco had one feeder that was a repeat feeder from 2012, Feeder No: 15238, but does not count as a repeat feeder due to the 12 month remediation period allowed the

⁵⁹ Pepco Annual Performance Report, pg. 13, Mail Log No: 153734

following reporting period after the feeder was identified. No other feeder from 2012 fell into the bottom 3% for 2013.

The information for Feeder No. 15238 is listed in Figure 3 below.

				Feed	er 15238						
District	Substation	Circuit	Customers	Number of		ability Indi (In Hours)	ces	E	eder Mil	65	Repeated Last 2
<u>Sister</u>		Gircan	Served	Outages	SAIFI	SAIDI	CAIDI	OH	UG	Total	Years?
MC	Quince Orchard 118	15238	1,147	27	7.24	11.92	1.65	21%	79%	33.13	Yes

Figure 3: Feeder 15238 Data

The majority of the outages for Feeder 15238 were caused by vegetation (54%), 17% unknown, and 14% each for both equipment failure and weather.

Outage Cause by SAIFI	SAIFI	% of Feeder SAIFI
Тлее	3.932	54.3%
Unknown	1.209	16.7%
Equipment Failure	1.017	14.1%
Weather	0.999	13.8%
Animal	0.072	1.0%
Equipment Hit	0.006	0.1%

Figure 4: Feeder 15238 Outage Causes

The remediation planned for Feeder 15238 is as follows:

- Perform vegetation management on the transmission right of way (ROW) for the feeder, which has been assessed as the most vulnerable part of the feeder.
- Replace the feeder wire with larger and stronger cables.

3. 20.50.12.04 Multiple Device Activation Standard

COMAR 20.50.12.04 requires that each electric company report all protective devices that activated five or more times causing sustained interruptions to at least ten customers during the reporting period. Pepco had a total of 26 protective devices that were activated five or more times during the prior 12-month reporting period. 14 of the protective devices were line or tap fuses, 11 devices were circuit breakers, and one transformer.

Utility	Sum of Device (activated	Protective Device Type				
	5 or more times)	Line or Tap Fuse	Recloser	Circuit Breaker	Transformer	Substation
Pepco	26	14	0	11	1	0

Figure 5: Multiple Device Activations

The number of devices was down 39 from 65 in 2012, a 40% reduction. The primary remediation actions for the devices are vegetation management, overhead and underground cable replacement, animal guards, lightning arrestors, and automatic closer reclosers (ACRs).

4. 20.50.12.05 Additional Reliability Indices Reporting Standard

COMAR 20.20.12.05 requires that each electric company use additional indices for reliability in its annual performance report for its Maryland service territory, in addition to providing SAIFI, SAIDI, and CAIDI system-wide index averages. Each electric company is also required to calculate and report Customers Experiencing Multiple Interruptions ("CEMI_n") and Momentary Average Interruption Frequency Index ("MAIFI_E") information which also give a measure of electric service reliability from the customer's perspective.

	CEMI ₂	CEMI ₄	CEMI ₆	CEMI ₈
All Interruption Data	0.387	0.101	0.022	0.010
All Interruption Data Minus Major Outage Event Data	0.387	0.101	0.022	0.010

Figure 6: 2013 Pepco CEMI Data

Pepco has shown improvement in all CEMI categories. The number of customers experiencing multiple outages is down from 54% in 2012 to 39% in 2013. Although the number is high, Pepco is moving in the right direction to correct the problem.

Pepco also calculated an annual $MAIFI_E$ index for its Maryland service territory of 0.23, down from 3.45 in 2012. Pepco has greatly reduced the momentary outages for customers in their service territory.

	MAIFIE	
All Interruption Data	0.23	
All Interruption Data Minus Major		
Outage Event Data	0.23	

5. 20.50.12.06 Service Interruption Standard

COMAR 20.50.12.06 states that an electric company shall restore service within 8 hours to at least 92 percent of its customers experiencing sustained interruptions during normal conditions and within 50 hours to at least 95 percent of its customers experiencing sustained interruptions during major outage events (where the total number of sustained interruptions is less than or equal to 400,000 or 40 percent of the utility's total number of customers). The required time duration for restoration is measured from when the utility knew or should have known of an outage. This standard also requires that service is restored quickly and safely as permitted to its customers experiencing sustained interruptions during each major outage event in which the total number of sustained interruptions is greater than 400,000 or 40 percent of the electric company's total number of customers, whichever is less.

Normal Co	nditions	Major Outage Events ²			
% of Customers Resto	red Within 8 Hours ¹	% Of Customers Restored Within 5 Hours ¹			
Actual	COMAR Standard	Actual	COMAR Standard		
98.36%	≥ 92%	N/A	≥ 95%		

Figure 8: 2013 Service Interruption Performance

Pepco met the COMAR standard for restoration under normal conditions with 98.36%, similar to the 98.21% from 2012. Pepco has performed well above the COMAR standard for the past two years. There were no MOEs for 2013, therefore no performance data for Pepco for such events.

6. 20.50.12.07 Downed Wire Response Standard

COMAR 20.50.12.07 states that each electric company shall respond to a government emergency responder guarded downed electric utility wire within 4 hours after notification by a fire department, police department, or 911 emergency dispatcher at least 90 percent of the time. Pepco met the performance standard for guarded downed wires with a 97% response rate within 4 hours.

Government Emergency Responder Guarded	Downed Wires
% Responded to Within 4 Hours After Notification by a Fire Department, Police Department or 911 Emergency Dispatcher	COMAR Standard
97%	≥ 90%

Figure 9: 2013 Guarded Downed Wire Response Performance

There were a total of 3401 downed wires reported to Pepco during the reporting period, of which 1,168 belonged to the utility (34%). Pepco responded to 68.5% of these downed wires within 4 hours, 18.4% within 4 to 8 hours, and the remaining 13.1% had a greater than 8 hour response time. Two-thirds of the Pepco extended response times for downed wires occurred during low level storms: a small tornado that touched down in Rockville on June 13, 2013 and ice storm that occurred in December.

		Num	Number Responded to in:			
	Total	≤ 4 Hours	> 4 but < 8 Hours	≥ 8 Hours		
Downed Wires Reported to the Utility	3401	N/A	N/A	N/A		
Downed Wires Reported and Found to belong to the Utility	1168	801	215	152		

Figure 10: All Downed Wire Response Performance

7. 20.50.12.08 Customer Communications Standard

COMAR 20.50.12.08 states that each electric company shall answer within 30 seconds, on an annual basis, at least 75 percent of all calls offered to the utility for customer service or outage reporting purposes. It also states that each electric company shall achieve an annual average abandoned call percentage rate of 5 percent or less. For calls offered to the utility for customer service or outage reporting purposes, Pepco met this requirement by answering 78.6% of the calls within 30 seconds with a 4.31% abandoned call rate. This is a decrease in performance in 2012 where Pepco answered 89.7% of the calls within 30 seconds and had 1.93% of calls abandoned. If Pepco continues this performance trend it will not meet the COMAR standards for 2014.

Customer Telephone	e Call Answer Time ¹	Abandoned Call Rate ²			
% of Calls Answered Within 30 Seconds	COMAR Standard	% Abandoned Calls	COMAR Standard		
78.55%	≥ 75%	4.31%	≤ 5%		

For calls solely offered to its customer service representatives, Pepco answered 58% of calls within 30 seconds with a 8.4% abandoned call rate and an average answer speed of 74 seconds. These are non-outage related calls.

% of Calls Answered Within 30 Seconds ³	% Abandoned Calls ³	Average Speed of Answer ⁴ (Seconds)		
57.96%	8.44%	74		

Figure	12:	2013
--------	-----	------

8. 20.50.12.09 Vegetation Management Requirements

COMAR 20.50.12.09 outlines the scope, technical standards, record keeping, and reporting requirements for vegetation management. Pepco has 3,966 miles of overhead distribution circuit lines for their system. This standard requires that within 12 months of the effective date of this regulation, an electric company on a 4 year trim cycle is required to perform vegetation management on at least 15% of its total distribution miles. Pepco trimmed 1,011 miles of their distribution lines in 2013, or 25% of total distribution miles. Pepco took an aggressive approach to the new COMAR standard and began vegetation management in 2012, trimming 1,550 distribution miles, or 29% of the service territory. Pepco is well ahead of the required 15% vegetation management for 2013 by cutting a total of 54% over the past two years.

Utility		d Circuit iles	Vege	tation gement	% of Total System Trimmed to Standard	% of Total System Trimmed to Standard	Trim Cycle and Current Year (X of Y Years)	Minimum Required	Vegetation Management		Vegetation Management Cost Per Mile	
	2012	2013	2012	2013	2012	2013	2013	2013	2012 2013		2012	2013
PEPCO	3,990	3,966	1550	1011	39%	25%	1 of 4	15%	\$24,642,714 \$16,790,465		\$ 15,899	\$ 16,608

Figure 13: 2012-2013 Vegetation Management

The cost per mile for vegetation management for Pepco is \$16,608, up slightly from the 2012 cost of \$15,899 per mile. The high cost is due to thick vegetation, the type of vegetation along the feeders, the urban/suburban service area, and the equipment and personnel required to perform the trimming.

9. Outage Types & Causes

During the reporting period, BGE experienced 11,614 outages, with 3,982 planned outages, 7,632 non-planned outages, and no major outage events. These outages affected 801,925 customers with 79,371,340 customer outage minutes, or 99 outage minutes per customer. Although the number of unplanned outage was only twice as high as planned outages, the customer outage minutes was 12 times as high.

Outage Type	# of Outages	# of Customers Affected	Customer Outage Minutes
Planned	3,982	34,030	6,201,424
Non-Planned Minus Major			
Outage Event	7,632	767,895	73,169,916
Major Outage Event	0		
TOTALS	11,614	801,925	79,371,340

Figure 14: 2013 Outages

Vegetation accounted for approximately 18% of the outages, underground (UG) equipment accounted for 28.6% of the outages, overhead (OH) equipment failure accounted for approximately 16.8% of the outages, and animals 13.2% of outages.

Utility		OH	UG	Weather	Lightning	Equipment				
Otimiy	Vegetation	Equipment	Equipment	(not	Strike	Hit	Animals	Overload	Other*	Unknown
PEPCO	18.1%	16.8%	28.6%	1.6%	3.4%	5.3%	13.2%	1.5%	5.9%	5.6%
* Includes	employees, f	ire, source l	ost, loadshe	d, vandalism	n, other utility	у				

Figure 15: Types of Outages

10. Expenditures

COMAR 20.50.12.11.A.(6) requires each of the electric companies to report current year expenditures and estimate or projected expenditures for the following two calendar years, current year labor hours if available, and progress measures for each capital and maintenance program. COMAR 20.50.12.11B(1) requires each of the utilities to report reliability program operation and maintenance and capital expenditures for the current year and the 2 previous years.

	2011	2012	20)13	2013	2014	2015	
	Actual	Actual	Budget	Actual	Labor Hours (Utility)	Projected	Projected	
Priority Feeder Upgrades	8,830,164	26,898,369	21,455,655	23,958,170	11,736	\$ 34,000,508	\$ 34,001,981	
Underground Residential Distribution Cable Upgrades (URD)	24,915,190	23,747,848	18,575,015	34,448,829	11,816	16,202,611	16,203,699	
Distribution Automation	2,100,835	2,642,417	6,369,281	5,036,575	18,140	2	3,807,999	
Selective Undergrounding		556	4,049,877	2,494,667	11,199	3	2,185,248	
69kv and 34kv Feeder Upgrades	2,171,818	4,844,505	5,800,160	882,327	203	6,820,756	6,820,551	
Feeder Reliability Improvements	16,581,603	55,563,251	43,077,780	71,350,764			35,000,000	
Feeder Load Relief	3,585,022	11,901,083	4,571,957	4,156,065	3,055		16,820,936	
	\$ 58,184,634	\$125,598,029	\$ 103,899,725	\$ 142,327,396	56,149	\$ 131,160,520	\$ 113,822,013	
Hours (direct charged internal only)	43,687	63,765		56,149				

Figure 16: 2013 Pepco Capital Expenditures

Two capital expenditures greatly exceeded the projected budget for 2013: underground residential distribution cable upgrades and feeder reliability improvements. Both of these can be directly related to the new COMAR standard set in 2012 and the long-term objective of improving system reliability.

	2011	2012	201	3	2013	2014	2015
	Actual	Actual	Budget	Actual	Labor Hours (Utility)	Projected	Projected
Transmission							
Scheduled Maintenance	\$5,955,148	\$4,783,673	\$4,827,578	\$4,150,443	37,803	37,803	
Corrective Maintenance	\$8,844,462	\$6,768,302	\$5,042,815	\$5,050,261	48,639	\$5,529,467	
Vegetation Management	\$1,373,109	\$2,168,334	\$2,019,386	\$2,318,077	2,054	\$2,191,356	
Sub-total	\$16,172,719	\$13,720,309	\$11,889,779	\$11,518,781	88,496	\$7,758,626	
Distribution	1						
Scheduled Maintenance	\$14,247,079	\$14,483,504	\$15,960,519	\$13,169,277	99,140	\$14,862,322	
Corrective Maintenance	\$67,747,406	\$66,950,506	\$31,632,387	\$32,302,603	292,562	\$29,731,704	
Vegetation Management	\$23,601,419	\$24,642,714	\$23,082,872	\$19,148,347	6,729	\$22,444,588	
Sub-total	\$105,595,904	\$106,076,724	\$70,675,778	\$64,620,227	398,431	\$67,038,614	
Total	\$121,768,623	\$119,797,033	\$82,565,557	\$76,139,008	\$486,927	\$74,797,240	

Figure 17: 2013 Operation and Maintenance Expenditures

There are no real changes in the Pepco operation and maintenance budget projections and execution. There was a slight savings in scheduled maintenance and vegetation management, nothing noteworthy.

11. 20.50.12.11A(4) Reliability Objectives, Planned Actions, Projects and Programs

COMAR 20.50.12.11(A)(4) states that each Electric Company is required to provide in its annual report a description of the reliability objectives, planned actions and projects, and programs which are designed to improve its electric service and system.

The top three programs for Pepco are vegetation management, feeder improvements, and distributions automation. Feeder improvements are projected to eliminate faults and reinforce infrastructure with newer materials and standards. Distribution automation is designed to mitigate fault impact to decrease customers affected and durations of outages.

12. 20.50.12.11A(5) Assessment of Results and Effectiveness

Pursuant to COMAR 20.50.12.11A(5), each electric company must provide an assessment of the results and effectiveness of the programs, projects, or planned actions and their impact on the reliability indices, including CAIDI, SAIDI, and SAIFI and any other reliability indices.

The top three challenges for reliability are vegetation management, aging infrastructure, and the design and operational challenges of serving a high density urban/suburban environment. These issues were addressed by Pepco in the Reliability Enhancement Plan (REP). The company routinely evaluates and employs economic alternatives in design such as under grounding strategies (extending the life of current underground cables by injecting silicon into the cables), advanced technologies (automated circuit reclosers (ACRs), and sturdier materials (fiberglass cross arms).

Pepco states that improvements in storm response and overall system reliability are the two areas to show improvement. Process changes in the area of storm response have improved customer communications, and system upgrades have reduced the number and duration of outages. The Pepco webpage now keeps customers informed of outages and projected restoration times. Technicians and first responders are doing a better job of identifying the causes of the outages and reducing the amount of "unknown causes".

The top three best business practices for Pepco are vegetation management, an automated provision of the estimated time of restoration to customers during outages, and a comprehensive safety program.

13. Conclusion

Pepco met all COMAR standards for 2013. Pepco had a slightly higher SAIFI value for 2013, but remained below the three year average for all three indices: SAIF, SAIDI, and CAIDI. Pepco had one feeder that would have been a repeat feeder if not for the 12 month remediation period. Pepco has a corrective action plan for the feeder to improve overall reliability and keep the feeder out of the bottom 3% in the future.

Pepco has two areas to focus on in the near future. The overall downed wire response time for wires reported by all sources is 68%, 29% lower than the guarded downed wire response time of 97%. Pepco also needs to work on the customer communication performance, which dropped from 89% to 78% for customer outage calls answered within 30 seconds. Pepco also rose to 4.31% for abandoned calls, which is slightly below the COMAR 5% standard.

Pepco has exceeded the requirements for vegetation management beginning in 2012 by cutting 29% of the required service territory. With the additional 25% cut in 2013, Pepco is currently at 54% of the service territory cut to COMAR standards, will ahead of the required 15% by the end of 2013.

Pepco is focused on vegetation management and distribution automation as the two programs that will have the greatest impact on long-term system-wide reliability. These programs along with replacing and upgrading aging infrastructure will improve system reliability.

F. Appendix 6: SMECO

1. System-Wide Reliability Standards (20.50.12.02)

SMECO's system-wide SAIFI, SAIDI, and CAIDI indices for all interruption data minus major outage events, showed a uniform downward trend over the last three years (2011-2013). Since 2011, prior to RM43, SMECO's SAIFI index decreased by 0.62, and SAIDI by .92. SMECO is one of two utilities that have shown an overall uniform improvement in SAIDI, SAIFI, and CAIDI in all three years (2011-2013). SMECO also performed better in SAIFI and SAIDI in 2013 (0.93 & 1.36) than its 3-Year Average (1.26 & 1.90). Both SMECO's SAIDI and SAIFI index met the system-wide reliability standards set forth in COMAR and are not required to provide a corrective action plan.

The following table provides the required reliability index results (SAIFI, SAIDI, and CAIDI) for SMECO's system (2011-2013 and 3-Year Average).

		Reliability Index	2011	2012	2013	2013 COMAR Standard	3 Year Average
		SAIFI (Events)	2.87	2.10	0.93	N/A	1.97
	All Interruption Data	SAIDI (Hours)	33.1	11.02	1.36	N/A	15.16
		CAIDI (Hours)	11.7	5.26	1.46	N/A	6.15
	All Interruption Data Minus Major	SAIFI (Events)	1.55	1.31	0.93	N/A	1.26
	Outage Event Interruption Data	SAIDI (Hours)	2.28	2.06	1.36	N/A	1.90
s		CAIDI (Hours)	1.47	1.57	1.46	N/A	1.50
age	All Interruption Data Minus Major	SAIFI (Events)	<mark>1.55</mark>	<mark>1.31</mark>	<mark>0.93</mark>	<mark>1.38</mark>	<mark>1.26</mark>
Out	Outage Event Interruption Data & Minus Outage Data Resulting from	SAIDI (Hours)	<mark>2.28</mark>	<mark>2.06</mark>	<mark>1.36</mark>	<mark>2.35</mark>	<mark>1.90</mark>
bər	an Outage Event Occurring on						
lanı	Another Utility's Electric System	CAIDI (Hours)	1.47	1.57	1.46	N/A	1.50
ng P		SAIFI (Events)	N/A	1.32	0.90	N/A	1.11
udir	All Interruption Data Minus IEEE Major Event Day Interruption Data	SAIDI (Hours)	2.26	2.06	1.20	N/A	1.84
Including Planned Outages	Major Event Day Interruption Data	CAIDI (Hours)	N/A	1.57	1.38	N/A	1.48
		SAIFI (Events)	N/A	N/A	0.93	N/A	0.93
tag	All Interruption Data	SAIDI (Hours)	33.08	11.00	1.33	N/A	15.14
no		CAIDI (Hours)	N/A	N/A	1.43	N/A	1.43
ned		SAIFI (Events)	N/A	N/A	0.93	N/A	0.93
olan	All Interruption Data Minus Major Outage Event Interruption Data	SAIDI (Hours)	2.26	2.04	1.33	N/A	1.88
Excluding Planned Outages	Outage Event Interruption Data	CAIDI (Hours)	N/A	N/A	1.43	N/A	1.43
ludi	All Interruption Data Minus Major	SAIFI (Events)	N/A	N/A	0.93	N/A	0.93
Exc	Outage Event Interruption Data &	SAIDI (Hours)	2.26	2.04	1.33	N/A	1.88

Minus Outage Data Resulting from an Outage Event Occurring on						
Another Utility's Electric System	CAIDI (Hours)	N/A	N/A	1.43	N/A	1.43
	SAIFI (Events)	N/A	1.30	0.88	N/A	1.09
All Interruption Data Minus IEEE Major Event Day Interruption Data	SAIDI (Hours)	2.26	2.05	1.12	N/A	1.81
	CAIDI (Hours)	N/A	1.57	1.39	N/A	1.48

Figure 1: System Wide Reliability Indices

2. Poorest Performing Feeder Standards (20.50.12.03)

SMECO has 237 distribution feeders serving customers in Maryland and has selected 7 feeders as its poorest performing for 2013. SMECO identifies its poorest performing feeders as those with the highest combined 50% of SAIDI plus 50% of SAIFI reliability index values, as follows:

• Feeder Index Value = [(0.50 X SAIDI) + (0.50 X SAIFI)]

The 7 feeders with the highest Index Values are considered SMECO's poorest performing feeders. None of SMECO's previous years' identified worse performing feeders fell within this year's three percent poorest performing feeder list; therefore, no corrective action plan is required to be filed at this time.

Of the 7 feeders identified on SMECO's poorest performing feeders list, 3 feeders had remedial work completed in 2013, 2 feeders were scheduled to be complete during the 2^{nd} Quarter 2014, and the remedial work for the remaining 2 feeders are on schedule to be completed in the 3^{rd} and 4^{th} Quarter 2014.

Feeder	All Inter	ruption Data			All Interruption Data Minus Major Outage Events			
	SAIFI	SAIDI	CAIDI	SAIFI	SAIDI	CAIDI		
Valley Lee 1	3.2185	7.6361	2.6798	3.2155	7.5821	2.6606		
Mason Springs 24	6.8642	17.0411	2.4784	4.6145	5.7671	1.2511		
PRNAS 3-13	5.2476	5.3117	1.2156	5.0476	5.2077	1.2272		
Redgate 12	4.3395	12.4189	2.8593	4.0082	5.7788	1.4418		
Redgate 11	4.9440	8.7322	1.7751	4.6350	4.9703	1.0698		
Leonardtown 24	4.0956	5.4704	1.3333	4.0941	5.4322	1.3242		
Cedarville 1	4.5451	5.0313	1.1067	4.5236	4.9321	1.0901		

A complete list of SMECO's poorest performing feeders for 2013 are listed below.

Figure 2: 2013 Poorest Performing Feeders

3. Multiple Device Activation Standards (20.50.12.04)

SMECO identifies and reports protective devices that serves more than 10 customers and which activated five or more times during the prior 12-month reporting period. Major outage events are included when making this determination. SMECO did not have any devices meeting the multiple device activation criteria within this reporting period.

4. Additional Reliability Indices (20.50.12.05)

COMAR 20.50.12.05 states that in addition to providing SAIFI, SAIDI, and CAIDI system-wide index averages for their entire system throughout Maryland from the previous calendar year and from the 3 previous calendar years, utilities are also required to calculate and report Customers Experiencing Multiple Interruptions⁶⁰ ("CEMI_n") and Momentary Average Interruption Frequency Index⁶¹ ("MAIFI_E") information which also give a measure of electric service reliability from the customer's perspective, unless it does not have the means to make the calculations, in which case the utility must provide an explanation of the reason why it cannot, and an estimate of the cost to provide this information in the future.

COMPANY	All Interr	uption Data			All Interruption Data Minus Major Outage Event Data ⁶²				
	CEMI ₃	CEMI ₅	CEMI ₇	CEMI ₉	CEMI ₃	CEMI ₅	CEMI ₇	CEMI ₉	
SMECO	10.67%	1.75%	0.38%	0.03%	10.67%	1.75%	0.38%	0.03%	
El guno 2: 2012 CEMI Data									

Figure 3: 2013 CEMI Data

SMECO has not provided MAIFIE data because it does not currently have the means to perform these calculations. The Cooperative anticipates having the ability to calculate these indices after full deployment of its AMI project. The estimated cost for the total project is \$69.4 million.

5. Service Interruption Standards (20.50.12.06)

COMAR 20.50.12.06 states that an Electric Company shall restore service within 8 hours, measured from when the utility knew or should have known of the outage, to at least 92 percent of its customers experiencing sustained interruptions during normal conditions; within 50 hours to at least 95 percent of its customers experiencing sustained interruptions is less than or equal to 400,000 or 40 percent of the utility's total number of customers, and as quickly and safely as permitted to its customers experiencing sustained interruptions during event in which the total number of sustained interruptions during each major outage event in which the total number of sustained interruptions is greater than 400,000 or 40 percent of the Electric Companies' total number of customers, whichever is less.

⁶⁰ CEMI_n is the ratio of the total number of customers experiencing sustained interruptions equal to or greater than "n"", where **n** is equal to the number of interruptions, divided by the total number of customers served.

⁶¹ MAIFI_E is the ratio of the total number of customer momentary interruption events divided by the total number of customers served, where **E** is equal to the number of interruption events

⁶² The information is the same because no COMAR qualifying major events occurred on SMECO's electric system in 2013.

The following table details how well SMECO restored service to customers who experienced an interruption in 2013. No data is available for major outage conditions because no major events occurred on SMECO's electric distribution system in 2013.

COMPANY	Normal Conditions		Major Outage Events ⁶³		
	% Of Interruptions Restored w/in 8 Hours	Meets COMAR Interruption Standard (92%)	% Of Interruptions Restored w/in 50 hours	Meets COMAR Interruption Standard (95%)	Corrective Action Plan Required?
SMECO	99.71%	Yes	N/A	N/A	No

Figure 4: Service Interruption Standards

SMECO restored service to 99.71% of its customers who experienced sustained interruptions within 8 hours during normal conditions.

6. Downed Wire Response Standards (20.50.12.07)

COMAR 20.50.12.07 states that each Electric Company shall respond to a government emergency responder guarded downed electric utility wire within 4 hours after notification by a fire department, police department, or 911 emergency dispatcher at least 90 percent of the time.

SMECO exceeded the 90 percent within 4 hours standard by responding to 97 percent of government emergency responder guarded downed electric utility wire within 4 hours after notification.

COMPANY	4 Hours Or Less	More Than 4 Hours But Less Than 8 Hours	8 Hours or More	Total Found to Be Electric Utility Wires	Total # of Downed Wires Reported
SMECO	247	39	14	N/A ⁶⁴	300

Figure 5: Guarded Downed Wire Response

COMPANY	% Of Downed Wire Notifications Resulting In Responses w/in 4 Hours	Meets COMAR Downed Wire Response Standard (90%)	Corrective Action Plan Required?
SMECO	97%	Yes	No

Figure 6: Guarded Downed Wire Response (cont.)

7. Customer Communications Standards (20.50.12.08)

COMAR 20.50.12.08 states that each Electric Company shall answer within 30 seconds, on an annual basis, at least 75 percent of all calls offered to the utility for customer service or outage reporting purposes. It also states that each Electric Company shall achieve an annual average abandoned call percentage rate of 5 percent or less. Electric Companies are also required to provide:

⁶³ SMECO reported no Major Outage Events occurring on its system in 2013.

⁶⁴ SMECO's OMS system does not contain the data to distinguish between a SMECO or non-SMECO downed wire.

- The percentage of calls that are answered within 30 seconds;
- The abandoned call percentage rate; and
- The average speed of answer.

In 2013, SMECO answered 88.98% of all calls offered within 30 seconds, with an abandoned call percentage rate of 1.07%.

Based solely upon those calls offered to its customer service representatives, SMECO answered 86.83% of calls within 30 seconds. SMECO also reported an abandoned call percentage rate of 1.40% with an average speed of answer of 12 seconds.

SMECO's telecommunications systems are designed to accommodate expected volumes of customer calls with minimal, or no, customer busy signals during both normal conditions and major outage events. This includes the utilization of an automated off-site overflow IVR service to process the high volume of outage related telephone calls associated with storm events.

COMPANY	% Of Calls Answered w/in 30 seconds	Meets COMAR Call Answer Time Standard (75%)	Annual Abandoned Call %	Meets COMAR Annual Abandoned Call Standard (< 5%)	% Of Calls Answered w/in 30 seconds by Rep	% of Abandoned Calls Received by Rep	Average Speed of Answer (seconds)
SMECO	80.52%	Yes	2.36%	Yes	71.73%	3.60%	19

Figure 7: Customer Communication Performance

8. Vegetation Management Standards (20.50.12.09)

SMECO's total overhead circuit miles are 3,576 miles. SMECO is in the second year of a 4-year trim cycle and, as of December 31, 2013, has performed vegetation management on more than 33% of total distribution system in 2013.

In 2013, SMECO trimmed 1,207 circuit miles at 16 substations and mowed 292 miles at 4 substations, spending a total of \$5,359,013 for VM on Distribution.⁶⁵ The average cost per circuit mile trimmed was \$4,440, compared to \$3,918 in 2012.

Figure 8 lists the vegetation management activities performed by SMECO in 2013.

⁶⁵ According to Table 3b on page 15 of SMECO's Annual Performance Report 2013 (ML# 153738).

Company	Overhead Circuit Miles in MD	Total # of Miles of VM Performed	Trim Cycle (Years)	COMAR ⁶⁶ Minimum Required Trimming 1 st - 12 Months	2013 VM Expenditures	2013 Avg. VM Cost (\$/Mile)
SMECO	3,576	1,207	4	15%	\$5,359,013	\$4,440

Figure 8: 2013 Vegetation Management

For 2014, SMECO plans to trim 1,401 circuit miles at 20 substations and 422 miles of mowing at 6 substations. \$4,757,397 has been budgeted to complete VM work in 2014.

The following table is a breakdown of SMECO's planned VM work for 2014.

Company	# of Miles of Veg. Management Planned to be Trimmed	# of Substations Affected	# of Feeders/Circuits Affected	% of System	2014 Projected Vegetation Management Expenditures	2014 Planned Avg. VM Cost (\$/Mile)
SMECO	1,401	20	77	39.2%	\$4,757,397	\$3,396

Figure 9: 2014 Projected Vegetation Management

Over the past two years (2012-2013), SMECO has trimmed more than 78% of its system since the promulgation of RM43 on May 28, 2012.

9. Reliability Objectives & Planned Actions

In order to meet the electric system performance requirements specified in COMAR 20.50.12, Service Quality and Reliability Standards, SMECO's objective is to use modern technology in combination with a proactive customer-friendly approach. The key elements of SMECO's strategy include: (1) line and station inspections, (2) preventive and responsive system maintenance, (3) efficient operation utilizing energized work states whenever determined to be a safe method, and (4) methodical short-term and long-term system planning. SMECO feels that this approach will best ensure cost-effective reliable power is available to serve both existing and future customer-members.

SMECO plans to continue to provide reliable, high quality service to its customers, in part, by continuing to carry out the following programs:

- Visually inspecting the entire distribution system bi-annually and conducting quarterly aerial inspections of all 69 kV and 230 kV transmission lines.
- Systematic wood pole inspection, treatment, and replacement as needed.

⁶⁶ COMAR 20.50.12.09F (1) states that this regulation initially begins on January 1 of the year immediately following the effective date of the regulation (i.e. January 1, 2013).

- Aggressive distribution right-of-way maintenance on a four-year cycle and right-ofway widening as appropriate.
- Annual substation transformer and voltage regulator oil testing and analysis.
- Regularly scheduled testing and maintenance of substation reclosers, circuit breakers, and associated relays.
- Annually inspecting substations, switching stations, and major distribution lines with an infrared scanner.
- Continued use and enhancement of the Cooperative's implemented Outage Management System (OMS) in conjunction with the expansion of its mobile workforce computing capabilities.

SMECO will investigate expanding its existing preventative maintenance practices and continue to proactively look for opportunities to improve area reliability performance by:

- Developing requirements for an Asset Management System to better track existing maintenance programs, asset performance statistics, and to better identify aging infrastructure before it reaches its expired useful life.
- Initiating a program to proactively replace aging copper distribution lines with new aluminum cable or steel-reinforced aluminum conductor lines.
- Reviewing existing distribution circuit sectionalizing and protective coordination configuration.
- Continued advancement of the Cooperative's AMI initiative.
- Continuing with design and construction of the SMECO Western Charles County 69kV transmission line expansion project. This project will provide needed infrastructure to add two additional distribution substations and loop-fed 69 kV transmission infrastructures to better serve growing area loads and ensure alternate transmission feeds to serve area distribution substations during outage contingency situations.
- Completing the remaining phase of the SMECO 230 kV Southern Maryland Reliability Project.

SMECO develops its system Load Forecasts ("LF") using statistics provided by the Maryland State Office of Planning. The Company plans to provide its next LF in the second Quarter of 2014, which will be based on the more recent winter 2013-2014 and summer 2013 system load information. SMECO uses this LF as the basis for developing current and future construction work plans ("CWP"). Both SMECO's LF and CWP are supported by its Distribution Long Range Plan ("DLRP") and Transmission Long Range Plan ("TLRP"), completed January 2005 and 2006, respectively. The purpose of these programs are to examine SMECO's existing transmission and distribution systems and to provide a guide for making system improvements needed to reliably serve projected peak system loads for future years.

SMECO also uses software modeling on each of its distribution feeders to determine the worst-case voltage drop, maximum expected line amps, and the maximum line section loading percentage for projected peak loads.

10. Expenditures and Projects

COMAR 20.50.12.11.A(6) requires each of the electric companies to report current year expenditures and estimate or projected expenditures for the following two calendar years, current year labor hours if available, and progress measures for each capital and maintenance program. COMAR 20.50.12.11B(1) requires each of the utilities to report reliability program operation and maintenance and capital expenditures for the current year and the 2 previous years.

Figure 10 shows the actual capital and operation and maintenance expenditures for SMECO for 2013, including a historical overview of the money spent the previous 2 calendar years.

In 2013, SMECO spent approximately \$45,410,353 on capital expenditures to support maintenance of reliable electric service. The following table provides more in-depth information regarding how these expenditures were disbursed among the various capital investment reasons.

	2011	2012	2013		2013		2014	2015
Investment Reason	Actual	Actual	Budget ⁶⁷	Actual	Labor Hours (Utility)	Labor Hours (Contractor)	Projected	Projected
T&D Capital Budget ⁶⁸	N/A	N/A	106,900,000	N/A	N/A	N/A	82,776,108	61,140,280
Substations & Switching Stations	3,522,907	0	N/A	678,589.8	N/A	N/A	N/A	N/A
Distribution –CWP	443,487	3,621,703	N/A	16,192,317	N/A	N/A	N/A	N/A
Ordinary Distribution Replacement	6,931,705	11,947,503	N/A	7,300,330	N/A	N/A	N/A	N/A
Miscellaneous Line and Station Changes	14,781,190	20,372,308	N/A	16,350,146	N/A	N/A	N/A	N/A
Miscellaneous Line and Station Changes	4,662,437	2,117,482	N/A	4,888,971	N/A	N/A	N/A	N/A
Utility Hours					188227	N/A		

Actual expenditures for the past three calendar years are also listed below:

Figure 10: SMECO Capital Expenditures⁶⁹

In 2013, SMECO spent approximately \$29,406,277 on operation & maintenance expenditures to support maintenance of reliable electric service. The following table provides more in-depth information regarding how these expenditures were disbursed among the various operation & maintenance investment reasons.

⁶⁷ This was SMECO's 2013 reported total capital budgeted. Had SMECO reported net the new service connection budget, total would have been \$62,392,400.

⁶⁸ Transmission and Distribution Capital Budget: SMECO budgets all T&D capital as one account. When expensed, it is allocated to the appropriate work type/accounts.

⁶⁹ Capital expenditures include work required to add or replace real property associated with the distribution system that provides electrical service to SMECO customers. Real property is defined as construction units that are accounted for within the Continuing Property Records system. This includes all voltages.

	2011	2012	2013		2013		2014
Investment Reason	Actual	Actual	Budget	Actual	Labor Hours (Utilit y)	Labor Hours (Contracto r)	Projecte d
Transmission Labor Hours	0	0	0	0	29118	N/A	0
Distribution Labor Hours	0	0	0	0	260405	N/A	0
Underground & Overhead Distribution Plant Inspection	85,176	88,570	649,253	761,992	0	N/A	663,263
Maintenance & Replacement Programs	13,594,0 64	12,011,5 42	8,343,77 9	10,596,3 36	0	N/A	10,311,994
Vegetation Management Distribution	4,219,91 0	4,773,00 5	4,335,60 2	5,359,01 3	0	N/A	4,757,397
Vegetation Management Sub-Transmission	928,765	1,038,88 4	1,035,10 5	1,094,92 2	0	N/A	1,287,232
Sub-transmission Inspection and Maintenance Programs	1,103,34 7	1,637,83 1	1,063,14 9	1,515,96 0	0	N/A	1,231,786
Distribution Substation Plant Inspection and Maintenance Programs	937,322	1,114,03 3	746,607	1,112,26 0	0	N/A	1,077,577
Miscellaneous Distribution Operation and Maintenance	8,448,46 2	7,891,30 3	10,577,0 69	8,965,79 4	0	N/A	9,434,409

Figure 11: SMECO Operation & Maintenance Expenditures

11. Conclusions

Based on its review of SMECO's 2013 reliability report, Staff believes SMECO is steadily improving its electric system reliability and is confident that, barring any unforeseen circumstances, SMECO will be able to meet the standard reliability benchmarks outlined in COMAR for 2014.

G. Appendix 7: Delmarva 2013 Corrective Action Plan Review

1. Background/Summary

In 2011, Maryland's General Assembly passed the Maryland Electricity Service Quality and Reliability Act (Chapter 168 of the Acts of 2011) which required the Commission to adopt regulations by July 1, 2012 establishing service quality and reliability standards for the delivery of electricity to retail customers by electric companies. The Act established the goal that "each electric company provides its customers with high levels of service quality and reliability in a cost-effective manner, as measured by objective and verifiable standards..."⁷⁰

Effective May 28, 2012, the Commission established specific standards for reliability for each electric company in COMAR 20.50.12.02D(1)(c).

The 2013 annual reliability standards for Delmarva are as follows:⁷¹

SAIDI ⁷²	2.99
SAIFI ⁷³	1.65

According to Delmarva's annual Performance Report Corrective Action Plan dated April 1, 2014, the annual standards for 2013 were not met.⁷⁴

2. Applicable Law

PUA § 7-213(e)(1)(iii) states:

The regulations adopted under subsection (d) of this section shall: . . . (iii) for an electric company that fails to meet the applicable service quality and reliability standards, require the electric company to file a corrective action plan that details specific actions the company will take to meet the standards.

COMAR 20.50.12.02D(1)(c) sets forth the SAIDI and SAIFI reliability standards for Delmarva for calendar years 2012-2015.

COMAR 20.50.12.02D(4) states, "A utility's annual SAIDI result shall be equal to or less than its annual SAIDI reliability standard established in (0, 1) of this regulation."

COMAR 20.50.12.02D(5) states, "A utility's annual SAIFI result shall be equal to or less than its annual SAIFI reliability standard established in D(1) of this regulation."

⁷⁰ PUA §7-213(b).

⁷¹ COMAR 20.50.12.02D(1)(c).

⁷² PUA §7-213(a)(2) defines "System-average interruption duration index" or "SAIDI" as the sum of the customer interruption hours divided by the total number of customers served.

⁷³ PUA §7-213(a)(3) defines "System-average interruption frequency index" or "SAIFI" as the sum of the number of customer interruptions divided by the total number of customers served. ⁷⁴ Delmarva 2014 Annual Performance Report Corrective Action Plan; pg. 5; Mail Log No: 153722

COMAR 20.50.12.02(E) states, "If a utility fails to satisfy the standard in §D(4) or (5) of this regulation, it shall provide a corrective action plan, preferably in its annual performance report but by no later than April 1."

3. Acronyms:

ACR – Automatic Circuit Recloser
ASR - Automatic Sectionalization and Restoration
CAP – Corrective Action Plan
CEMI - Customers Experiencing Multiple Interruptions
CI – Customer Interruptions
CMI – Customer Minutes of Interruption
DA- Distribution Automation
DR – Data Request
GSRI - Greater Salisbury Reliability Improvement Project
IT – Information Technology
MOE – Major Outage Event
MOD – Motor Operated Devices
PPF – Poorest Performing Feeder
T&D – Transmission and Distribution

4. Analysis

a. Delmarva's Reliability

Staff reviewed the 2013 SAIDI and SAIFI standards results reported by Delmarva against the COMAR standards established by the Commission.

	Annual Requirement	Actual Results ⁷⁵	% Above COMAR Standard
SAIDI	2.99	3.54	18.4%
SAIFI	1.65	1.95	18.2%

Figure 1: 2013 SAIFI and SAIDI Targets and Results

The chart below shows the Delmarva SAIFI and SAIDI numbers for the past five years, comparing the company performance for 2012-2013 to the COMAR standards.

⁷⁵ Delmarva 2014 Annual Performance Report Corrective Action Plan; pg. 5; Mail Log No: 153722

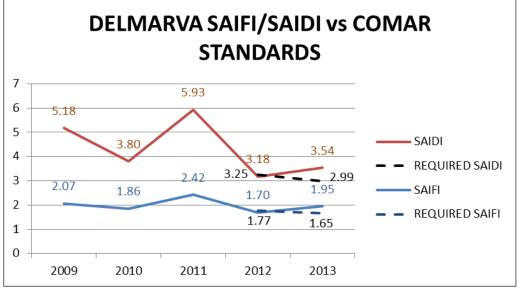


Figure 2: 2013 SAIFI and SAIDI 5 Year Trend

b. Customer Perspective

In examining the data, the increased interruptions and the outage time caused by the shortfall in SAIFI and SAIDI can be seen as follows:

Delmarva total customer count for 2013 = 199,956

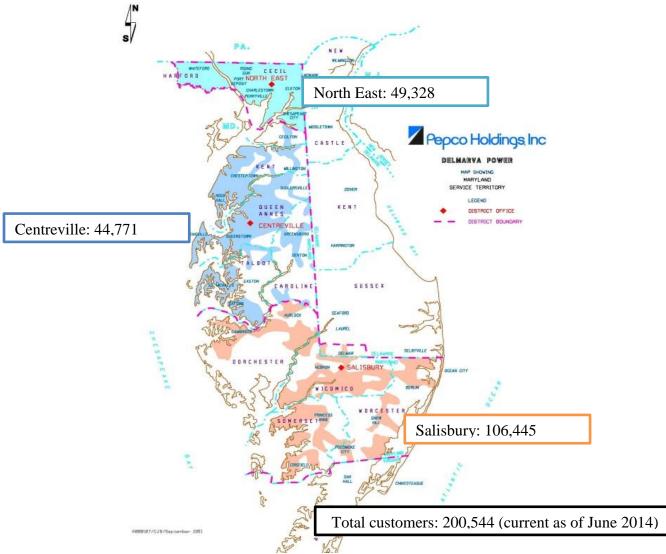
Delmarva Actual SAIFI = 1.95 Delmarva Target SAIFI = 1.65

Target Number of Customer Interruptions = 199,956 * 1.65 = 329,927 *Actual* Number of Customer Interruptions = 199,956 * 1.95 = 389,914 Number of Additional Interruptions Caused by the Shortfall = 59,987 **Percentage of Additional Interruptions Caused by the Shortfall = 59,987 / 329,927 = 18.1%**

> Delmarva Actual SAIDI = 3.54 Delmarva Target SAIDI = 2.99

Target Number of Outage Hours = 199,956 * 2.99 = 597,868 Actual Number of Outage Hours = 199.956 * 3.54 = 707,844 Number of Additional Outage Hours = 109,976 **Percentage of Additional Customer Outage Hours = 18.4%**

To put it these differences into perspective, if all of these outages occurred simultaneously in three of the largest cities in the Delmarva service area (Salisbury, Ocean City, and Elkton), all of the customers in the cities would have experience an outage of just under two hours.


Delmarva CAIDI (Shortfall)

Customer Minutes of Interruption (CMI) by Shortfall = 109,976 * 60 = 6,598,548 Average Outage Time of Customers Affected by Shortfall = 6,598,548 / 59,987 = 110 min or 1.83 hours

Delmarva did not meet he COMAR SAIFI and SAIDI standards for 2013. What this meant to a customer was that on average one out of every five Delmarva customers experienced an additional 1 hour and 50 minutes of additional outage time during 2013.

c. Delmarva Districts

Delmarva operates three districts in Maryland: North East (near Elkton), Centreville, and Salisbury, as seen in Figure 4. During significant storms and MOEs, Delmarva dispatches response and repair teams from each of the three district offices.

Figure 3: Delmarva Service Districts

d. Significant Storms

There were no major outages recorded for 2013. Delmarva stated that isolated events such as microburst thunderstorms have an effect on a large portion of their customers but not over 10% or 100,000 required to be considered a MOE.⁷⁶ Delmarva suggests that storms that have over 700 lightning strikes, microburst thunderstorms, or wind gusts of over 50 mph should be considered a significant storm and excluded from the SAIFI and SAIDI standards.⁷⁷ Storms with large winds cause extensive damage by blowing around vegetation which damages overhead equipment, as well as other objects that strike above ground equipment causing damage and outages. Lightning strikes can affect the systems in many ways, but generally result in one of the following:⁷⁸

- Activation of a protective device (fuse, breaker, recloser) from an overcurrent caused by the lightning strike. These activations can be temporary or permanent requiring repairs.
- Activation of the lightning arrestor causing the high voltage to be grounded, causing no damage to the system.
- Catastrophic equipment damage or failure (transformer, voltage regulator, breakers, etc.) due to direct lightning strikes.

There were seven significant storms (thunderstorms with over 700 lightning strikes, microburst thunderstorms, or wind gusts of over 50 mph)⁷⁹ between March 2013 – August 2013 in the Salisbury district that were not considered major outage events, (MOEs), but were significant enough to cause large outages in a localized area. One microburst thunderstorm in Salisbury on June 13, 2013^{80} contributed to 5% of the annual system-wide SAIDI total, or 5 ½ minutes of outage per customer. Within the Salisbury district, the district SAIDI increased 10%, or 11minutes of outage per customer as a result of the storm. The customers affected by each storm as well as the amount of hours that the customers were without power is listed in Figure 4. For example, the August 13, 2013 thunderstorm in the North East district of Delmarva impacted 12,782 customers for an average of 3.09 hours.

					CAIDI	CAIDI
Significant Event	Date	Location	CI	CMI	(Minutes)	(Hours)
Thunderstorm (1000)Lightning Strikes	8/13/2013	North East	12782	2371509	186	3.09
Microburst Thunderstorm	6/13/2013	Salisbury	13914	1897942	136	2.27
Wind Storm (> 50 mph)	3/6/2013	North East	13942	1894738	136	2.27
Thunderstorm (1000)Lightning Strikes	6/24/2013	North East	8024	1834581	229	3.81
Microburst Thunderstorm	6/14/2013	Centreville	10523	1599053	152	2.53
Thunderstorm (700)Lightning Strikes	7/12/2013	North East	9529	1542856	162	2.70
Thunderstorm (700)Lightning Strikes	7/23/2013	Centreville	7485	1129205	151	2.51
Significant Storm Days			76199	12269884	164	2.74

Figure 4: Delmarva 2013 Significant Storm Events

⁷⁶ COMAR 20.50.01B(27)(a).

⁷⁷ Delmarva Power Corrective Action Plan MD (Helm) Data Request

⁷⁸ John Helm DR Responses, June 17, 2014

⁷⁹ Delmarva Power Corrective Action Plan MD (Helm) Data Request May 21, 2014

⁸⁰ Delmarva 2014 Annual Performance Report Corrective Action Plan; pg. 4; Mail Log No: 153722

Case No. 9353: Staff Review of Annual Electric Reliability Reports

Delmarva states that the average daily SAIDI is .57 minutes. For the seven significant storms, the daily SAIDI was 10 to 21 times higher than the norm, and considers these as extremely abnormal days. If these significant storms were included as MOEs, the SAIFI for Delmarva would be 1.57 and SAIDI 2.52, allowing them to meet the COMAR standard.

	Outages ⁸¹	MD Customers Affected	SAIFI	Customer Minutes	SAIDI
All Data	4,542	389,960	1.95	42,621,192	3.54
Significant Storms Excluded	4,058	313,715	1.57	30,200,770	2.52

Figure 5: Delmarva SAIDI and SAIFI minus Significant Storm Data

As shown in Figure 6, Delmarva performed very well during the significant storms. At least 92% of the customers were restored for every storm within 8 hours, meeting the required COMAR standard. The average time from the start of the storm until the last customer's power was restored was approximately 29 hours. There was only one storm where 0.01% percent of customers remained without power for more than 24 hours. Most customers had their power restored on average in under 12 hours.⁸²

						How long	
						to restore	
			%	% of		the last 5%	
			Restored	outage	Duration of	of the	
			within 8	over 24	the storm	outage	
Weather	Date	Location	hours*	hours	(hours)**	(hours)***	
Thunderstorm (1000)Lightning Strikes	8/13/2013	North East	93%	0.00%	21.77	8.58	
Microburst Thunderstorm	6/13/2013	Salisbury	98%	0.00%	34.63	14.13	
Wind Storm (> 50 mph)	3/6/2013	North East	98%	0.00%	24.95	14.05	
Thunderstorm (1000)Lightning Strikes	6/24/2013	North East	92%	0.01%	32	15.62	
Microburst Thunderstorm	6/14/2013	Centreville	100%	0.00%	24.45	3.87	
Thunderstorm (700)Lightning Strikes	7/12/2013	North East	94%	0.00%	36.87	8.08	
Thunderstorm (700)Lightning Strikes	7/23/2013	Centreville	99%	0.00%	29.07	19.37	
Significant Storm Days			96%	0.00%	29.11	11.96	
* Calculated based on individual customer outage start time and not from the start of the storm							
**The storm duration is defined as from the onset of the storm to the last customer restored							
***Calculated based on the cumulative	customers rest	ored during t	the storm				

Figure 6: Significant Storm Restoration Times⁸³

 ⁸¹ Delmarva 2014 Annual Performance Report, Appendix 1, Table 4a; Mail Log No: 153728
 ⁸² Staff Data Request #3 Delmarva CAP, June 30, 2014

⁸³ Staff Data Request #3 Delmarva CAP, June 30, 2014

If the same COMAR standard regarding MOEs applied to each district as it does to the entire Delmarva service territory, none of the significant storms would have met the criteria to be a MOE. Delmarva met all COMAR standards for service restoration during these significant storms.

e. Unique Distribution System

Delmarva's service area is composed of several different transmission and distribution (T&D) systems with different voltages and distribution patterns that have been merged together to form the Delmarva service territory, and has remained unchanged for the past 19 years. The separate subsystems operate on voltages of 34kV, 25kV, 12kV, and 4kV. Each subsystem has vulnerabilities that contribute to the challenge of improving the reliability of the system as a whole.

Key vulnerabilities are as follows:⁸⁴

- 34kV system
 - Extremely lengthy feeders with high customer counts and heavy tree exposure
- 25kV system
 - Lengthy feeders with high customer counts (>500) and moderate tree exposure
 - Moderate lightning and animal exposure
- 12kV system
 - Medium to short feeders with moderate tree exposure
- 4kV system
 - Short feeders with small customer count and moderate to heavy tree exposure
 - Reliant on the 34kV systems

f. COMAR Standards

The radial nature of Delmarva's area of operations and the various transmission and distribution systems justify a higher Delmarva SAIDI and SAIFI standard compared to the other investor owned utilities in Maryland. Delmarva's distribution feeders are fed by four transmission lines running from north to south in the service territory. The Delmarva service territory is on a peninsula, and predominantly rural and radial.

Each utility company in Maryland must meet reliability standards that reflect the type of systems and equipment utilized for operations and maintenance. For 2013, BGE, Potomac Edison, and Pepco met the COMAR standards for both SAIFI and SAIDI. While each investor owned utility's reliability metrics in COMAR differs, BGE, Pepco, and P.E. all met their standards as shown in Figure 7.

⁸⁴ John Helm DR Responses, June 17, 2014

		SAIFI			SAIDI	
Utility	Actual	COMAR	% Difference	Actual	COMAR	% Difference
Delmarva	1.95	1.65	18.2%	3.54	2.99	18.4%
BGE	0.93	1.47	-36.7%	1.67	3.96	-57.8%
Potomac Edison	1.01	1.10	-8.2%	2.38	3.05	-22.0%
Рерсо	1.49	1.81	-17.7%	2.46	2.82	-12.8%

Figure 7: 2013 Investor Owned Utility SAIFI and SAIDI Performance

Examining trending in annual SAIFI and SAIDI for the investor owned utilities, Figure 8 shows that Delmarva did not have a steady downward SAIFI trend over the past five years. From 2009-2011 Delmarva's SAIFI trended opposite to that of the three other investor owned utilities. Delmarva has trended with the other companies from 2011-2013.

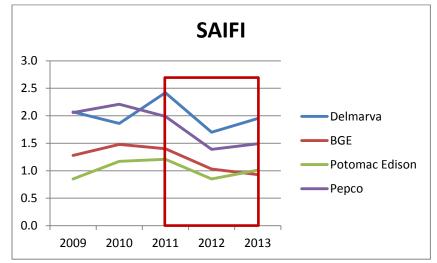


Figure 8: SAIFI Maryland Utility 5 Year Comparison 2009-2013

Similarly, Delmarva's SAIDI trended opposite to that of the other three investor owned utilities from 2009-2011. Delmarva did show an improvement from 2011-2012, it was the only utility to have an increase in SAIDI from 2012-2013, attributed to isolated, yet significant storms, which occurred in Delmarva's service area.⁸⁵

⁸⁵ Delmarva 2014 Annual Performance Report Corrective Action Plan; pg. 4; Mail Log No: 153722

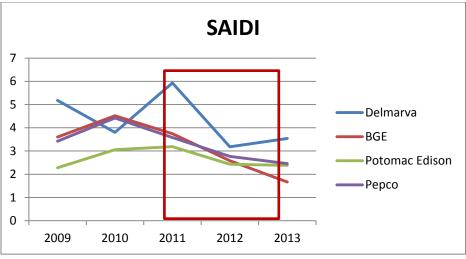


Figure 9: SAIDI Maryland Utility 5 Year Comparison 2009-2013

Post-2011 improvements in SAIFI and SAIDI for all Maryland investor owned utilities is likely attributed to the reliability improvement work utility companies began just prior to promulgation of RM43 in 2012.

COMAR standards have been set for almost two years, allowing for trend analysis to be expanded to cover this time period. When looking at two year trends, all four major utility companies are trending in a positive direction for both SAIFI and SAIDI. Delmarva has improved at the same rate as the other investment owned utilities over the past two years, but started at a higher baseline due to high SAIFI and SAIDI values for 2011. Delmarva is currently above the COMAR standard; however with the implementation of its Corrective Action Plan (CAP), Delmarva is working toward meeting or exceeding the standard from 2014 onward. Data for the two year trend charts represents the average for two consecutive years.

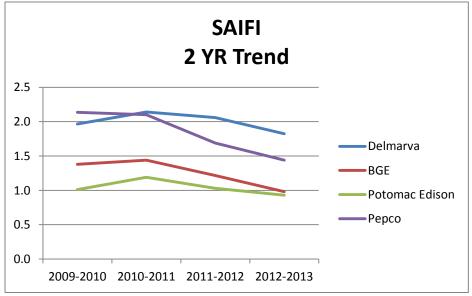


Figure 10: SAIFI Maryland Utility 2 Year Trend

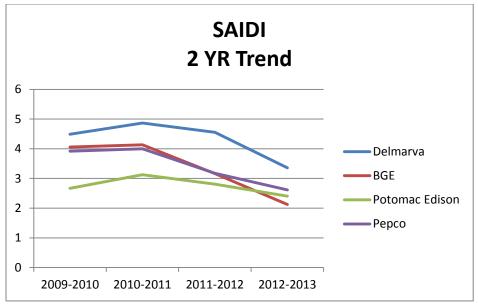


Figure 11: SAIDI Maryland Utility 2 Year Trend

g. Outage Causes

As seen in Figure 12, most customer outages and customer minutes of interruption during 2013 were caused by overhead equipment failure, weather and trees respectively.⁸⁶ In its response to Staff data requests about the filed CAP, Delmarva identified significant storms as driving factors for the missed targets in addition to overhead equipment failure and vegetation.⁸⁷

Delmarva breaks down overhead equipment failure into several different sub categories.⁸⁸ The greatest percentage of outages caused by overhead equipment failure consists of cables (19.4%), cutouts (the device that holds the fuse link) (8.4%), transformers (7.7%), and fuses (5.7%). The greatest number of customers losing power that was caused by overhead equipment failure consists of bare wires (19.5%), insulators (11.6%), and cables (10%). The greatest number of total customer minutes lost caused by overhead equipment failure consists of bare wires (28.3%), cables (13.7%), loose connections (8.5%), and cross arms (8.4%). The unknown category covers outages that the assessment or repair crew could not accurately determine. Delmarva reports that the reason for the high amount of cable and bare wire failures (~40% of overhead failures) is faulty connections, causing the wires and cables to fail and burn.⁸⁹ Cable and bare wire failures typically occur at older facilities with small wire circuits. Failures occurring underneath (below the device on the pole or supporting structure) of the breaker or a recloser will cause the highest amount of outages.

⁸⁶ Delmarva 2014 Annual Performance Report, Appendix 1, Table 4b; Mail Log No: 153728

⁸⁷ Delmarva Power Corrective Action Plan MD (Helm) Data Request

⁸⁸ Delmarva Power Corrective Action Plan Follow-Up Questions, June 2, 2014

⁸⁹ John Helm DR Responses, June 17, 2014

Outage Cause	# of Outages	% of Outages	# of Customers	Outage	% of
		,	Affected	Minutes	Minutes
Animals	563	12.40%	21,834	2,179,881	5.11%
OH Equipment Failure	748	16.47%	100,982	8,699,411	20.41%
UG Equipment Failure	627	13.80%	11,807	1,759,727	4.13%
Equipment Hit	205	4.51%	36,624	4,550,436	10.68%
Other *	321	7.07%	51,592	4,113,785	9.65%
Overload	152	3.35%	3,830	608,404	1.43%
Tree **	787	17.33%	74,717	10,387,600	24.37%
Unknown	607	13.36%	34,871	2,725,466	6.39%
Weather	532	11.71%	53,703	7,596,481	17.82%
Total	4542	100.00%	389,960	42,621,192	100.00%

Case No. 9353: Staff Review of Annual Electric Reliability Reports

Includes Employee, Fire, Source Lost, Vandalism, Loadshed, etc.
 Includes Inside of ROW and Outside of ROW Tree Outages

Figure 12: 2013 Delmarva Outage Causes

5. Corrective Action Measures

Delmarva has implemented several projects and accelerated other scheduled reliability improvement projects in order to improve the reliability of the Delmarva system and meet the COMAR standards for 2014 and beyond. Figure 13 depicts the strategies adopted by the company for reliability improvement. To address the reliability shortfall, Delmarva has broken down their CAP into two sections: current projects and additional projects. Delmarva has adjusted their previous strategies of focusing strictly on the poorest performing feeders (PPF), looking long-term at feeders that are aging and decreasing in performance. Delmarva is also implementing more distribution automation to increase reliability and reduce outage occurrences and times.

2014	2015	2016	2017	2018		
New policy to streamline restoration operations: - Simultaneous dispatch of first responders and restoration crews.						
Salisbury Plan: - Multi-year reliability capital im	provement plan to reconducto	r 14 of the 19 Salisbury	area feeders.]		
North East Plan: - Multi-year reliability capital impro- plan to reconductor 13 North Ea- feeders.	vement st area					
Vegetation Management: - Advance Service Quality and completion from mid 2016 to						
Motor Operated Device: - Additional installations on substation supply lines.						
Incremental T&D Enhancements: - Additional URD cable replace - Additional incremental under - Installation of feeder ties, AC	rounding of overhead lateral/b		ate			

Figure 13: Delmarva CAP Strategies and Projects 2014-2018⁹⁰

⁹⁰ RM-43 Delmarva MD Corrective Action Plan Discussion Document, March 2014

a. Strategy

The Delmarva CAP has addressed current reliability issues by changing strategies to include long range planning for feeders that are not included in the COMAR required poorest performing feeder list but are declining in performance and adding distribution automation to the network. Delmarva uses a combination of SAIFI, SAIDI, and CEMI (Customers Experiencing Multiple Interruptions) to determine which feeders outside of the bottom 3% are performing at a less than desirable level with regards to customer satisfaction or system reliability.⁹¹ Staff determined that long term projections will improve overall reliability, but that this practice should have been occurring as part of normal operational and strategic planning.

b. Cost

Delmarva separates reliability enhancement into projects. Additional CAP funding integrates existing projects with new projects and projects that augment currently planned reliability enhancements. Examples of augmented projects are vegetation management, URD cable replacement and additional undergrounding, and substation improvements.

Delmarva plans on spending an additional \$24 million on reliability for 2014, \$23.5 million in 2015, and \$20 million each year from 2016-2018.⁹² The priority for spending is for transmission and distribution (T&D) feeder, source line, and substation improvements, with the additional spending for 2014 and 2015 on accelerated vegetation management. The currently scheduled project budget as well as the projected CAP budget is seen in Figure 14.

Corrective Action Plan (in millions)	2014	2015	2016	2017	2018	2019	2020
Vegetation Management Distribution (O&M)*	\$4.0	\$3.5					
URD Cable Replacement	\$4.0	\$4.0	\$4.0	\$4.0	\$4.0	\$4.0	\$4.0
Additional Undergrounding	\$4.0	\$4.0	\$4.0	\$4.0	\$4.0	\$4.0	\$4.0
MOD Installation (Transmission)	\$2.0	\$2.0	\$2.0	\$2.0	\$2.0	\$2.0	\$2.0
T&D Feeder, Source Line & Substation	\$10.0	\$10.0	\$10.0	\$10.0	\$10.0	\$10.0	\$10.0
Total	\$24.0	\$23.5	\$20.0	\$20.0	\$20.0	\$20.0	\$20.0

* Used to accelerate the vegatation cycle from 4 to 3 years. No acceleration projected from 2016-2020

Figure 14: 2013-2020 Delmarva Corrective Action Plan Spending⁹³

⁹¹ John Helm DR Responses, June 17, 2014

⁹² Delmarva 2014 Annual Performance Report Corrective Action Plan; Table 3; Mail Log No: 153722

⁹³ Vegetation management spending is for the accelerated from a four to three year cycle from 2014-2015

		2014	2015		2016		2017		2018
	Approved		Approved Approve		Approved	d Approved		1	Approved
Projects		Budget	Budget		Budget		Budget		Budget
Conversions	\$	0.92	\$ 0.89	\$	0.84	\$	0.97	\$	0.40
Distribution Automation	\$	9.00	\$ 5.62	\$	4.39	\$	3.94	\$	3.78
Vegetation Management O & M	\$	7.49	\$ 7.64	\$	7.80	\$	7.95	\$	8.11
Feeder Improvement	\$	11.86	\$ 12.02	\$	12.08	\$	12.38	\$	12.38
GRC Priority Feeder Work	\$	-	\$ 2.10	\$	-	\$	-	\$	-
Load Growth	\$	5.21	\$ 2.07	\$	8.66	\$	15.25	\$	10.60
Priority Feeder Work	\$	5.46	\$ 4.05	\$	4.07	\$	4.10	\$	4.10
Sub Reliability Improvements	\$	4.59	\$ 2.51	\$	2.43	\$	2.37	\$	2.37
UG Residential Distribution	\$	6.23	\$ 5.53	\$	5.59	\$	5.65	\$	5.65
Dist Non REP Reliability	\$	31.41	\$ 29.47	\$	27.90	\$	25.68	\$	28.01
Other	\$	61.61	\$ 39.72	\$	34.00	\$	40.94	\$	108.80
Trans Non REP Reliability	\$	18.13	\$ 29.41	\$	41.70	\$	25.75	\$	5.45
Sub Total	\$	161.92	\$ 141.04	\$	149.46	\$	144.99	\$	189.66
САР	\$	24.00	\$ 24.00	\$	24.00	\$	24.00	\$	24.00
% of Additional Spending: CAP		12.9%	14.5%		13.8%		14.2%		11.2%
Grand Total	\$	185.92	\$ 165.04	\$	173.46	\$	168.99	\$	213.66

Figure 15: 2013-2018 Delmarva Reliability Enhancement Plan Budget

With regards to the projects outlined in Figure 15, a source line is the transmission line or supply line which feeds the distribution stations. This line is often bundled together for better protection from weather and animal damage. Conversions included changing or upgrading feeder infrastructure to a higher voltage. Upgrades reduce system losses, replace aging infrastructure, and enable Delmarva to allow more feeders in the region to operate at one common voltage.⁹⁴ Sub reliability improvements are improvements to the equipment located inside a substation such as new breakers, new electronic relays, and remote terminal units. The other category consists of IT, fiber, radio, and facilities directly in support of supervisor control and data acquisition (SCADA).

c. Salisbury Plan⁹⁵

Delmarva has accelerated the work in the Greater Salisbury Reliability Improvement Project (GSRI) from six to four years. Three feeders associated with GSRI have been deemed priority feeders by Delmarva, per COMAR standards, and will be funded from the poorest performing feeder program. The cost of upgrading and repairing the three feeders is \$4.8 million and the work will be complete by September 2014.⁹⁶ Over the past four years, 14 of the 19 Salisbury feeders have accounted for 91 outages affecting over 118,000 customers. Delmarva projects that the upgrades to the existing feeders (original installation 1958-1968) and vegetation management will reduce the number and duration of power outages in the Salisbury region. The projected impacts on reliability are expected to be seen by 2017, reducing outages by 60%. This will cause a reduction in SAIFI of 0.34 and SAIDI by 0.58 for the Delmarva system, or a SAIFI

⁹⁴ John Helm DR Responses, June 17, 2014

⁹⁵ Delmarva 2014 Annual Performance Report Corrective Action Plan; pg. 12; Mail Log No: 153722

⁹⁶ Delmarva Power Corrective Action Plan MD (Helm) Data Request, May 21, 2014

Case No. 9353: Staff Review of Annual Electric Reliability Reports

reduction of 0.68 and SAIDI 1.16 for the Salisbury district. Immediate impacts will be seen by the end of 2014 due to the accelerated installation of three feeders that were selected as priority feeders. Delmarva stated that the planned acceleration of the GSRI will have an immediate impact in 2014 and improve the reliability of the Delmarva system.

YEAR	Customers Impacted by Salisbury Project	Potential Reduction to Impacted Customer Interruptions	Potential Reduction to Impacted Customer Minutes Interruptions	Potential SAIFI Improvement for Affected Feeders	Potential SAIDI Improvement for Affected Feeders
2014	22,214	86,139	9,648,796	0.39	43
2015	4,104	18,399	1,633,998	0.08	7
2016	4,745	7,363	1,269,370	0.03	6
2017	1,477	3,157	714,560	0.01	3
Transmission	5,059	8,004	1,600,800	0.04	7
TOTAL	37,599	123,062	14,867,524	0.55	67

Figure 16: Salisbury Plan Projected SAIFI and SAIDI Improvements⁹⁷

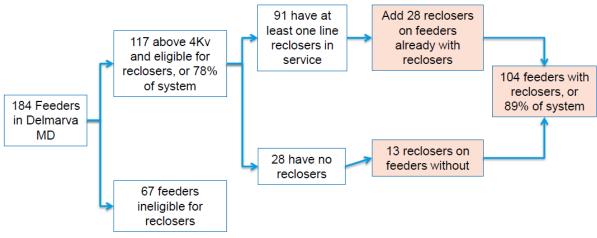
d. North East Plan⁹⁸

The North East Plan is an existing plan to increase reliability. It is an automatic sectionalization and restoration (ASR) project to address outages caused by 34kV feeders. The project will implement a distribution automation (DA) system to allow for remote control of the reclosers and advanced monitoring capabilities. Delmarva projects that all 78 planned reclosers will be installed and operational by August 31, 2014. Delmarva estimates that the potential impact on SAIDI will be one to two hours, but is unable to model and project the exact impacts due to no historical data existing. Delmarva predicts an improvement in SAIDI and SAIFI for the district by a minimum of 5% each.⁹⁹ The impacts will be seen and assessed after the summer storm season. Data will be collected and reported in the 2014 Annual Report.

e. Installing Additional Reclosers¹⁰⁰

The Delmarva power distribution system, illustrated by Figure 15, consists of 184 feeders, with 117 of these feeders operating above 4kV and servicing 89% of Delmarva's customers. By the end of 2014 Delmarva will have installed 28 additional reclosers on feeders that currently have at least one inline closer and 13 reclosers on feeders that do not have one currently installed, bringing the total to 104 feeders with reclosers (89% of the system). Reclosers on the additional 15 feeders will not provide any additional reliability due to their radial nature. The projected reduction in SAIFI and SAIDI is combined with all T&D feeders, source lines, and substation incremental enhancements and is expected to be 15% from 2015-2026 for SAIFI and 23% from 2015-2026 for SAIDI.¹⁰¹ Delmarva's assessment is that the installation of the additional 57 reclosers that are functional and 16 reclosers that will be functional by August 2014 (currently completing the communication system and testing), will have an immediate impact on SAIDI for the 2014 summer season.¹⁰²

⁹⁷ RM-43 Delmarva MD Corrective Action Plan Discussion Document, March 2014


⁹⁸ Delmarva 2014 Annual Performance Report Corrective Action Plan; pg. 8; Mail Log No: 153722

⁹⁹ John Helm DR Responses, June 17, 2014

¹⁰⁰ Delmarva 2014 Annual Performance Report Corrective Action Plan; pg. 14; Mail Log No: 153722

¹⁰¹ Delmarva 2014 Annual Performance Report Corrective Action Plan; pg. 22; Mail Log No: 153722

¹⁰² Delmarva Power Corrective Action Plan Follow-Up Questions, June 22, 2014

Figure 17: Additional Reclosures

f. Accelerated Vegetation Management¹⁰³

Delmarva proposed to accelerate the tree trimming cycle from four to three years to improve the 17% of outages caused by vegetation in 2013. The report notes that 25% of outages were identified as weather or unknown, which Delmarva states may have been caused by tree related outages. The accelerated cycle will cover 1,909 miles of overhead lines which accounted for 14% of the tree-related SAIFI for 2013. Staff notes that the accelerated vegetation management cycle will reduce both the tree related and other category SAIFI and SAIDI numbers for 2014. Delmarva is confident that future reliability indices will improve as a result of these measures.

June 2012 - June 2013	June 2013 - June 2014	June 2014 - June 2015	June 2015 - June 2016			
Year 1: 26%	Year 2: 27%	Year 3: 25%	Year 4: 22%			
Figure 18: 4-Year Vegetation Management Timeline						
June 2012 - June 2013	June 2013 - June 2014	June 2014 - June 2015				
Year 1: 26%	Accelerated Year 2: 41%	Accelerated Year 3: 33%				

Figure 19: 3-Year Accelerated Vegetation Management Timeline

g. Motor Operated Device (MOD) Installation¹⁰⁴

The installation of MODs will enable isolation switching to occur remotely and identify where the fault occurred, increasing restoration time. This will be used in conjunction with distance-to-fault relaying, which is a system that can identify within a half mile in the system where the fault occurred by measuring the resistance in the power lines. Earlier identification of fault locations will allow crews to quickly arrive on scene to assess and begin repairs. This also allows for faults to be isolated and power restored to customers prior to where the fault occurred. The installation of the MODs is expected to lead to a drop in system outages with the intent of restoring an interruption within 5 minutes, which is not defined as an outage. The projected

¹⁰³ Delmarva 2014 Annual Performance Report Corrective Action Plan; pg. 17; Mail Log No: 153722

¹⁰⁴ Delmarva 2014 Annual Performance Report Corrective Action Plan; pg. 17; Mail Log No: 153722

SAIFI and SAIDI reduction on MOD system projects is 5% for SAIFI and 3% for SAIDI. Delmarva's assessment is that the MOD installation will have a gradual impact on SAIFI and SAIDI over the next ten years, and will improve overall reliability.

h. Underground Residential Distribution (URD) Cable Replacement¹⁰⁵

Underground equipment failure accounted for just over 4% of the total failures for 2013. URD was installed in most of the Delmarva service areas in the 1970s. The current underground cables in the Delmarva service area are over 40 years old, exceeding the normal service life expectancy of 25-30 years. Due to the nature of the cables Delmarva is unable to provide service life extension by injecting silicon into the cables, a practice used in the Pepco service area. Over the past three years Delmarva has increased the number of underground cables, replaced faulty cables, and reduced the number of faults.¹⁰⁶

2009	2010	2011	2012	2013
2727	2756	2966	3049	3163
361	410	414	308	267
0.132	0.149	0.14	0.101	0.084
	361	361 410	361 410 414	361 410 414 308

Figure 20: 2009-2013 Delmarva Underground Cable Faults

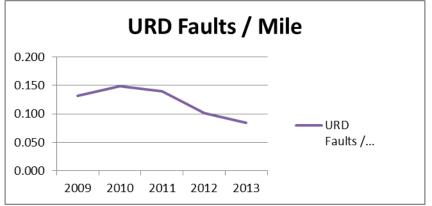


Figure 21: 2009-2013 Delmarva Underground Cable Fault Graph

Although the URD outages are a small portion of the overall SAIFI and SAIDI numbers, many of these customers experience multiple outages when the cables fail. Delmarva will increase the spending on the URD project to \$4 million to accelerate replacement of aging and failing cables. The projected reduction in SAIFI and SAIDI is minimal. Staff noted that it is reasonable that these upgrades should be continued to avoid repeat outages to customers in the future.

i. Transmission and Distribution (T&D) Feeder Enhancements¹⁰⁷

¹⁰⁵ Delmarva 2014 Annual Performance Report Corrective Action Plan; pg. 19; Mail Log No: 153722

¹⁰⁶ Delmarva Power Corrective Action Plan Follow-Up Questions, June 22, 2014

¹⁰⁷ Delmarva 2014 Annual Performance Report Corrective Action Plan; pg. 20; Mail Log No: 153722

Case No. 9353: Staff Review of Annual Electric Reliability Reports

Currently Delmarva uses one of their 10 mobile transformers to restore power when one of the substation transformers fails. Currently two are in service while repairs to two substations are ongoing. The plan to improve reliability in the system is to install additional substations, automatic circuit reclosers, and increase the number of ties between feeders. Over the next seven years Delmarva will conduct several projects:

- Two new distribution substations and related land for future growth
- Fifteen new unit substations
- Thirteen miles of new transmission lines
- One new distribution feeder
- One mile of underwater feeder cable upgrades
- Two miles of overhead feeder reconductoring
- Seven distribution line voltage regulators
- 32 ACRs
- 23 new distribution feeder field switches.

The T&D feeder enhancements should improve the resiliency of the backbone of the Delmarva system. Delmarva stated that the T&D feeder enhancements will enable T&D systems to be back online faster and reduce multiple outages during a single event. SAIFI and SAIDI projected improvements are combined with source line, and substation incremental enhancements and is expected to be 15% from 2015-2026 for SAIFI and 23% from 2015-2026 for SAIDI.¹⁰⁸

j. Streamlined Recovery Operations¹⁰⁹

In 2014 Delmarva changed its standard operating procedure for assessing and repairing outages. It takes up to two hours to assemble a crew necessary to fix a 34kV feeder. These feeders typically service a large amount of customers having a large impact on SAIFI and SAIDI. In the past a first responder would be sent out to the scene to make an assessment, and make immediate safety-related corrections and, perform wire clearing, as appropriate. Once the initial assessment was made it took up to two hours for the proper crew to get on site to start making the corrections. In 2014, Delmarva began dispatching both a first responder and a crew for a feeder lockout. First responders historically are able to handle 80% of the outages, getting temporary service restored. The crew is able to immediately start repairs on the other 20% as well as conduct permanent repairs on the work initiated by the first responder. The change in strategy has minimal impacts on normal Delmarva operations. The additional crews, required during the day, will be pulled from low priority projects to assist with any emergency restoration. Delmarva stated that crews deployed after hours have no impact on manpower staffing.¹¹⁰ Delmarva deploys its crews once it is determined it is safe for the crews to assess an outage situation. Staff notes that it is reasonable that the combined response team will reduce outage time and SAIDI.

¹⁰⁸ Delmarva 2014 Annual Performance Report Corrective Action Plan; pg. 20; Mail Log No: 153722

¹⁰⁹ Delmarva 2014 Annual Performance Report Corrective Action Plan; pg. 16; Mail Log No: 153722

¹¹⁰ RM-43 Delmarva MD Corrective Action Plan Discussion Document, March 2014

6. Risks

There may be risks associated with the reliability of the Delmarva system while upgrades and repairs are being conducted. Delmarva has a predominantly radial system, with many of the feeders isolated and without redundancy in the systems. When repairs are being conducted on feeders, the system is set to maintenance mode. This provides a level of safety for the crews working on the systems. When a fault occurs under normal operating conditions, automatic circuit reclosers (ACR) activate, reducing outages that do not require maintenance crews to manually reset the faults. When the system is in maintenance mode, the ACRs are disabled to protect the workers. Faults experienced during maintenance activities will need to be addressed manually until the work is complete or the system is placed back into the normal mode of operation. As a result, customers could experience longer outage periods when faults occur during maintenance work.

Also, repairs on one feeder may have a direct impact on other feeders. If a feeder fails under normal operating conditions, a second feeder may be able to provide power to part of, or the entire downed feeder, depending on the location of the fault. When the redundant systems are taken off line, other systems on the network are more susceptible to outages. This is due to both a lack of a backup supply of power to the feeder and a higher voltage load on a feeder providing the backup support. Staff notes the necessary risk to improve the reliability of the Delmarva system.

7. Conclusions

Per COMAR 20.50.12.02D(1), Maryland utilities are required to meet reliability standards set for each year starting in 2012. Delmarva was unable to meet the 2013 year standards. Per COMAR 20.50.12.02E, Delmarva submitted a corrective action plan by April 1, 2014.

In the corrective action plan, Delmarva proposes to address reliability shortfalls by employing several reliability enhancing programs:

Regional Plans:

- Greater Salisbury Reliability Improvement (GSRI) project
- Installing ASRs and DA in the North East Plan

Entire Service Territory Plans:

- Installing additional reclosers
- Accelerating vegetation management from four to three years
- Install Motor Operated Devices (MOD)s to reduce outages
- Replace Underground Residential Distribution Cables (URD)s
- Install Transmission and Distribution (T&D) feeder enhancements
- Streamline recovery operations

Case No. 9353: Staff Review of Annual Electric Reliability Reports

While their enhancements should improve reliability, Delmarva stated that it may not meet its 2014 SAIDI and SAIFI targets in COMAR,¹¹¹ given a forecast of similar weather patterns and system performance to 2013. Delmarva stated that the system improvements and accelerated vegetation management will have an impact on the reliability of the system during the summer months, but will not know the extent of the benefits until the summer storm season is over.¹¹² However, the CAP has both long-term and short-term initiatives that Delmarva believes would allow the company to meet the COMAR targets in the future, if projected lineally. Delmarva stated that with the additional CAP programs and spending, separating the current service area into three zones to determine the category of outages, and the current ongoing reliability enhancement plans, they believe is heading in the right direction towards meeting COMAR standards for 2014 and 2015.

Prior to implementing the CAP, Delmarva predicted that the company would not meet the COMAR SAIFI standards for 2014 and 2015 and SAIDI standard for 2014.

Figure 22: Delmarva SAIFI and SAIDI Projections without the CAP¹¹³

With the implementation of the CAP, Delmarva is predicting with the revised estimate of SAIFI and SAIDI performance that the company will be able to meet the COMAR standards for 2014 and 2015.

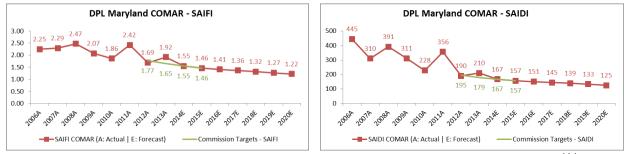


Figure 23: Revised Delmarva SAIFI and SAIDI Projections with the CAP¹¹⁴

Staff has reviewed the Delmarva CAP, which includes the Salisbury Plan, North East Plan, installing additional reclosers, accelerated vegetation management plan, motor operated device installation, underground residential distribution replacement and enhancement,

¹¹¹ John Helm DR Responses, June 17, 2014

¹¹² John Helm DR Responses, June 17, 2014

¹¹³ RM-43 Delmarva MD Corrective Action Plan Discussion Document, March 2014

¹¹⁴ RM-43 Delmarva MD Corrective Action Plan Discussion Document, March 2014

Case No. 9353: Staff Review of Annual Electric Reliability Reports

transmission and distribution feeder enhancements, and streamlined recovery operations plan. Staff believes the CAP is reasonable and that these programs should improve overall system reliability.

STATE OF NEW YORK

DEPARTMENT OF PUBLIC SERVICE

2008 ELECTRIC RELIABILITY PERFORMANCE REPORT

Electric Distribution Systems Office of Electric, Gas, and Water June 2009

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
2008 RELIABILITY PERFORMANCE	6
STATEWIDE	6
CON EDISON	
NEW YORK STATE ELECTRIC AND GAS	
ROCHESTER GAS AND ELECTRIC	
CENTRAL HUDSON GAS AND ELECTRIC	
ORANGE AND ROCKLAND	
RECOMMENDATIONS	
APPENDIX	27
2008 INTERRUPTON REPORT	

EXECUTIVE SUMMARY

This report presents Department of Public Service Staff's (Staff) assessment of electric reliability performance in New York State. As a means of monitoring the levels of service, utilities are required to submit detailed interruption data to the Public Service Commission (Commission). Staff relies on two primary metrics to measure reliability performance: the System Average Interruption Frequency Index (SAIFI or frequency) and the Customer Average Interruption Duration Index (CAIDI or duration).¹ By compiling the results of individual utilities, the average frequency and duration of interruptions can be reviewed to assess the overall reliability of electric service in New York State.

The statewide interruption frequency for 2008, excluding major storms, was considerably better than that recorded in 2007, where all companies except Orange and Rockland Utilities, Inc. (Orange and Rockland) showed improvement. The statewide duration in 2008 was slightly worse than in 2007. The year 2008 was the second-most affected by storms in five years and had 35 more storms than in 2007. Staff attributes some of the 2008 improvement in frequency to the high number of major storms (excludable events). Typical weather patterns result in less severe weather that lead to minor storms, which are included in the measures and thereby increase performance measures. Similar overall patterns exist for frequency and duration when analyzing the reliability data excluding Consolidated Edison Company of New York, Inc (Con Edison) performances.²

With respect to individual utilities' performances in 2008, Central Hudson Gas and Electric Corporation (Central Hudson), Niagara Mohawk Power Corporation d/b/a National Grid's (National Grid) and Rochester Gas and Electric Corporation (RG&E) performed at, or better than, their historic levels. Infrastructure improvements

¹ SAIFI is the average number of times that a customer is interrupted during a year. CAIDI is the average interruption duration time for those customers that experience an interruption during the year.

² Con Edison's system includes many large, highly concentrated distribution networks. As a result, its interruption frequency is extremely low as compared to other utilities' interruption frequency and typically skews aggregated data measurements. Therefore, Staff examines statewide statistics both including and excluding Con Edison's data.

associated with National Grid's commitment to invest \$1.47 billion over a five year period appears to positively affect its reliability performance.³ Additionally, Central Hudson's revised tree trimming program seems to be helping in reducing tree caused interruptions. In 2008, Orange and Rockland was not as good as its 2007 performance for both frequency (slight change) and duration. Orange and Rockland attributes its change in duration to the installation of distribution automation; Staff is currently investigating the relationship between distribution automation and duration.

Con Edison performed satisfactorily on its radial system for both frequency and duration, and better than previous year with respect to its network frequency. The Company's performance in 2008 for network duration, however, was significantly worse than its historic performance. Based on a self-assessment conducted in response to Staff's report for 2007Con Edison identified strategies to improve its performance and is implementing several pilot programs this summer. It also formed a task force to continue to identify means to improve performances, especially on it network system. The programs involve predictive outage modeling, improvements to assist in crew allocation and deployment in order to improve both network and radial outage durations. In order to evaluate the effectiveness of Con Edison's actions, Staff is recommending that the Company file a report of the task force findings and results from its pilot programs by September 15, 2009. Staff is also recommending Con Edison perform a self-assessment to identify actions to improve its network duration performance and file the selfassessment with Staff by September 15, 2009.

Although NYSEG's overall reliability statistics improved compared with 2007, its performance with respect to tree related outages continues to decline. In last year's reliability report, Staff recommended NYSEG perform a self-assessment of its existing distribution tree trimming program based on its declining performance and reduced expenditures on tree trimming. The continued decline in performance with respect to tree related interruptions is not surprising because the Company's self-

³ Case 06-M-0878, Joint Petition of National Grid PLC and KeySpan Corporation for Approval of Stock Acquisition and other Regulatory Authorizations.

assessment showed approximately half the circuit miles have been trimmed in 2007 and 2008 when compared to 2002 through 2005 levels. NYSEG's decision to reduce its tree trimming activities and expenditures despite declining performance in this area needs to be examined in detail and will be the focus of a newly established Case 09-E-0472.⁴

Electric utilities have reliability performance mechanisms (RPMs) in place as part of their rate plans. The reliability performance mechanisms are designed such that companies are subject to negative revenue adjustments for failing to meet electric reliability targets.⁵ In 2008, Con Edison failed to achieve the duration target in its reliability performance mechanism for the network component of its distribution system and Orange and Rockland failed to achieve the duration target in its reliability performance mechanism for 2008. Combined, these failures resulted in about \$5.4 million in negative revenue adjustments.

This report will be transmitted to an executive level operating officer of each electric utility with a letter from the Director of the Office of Electric, Gas, and Water. Con Edison is expected to comply with the recommendations and submit documentation by the dates indicated in the report.

⁴ Case 09-E-0472, In the Matter of Investigation of New York State Electric and Gas Corporation Expenditures Related to its Line Clearance Programs.

⁵ NYSEG was the only utility not under an RPM in 2007 and 2008 because its mechanism expired in 2006. A new RPM is in place for the Company's 2009 performance.

INTRODUCTION

The following report is an overview of the electric reliability performance in New York State. As a means of monitoring the levels of service quality, the Commission's Rules and Regulations require utilities delivering electricity in New York State to collect and submit information to the Commission about electric service interruptions on a monthly basis.⁶ Using the data, Staff calculates two primary performance metrics: the System Average Interruption Frequency Index (SAIFI or frequency) and the Customer Average Interruption Duration Index (CAIDI or duration). The information provided is also subdivided into 10 categories that reflect the nature of the cause of interruption (cause code).⁷ By doing so, analysis of the cause code data can be used to highlight areas where increased capital investment or maintenance is needed. As an example, if a circuit were shown to be prone to lightning-caused interruptions, devices could be installed on that circuit to try to minimize the problem. In general, most of a utility's interruptions are a result of major storms, tree contacts, equipment failures, and accidents.⁸ Staff maintains the interruption information in a database that dates back to 1989, which allows it to observe trends.

In addition, the Commission adopted standards addressing the reliability of electric service by establishing minimum acceptable levels for both the frequency and duration of service interruptions for each major electric utility's operating divisions. The utilities are required to submit a formal reliability report by March 31st of every year containing detailed assessments of performance, including outage trends in a utility's various geographic regions, reliability improvement projects, and analyses of worst-performing

⁶ 16 NYCRR Part 97, Notification of Interruption of Service requires utilities to keep detailed back-up data for six years.

⁷ 16 NYCRR Part 97, Notification of Interruption of Service specifies and defines the following ten cause codes that reflect the nature of the interruptions: major storms, tree contacts, overloads, operating errors, equipment failures, accidents, prearranged interruptions, customers equipment, lightning, and unknown. There are an additional seven cause codes used exclusively for Con Edison's underground network system.

⁸ The accident cause codes cover events not typically in the utilities' control including vehicular accidents, sabotage, and animal contacts. Lightning is reported under a separate cause code.

feeders. There are no revenue adjustments for failure to meet a minimum level under the service standards; utilities are, however, required to include a corrective action plan as part of the annual report.⁹ The service standards were last revised in 2004.

Interruption data is presented in two ways in this report – with major storms excluded and with major storms included. A major storm is defined by the Commission's regulations as any storm which causes service interruptions of at least 10 percent of customers in an operating area, and/or interruptions with duration of 24 hours or more.¹⁰ Major storm interruptions are excluded from the data when calculating performance levels for service standards and reliability performance mechanisms. The purpose of this policy is to achieve a balance between service interruptions under a utility's control, such as equipment failures and line maintenance, and those over which a utility's control is more limited, such as severe ice storm or a heavy wet snowstorm. Performance inclusive of major storms shows the actual customer experience during a year.

⁹ Revenue adjustments for inferior performances are implemented through individual Reliability Performance Mechanisms established in rate orders.

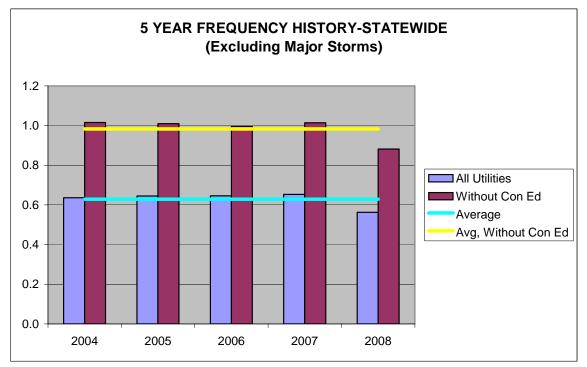
¹⁰ Major storms do not include heat-related service interruptions.

2008 RELIABILITY PERFORMANCE

The following sections provide a summary discussion of the reliability performance statewide and for each of the major utilities. Each year, Staff also prepares an Interruption Report summarizing the monthly interruption data submitted by the utilities. The 2008 Interruption Report contains detailed interruption data for each utility and statewide statistics for the past five years. The Interruption Report for 2008 is attached as an Appendix. Individual company discussions identify issues or actions within each company that influenced performance levels for 2008 and indicates company-specific trends where applicable.

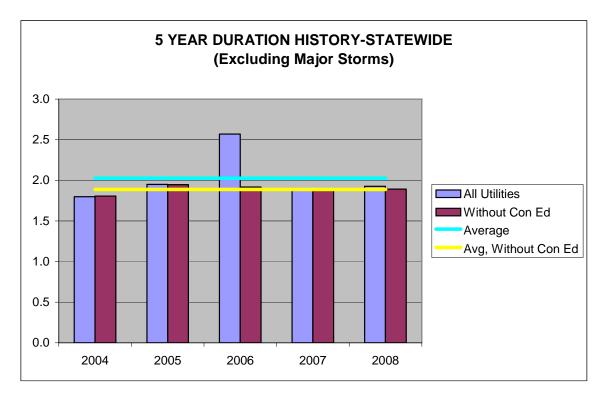
In addition, performances are compared to utilities' reliability performance mechanisms (RPMs) placed into effect as part of their rate orders. The reliability performance mechanisms are designed such that companies are subjected to negative revenue adjustments for failing to meet electric reliability targets. The targets are based on the indices used by the Commission's electric service standards.

Con Edison and Orange and Rockland each failed to achieve a target in their reliability performance mechanisms for 2008. Con Edison failed to achieve the duration target for its network system, resulting in a potential negative rate adjustment of \$5 million.¹¹ Orange and Rockland failed to achieve its duration target, which results in a negative revenue adjustment of approximately \$400,000.


STATEWIDE

For many years, Staff has been combining the individual utility performances into overall statewide statistics. By doing so, we evaluate the level of reliability provided and identify statewide trends. Because Con Edison's system includes many large, highly concentrated distribution networks, its interruption frequency is

¹¹ This rate adjustment is a preliminary assessment based on Con Edison's March 31, 2009 filing that detailed the Company's compliance with its RPM. Con Edison's rate adjustment has not been presented to the Commission for final action.


extremely low as compared with other utilities. This, combined with the fact that it serves the largest number of customers in the state, typically results in a skewing of the performance measures. As a result, we examine and present aggregated data including and excluding Con Edison's data.

Statewide, the frequency of interruptions when excluding major storms was 0.56 in 2008, which is considerably better than the five-year average of 0.63 and better than 2007's performance level of 0.65. All companies, except Orange and Rockland, had fewer customers affected by power outages, again when major storms are excluded, as shown in Figure 1. This improvement is amplified when Con Edison is excluded with the frequency performance for 2008 at 0.88, which is considerably better than the five-year average of 0.98.

Figure 1: Statewide Frequency Performance

Figure 2 shows the statewide duration index for 2008, excluding major storms. The overall statewide duration index continues to be at a more normal level of 1.93 hours, as compared with 1.95 hours and 1.89 hours in 2005 and 2007, respectively. Con Edison's Long Island City network outages greatly affected the statewide duration in 2006. The statewide duration index, excluding Con Edison, was 1.89 hours in 2008, which is slightly better than 2007 and equal to the five-year average.

Figure 2: Statewide Duration Performance

In 2008, the weather during the winter and summer months was relatively severe, while there was a moderate amount of adverse weather activities in the spring. This pattern was apparent as numerous winter storms occurred during the early part of the year, culminating in a severe ice storm which significantly affected the Capital Region and Mid-Hudson in December 2008. Several fronts that traversed the State in June and July brought severe storms and/or damaging winds. In general, wind speeds and gusts were higher in 2008 than in prior years; National Grid reported the number of days with winds exceeding 30 miles per hour was 20% higher than the annual norm, and nearly twice the norm in two of its service areas. As a result, the total number of major storms experienced by utilities increased by 35 storms over last year (Table 1, below). National Grid and NYSEG each experienced more than 20 major storms in 2008.

Company	2007	2008	Change in Major Storms
Con Edison	4	4	0
National Grid	10	24	+14
NYSEG	17	25	+8
RG&E	10	12	+2
Central Hudson	5	9	+4
Orange and Rockland	1	8	+7
Total	47	82	+35

Table 1: Major Storms in 2008

The year 2008 was the second-worst year for severe weather effects in the last five years (Figure 3, below).¹² When including major storms, the 2008 statewide frequency and duration performances were 0.93 and 4.50, respectively. When excluding Con Edison, the 2008 statewide frequency and duration performances including major storms were 1.51 and 4.62, respectively. All four of these measures were worse than the five-year averages. Major storms in 2008 accounted for 71% of the overall customerhours of interruptions and 39% of the overall number of customers affected.

¹² The Buffalo area experienced a massive ice storm in 2006.

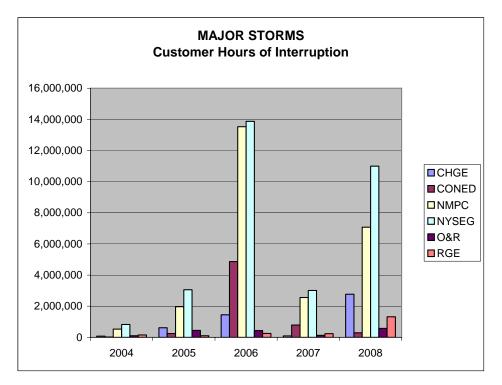


Figure 3: Major Storm Customer Hours

New York State investor-owned electric utilities must submit a report to the Commission addressing all facets of their restoration effort if the restoration period associated with significant storms lasts more than three days.¹³ Overall, the utilities responded well to the major storms in 2008, restoring most customers affected within 24-72 hours from the end of a storm. In 2008, there were four reports submitted on major storms as listed in Table 2, below. These storms, especially the December ice storm, as well as the numerous other major storms mentioned earlier, had a greater than historic effect on the total number of hours that customers were without service.

 Table 2: Storm reports filed in 2008

Date	Company	Areas Affected	Reason for Interruptions
October	NYSEG	Oneonta, Liberty	Wind and Snow Storm
December	Central Hudson, NYSEG, GRID	Capital District & Troy area	Ice Storm
CON EDISON	1		

¹³ 16 NYCRR Part 97, Part 105.4

Metric	2004	2005	2006	2007	2008	5-Year Average
Network Systems						
Frequency (SAIFI)	0.005	0.006	0.021	0.075	0.017	0.025
Duration (CAIDI)	3.64	4.44	60.81	1.79	6.28	15.39
Radial System						
Frequency (SAIFI)	0.39	0.51	0.54	0.38	0.42	0.45
Duration (CAIDI)	1.64	1.91	2.66	2.07	1.83	2.02

 Table 3: Con Edison's Historic Performances Excluding Major Storms

Note: Data presented in red represents a failure to meet the RPM target for a given year.

Con Edison serves approximately 3.2 million customers in New York City and Westchester County. Electricity is supplied to 2.4 million customers using network systems. The remaining 900,000 customers are supplied by radial systems.

In 2008, the network frequency performances were significantly lower than its historical performances in 2006 and 2007. The Company radial frequency was slightly higher than in 2007 but lower than the five year average. In 2008, the Con Edison spent \$562 million to improve the reliability on its electric system including \$352 million on relief programs, \$122 million on reliability programs, and \$88 million on maintenance programs. In 2007 and 2008, the Company expanded its tree trimming budget and has seen a reduction in the number of interruption caused by trees as compared with previous years.

To minimize the frequency of customer outages, Con Edison's networks are designed with redundant supply paths. Individual service lines to customer premises, however, lack any supplemental supply. Given these design criteria and underground settings, the majority of interruptions (85%) are associated with the service portion of the network system, as shown in Figure 4. Equipment failures are the second highest (7%) cause for interruptions in 2008. Failures on parts of the network grid itself (secondary feeders or mains) are the third highest cause for interruptions at 6%.

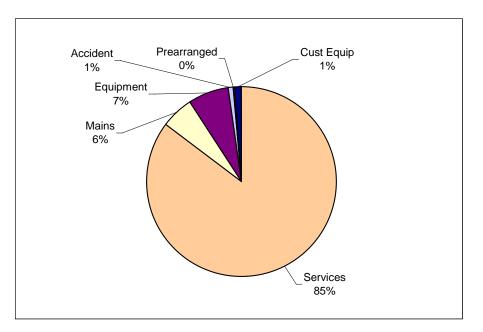


Figure 4: Con Edison's 2008 Network Interruptions by Cause

On its radial system, Con Edison's performance in 2008 was better than the five year average for both frequency and duration. Equipment failures are responsible for 71% of the interruptions on the radial system, followed by trees and accidents at 14% and 8%, respectively, as shown in Figure 5.

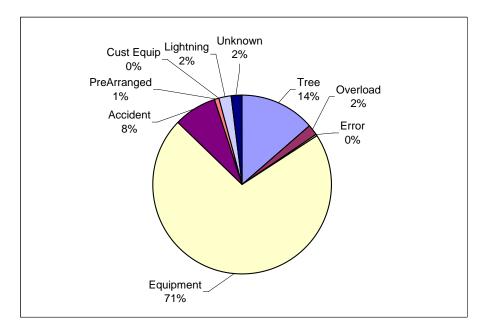


Figure 5: Con Edison's 2008 Radial Interruptions by Cause

Con Edison had one of its worst years for network duration in 2008. In recent years, Con Edison has missed its duration targets for both network and nonnetwork.¹⁴ As part of last year's report, Staff recommended that the Company conduct a detailed self assessment into why its duration performance associated with its radial systems had deteriorated. Con Edison responded by noting that nearly 40% of it longer duration outages are associated with weather events that typically occur in the late afternoon and early evening. As a result, the Company has initiated a study to correlate weather patterns to high duration events. Based on the results of the study, the Company expects to be able to better predict events and ensure sufficient staffing levels are on duty. For 2009, the Con Edison has established a program to experiment with length of shifts (8-hr vs. 12-hr) to determine which provides better coverage, and will be implementing an automated call system to improve crew response times. The Company is also considering dedicated crews to respond to specific outages and using electricians as first responders. In 2008, Con Edison established a new workplace in Westchester County to reduce travel time in that area.

Finally, Con Edison has recently assembled a task force to identify strategies to help improve its network and radial duration performances. Staff will be meeting with the task force in June to review new proposed actions. We are encouraged by the pilot programs and would like to see successful programs applied on a companywide basis. Therefore, Staff recommends that Con Edison file a report by September 15, 2009 detailing information learned by the task force and during pilot programs. The report should include information on how Con Edison will implement successful programs on a permanent basis. Additionally, Staff recommends that Con Edison perform a self-assessment to identify strategies to improve its network performance and identify corrective actions that are unique to its network system. The self assessment should also be filed by September 15, 2009.

¹⁴ In 2007, a short duration incident affecting a large number of customers resulted in a network duration

NATIONAL GRID

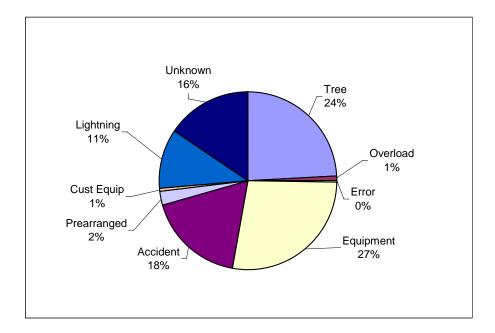
Metric	2004	2005	2006	2007	2008	5-Year Average
Frequency (SAIFI)	1.02	0.98	1.01	0.96	0.75	0.94
Duration (CAIDI)	2.04	2.32	2.05	2.01	1.96	2.08

 Table 4: National Grid's Historic Performances Excluding Major Storms

Note: Data presented in red represents a failure to meet the RPM target for a given year.

National Grid serves approximately 1.59 million customers across upstate New York. The Company's territories include metropolitan areas such as the cities of Buffalo, Albany, and Syracuse. National Grid also serves many rural areas in northern New York and the Adirondacks.

Overall, National Grid improved in 2008 and achieved all of its reliability targets. Previously, National Grid missed the frequency target level of 0.93 for each year from 2004 until 2007. Results this year, however, significantly improved and the Company met the target with an end result of 0.75. Duration results were better in 2008 as well; the Company has performed better than the duration target for three consecutive years now. In general, the utility had improved service on a region by region basis.


The overall reliability improvements are partially due to the installation of 432 reclosers, of which most were identified and installed through the Engineering Reliability Review (ERR) process since 2006. The Company installed 234 out of the 432 reclosers during the calendar year of 2008. Results for both the frequency and duration categories were unusually low, due in part to the numerous interruptions resulting from major storms in 2008. Although the Company exhibited a significant reliability improvement through various efforts, it is not likely that results of this magnitude will continue in the future. Staff will encourage the utility to continue with efforts in order to sustain a reasonable level of reliability.

As a result of past reliability results, the Commission placed additional emphasis on National Grid's reliability performance in association with its acquisition of Keyspan, which provides electric distribution services to the Long Island Power

that was well below historic performances.

Authority. Because of this acquisition, the Commission created an Order requiring the utility to file details of its capital expenditure spending. Staff actively reviews listed projects within this filing. Additionally, Staff provides input and recommendations on the justification and progress of the projects.

As seen in Figure 6, equipment failures are the leading cause of interruptions for National Grid, however, this has been improving over the past five years. The five year average number of interruptions in this category is approximately 4,000; yet this year, the utility reported around 3,500 such occurrences. Furthermore, results showed that the utility reduced the number of customers affected and customer hours for this cause code by almost one half compared to 2007. As evident in the equipment failure cause code results from 2008, the above noted programs appear to be useful methods for improving National Grid's reliability performance in association with equipment failures.

Figure 6: National Grid's 2008 Interruptions by Cause

National Grid made a commitment to spend \$1.47 billion on capital improvements to its transmission and distribution system over a five year period from 2007 until 2011. The five-year investment plan contains proposed projects and strategies to upgrade and replace components on its electric system. In particular, the utility developed a Reliability Enhancement Plan (REP) to improve its performance by focused maintenance work on poor performing circuits and replacement of aging assets. This plan specifically includes a targeted program to enhance the performance of feeders, asset replacement, an improved inspection and maintenance program, and a tree trimming program. The REP also provides for the installation of sectionalizing equipment and animal guards that will help to minimize the number of customers affected when an outage occurs, or to avoid interruptions in general. In conjunction with other programs, National Grid has replaced 665 transformers which were deteriorated or overloaded. As noted above, the Company identified and installed 432 reclosers since 2006. Many of the deteriorated assets addressed by the REP were identified as a result of the utility's inspection program.

The second highest contributor to National Grid's interruption performance for 2008 was tree-related outages; however, the Company showed signs of improvement as compared with last year's results in this area as well. Although the number of interruptions in 2008 for this cause code was fairly close to results of 2007, the number of customers affected and customer hours were reduced from last year by approximately 15%. Prior performance had prompted the utility to shorten its trimming cycle from six years to a more traditional five year period in urban areas. National Grid has also expanded its program to remove "danger" trees outside of the standard clearance zone. With these amplified activities, the utility has gradually increased its spending on distribution tree trimming in recent years. National Grid spent approximately \$33 million for distribution trimming during fiscal year 2008. The drop in tree-related interruptions in 2008 was mainly due to a reduced number of interruptions related to fallen trees. Outages caused by broken limbs and tree growth actually increased as compared with last years results. Furthermore, the majority of improvements within this cause code occurred in the Syracuse and Buffalo areas. Tree-related frequency results were actually up in five of National Grid's eight operating divisions.

16

The number of accident caused interruptions in 2008 as compared with 2007decreased by approximately 20% and yielded a reduction of approximate 25% for both customers affected and customer duration. The number of unknown causes of interruptions in 2008 was fairly equivalent to those of 2007, however, the number of customer affected and customer duration were higher than the 2007 results. The number of 2008 lightning caused interruptions was also close to those of 2007, but the customer affected and customer duration decreased by approximately one half compared to the previous results.

National Grid's capital investment program is having a positive affect. National Grid should continue to pursue infrastructure investments that relate reliability. As part of Case 06-M-0878, Staff will continue to closely monitor the Company's capital improvements.

Metric	2004	2005	2006	2007	2008	5-Year Average
Frequency (SAIFI)	1.13	1.12	1.12	1.20	1.11	1.13
Duration (CAIDI)	1.96	1.96	2.01	2.22	2.08	2.05

NEW YORK STATE ELECTRIC AND GAS

 Table 5: NYSEG's Historic Performance Excluding Major Storms

Approximately 840,000 customers are served by NYSEG. The Company is primarily located in the Binghamton and Finger Lakes regions, but does have localized service regions, including areas near Plattsburgh, Brewster, Mechanicville, and Lancaster.

The year 2008 showed improvement over last year's poor reliability performance by the Company. NYSEG's 2008 frequency performance of 1.11 was better than both the previous year's performance and its five year average performance level. The 2008 duration performance of 2.08 was also better than both the previous year's performance, however, still slightly higher than the five year average. The two major contributors to NYSEG's interruptions were tree contacts (41%) and equipment failures (21%), as shown in Figure 7.

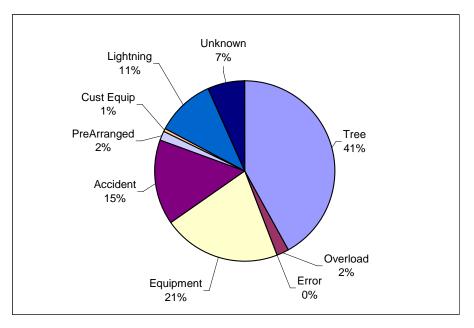


Figure 7: NYSEG's 2008 Interruptions by Cause

Tree related interruptions have consistently had the greatest impact on NYSEG's interruption performance. As shown in Table 6 below, NYSEG's performance has continuously declined with respect to tree caused interruptions. In last year's reliability report, Staff recommended that NYSEG perform a self-assessment of its existing distribution tree trimming program based on its declining performance and reduced expenditures on tree trimming. On January 7, 2009, NYSEG responded to Staff's recommendation stating that increased costs for tree trimming efforts per mile have reduced the number of overall miles completed each year. The report showed

Year	Customers Affected by Tree Interruptions	Customer Hours for Tree Interruptions	Number of Interruptions due to Trees
2004	205,245	477,623	3,002
2005	288,347	666,940	4,090
2006	297,893	735,250	3,779
2007	333,469	865,694	3,997
2008	349,065	886,543	4,215

Table 6: NYSEG's Reliability Performance with respectto Tree Caused Interruptions

approximately half the circuit miles have been trimmed in 2007 and 2008 when compared to 2002 through 2005 levels. The number of customers affected by tree events has increased by 32% compared to the average for the years 2002 through 2005.

In Case 05-E-1222, NYSEG was allowed \$17.7 million in rates for tree trimming on an annual basis effective in 2007. The Company indicated, however, that it has spent less in tree trimming on its distribution system than what was allowed in rates.

NYSEG's existing tree trimming program requires cycle trimming on all of the 35 kV circuits, but only the three phase sections of its 12 kV and 5 kV circuits, and single phase sections of these circuits on an ad hoc basis. The Company recommended in its self-assessment that in order to reduce tree caused interruptions, the existing tree trimming program should be expanded to perform cycle trimming on all single phase portions of its circuits. Given that NYSEG has not completed its planned trimming in recent years, Staff has concerns about NYSEG's tree trimming program.

Even though both frequency and duration improved in 2008 as compared with 2007, Staff continues to be concerned with NYSEG's overall approach to managing its tree caused interruptions. NYSEG's decision to reduce its tree trimming activities despite declining performance in this area needs to be examined. As a result, Staff will be seeking detailed information and explanations of trimming activities performed, spending variances, and quality assurance as part of the newly established Case 09-E-0472.

Equipment failures are the second highest cause of interruptions. In the Iberdrola merger (Case 07-M-0906), NYSEG was required to submit a condition assessment report. This report was received by Staff on December 8, 2008, and provided information on all of the electrical equipment and assets within its service territory and identified how age is a continued concern on the entire electrical system. The report concluded that NYSEG's electrical system is in "sound" condition. Over the past five years, however, NYSEG's reliability data show a steady increase in the number of interruptions caused by the failure or poor performance of the system equipment.

19

To proactively address the Company's aging infrastructure and equipment failure issues, NYSEG started a Transmission and Distribution Infrastructure Replacement Program (TDIRP). This program has been in place since 2005 and is the principal funding source for projects that address overall system condition issues. Overall Staff views this program as beneficial; however, funding for the program has been on the decline, and Staff is concerned whether NYSEG is committing appropriate funding resources to making the necessary infrastructure investments through TDIRP.

Another concern noted in Staff's reliability report last year was a declining trend in field staffing/personnel levels. As required, NYSEG provided its self-assessment that stated cost pressures have diminished its ability to increase or even maintain the field personnel levels once held in previous years. The Company goes on to say that while it continues to maintain sufficient numbers of workers to achieve the established reliability performance targets, increasing the number of qualified field personnel by approximately 10% may support improved duration numbers. As shown in Table 7 below, NYSEG has increased in total field personnel number for 2008. The increases, however, are for apprentice workers and not the qualified workers the Company is seeking.¹⁵

 Table 7: NYSEG's Field Personnel Information

	2004	2005	2006	2007	2008
Total Number of Field Personnel	646	651	619	608	662
Percent Change from Previous Year		+0.8%	-4.9%	-1.8%	+8.2%

ROCHESTER GAS AND ELECTRIC

Table 8: RG&E's Historic Performances Excluding Major Storms

Metric	2004	2005	2006	2007	2008	5-Year Average
Frequency (SAIFI)	0.86	0.79	0.79	0.83	0.78	0.81
Duration (CAIDI)	1.84	1.87	1.78	1.73	1.85	1.81

¹⁵ It takes approximately 3 years for an apprentice to be considered a qualified worker.

RG&E serves approximately 360,000 customers. Although the Company is comprised of four service areas, its Rochester division accounts for approximately 80% of its customer base. As a result, its overall reliability statistics mirror that of the Rochester division.

With regard to service reliability, RG&E continues to be one of the better performing utilities within the state. The Company has not failed its RPM targets of 0.90 for frequency and 1.90 for duration as established in its rate orders. As shown in Table 8, above, RG&E's performance for frequency and duration continue to be fairly consistent with its five year average. In 2008, the Company's frequency performance of 0.78 is the lowest since 2004. RG&E's duration performance of 1.85 in 2008 was slightly higher than both the previous year's performance. Figure 8 shows that the two major contributors to interruptions continue to be equipment failures (31%) and tree contacts (21%). The levels are slightly higher than the five year averages of both equipment failures and tree contacts.

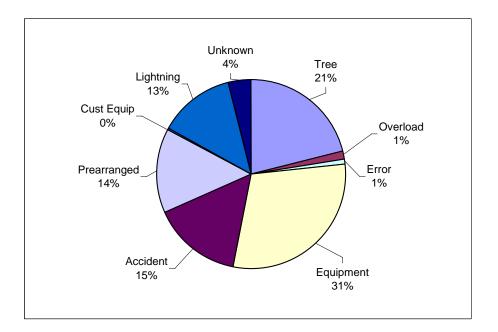


Figure 8: RG&E's 2008 Interruptions by Cause

Like NYSEG, RG&E was required to submit a conditions assessment report as part of the Iberdrola merger agreement. This report was received by Staff on December 8, 2008, and concluded that RGE's electrical system is in "sound" condition. Equipment failures, however, continues to be RG&E's highest contributor to its interruption performance. In 2007, RG&E implemented its own Transmission and Distribution Infrastructure Replacement Program (TDIRP), similar to that used by NYSEG, to address the Company's aging infrastructure and equipment failure issues. Staff encourages RG&E to make necessary infrastructure investments through TDIRP to ensure safe and reliable service to its customers.

CENTRAL HUDSON GAS AND ELECTRIC

Metric	2004	2005	2006	2007	2008	5-Year Average
Frequency (SAIFI)	1.36	1.44	1.59	1.42	1.27	1.42
Duration (CAIDI)	2.35	2.70	2.58	2.43	2.47	2.51

Table 9:	Central Hudson ⁹	's Historic	Performances	Excluding	Maior Storms

Note: Data presented in red represents a failure to meet the RPM target for a given year.

Central Hudson serves approximately 298,000 customers in the Mid-Hudson Valley region. The Company's territory is mainly suburban and rural. Central Hudson does serve some urban regions, such as the cities of Poughkeepsie and Newburgh. Central Hudson's RPM targets were reestablished at 1.45 for frequency and 2.50 for duration in its most recent rate order, effective in 2007.¹⁶

Central Hudson' frequency performance of 1.27 in 2008 was its best in five years, considerably better than its five-year average (Table 9, above). The 2008 duration performance of 2.47 was better than the five-year average, but still close to the RPM target of 2.50, however. Figure 9 shows that 37% of customer interruptions are due to tree related issues, followed by accidents at 22%.

¹⁶ As part of the joint agreement adopted in the last rate order, Central Hudson was not assessed revenue adjustments for 2005 performances.

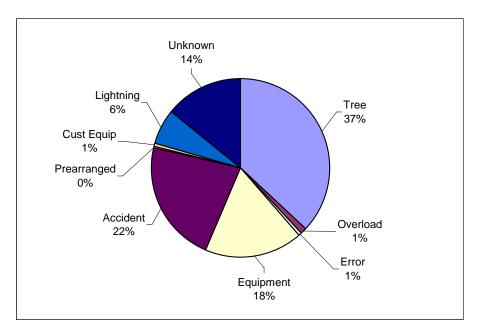


Figure 9: Central Hudson's 2008 Interruptions by Cause

Central Hudson has had a reduction in equipment failures resulting in customer outages since 2005 (see Table 10 below); in 2008, equipment failures were responsible for only 18% of the interruptions.

Year	Tree	Equipment
2004	136,933	89,177
2005	155,504	109,190
2006	172,850	104,263
2007	156,053	99,290
2008	137,170	86,115

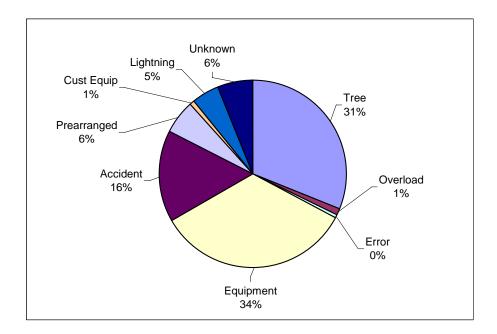
Table 10: Customers Affected by Service Interruptions

In last year's report Staff directed that Central Hudson perform a self assessment of its line clearance program. Staff reviewed Central Hudson's report and found it satisfactory. It does appear that Central Hudson has been addressing tree caused interruptions in a logical way, expanding lessons learned in its enhanced clearance program to the rest of the system and positive results might have begun to be seen (see Table 10, above). In its current rate case proceeding, based on the recommendation of its consultant and actual experience, Central Hudson proposed (and Staff supported) expanding its enhanced tree trimming program of critical three-phase lines as well as the implementation of the modified enhanced program for the rest of the system, both single and multi-phase. A possible encouraging trend in reduced tree outages may also be seen in Table 9 (above) and will be something we will monitor.

Central Hudson's annual reliability report indicates one driver of outage duration is overloaded distribution transformers. Several districts noted they are replacing transformers before they fail using a combination of Transformer Load Management database and field checks with line foremen. This approach appears to have merit especially as preparation for warmer summers, such as was experienced in 2008.

ORANGE AND ROCKLAND

					•	
Metric	2004	2005	2006	2007	2008	5-Year Average
Frequency (SAIFI)	1.30	1.36	1.23	1.03	1.19	1.22
Duration (CAIDI)	1.61	1.71	1.51	1.60	1.83	1.65


 Table 11: O&R's Historic Performances Excluding Major Storms

Note: Data presented in red represents a failure to meet the RPM target for a given year.

Orange and Rockland is the smallest of the major investor-owned electric utilities. It serves approximately 217,000 customers in three New York counties along the New Jersey and Pennsylvania border. In 2008, the Company met its reliability performance mechanism target for frequency. The 2008 frequency performance, although higher than 2007, was still below the Company's five year average performance level. Orange and Rockland, however, failed its reliability performance mechanism for duration in 2008 with a performance of 1.83.

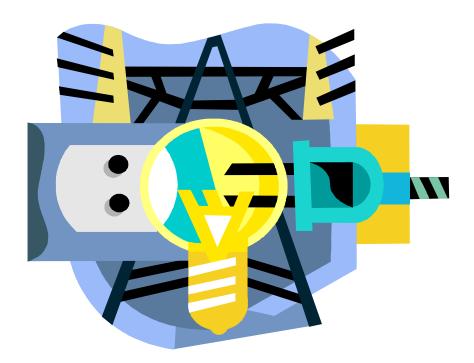
As shown in Figure 10 (below), equipment failures (34%) and trees (31%) caused the majority of interruptions in 2008. Orange and Rockland is addressing reliability issues due to equipment failures through capital improvement programs such as the Distribution Automation Program, the Underground Cable Maintenance and

Rebuild Program, and a number of service reliability improvement projects directed by the circuit priority-rating methodology.

The Company is addressing the tree concerns through increased efforts on its trimming programs. In addition to the four-year cycle based tree trimming program, the Company has continued to identify additional efforts to address key areas with recurring outages such as a recurring outage identification program and a "cycle buster" trimming program. These programs should help reduce the impact of tree contacts on the Company's electrical system through the coming years.

Orange and Rockland's duration performance in 2008 was slightly above its RPM target of 1.70. The Company had performed better than this target in both 2006 and 2007. Since its last rate filing (Case 07-0949), Orange and Rockland has been expressing concern that distribution automation equipment is negatively impacting its duration performance and recently made a presentation to Staff on the issue. As a result, Staff is working closely with the Company to determine the identifiable affects distribution automation has on the duration measure. Staff believes that Orange and Rockland is appropriately installing more distribution automation equipment, increasing tree trimming efforts, and performing needed capital improvement projects to improve overall reliability. Equipment Failures and Tree Contacts continue to be the major causes of interruptions throughout the past five-years and this performance trend remains consistent throughout each operating division as well. Orange and Rockland's has been striving to control tree and equipment related interruptions for several years now. Even though immediate drastic changes are not anticipated due to the nature of the causes, small and steady improvements are expected in the years to come with the finalization of additional reliability projects.

RECOMMENDATIONS


The following is a summary of Staff recommendations based on our analysis of reliability performances in 2008. Additionally, NYSEG will have to respond to actions taken as part of Case 04-E-0472.

- 1. Con Edison should file a report no later than September 15, 2009 detailing information learned during pilot programs related to improving its duration performance and explaining how successful programs from the pilot programs would be implemented on a permanent basis.
- 2. Con Edison should perform a self-assessment to identify strategies to improve its network duration performance and identify corrective actions that are unique to its network system. The self assessment should be filed no later than September 15, 2009.

APPENDIX

2008 INTERRUPTON REPORT

The 2008 Interruption Report

Office of Electricity Gas and Water June, 2009

ATTACHMENT Definitions and Explanations of Terms Used in the 2008 Statewide Electric Service Interruption Report

Interruption is the loss of service for five minutes or more.

Customer hours is the time a customer is without electric service.

Customers affected is the number of customers without electric service.

Customers served is the number of customers as of the last day of the **current year**. For example, for the calendar year of **2008**, customers served is the number of customers as of 12/31/2008. For indices using customers served, the **previous** year is used.

Frequency (**SAIFI**) measures the average number of interruptions experienced by customers served by the utility. It is the customers affected divided by the customers served at the end of the **previous** year, i.e., 12/31/2007.

Duration (CAIDI) measures the average time that an affected customer is out of electric service. It is the customer hours divided by the customers affected.

Availability (SAIDI) is the average amount of time a customer is out-of-service during a year. It is the customer hours divided by the number of customers served at the end of the **previous** year, i.e., 12/31/2007. Mathematically, it also is **SAIFI** multiplied by **CAIDI**.

Interruptions Per 1000 Customers Served is the number of interruptions divided by the number of customers served at the end of the **previous** year, i.e., 12/31/2007, divided by 1,000.

Major Storm is defined as any storm which causes service interruptions of at least ten percent of customers in an operating area, or if the interruptions last for 24 hours or more.

Operating Area is a geographical subdivision of each electric utility's franchise territory. These areas are also called regions, divisions, or districts.

Most of the data is presented two ways, with major storms included and major storms excluded. Major storms tend to distort a utility's performance trend. Tables and graphs that exclude major storms illustrate interruptions that are more under the utility's control. It portrays a utility's system facilities under normal conditions, although this can be misleading because interruptions during "normal" bad weather are included and it is difficult to analyze from year to year.

The first two tables show frequency and duration indices for the last five years for each utility and Statewide with and without Con Edison data. Con Edison has by far the lowest frequency numbers and tends to distort the Statewide data. Much of Con Edison's distribution system consists of a secondary network. In a secondary network, a customer is fed from multiple supplies, making the probability of an interruption relatively rare.

COMPARISON OF SERVICE RELIABILITY INDICES
(EXCLUDING MAJOR STORMS)

	2004	2005	2006	2007	2008	5 YR AVG
CHGE FREQUENCY DURATION	1.36 2.35	1.44 2.70	1.59 2.58	1.42 2.43	1.27 2.47	1.42 2.51
CONED FREQUENCY DURATION	0.11 1.71	0.14 1.99	0.16 8.23	0.16 1.97	0.13 2.27	0.14 3.23
LIPA * FREQUENCY DURATION	0.83 1.04	0.85 1.07	0.75 1.37	0.90 1.20	0.77 1.36	0.82 1.21
NAT GRID FREQUENCY DURATION	1.02 2.04	0.98 2.32	1.01 2.05	0.96 2.01	0.75 1.96	0.94 2.08
NYSEG FREQUENCY DURATION	1.13 1.96	1.12 1.96	1.12 2.01	1.20 2.22	1.11 2.08	1.13 2.05
O&R FREQUENCY DURATION	1.30 1.61	1.36 1.71	1.23 1.51	1.03 1.60	1.19 1.83	1.22 1.65
RG&E FREQUENCY DURATION	0.86 1.84	0.79 1.87	0.79 1.78	0.83 1.73	0.78 1.85	0.81 1.81
STATEWIDE (WI FREQUENCY DURATION	THOUT CON 1.02 1.81	IED) 1.01 1.95	1.00 1.92	1.01 1.88	0.88 1.89	0.98 1.89
STATEWIDE (WI FREQUENCY DURATION	TH CONED) 0.64 1.80	0.65 1.95	0.65 2.57	0.65 1.89	0.56 1.93	0.63 2.03

* LIPA is not regulated by the NYS PSC.
** For those indices that use Customers Served, Customers Served is the December value from the previous year.

COMPARISON OF SERVICE RELIABILITY INDICES
(INCLUDING MAJOR STORMS)

	2004	2005	2006	2007	2008	5 YR AVG
CHGE FREQUENCY DURATION	1.42 2.45	1.83 3.27	2.20 4.12	1.51 2.51	2.15 5.76	1.82 3.62
CONED FREQUENCY DURATION	0.11 1.74	0.15 2.32	0.23 12.31	0.18 3.12	0.14 2.71	0.16 4.44
LIPA * FREQUENCY DURATION	0.91 1.12	1.07 1.42	1.17 1.99	1.03 1.37	1.09 1.65	1.05 1.51
NAT GRID FREQUENCY DURATION	1.12 2.15	1.28 2.76	1.48 7.18	1.31 2.70	1.37 4.32	1.31 3.82
NYSEG FREQUENCY DURATION	1.41 2.26	1.77 3.27	1.79 10.32	1.71 3.62	2.14 7.07	1.76 5.31
O&R FREQUENCY DURATION	1.46 1.77	1.83 2.42	1.81 2.15	1.17 1.92	1.64 2.94	1.58 2.24
RG&E FREQUENCY DURATION	0.98 2.04	0.93 1.90	0.98 2.14	1.16 1.80	1.36 3.77	1.08 2.33
STATEWIDE (WI FREQUENCY DURATION	THOUT CON 1.15 1.97	IED) 1.36 2.60	1.48 6.02	1.31 2.56	1.51 4.62	1.36 3.55
STATEWIDE (WI FREQUENCY DURATION	TH CONED) 0.71 1.95	0.85 2.58	0.96 6.65	0.83 2.61	0.93 4.50	0.86 3.66

* LIPA is not regulated by the NYS PSC.
** For those indices that use Customers Served, Customers Served is the December value from the previous year.

STATEWIDE (WITHOUT CON ED) Excluding Major Storms

Excluding Major Storms						
	2004	2005	2006	2007	2008	5 YR AVG
Number of Interruptions	50,242	54,434	55,211	55,425	53,758	53,814
Number of Customer-Hours	8,015,041	8,631,869	8,439,916	8,439,464	7,399,179	8,185,094
Number of Customers Affected	4,439,677	4,433,386	4,400,072	4,495,428	3,910,426	4,335,798
Number of Customers Served	4,392,363	4,415,079	4,434,324	4,436,307	4,429,635	4,421,542
Average Duration Per Customer Affected (CAIDI)	1.81	1.95	1.92	1.88	1.89	1.89
Average Duration Per Customers Served	1.83	1.97	1.91	1.90	1.67	1.86
Interruptions Per 1000 Customers Served	11.49	12.39	12.51	12.50	12.12	12.20
Number of Customers Affected Per Customer Served (SAIFI)	1.02	1.01	1.00	1.01	0.88	0.98
STATEWIDE (WITH CON ED) Excluding Major Storms						
	2004	2005	2006	2007	2008	5 YR AVG
Number of Interruptions	59,458	65,019	65,752	66,746	65,403	64,476
Number of Customer-Hours	8,596,012	9,506,355	12,603,322	9,429,452	8,326,562	9,692,341
Number of Customers Affected	4,779,817	4,873,534	4,905,844	4,996,967	4,319,550	4,775,142
Number of Customers Served	7,553,747	7,602,291	7,652,745	7,681,104	7,701,361	7,638,250
			0.57	4 00	4 00	0.00
Average Duration Per Customer Affected (CAIDI)	1.80	1.95	2.57	1.89	1.93	2.03
Average Duration Per Customers Served	1.14	1.26	1.66	1.23	1.08	1.28
o						

* LIPA is not regulated by the NYS PSC.
 ** For those indices that use Customers Served, Customers Served is the December value from the previous year.

STATEWIDE (WITHOUT CON ED) Including Major Storms

	2004	2005	2006	2007	2008	5 YR AVG
Number of Interruptions	53,535	66,767	70,872	61,753	73,150	65,215
Number of Customer-Hours	9,852,887	15,493,419	39,413,242	14,848,512	30,962,269	22,114,066
Number of Customers Affected	5,009,438	5,960,730	6,548,910	5,808,516	6,705,414	6,006,602
Number of Customers Served	4,392,363	4,415,079	4,434,324	4,436,307	4,429,635	4,421,542
Average Duration Per Customer Affected (CAIDI)	1.97	2.60	6.02	2.56	4.62	3.55
Average Duration Per Customers Served	2.25	3.53	8.93	3.35	6.98	5.01
Interruptions Per 1000 Customers Served	12.24	15.20	16.05	13.93	16.49	14.78
Number of Customers Affected Per Customer Served (SAIFI)	1.15	1.36	1.48	1.31	1.51	1.36
STATEWIDE (WITH CON ED) Including Major Storms	2004	2005	2006	2007	2008	5 YR AVG
Number of Interruptions	62,806	77,937	86,734	74,261	85,548	77,457
Number of Customer-Hours	10,454,054	16,612,929	48,437,221	16,630,252	32,188,186	24,864,528
Number of Customers Affected	5,355,101	6,442,863	7,282,114	6,379,276	7,158,329	6,523,537
Number of Customers Served	7,553,747	7,602,291	7,652,745	7,681,104	7,701,361	7,638,250
Average Duration Per Customer Affected (CAIDI)	1.95	2.58	6.65	2.61	4.50	3.66
Average Duration Per Customers Served	1.39	2.20	6.37	2.17	4.19	3.27
Interruptions Per 1000 Customers Served	8.36	10.32	11.41	9.70	11.14	10.18
Number of Customers Affected Per Customer Served (SAIFI)	0.71	0.85	0.96	0.83	0.93	0.86

* LIPA is not regulated by the NYS PSC.
 ** For those indices that use Customers Served, Customers Served is the December value from the previous year.

CENTRAL HUDSON Excluding Major Storms

Excluding Major Storms	2004	2005	2006	2007	2008	5 YR AVG
Number of Interruptions	6,514	6,911	7,538	6,386	6,857	6,841
Number of Customer-Hours	917,136	1,125,389	1,201,109	1,021,859	933,993	1,039,897
Number of Customers Affected	389,969	416,547	464,765	420,769	377,564	413,923
Number of Customers Served	289,080	292,816	295,368	298,386	300,621	295,254
Average Duration Per Customer Affected (CAIDI)	2.35	2.70	2.58	2.43	2.47	2.51
Average Duration Per Customers Served	3.21	3.89	4.10	3.46	3.13	3.56
Interruptions Per 1000 Customers Served	22.77	23.91	25.74	21.62	22.98	23.40
Number of Customers Affected Per Customer Served (SAIFI)	1.36	1.44	1.59	1.42	1.27	1.42
CENTRAL HUDSON Including Major Storms						
	2004	2005	2006	2007	2008	5 YR AVG
Number of Internetic an						
Number of Interruptions	6,756	8,309	10,066	6,681	9,887	8,340
Number of Interruptions Number of Customer-Hours	6,756 994,057	8,309 1,735,705	10,066 2,649,690	6,681 1,117,802	9,887 3,705,277	8,340 2,040,506
Number of Customer-Hours Number of Customers Affected	,	,		,	,	
Number of Customer-Hours	994,057	1,735,705	2,649,690	1,117,802	3,705,277	2,040,506
Number of Customer-Hours Number of Customers Affected Number of Customers Served Average Duration Per Customer Affected (CAIDI)	994,057 405,534 289,080 2.45	1,735,705 530,319 292,816 3.27	2,649,690 643,778 295,368 4.12	1,117,802 444,813 298,386 2.51	3,705,277 642,949 300,621 5.76	2,040,506 533,479 295,254 3.62
Number of Customer-Hours Number of Customers Affected Number of Customers Served Average Duration Per Customer Affected (CAIDI) Average Duration Per Customers Served	994,057 405,534 289,080 2.45 3.47	1,735,705 530,319 292,816 3.27 6.00	2,649,690 643,778 295,368 4.12 9.05	1,117,802 444,813 298,386 2.51 3.78	3,705,277 642,949 300,621 5.76 12.42	2,040,506 533,479 295,254 3.62 6.95
Number of Customer-Hours Number of Customers Affected Number of Customers Served Average Duration Per Customer Affected (CAIDI)	994,057 405,534 289,080 2.45	1,735,705 530,319 292,816 3.27	2,649,690 643,778 295,368 4.12	1,117,802 444,813 298,386 2.51	3,705,277 642,949 300,621 5.76	2,040,506 533,479 295,254 3.62

CON ED (SYSTEM) Excluding Major Storms

Excluding Major Storms	2004	2005	2006	2007	2008	5 YR AVG
Number of Interruptions	9.216	10,585	10,541	11,321	11,645	10,662
Number of Customer-Hours	580,971	874,487	4,163,407	989,988	927,383	1,507,247
Number of Customers Affected	340,140	440,148	505,772	501,539	409,124	439,345
Number of Customers Served	3,161,384	3,187,212	3,218,421	3,244,797	3,271,726	3,216,708
Average Duration Per Customer Affected (CAIDI)	1.71	1.99	8.23	1.97	2.27	3.23
Average Duration Per Customers Served	0.18	0.28	1.31	0.31	0.29	0.47
Interruptions Per 1000 Customers Served	2.93	3.35	3.31	3.52	3.59	3.34
Number of Customers Affected Per Customer Served (SAIFI)	0.11	0.14	0.16	0.16	0.13	0.14
CON ED (SYSTEM)						
Including Major Storms						
	2004	2005	2006	2007	2008	5 YR AVG
Number of Interruptions	9,271	11,170	15,862	12,508	12,398	12,242
Number of Customer-Hours	601,167	1,119,510	9,023,979	1,781,740	1,225,917	2,750,463
Number of Customers Affected	345,663	482,133	733,204	570,760	452,915	516,935
Number of Customers Served	3,161,384	3,187,212	3,218,421	3,244,797	3,271,726	3,216,708
Average Duration Per Customer Affected (CAIDI)	1.74	2.32	12.31	3.12	2.71	4.44
Average Duration Per Customers Served	0.19	0.35	2.83	0.55	0.38	0.86
Interruptions Per 1000 Customers Served	2.95	3.53	4.98	3.89	3.82	3.83
Number of Customers Affected Per Customer Served (SAIFI)	0.11	0.15	0.23	0.18	0.14	0.16

CON ED (NETWORK)

	2004	2005	2006	2007	2008	5 YR AVG
Number of Interruptions	4,360	4,967	4,274	5,571	5,485	4,931
Number of Customer-Hours	44,195	59,566	2,947,306	316,477	252,964	724,101
Number of Customers Affected	12,138	13,406	48,467	176,430	40,301	58,148
Number of Customers Served	2,319,321	2,339,622	2,363,897	2,361,145	2,385,760	2,353,949
Average Duration Per Customer Affected (CAIDI)	3.64	4.44	60.81	1.79	6.28	15.39
Average Duration Per Customers Served	0.02	0.03	1.26	0.13	0.11	0.31
Interruptions Per 1000 Customers Served	1.89	2.14	1.83	2.36	2.32	2.11
Number of Customers Affected Per Customer Served (SAIFI)	0.005	0.006	0.021	0.075	0.017	0.025

CON ED (RADIAL) Excluding Major Storms

Excluding Major Storms	2004	2005	2006	2007	2008	5 YR AVG
Number of Interruptions	4,856	5,618	6,267	5,750	6,160	5,730
Number of Customer-Hours	536,776	814,921	1,216,101	673,511	674,419	783,146
Number of Customers Affected	328,002	426,742	457,305	325,109	368,823	381,196
Number of Customers Served	842,063	847,590	854,524	883,652	885,966	862,759
Average Duration Per Customer Affected (CAIDI)	1.64	1.91	2.66	2.07	1.83	2.02
Average Duration Per Customers Served	0.64	0.97	1.43	0.79	0.76	0.92
Interruptions Per 1000 Customers Served	5.81	6.67	7.39	6.73	6.97	6.72
Number of Customers Affected Per Customer Served (SAIFI)	0.39	0.51	0.54	0.38	0.42	0.45
CON ED (RADIAL)						
Including Major Storms						
	2004	2005	2006	2007	2008	5 YR AVG
Number of Interruptions	4,911	6,203	11,588	6,937	6,913	7,310
Number of Customer-Hours	556,972	1,059,944	6,076,673	1,465,264	972,954	2,026,361
Number of Customers Affected	333,525	468,727	684,737	394,330	412,614	458,787
Number of Customers Served	842,063	847,590	854,524	883,652	885,966	862,759
Average Duration Per Customer Affected (CAIDI)	1.67	2.26	8.87	3.72	2.36	3.78
Average Duration Per Customers Served	0.67	1.26	7.17	1.71	1.10	2.38
Interruptions Per 1000 Customers Served	5.88	7.37	13.67	8.12	7.82	8.57
Number of Customers Affected Per Customer Served (SAIFI)	0.40	0.56	0.81	0.46	0.47	0.54

LIPA Excluding Major Storms

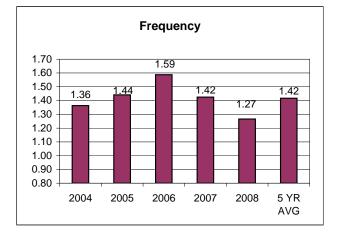
	2004	2005	2006	2007	2008	5 YR AVG
Number of Interruptions	15,423	17,728	18,634	18,736	18,135	17,731
Number of Customer-Hours	942,669	999,412	1,129,275	1,190,411	1,166,613	1,085,676
Number of Customers Affected	908,253	931,276	823,396	995,077	856,405	902,881
Number of Customers Served	1,096,472	1,103,162	1,108,540	1,110,853	1,114,716	1,106,749
Average Duration Per Customer Affected (CAIDI)	1.04	1.07	1.37	1.20	1.36	1.21
Average Duration Per Customers Served	0.87	0.91	1.02	1.07	1.05	0.98
Interruptions Per 1000 Customers Served	14.16	16.17	16.89	16.90	16.33	16.09
Number of Customers Affected Per Customer Served (SAIFI)	0.83	0.85	0.75	0.90	0.77	0.82
LIPA Including Major Storms						
	2004	2005	2006	2007	2008	5 YR AVG
Number of Interruptions	15,956	21,317	24,905	20,077	20,471	20,545
Number of Customer-Hours	1,105,002	1,675,011	2,564,134	1,564,559	1,998,270	1,781,395
Number of Customers Affected	986,170	1,177,059	1,289,698	1,142,365	1,208,292	1,160,717
Number of Customers Served	1,096,472	1,103,162	1,108,540	1,110,853	1,114,716	1,106,749
Average Duration Per Customer Affected (CAIDI)	1.12	1.42	1.99	1.37	1.65	1.51
Average Duration Per Customers Served	1.01	1.53	2.32	1.41	1.80	1.62
Interruptions Per 1000 Customers Served	14.65	19.44	22.58	18.11	18.43	18.64
Number of Customers Affected Per Customer Served (SAIFI)	0.91	1.07	1.17	1.03	1.09	1.05

NATIONAL GRID Excluding Major Storms

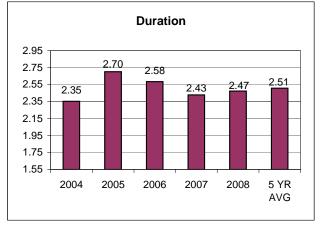
Excluding Major Storms	2004	2005	2006	2007	2008	5 YR AVG
Number of Interruptions	13,917	13,680	13,665	14,606	12,939	13,761
Number of Customer-Hours	3,274,229	3,598,884	3,289,340	3,045,363	2,334,754	3,108,514
Number of Customers Affected	1,602,708	1,551,448	1,607,461	1,518,634	1,188,585	1,493,767
Number of Customers Served	1,580,131	1,585,383	1,589,949	1,594,179	1,583,311	1,586,591
Average Duration Per Customer Affected (CAIDI)	2.04	2.32	2.05	2.01	1.96	2.08
Average Duration Per Customers Served	2.08	2.28	2.07	1.92	1.46	1.96
Interruptions Per 1000 Customers Served	8.82	8.66	8.62	9.19	8.12	8.68
Number of Customers Affected Per Customer Served (SAIFI)	1.02	0.98	1.01	0.96	0.75	0.94
NATIONAL GRID Including Major Storms	2004	2005	2006	2007	2008	5 YR AVG
Number of Interruptions	14,760	16,211	16,279	16,222	18,301	16,355
Number of Customer-Hours	3,800,127	5,568,127	16,813,162	5,605,931	9,410,833	8,239,636
Number of Customers Affected	1,766,092	2,020,066	2,341,235	2,075,480	2,177,786	2,076,132
Number of Customers Served	1,580,131	1,585,383	1,589,949	1,594,179	1,583,311	1,586,591
Average Duration Per Customer Affected (CAIDI)	2.15	2.76	7.18	2.70	4.32	3.82
			40.04	0.50	E 00	F 40
Average Duration Per Customers Served	2.41	3.52	10.61	3.53	5.90	5.19
Average Duration Per Customers Served Interruptions Per 1000 Customers Served Number of Customers Affected Per Customer Served (SAIFI)	2.41 9.35 1.12	3.52 10.26 1.28	10.61 10.27 1.48	3.53 10.20 1.31	5.90 11.48 1.37	10.31 1.31

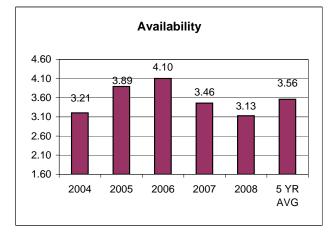
NYSEG Excluding Major Storms

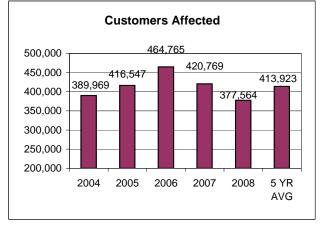
Excluding Major Storms	2004	2005	2006	2007	2008	5 YR AVG
Number of Interruptions	8,946	10,190	9,682	10,317	10,027	9,832
Number of Customer-Hours	1,866,112	1,872,868	1,913,315	2,299,142	1,980,213	1,986,330
Number of Customers Affected	952,258	955,009	953,941	1,034,113	953,105	969,685
Number of Customers Served	849,335	854,508	859,440	859,963	857,517	856,153
Average Duration Per Customer Affected (CAIDI)	1.96	1.96	2.01	2.22	2.08	2.05
Average Duration Per Customers Served	2.21	2.21	2.24	2.68	2.30	2.32
Interruptions Per 1000 Customers Served	10.59	12.00	11.33	12.00	11.66	11.48
Number of Customers Affected Per Customer Served (SAIFI)	1.13	1.12	1.12	1.20	1.11	1.13
NYSEG						
Including Major Storms						
	2004	2005	2006	2007	2008	5 YR AVG
Number of Interruptions	10,269	14,364	12,835	12,928	17,008	13,481
Number of Customer-Hours	2,687,162	4,926,508	15,787,602	5,314,914	12,974,501	8,338,137
Number of Customers Affected	1,188,998	1,504,612	1,529,247	1,469,825	1,836,251	1,505,787
Number of Customers Served	849,335	854,508	859,440	859,963	857,517	856,153
Average Duration Per Customer Affected (CAIDI)	2.26	3.27	10.32	3.62	7.07	5.31
Average Duration Per Customers Served	3.18	5.80	18.48	6.18	15.09	9.75
Interruptions Per 1000 Customers Served Number of Customers Affected Per Customer Served (SAIFI)	12.15 1.41	16.91 1.77	15.02 1.79	15.04 1.71	19.78 2.14	15.78 1.76

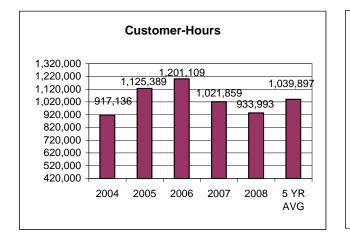

O&R Excluding Major Storms

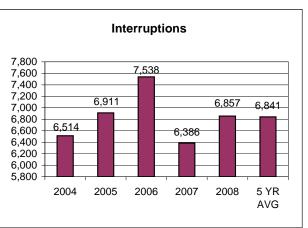
Excluding Major Storms	2004	2005	2006	2007	2008	5 YR AVG
Number of Interruptions	2,546	2,718	2,688	2,596	2,993	2,708
Number of Customer-Hours	440,617	493,591	397,977	356,514	470,431	431,826
Number of Customers Affected	274,124	289,022	264,121	222,895	256,943	261,421
Number of Customers Served	212,352	214,546	216,268	215,694	217,373	215,247
Average Duration Per Customer Affected (CAIDI)	1.61	1.71	1.51	1.60	1.83	1.65
Average Duration Per Customers Served	2.09	2.32	1.85	1.65	2.18	2.02
Interruptions Per 1000 Customers Served	12.10	12.80	12.53	12.00	13.88	12.66
Number of Customers Affected Per Customer Served (SAIFI)	1.30	1.36	1.23	1.03	1.19	1.22
0.6						
O&R Including Major Storms						
	2004	2005	2006	2007	2008	5 YR AVG
Number of Interruptions	2,729	3,123	3,546	2,738	3,655	3,158
Number of Customer-Hours	542,652	942,127	836,046	483,938	1,043,235	769,600
Number of Customers Affected	307,396	388,553	388,164	252,650	354,315	338,216
Number of Customers Served	212,352	214,546	216,268	215,694	217,373	215,247
Average Duration Per Customer Affected (CAIDI)	1.77	2.42	2.15	1.92	2.94	2.24
Average Duration Per Customers Served	2.58	4.44	3.90	2.24	4.84	3.60
Interruptions Per 1000 Customers Served	12.97	14.71	16.53	12.66	16.95	14.76
Number of Customers Affected Per Customer Served (SAIFI)	1.46	1.83	1.81	1.17	1.64	1.58

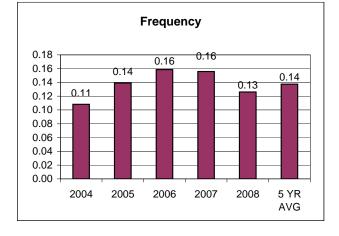

RG&E

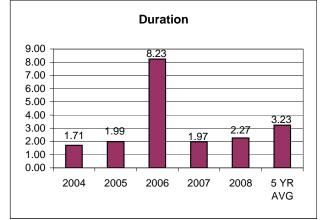

Excluding Major Storms

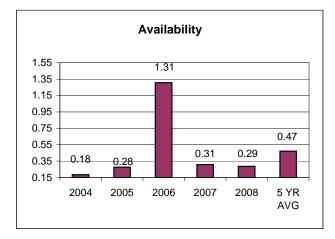

Excluding Major Storms	2004	2005	2006	2007	2008	5 YR AVG	
	2004	2005	2000	2007	2000	JINAVG	
Number of Interruptions	2,896	3,207	3,004	2,784	2,807	2,940	
Number of Customer-Hours	574,278	541,725	508,899	526,175	513,175	532,850	
Number of Customers Affected	312,365	290,084	286,388	303,940	277,824	294,120	
Number of Customers Served	364,993	364,664	364,759	357,232	356,097	361,549	
Average Duration Per Customer Affected (CAIDI)	1.84	1.87	1.78	1.73	1.85	1.81	
Average Duration Per Customers Served	1.58	1.48	1.40	1.44	1.44	1.47	
Interruptions Per 1000 Customers Served	7.96	8.79	8.24	7.63	7.86	8.10	
Number of Customers Affected Per Customer Served (SAIFI)	0.86	0.79	0.79	0.83	0.78	0.81	
RG&E							
Including Major Storms							
	2004	2005	2006	2007	2008	5 YR AVG	
Number of Interruptions	3,065	3,443	3,241	3,107	3,828	3,337	
Number of Customer-Hours	723,887	645,940	762,609	761,368	1,830,153	944,791	
Number of Customers Affected	355,248	340,121	356,788	423,383	485,821	392,272	
Number of Customers Served	364,993	364,664	364,759	357,232	356,097	361,549	
Average Duration Per Customer Affected (CAIDI)	2.04	1.90	2.14	1.80	3.77	2.33	
Average Duration Per Customers Served	1.99	1.77	2.09	2.09	5.12	2.61	
Interruptions Per 1000 Customers Served	8.43	9.43	8.89	8.52	10.72	9.20	

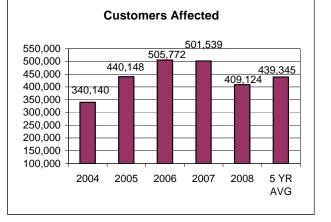


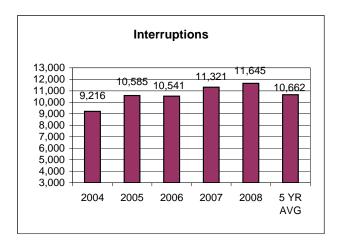

Central Hudson Gas and Electric (Excluding Major Storms)

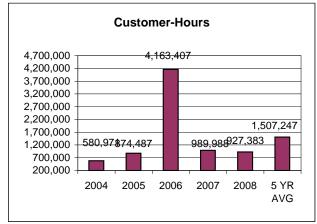


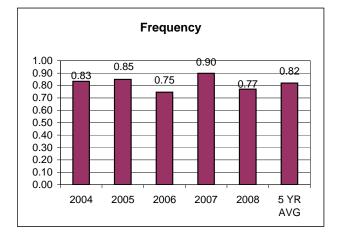


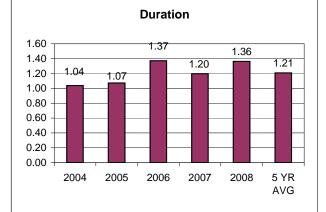


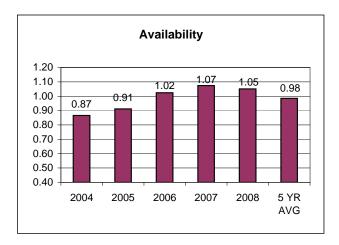


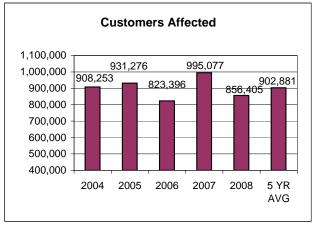


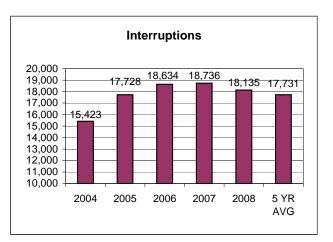

Consolidated Edison - System (Excluding Major Storms)

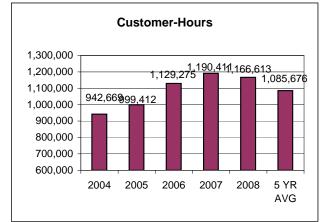


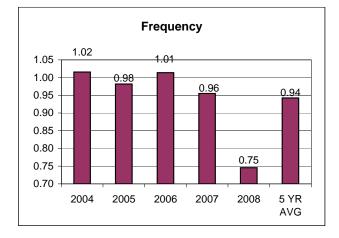


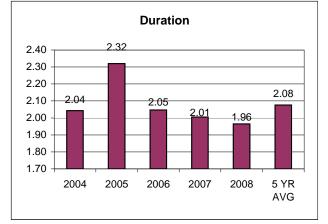


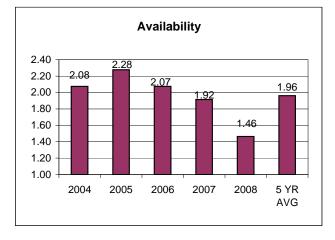


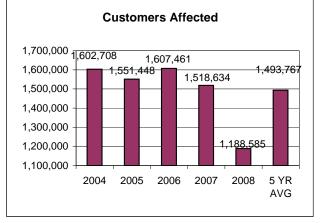


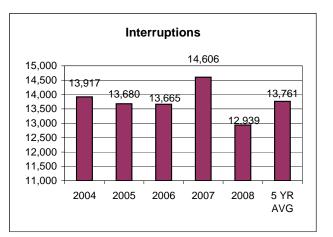

Long Island Power Authority (Excluding Major Storms)

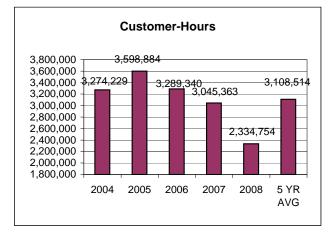


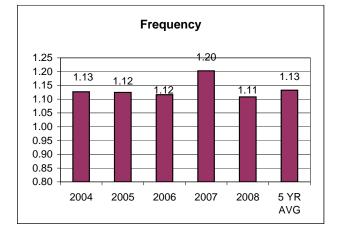


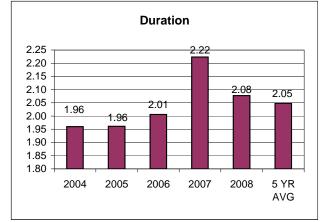


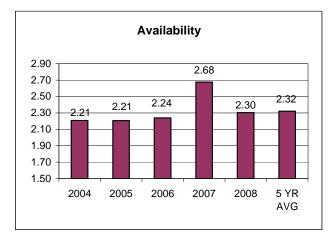

* LIPA is not regulated by the NYS PSC.

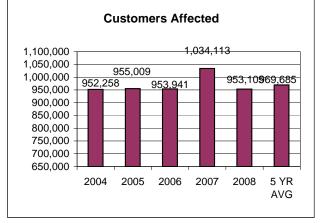


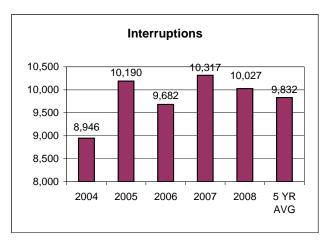

National Grid (Excluding Major Storms)



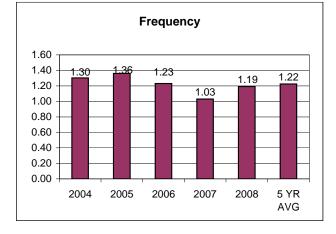


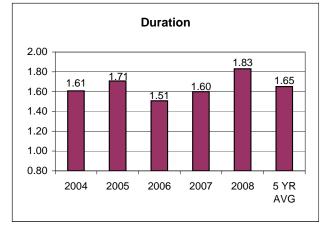


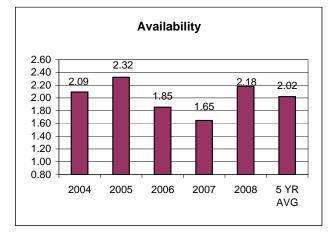


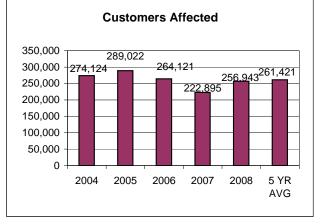


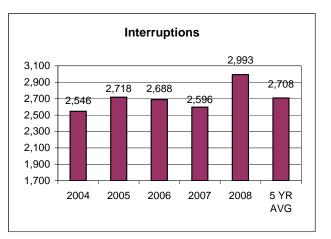
New York State Electric and Gas (Excluding Major Storms)

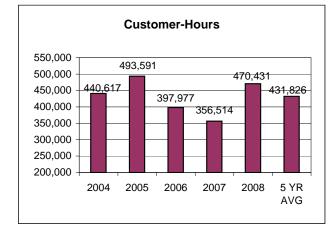


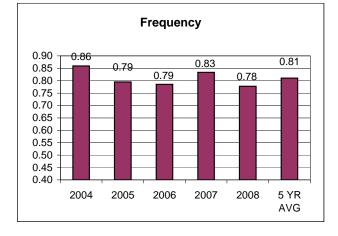


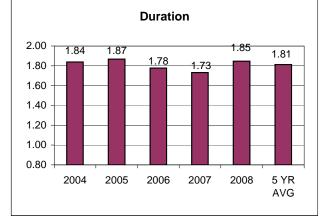




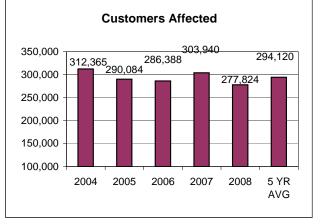


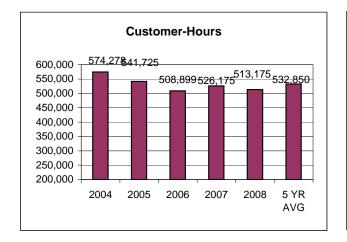

Orange and Rockland Utilities (Excluding Major Storms)

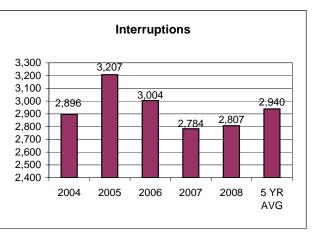











Rochester Gas and Electric (Excluding Major Storms)

STATE OF NEW YORK

DEPARTMENT OF PUBLIC SERVICE

2010 ELECTRIC RELIABILITY PERFORMANCE REPORT

Electric Distribution Systems Office of Electric, Gas, and Water June 2011

TABLE OF CONTENTS

EXECUTIVE SUMMARY
INTRODUCTION
2010 RELIABILITY PERFORMANCE7
STATEWIDE
CON EDISON 12
NATIONAL GRID
NEW YORK STATE ELECTRIC AND GAS
ROCHESTER GAS AND ELECTRIC
CENTRAL HUDSON GAS AND ELECTRIC
ORANGE AND ROCKLAND
APPENDIX
2010 INTERRUPTON REPORT

EXECUTIVE SUMMARY

This report presents Department of Public Service Staff's (Staff) assessment of electric reliability performance in New York State for 2010. As a means of monitoring the levels of service, utilities are required to submit detailed monthly interruption data to the Public Service Commission (Commission). Staff primarily relies on two metrics commonly used in the industry to measure reliability performance: the System Average Interruption Frequency Index (SAIFI or frequency) and the Customer Average Interruption Duration Index (CAIDI or duration).¹ Frequency is influenced by factors such as system design, capital investment, maintenance, and weather.² Decisions made by utilities today on capital expenditures and maintenance policies, however, can take several years before being fully reflected in the frequency measure. Duration, on the other hand, is affected by work force levels, management of the workforce, and geography. By compiling the interruption data provided by the individual utilities, the average frequency and duration of interruptions can be reviewed to assess the overall reliability of electric service in New York State. Recent data is also compared with historic performances to identify positive or negative trends. Finally, Staff reviews several other specific metrics that vary by utility to gauge electric reliability.

The statewide interruption frequency for 2010, excluding major storms, has been nearly identical for the past three years, and better than the five year average. Central Hudson Gas and Electric Corporation (Central Hudson) and Niagara Mohawk Power Corporation d/b/a National Grid's (National Grid) improved when compared with 2009. While the performances of the remaining four of the major electric companies were not as good as 2009 levels, they still performed satisfactorily and met the criteria in the performance mechanisms to which they were subject. For these companies, calendar year 2009 was also one of their best performing years in recent history.

¹ SAIFI is the average number of times that a customer is interrupted during a year. CAIDI is the average interruption duration time for those customers that experience an interruption during the year.

² To help achieve a balance between service interruptions under a utility's control, such as equipment failures, and those which a utility's control is more limited, such as an ice storm, we review reliability data both including and excluding severe weather events.

For the most part, duration performances were acceptable. Although, the statewide duration in 2010 was slightly worse than 2009, it was better than the five year average. In 2010, New York State Electric and Gas (NYSEG)'s and Rochester Gas and Electric (RG&E)'s duration was its best performance in the past five years.

Calendar year 2010 was historically one of the worst with respect to major storm effects. Three significant storms in the Hudson Valley and Downstate contributed to the entire State having the fifth-most hours of customer electric service interruption (including major storms) in the past twenty years.

With respect to individual utility performance in 2010, Consolidated Edison Company of New York's (Con Edison) generally performed satisfactorily. Due to concerns regarding the accuracy of the number of customers that were affected by an interruption in a network, we are now measuring network performance using two alternate measures: the number of interruptions per 1000 customers³ and the average interruption duration. In 2010, Con Edison's network interruption performance was better than its 2009 performance, however, the Company's network interruption duration was worse in 2010 when compared to its 2009 performance. With regard to its radial system, Con Edison's radial system interruption frequency was nearly the same as its five year average. The radial system interruption duration performance declined compared to prior years, but was better than the five year average.

While NYSEG and RG&E had worse frequency performances in 2010 as compared with 2009, they are still much better than the Companies' respective performance targets. Outages associated with tree contacts and equipment failures continue to be a concern relative to NYSEG. In 2010, the companies have resumed investing in and maintaining their systems at more appropriate levels after low spending levels in 2009. As previously stated, the companies achieved their best duration performances of the past five years in 2010.

³ An interruption is the loss of service for five minutes or more, for one or more customers. For example, a blown fuse that affects twelve customers is one interruption.

National Grid continues to perform well. The Company's recent infrastructure improvement and reliability focused programs are having a positive impact. Central Hudson's performance was better or consistent with its five year averages. Because of continuing tree issues, Central Hudson implemented a more rigorous tree trimming specification several years ago. Staff will perform field reviews of electric lines that are at or near the end of the first four-year trimming cycle. Orange and Rockland Utilities, Inc. (Orange and Rockland) performed satisfactorily with regard to interruption frequency, but not with respect to interruption duration. The Company has lacked consistency in its performances and Staff will be working with the Company to help reduce this variability.

All investor-owned electric utilities have reliability performance mechanisms (RPMs) in place as part of their rate plans. The RPMs are designed such that companies are subject to negative revenue adjustments for failing to meet electric reliability targets. In 2010, Con Edison achieved the network outage duration metric and the remote monitoring system metric in its RPM only if the exclusions it is asserting are accepted by the Commission. Failure to achieve the performance levels set forth in these metrics may result in negative revenue adjustments of \$5 million and \$10 million, respectively. Con Edison is seeking exclusion of storm related outages and extraordinary circumstances in its Long Island City network, as permitted under certain circumstances in its RPM. If the exclusion is allowed, this would result in the Company meeting all RPM targets.⁴ Orange and Rockland failed to achieve its interruption duration target in 2010, which would result in a negative revenue adjustment of \$800,000. On March 16, 2011, Orange and Rockland filed a request for exemption for outages experienced during a storm on July 19, 2010. The request, if granted, improves the duration performance such that the Company would meet its target and not be subject to any negative revenue adjustments.⁵ All of the other companies met their RPM targets.

⁴ Con Edison filed a request for exemption on March 31, 2010 which has yet to be presented to the Commission for final action.

⁵ Orange and Rockland's request for exemption has yet to be presented to the Commission for final action.

Overall, we are generally pleased with the steady electric reliability performance across the State. There are, however, individual concerns that are being addressed through various Staff efforts. This report will be transmitted to an executive level operating officer of each electric utility with a letter from the Director of the Office of Electric, Gas, and Water.

INTRODUCTION

This report provides an overview of the electric reliability performance in New York State. As a means of monitoring the levels of service reliability, the Commission's Rules and Regulations require utilities delivering electricity in New York State to collect and submit information to the Commission regarding electric service interruptions on a monthly basis.⁶ The utilities provide interruption data that enables Staff to calculate two primary performance metrics: the System Average Interruption Frequency Index (SAIFI or frequency) and the Customer Average Interruption Duration Index (CAIDI or duration). The information is grouped into 10 categories that delineate the nature of the cause of interruption (cause code).⁷ Analysis of the cause code data enables the utilities and Staff to identify areas where increased capital investment or maintenance is needed. As an example, if a circuit were shown to be prone to lightningcaused interruptions, arrestors could be installed on that circuit to try to minimize the effect of future lightning strikes. In general, most of a utility's interruptions are a result of major storms, tree contacts, equipment failures, and accidents.⁸ Staff maintains the interruption information in a database that dates back to 1989, which enables it to observe trends.

The Commission also adopted electric service standards addressing the reliability of electric service. The standards contain minimum acceptable performance levels for both the frequency and duration of service interruptions for each major electric utility's operating divisions. The utilities are required to submit a formal reliability report by March 31 of each year containing detailed assessments of performance, including outage trends in a utility's various geographic regions, reliability improvement projects, and analyses of worst-performing feeders. There are no revenue adjustments for failure

⁶ 16 NYCRR Part 97, Notification of Interruption of Service requires utilities to keep detailed back-up data for six years.

⁷ 16 NYCRR Part 97, Notification of Interruption of Service specifies and defines the following ten cause codes that reflect the nature of the interruptions: major storms, tree contacts, overloads, operating errors, equipment failures, accidents, prearranged interruptions, customers equipment, lightning, and unknown. There are an additional seven cause codes used exclusively for Con Edison's underground network system.

⁸ The accident cause code covers events not entirely within in the utilities' control including vehicular accidents, sabotage, and animal contacts. Lightning is reported under a separate cause code.

to meet a minimum level under the service standards; utilities are, however, required to include a corrective action plan as part of the annual report. The service standards were last revised in 2004.

In addition, utility performance is compared with utilities' RPMs established as part of the utilities' rate orders. RPMs are designed such that companies are subjected to negative revenue adjustments for failing to meet electric reliability targets. The RPMs typically include targets for frequency and duration; some RPMs have additional measures to address specific concerns within an individual company.

2010 RELIABILITY PERFORMANCE

The following sections provide a summary discussion of the reliability performance statewide and for each of the major utilities.⁹ Interruption data is presented in two ways in this report – with major storms excluded and with major storms included. A major storm is defined by the Commission's regulations as any storm which causes service interruptions of at least 10 percent of customers in an operating area, and/or interruptions with duration of 24 hours or more. Major storm interruptions are excluded from the data used in calculating performance levels for service standards and reliability performance mechanisms. The purpose of this policy is to achieve a balance between service interruptions under a utility's control, such as equipment failures and line maintenance, and those over which a utility's control is more limited, such as severe ice storm or a heavy wet snowstorm. Reliability performance data inclusive of major storms reflects the actual customer experience during a year.

Each year, Staff prepares an Interruption Report summarizing the monthly interruption data submitted by utilities. The 2010 Interruption Report contains detailed interruption data for each utility and statewide statistics for the past five years. The Interruption Report for 2010 is attached as an Appendix. Individual company discussions identify issues or actions within each company that influenced performance levels for 2010 and indicate company-specific trends where applicable.

Revenue adjustments for inadequate performance are implemented through individual RPMs which have been established in the utilities' rate orders.¹⁰ Con Edison and Orange and Rockland failed to achieve targets in their reliability performance mechanisms for 2010. Con Edison failed to achieve the average interruption duration target for its network system and also failed its Remote Monitoring System target, resulting in a negative rate adjustment of \$15 million. Orange and Rockland failed to achieve its interruption duration target, which results in a negative revenue adjustment of \$800,000. The rate adjustments are preliminary assessments because both companies are

⁹ Although LIPA is not regulated by the Commission, it supplies interruption data that is used to calculate statewide performance in this report.

¹⁰ Revenue adjustments for inferior performances are implemented through individual Reliability Performance Mechanisms established in rate orders.

requesting exemptions, which are permitted under certain circumstances, and with which the companies would meet their targets and avoid any negative revenue adjustments.¹¹

STATEWIDE

For many years, Staff has been combining individual utility performance statistics into overall statewide statistics. By doing so Staff is able to evaluate the level of reliability provided statewide and identify statewide trends. Because Con Edison's system includes many large, highly concentrated distribution networks that are generally less prone to interruptions than overhead systems, its interruption frequency is extremely low (i.e., better) as compared with other utilities. This, combined with the fact that it serves the largest number of customers in the state, typically results in a skewing of the performance measures. As a result, Staff examines and presents aggregated data both including and excluding Con Edison's data.

Statewide, as may be seen in Figure 1, the frequency of interruptions excluding major storms was 0.57 in 2010; this is generally equivalent to the previous two years' performances and better than the five-year average. National Grid and Central Hudson had fewer customers affected by power outages in 2010 when major storms are excluded, while NYSEG, Con Edison, RG&E, and O&R had more customers affected. The frequency performance in 2010 for utilities other than Con Edison is 0.89, which is substantially the same as their frequency performance of 0.88 in 2008 and .090 in 2009, and better than the five-year average of 0.94.

¹¹ The requests have not been presented to the Commission for final action.

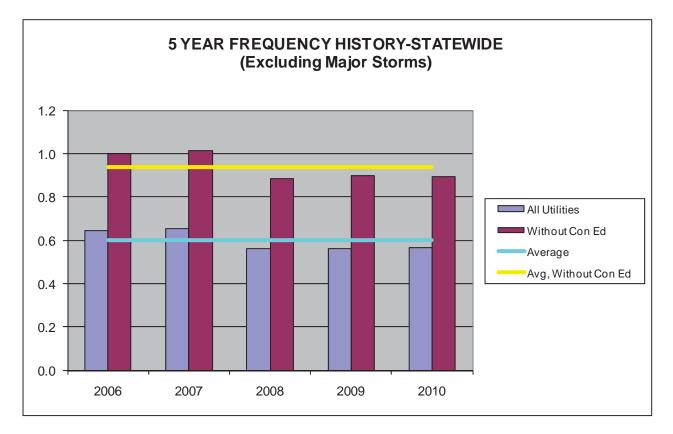
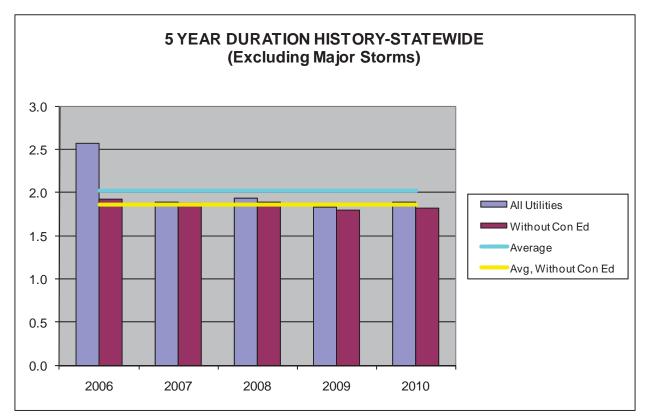



Figure 2 shows the historical statewide interruption duration index, excluding major storms. The 2010 overall statewide interruption duration index of 1.89 is slightly worse than 2009's 1.83, but is still consistent with the history of the past four years. When examining the chart, it should be kept in mind that Con Edison's Long Island City network outages in 2006 are still in the five year average. The statewide interruption duration index, excluding Con Edison, was 1.82 hours in 2010, which is the second best of the past five years.

Figure 2: Statewide Duration Performance

While the overall number of major storms in 2010 was not atypical, three significant storms occurred in the Hudson Valley and Downstate. The three storms, summarized below, contributed to 2010 having the fifth-most hours of customer electric service interruption (including major storms) in the past twenty years (Figures 3 and 4, below). Because of the extended restoration times associated with these storms, the Commission requires the companies to file storm reports detailing restoration activities. ¹² These reports were reviewed during the course of the year and determined that, in general, the utilities responded well.

• On February 23rd and 25th, heavy wet snow hit the Hudson Valley causing 300,000 customers to lose power. Central Hudson, Con Edison, NYSEG, and O&R were affected with overall restoration time exceeding a week. For Central Hudson, it was the worst storm in Company history since 1991, causing twice as much hours of customer interruption as Hurricane Floyd in 1999.

¹² 16 NYCRR Part 97, Part 105.4, requires utilities to file storm reports for outages lasting longer than three days.

- A March nor'easter swept the downstate area on March 3rd and affected 475,000 customers. Companies primarily affected were Con Edison, O&R, and LIPA. For Con Edison, it was the largest storm with respect to customer hours of interruption in Company history, with more than three times the amount experienced in Tropical Storm Ernesto in 2006.
- On September 16th, Tornados/Macrobursts hit downstate and affected Con Edison, O&R and LIPA, causing Con Edison 31,000 customers, mostly in Staten Island, Brooklyn and Queens, to lose power, some for extended times. The storms, while narrow in this geography, were notable in the magnitude of their destructiveness.

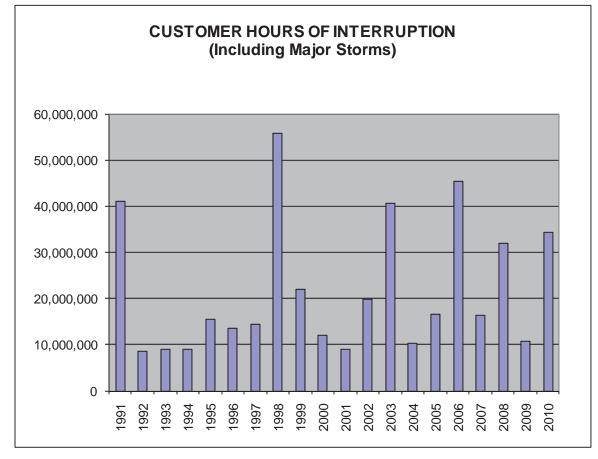


Figure 3: Customer Hours of Interruption (Including Major Storms)

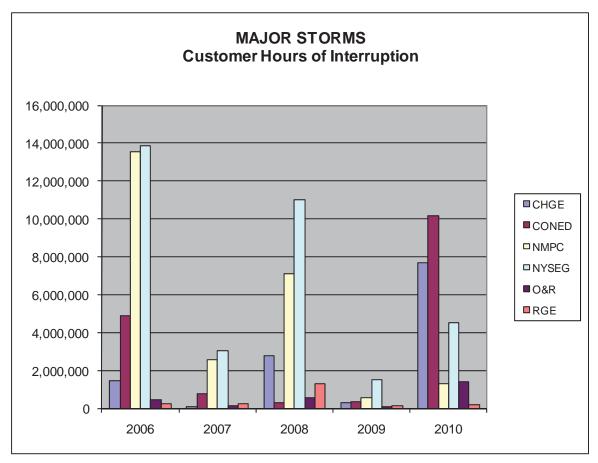
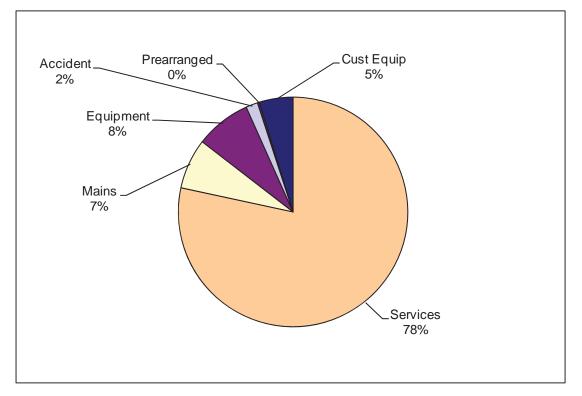


Figure 4: Major Storm Customer Hours

CON EDISON


Metric	2006	2007	2008	2009	2010	5-Year Average
		Network	Systems ¹³			
Frequency				3.63	3.09	
Duration				4.63	5.89	
		Radial	System			
Frequency (SAIFI)	0.54	0.38	0.42	0.32	0.41	0.42
Duration (CAIDI)	2.66	2.07	1.83	1.74	1.95	2.05

Note: Data presented in red represents a failure to meet the RPM target for a given year.

¹³ The duration and frequency metrics to measure network performance were replaced for 2009 with other measures.

Con Edison serves approximately 3.3 million customers in New York City and Westchester County. Electricity is supplied to 2.4 million customers using network systems. The remaining 900,000 customers are supplied by radial systems.

To minimize the frequency of customer outages, Con Edison's networks are designed with redundant supply paths. Individual service lines to customer premises, however, lack any supplemental supply. Given these design characteristics and underground settings, the majority of interruptions (78%) are associated with the service portion of the network system, as shown in Figure 5. Equipment failures (8%) are the next highest causes for interruptions in 2010 followed by Mains (7%).

Due to concerns regarding the accuracy of the number of customers affected by an interruption in a network, we are now measuring network performance using two measures: the number of interruptions per 1000 customers and the average interruption duration. By using measures that are not based on the number of customers affected, we are able to monitor and trend network reliability performances without questioning the validity of the measures. In 2010, Con Edison's network interruptions metric was better than its 2009 performance. The Company also achieved its RPM network interruption target for the past two years. With regard to duration, Con Edison performed worse in 2010 when compared to its 2009 performance. The Company did not meet its RPM target for average interruption duration in 2010. Con Edison is seeking exclusion of storm related outages from its interruption performance levels. It also failed to achieve the remote monitoring system metric in its RPM, but is seeking an exclusion due to extraordinary circumstances with regard to the Remote Monitoring System (RMS) criteria for its Long Island City network. If these exclusions are granted, the Company would meet the targets and not incur any negative revenue adjustment.¹⁴

On its radial system, Con Edison's frequency in 2010 of 0.41 was worse than 2009's performances and nearly equal to its five year average. The Company met its RPM frequency target of 0.495 for 2010. Equipment failures are responsible for 75% of the interruptions on the radial system, followed by trees and accidents at 9% and 8%, respectively, as shown in Figure 6.

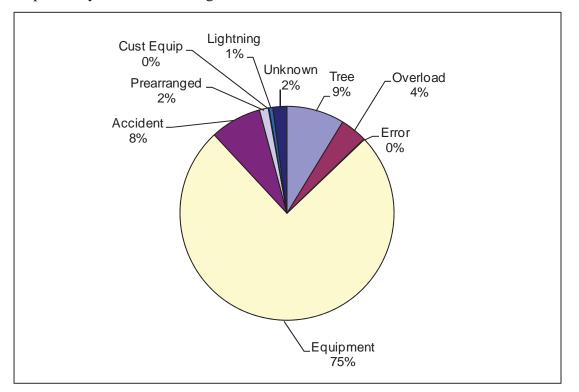


Figure 6: Con Edison's 2010 Radial Interruptions by Cause

¹⁴ Con Edison filed a request for exemption on March 31, 2010 which has yet to be presented to the Commission for final action.

With respect to duration, Con Edison's radial performance in 2010 was worse than the previous two years. While the Company passed its RPM target of 2.04, duration performance is something we and the Company are monitoring closely. In response to a self-assessment recommended by Staff, Con Edison developed and implemented duration improvement strategies for both its radial and network system. To improve crewing efficiency and reduce outage duration, the Company has increased use of first responder staffing, increased the ability to mobile dispatch work to crews, and improve training resources. Con Edison stated that enhancements have been made to the process utilized for its outage management system to flag large outage jobs, and it now employs an automatic call out process for additional crews. The Company also continues to improve the reliability of its system by installing switches and other rapid restoration technologies. Given the focus and efforts Con Edison has put into place regarding duration, we believe 2010's performance is acceptable.

NATIONAL GRID

Metric	2006	2007	2008	2009	2010	5-Year Average
Frequency (SAIFI)	1.01	0.96	0.75	0.88	0.80	0.88
Duration (CAIDI)	2.05	2.01	1.96	1.91	1.98	1.98

 Table 2: National Grid's Historic Performance Excluding Major Storms

Note: Data presented in red represents a failure to meet the RPM target for a given year.

National Grid serves approximately 1.59 million customers across upstate New York. The Company's 25,000 square mile territory includes metropolitan areas, such as the cities of Buffalo, Albany, and Syracuse, as well as many rural areas in northern New York and the Adirondacks.

In 2010, National Grid achieved both its reliability targets, comprising three consecutive years of positive performance. The Company's frequency level of 0.80 in 2010 improved as compared with 0.88 in 2009, and is well below its frequency target level of 0.93. The duration performance for 2010 was worse than 2009, but equal to its historic five-year average, and better than its duration target of 2.07 for five consecutive years. National Grid also provided consistent service on a region by region basis. In 2010, the Company's Northeast division failed to achieve its duration expectation and the Capital Region barely missed its frequency expectation. As previously discussed, the divisional expectations are defined by our Electric Service Standards.

Historically, equipment failures were National Grid's leading cause of interruptions. Aged equipment, leading to poor frequency performances in mid 2000 necessitated the Company's significant investment in capital improvement projects aimed at improving reliability. As a result of the upgrades and modifications to its distribution system, the percentage of interruptions caused by equipment failures is now less than tree related electric service interruptions for 2010 (see Figure 7, below). It should be noted, however, that tree-related outages were worse in 2009 and 2010 when compared to historic interruption rates. Analysis of the data indicates that the increase in tree related interruptions is attributable to increased broken limb conditions. Interruptions caused by re-growth and danger trees, however, were both lower in 2010 than in 2009. As a result, National Grid is not recommending changes to its five year trimming cycle or hazard tree removal program. To help reduce it tree-related outages, National Grid is doing additional off-cycle trimming and trimming on worst performing circuits in 2011.

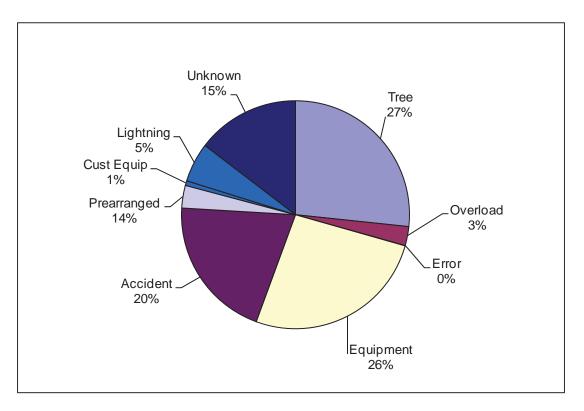


Figure 7: National Grid's 2010 Interruptions by Cause

In addition to improved performance on equipment failures, National Grid has decreased the number of customers affected when a failure occurs (see Table 3). The average number of customers affected by an interruption has been reduced from over 100 customers per interruption to approximately 90 customers per interruption in each of the last three years. National Grid credits the reduction to its effort to sectionalize lines via recloser and side tap fuse installations. National Grid's Line Recloser Program installs 100 additional reclosers per year and is expected to continue to limit the number of customers affected by a single interruption.

 Table 3: National Grid's Historic Customers Affected per Interruption

	2006	2007	2008	2009	2010
Average number of customers affected per interruption	118	104	92	87	92

National Grid now uses a system that establishes repair work orders in direct response to inspection findings. Based on its success in repairing deteriorated items under its inspection and maintenance, National Grid will be discontinuing focused programs, such as the Pole Replacement Program and Feeder Hardening Program in 2011. While these programs were helpful in reducing National Grid's frequency performance over the past years, it is appropriate for the Company to consolidate its efforts in the interest of prioritizing and scheduling efficiencies. We expect that National Grid will continue to address reliability concerns on worst performing feeders, either through engineering reliability reviews or alternate methods, and maintain at least the current level of performance in future years.

NEW YORK STATE ELECTRIC AND GAS

 Table 4: NYSEG's Historic Performance Excluding Major Storms

Metric	2006	2007	2008	2009	2010	5-Year Average
Frequency (SAIFI)	1.12	1.20	1.11	1.08	1.14	1.13
Duration (CAIDI)	2.01	2.22	2.08	2.00	1.98	2.06

Approximately 858,269 customers are served by NYSEG. The Company is primarily located in the Binghamton and Finger Lakes regions, but does have localized service regions, including areas near Plattsburgh, Brewster, Mechanicville, and Lancaster.

NYSEG's frequency performance of 1.14 was worse when compared with 2009's performance of 1.08, but nearly the same as the five year average. The 2010 duration performance of 1.98 was the best in the past five years. Overall, NYSEG's performance is satisfactory and the Company was able to meet its RPM reliability targets of 1.20 for frequency and 2.08 for duration.

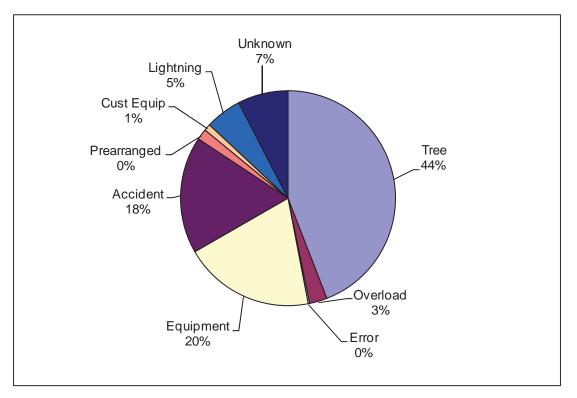


Figure 8: NYSEG's 2010 Interruptions by Cause

As shown in Figure 8, tree contacts (44%), equipment failures (20%), and accidents (18%) remain the predominant causes of interruption throughout NYSEG's twelve operating divisions in 2010. NYSEG has one of the worst frequency rates which is caused primarily by customers affected by tree interruptions. As a result, NYSEG needs to continue to focus on improving its distribution vegetation management program and reducing tree related outages. The Commission approved increased funding for distribution vegetation management activities as part of its last 2010 rate case agreement to help move NYSEG towards full cycle trimming activities. Therefore, Staff expects NYSEG to address the issue of tree trimming more aggressively and undertake measures to identify and perform trimming in areas where tree related outages are more frequent.

Equipment failures are NYSEG's second major cause for interruption. For the past two years, it accounted for 20% of the total number of interruptions. NYSEG has been addressing equipment failures under its Transmission and Distribution Infrastructure Replacement Program (TDIRP) program. The TDIRP program replaces electrical T&D equipment based on the condition, age, and failure characteristics of the specific item based on the Company's experience and knowledge. Funding for the TDIRP program was reduced significantly in 2009 to approximately \$6.0 million from historical levels of approximately \$23 million annually.¹⁵ In 2010, NYSEG began to invest in its system at close to or higher than historic levels. The most recent rate case supported \$25 million in expenditures for the TDIRP efforts annually, to bring the Company back up to pre 2009 spending levels. The reinvestment into this program is expected to help reduce outages related to equipment failures and improve the system reliability on a going forward and proactive basis. Staff will continue to monitor the Company's performance on these issues.

ROCHESTER GAS AND ELECTRIC

Metric	2006	2007	2008	2009	2010	5-Year Average
Frequency (SAIFI)	0.79	0.83	0.78	0.59	0.71	0.74
Duration (CAIDI)	1.78	1.73	1.85	1.80	1.71	1.77

 Table 5: RG&E's Historic Performance Excluding Major Storms

RG&E serves approximately 358,109 customers. Although the Company is comprised of four service areas, its Rochester division accounts for approximately 80% of its customer base. As a result, its overall reliability statistics mirror that of the Rochester division.

With regard to service reliability, RG&E continues to be one of the better utilities in the state by continually performing better than its RPM targets of 0.90 for frequency and 1.90 for duration, as established in its rate orders. As shown in Table 5, RG&E's performance for frequency and duration is fairly consistent with its five year average. The Company's frequency performance of 0.71 in 2010 was an increase from 0.59 in 2009; however, the 2009 performance was the best in the past five years. RG&E's duration performance of 1.71 in 2010 was better than in 2009 and better than the five-year average.

¹⁵ In 2009, the Company reduced all expenditures to essential needs only while stating financial issues within the Company as the reasoning behind the reduced spending.

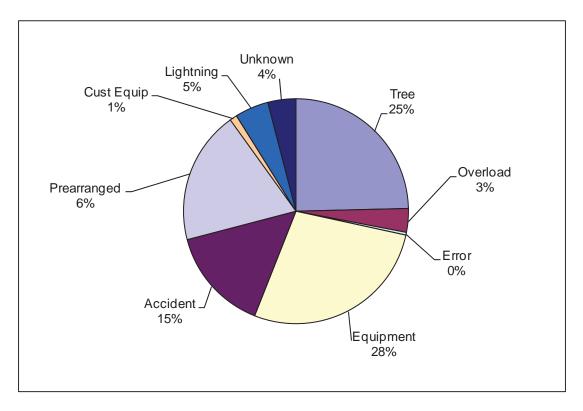


Figure 9 shows that the two major contributors to interruptions in 2010 continue to be equipment failures (28%) and tree contacts (25%). Similar to NYSEG, funding for RG&E's Transmission and Distribution Infrastructure Replacement Program (TDIRP) was reduced due to Company financial issues in 2009 and the beginning of 2010. In the last rate case, the Commission supported expenditures for the TDIRP efforts, in the amount of \$15 million annually, to bring the Company back up to pre 2009 spending levels. Likewise, the Commission also supported increased expenditures for vegetation management, in the amount of \$6.6 million annually, allowing the Company to implement a full system vegetation management (tree trimming) cycle program. Staff believes that these two programs and associated expenditures will help reduce outages and improve the system reliability going forward on proactive basis.

CENTRAL HUDSON GAS AND ELECTRIC

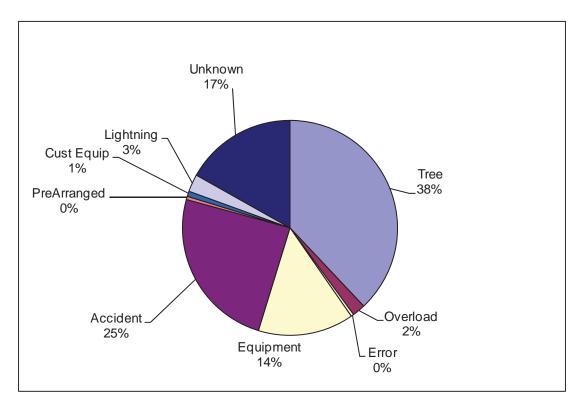

Metric	2006	2007	2008	2009	2010	5-Year Average
Frequency (SAIFI)	1.59	1.42	1.27	1.37	1.27	1.38
Duration (CAIDI)	2.58	2.43	2.47	2.22	2.42	2.43

 Table 6: Central Hudson's Historic Performance Excluding Major Storms

Note: Data presented in red represents a failure to meet the RPM target for a given year.

Central Hudson serves approximately 298,000 customers in the Mid-Hudson Valley region. The Company's territory is mainly suburban and rural. Central Hudson does serve some urban regions, such as the cities of Poughkeepsie and Newburgh.

Central Hudson's frequency performance of 1.27 in 2010 was better than 2009 and ties its five-year best. The Company's duration performance of 2.42 in 2010, on the other hand, was slightly better than average. Figure 10 shows that 38% of customer interruptions were due to tree related issues, followed by accidents which comprised 25%. In 2010, the Company achieved its RPM targets of 1.45 for frequency and 2.50 for duration.

Figure 10: Central Hudson's 2010 Interruptions by Cause

As is the case with most overhead distribution utilities, trees are a primary cause of outages (Figure 10, above). The Company as a whole suffers more tree interruptions per customer served than any other major New York electric utility. Since 2007 Central Hudson has done vegetation line clearance in accordance with a new, improved specification. Using greater level of detail available to it, the Company reports a trend of decreasing interruptions resulting from trees falling inside its trimming zone. Staff will follow-up this summer with the Company and perform field reviews of electric lines that are at or near the end of the four-year trimming cycle.

The Unknown and Accident categories historically make up large portions of electric interruptions for all New York utilities, and this is the case for Central Hudson as well. Staff will be looking more closely with the Company at these classifications of outages to see if the Company's performance can be improved.

Equipment failures cause a large number of electric interruptions as is the case with most electric utility companies. Central Hudson is continuing several programs to decrease the number of these interruptions, including programs for substation breaker replacement, porcelain cutout replacement, 14kV paper and lead cable replacement, automatic load transfer switch installation, and aging recloser replacement (including remote communication). In addition, the Company has a program to upgrade individual circuits.

ORANGE AND ROCKLAND

Metric	2006	2007	2008	2009	2010	5-Year Average
Frequency (SAIFI)	1.23	1.03	1.19	0.96	1.21	1.13
Duration (CAIDI)	1.51	1.60	1.83	1.66	1.79	1.68

 Table 7: O&R's Historic Performance Excluding Major Storms

Note: Data presented in red represents a failure to meet the RPM target for a given year.

Orange and Rockland serves approximately 218,000 customers in three New York counties along the New Jersey and Pennsylvania border. In 2010, the Company met its reliability performance mechanism target of 1.36 for frequency with a frequency of 1.21; however, it failed to achieve the duration target of 1.70 with a 1.79 performance.¹⁶ As the table above shows, the 2010 frequency and duration performance levels were both much worse than last years and continue ORU's sporadic performance trend from year to year. The 2010 results were worse than the 5 year averages and are similar to those in 2008 when the Company again failed to achieve its duration target. Staff will continue to work with the Company to help reduce the variability in performances.

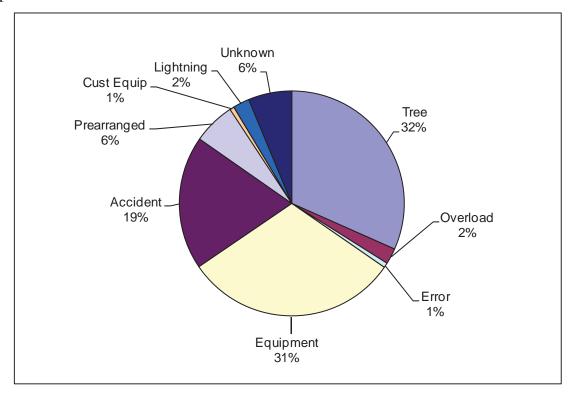
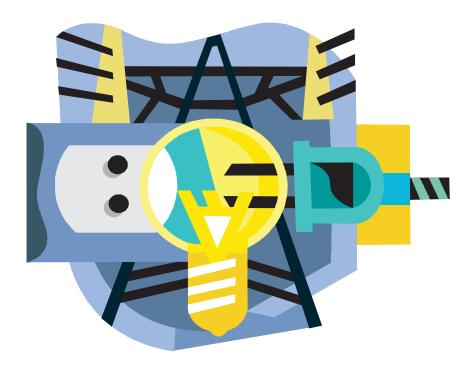
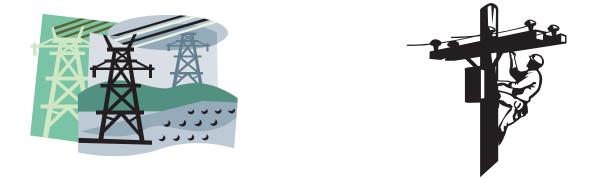


Figure 11: Orange and Rockland's 2010 Interruptions by Cause

As shown in Figure 11, tree contacts (32%) and equipment failures (31%) caused the majority of interruptions in 2010. Orange and Rockland is addressing reliability issues resulting from equipment failures through capital improvement programs such as the Distribution Automation Program, the Underground Cable

¹⁶ The Company has filed a petition to the Commission for exemption from the RPM revenue adjustment, related to a storm that affected its Eastern Division on July 19, 2010. This petition has not been acted on by the Commission.


Maintenance and Rebuild Program, and a number of service reliability improvement projects directed by the circuit priority-rating methodology.


The Company continues to address concerns regarding tree-related outages through increased efforts on its line clearance programs. In addition to the four-year cycle based tree trimming program, the Company has continued to identify and perform supplemental trimming to address areas with recurring tree related outages. These programs are expected to reduce the impact of tree contacts on the Company's electrical system through the coming years.

APPENDIX

2010 INTERRUPTON REPORT

The 2010 Interruption Report

Office of Electricity, Gas, and Water June 2014

ATTACHMENT Definitions and Explanations of Terms Used in the 2010 Statewide Electric Service Interruption Report

Interruption is the loss of service for five minutes or more.

Customer hours is the time a customer is without electric service.

Customers affected is the number of customers without electric service.

Customers served is the number of customers as of the last day of the **current year**. For example, for the calendar year of **2010**, customers served is the number of customers as of 12/31/2010. For indices using customers served, the **previous** year is used.

Frequency (**SAIFI**) measures the average number of interruptions experienced by customers served by the utility. It is the customers affected divided by the customers served at the end of the **previous** year, i.e., 12/31/2009.

Duration (CAIDI) measures the average time that an affected customer is out of electric service. It is the customer hours divided by the customers affected.

Availability (SAIDI) is the average amount of time a customer is out-of-service during a year. It is the customer hours divided by the number of customers served at the end of the **previous** year, i.e., 12/31/2009. Mathematically, it also is **SAIFI** multiplied by **CAIDI**.

Interruptions Per 1000 Customers Served is the number of interruptions divided by the number of customers served at the end of the **previous** year, i.e., 12/31/2009, divided by 1,000.

Major Storm is defined as any storm which causes service interruptions of at least ten percent of customers in an operating area, or if the interruptions last for 24 hours or more.

Operating Area is a geographical subdivision of each electric utility's franchise territory. These areas are also called regions, divisions, or districts.

Most of the data is presented two ways, with major storms included and major storms excluded. Major storms tend to distort a utility's performance trend. Tables and graphs that exclude major storms illustrate interruptions that are more under the utility's control. It portrays a utility's system facilities under normal conditions, although this can be misleading because interruptions during "normal" bad weather are included and it is difficult to analyze from year to year.

The first two tables show frequency and duration indices for the last five years for each utility and Statewide with and without Con Edison data. Con Edison has by far the lowest frequency numbers and tends to distort the Statewide data. Much of Con Edison's distribution system consists of a secondary network. In a secondary network, a customer is fed from multiple supplies, making the probability of an interruption relatively rare.

COMPARISON OF SERVICE RELIABILITY INDICES
(EXCLUDING MAJOR STORMS)

	2006	2007	2008	2009	2010	5 YR AVG
CHGE FREQUENCY DURATION	1.59 2.58	1.42 2.43	1.27 2.47	1.37 2.22	1.27 2.42	1.38 2.43
CONED FREQUENCY DURATION	0.16 8.23	0.16 1.97	0.13 2.27	0.10 2.27	0.13 2.57	0.13 3.46
LIPA * FREQUENCY DURATION	0.75 1.37	0.90 1.20	0.77 1.36	0.74 1.17	0.73 1.11	0.78 1.24
NAT GRID FREQUENCY DURATION	1.01 2.05	0.96 2.01	0.75 1.96	0.88 1.91	0.80 1.98	0.88 1.98
NYSEG FREQUENCY DURATION	1.12 2.01	1.20 2.22	1.11 2.08	1.08 2.00	1.14 1.98	1.13 2.06
O&R FREQUENCY DURATION	1.23 1.51	1.03 1.60	1.19 1.83	1.03 1.67	1.21 1.79	1.14 1.68
RG&E FREQUENCY DURATION	0.79 1.78	0.83 1.73	0.78 1.85	0.59 1.80	0.71 1.71	0.74 1.77
STATEWIDE (WIT FREQUENCY DURATION	THOUT CON 1.00 1.92	IED) 1.02 1.88	0.88 1.89	0.90 1.79	0.89 1.82	0.94 1.86
STATEWIDE (WIT FREQUENCY DURATION	TH CONED) 0.65 2.57	0.65 1.89	0.56 1.93	0.56 1.83	0.57 1.89	0.60 2.02

* LIPA is not regulated by the NYS PSC.
** For those indices that use Customers Served, Customers Served is the December value from the previous year.

COMPARISON OF SERVICE RELIABILITY INDICES
(INCLUDING MAJOR STORMS)

01105	2006	2007	2008	2009	2010	5 YR AVG
CHGE FREQUENCY DURATION	2.20 4.12	1.51 2.51	2.15 5.76	1.63 2.48	2.62 10.94	2.02 5.16
CONED FREQUENCY DURATION	0.23 12.31	0.18 3.12	0.14 2.71	0.11 3.06	0.23 15.05	0.18 7.25
LIPA * FREQUENCY DURATION	1.18 1.99	1.04 1.37	1.09 1.65	0.81 1.25	1.04 1.84	1.03 1.62
NAT GRID FREQUENCY DURATION	1.48 7.18	1.31 2.70	1.37 4.32	1.01 2.01	0.98 2.46	1.23 3.74
NYSEG FREQUENCY DURATION	1.79 10.32	1.71 3.62	2.14 7.07	1.47 2.68	1.84 4.09	1.79 5.55
O&R FREQUENCY DURATION	1.81 2.15	1.17 1.92	1.64 2.94	1.15 1.89	1.79 4.76	1.51 2.73
RG&E FREQUENCY DURATION	0.98 2.14	1.16 1.80	1.36 3.77	0.74 2.03	0.79 2.18	1.01 2.38
STATEWIDE (WI FREQUENCY DURATION	THOUT CON 1.49 6.02	IED) 1.31 2.56	1.51 4.62	1.07 2.09	1.29 4.09	1.34 3.87
STATEWIDE (WI FREQUENCY DURATION	TH CONED) 0.96 6.65	0.83 2.61	0.93 4.50	0.67 2.16	0.84 5.35	0.85 4.25

* LIPA is not regulated by the NYS PSC.
** For those indices that use Customers Served, Customers Served is the December value from the previous year.

STATEWIDE (WITHOUT CON ED) Excluding Major Storms

Excluding Major Storms						
	2006	2007	2008	2009	2010	5 YR AVG
Number of Interruptions	55,211	55,425	53,758	55,995	54,310	54,940
Number of Customer-Hours	8,439,916	8,439,464	7,399,179	7,116,848	7,197,156	7,718,512
Number of Customers Affected	4,400,072	4,495,428	3,910,426	3,976,492	3,962,829	4,149,049
Number of Customers Served	4,428,946	4,433,994	4,425,772	4,437,856	4,446,105	4,434,535
Average Duration Per Customer Affected (CAIDI)	1.92	1.88	1.89	1.79	1.82	1.86
Average Duration Per Customers Served	1.91	1.91	1.67	1.61	1.62	1.74
Interruptions Per 1000 Customers Served	12.52	12.51	12.12	12.65	12.24	12.41
Number of Customers Affected Per Customer Served (SAIFI)	1.00	1.02	0.88	0.90	0.89	0.94
<u>STATEWIDE (WITH CON ED)</u> Excluding Major Storms	2006	2007	2008	2009	2010	5 YR AVG
Number of Interruptions	65,752	66,746	65,403	70,930	68,221	67,410
Number of Customer-Hours	12,603,322	9,429,452	8,326,562	7,891,155	8,284,480	9,306,994
Number of Customers Affected	4,905,844	4,996,967	4,319,550	4,316,932	4,385,672	4,584,993
Number of Customers Served	7,647,367	7,678,791	7,697,498	7,729,599	7,766,918	7,704,035
Average Duration Per Customer Affected (CAIDI)	2.57	1.89	1.93	1.83	1.89	2.02
Average Duration Per Customer Affected (CAIDI) Average Duration Per Customers Served	2.57 1.66	1.89 1.23	1.93 1.08	1.83 1.03	1.89 1.07	2.02 1.21
o						

* LIPA is not regulated by the NYS PSC.
 ** For those indices that use Customers Served, Customers Served is the December

STATEWIDE (WITHOUT CON ED) Including Major Storms

	2006	2007	2008	2009	2010	5 YR AVG
Number of Interruptions	70,872	61,753	73,150	61,841	72,135	67,950
Number of Customer-Hours	39,413,242	14,848,512	30,962,269	9,923,723	23,466,391	23,722,827
Number of Customers Affected	6,548,910	5,808,516	6,705,414	4,752,148	5,741,806	5,911,359
Number of Customers Served	4,428,946	4,433,994	4,425,772	4,437,856	4,446,105	4,434,535
Average Duration Per Customer Affected (CAIDI)	6.02	2.56	4.62	2.09	4.09	3.87
Average Duration Per Customers Served	8.94	3.35	6.98	2.24	5.29	5.36
Interruptions Per 1000 Customers Served	16.08	13.94	16.50	13.97	16.25	15.35
Number of Customers Affected Per Customer Served (SAIFI)	1.49	1.31	1.51	1.07	1.29	1.34
STATEWIDE (WITH CON ED) Including Major Storms	2006	2007	2008	2009	2010	5 YR AVG
Number of Interruptions	86,734	74,261	85,548	77,181	91,471	83,039
Number of Customer-Hours	48,437,221	16,630,252	32,188,186	11,046,399	34,693,862	28,599,184
Number of Customers Affected	7,282,114	6,379,276	7,158,329	5,118,841	6,487,588	6,485,230
Number of Customers Served	7,647,367	7,678,791	7,697,498	7,729,599	7,766,918	7,704,035
	, ,	, ,	7,697,498 4.50	7,729,599 2.16	7,766,918 5.35	7,704,035 4.25
Number of Customers Served	7,647,367	7,678,791	, ,	, ,	, ,	, ,
Number of Customers Served Average Duration Per Customer Affected (CAIDI)	7,647,367 6.65	7,678,791 2.61	4.50	2.16	5.35	4.25

* LIPA is not regulated by the NYS PSC.
 ** For those indices that use Customers Served, Customers Served is the December

CENTRAL HUDSON

Excluding Major Storms 2006 2007 2008 2009 2010 5 YR AVG Number of Interruptions 7,538 6,386 6,857 6,705 7,762 Number of Customer-Hours 1,201,109 1,021,859 933,993 910,250 922,392 Number of Customers Affected 464,765 420,769 377,564 410,516 380,489 Number of Customers Served 295,368 298,386 300,621 299,557 299,971 Average Duration Per Customer Affected (CAIDI) 2.58 2.43 2.47 2.22 2.42 Average Duration Per Customers Served 4.10 3.46 3.13 3.03 3.08 Interruptions Per 1000 Customers Served 25.74 21.62 22.98 22.30 25.91 Number of Customers Affected Per Customer Served (SAIFI) 1.59 1.42 1.27 1.37 1.27 **CENTRAL HUDSON** Including Major Storms 2006 2007 2008 2009 2010 5 YR AVG Number of Interruptions 10,066 6,681 9,887 7,609 11,994 Number of Customer-Hours 2,649,690 1,117,802 3,705,277 1,211,827 8,597,567 3,456,433 Number of Customers Affected 643,778 444,813 642,949 488,732 785,806 Number of Customers Served 295,368 298,386 300,621 299,557 299,971 Average Duration Per Customer Affected (CAIDI) 4.12 2.51 5.76 2.48 10.94 Average Duration Per Customers Served 9.05 3.78 12.42 4.03 28.70 Interruptions Per 1000 Customers Served 34.38 22.62 33.13 25.31 40.04

2.20

1.51

2.15

1.63

2.62

* Customers Served is the number of customers served at the end of the current year.

Number of Customers Affected Per Customer Served (SAIFI)

** For those indices that use Customers Served, Customers Served is the December value from the previous year.

7,050

997,921

410,821

298,781

2.43

3.36

23.71

1.38

9,247

601,216

298,781

5.16

11.60

31.10

2.02

CON ED (SYSTEM) Excluding Major Storms

	2006	2007	2008	2009	2010	5 YR AVG
Number of Interruptions	10,541	11,321	11,645	14,935	13,911	12,471
Number of Customer-Hours	4,163,407	989,988	927,383	774,307	1,087,325	1,588,482
Number of Customers Affected	505,772	501,539	409,124	340,440	422,843	435,944
Number of Customers Served	3,218,421	3,244,797	3,271,726	3,291,743	3,320,813	3,269,500
Average Duration Per Customer Affected (CAIDI)	8.23	1.97	2.27	2.27	2.57	3.46
Average Duration Per Customers Served	1.31	0.31	0.29	0.24	0.33	0.49
Interruptions Per 1000 Customers Served	3.31	3.52	3.59	4.56	4.23	3.84
Number of Customers Affected Per Customer Served (SAIFI)	0.16	0.16	0.13	0.10	0.13	0.13
CON ED (EVETEM)						
CON ED (SYSTEM) Including Major Storms	2006	2007	2008	2009	2010	5 YR AVG
	2006 15,862	2007 12,508	2008 12,398	2009 15,340	2010 19,336	5 YR AVG 15,089
Including Major Storms						
Including Major Storms Number of Interruptions	15,862	12,508	12,398	15,340	19,336	15,089
Including Major Storms Number of Interruptions Number of Customer-Hours	15,862 9,023,979	12,508 1,781,740	12,398 1,225,917	15,340 1,122,677	19,336 11,227,471	15,089 4,876,357
Including Major Storms Number of Interruptions Number of Customer-Hours Number of Customers Affected	15,862 9,023,979 733,204	12,508 1,781,740 570,760	12,398 1,225,917 452,915	15,340 1,122,677 366,693	19,336 11,227,471 745,782	15,089 4,876,357 573,871
Including Major Storms Number of Interruptions Number of Customer-Hours Number of Customers Affected Number of Customers Served	15,862 9,023,979 733,204 3,218,421	12,508 1,781,740 570,760 3,244,797	12,398 1,225,917 452,915 3,271,726	15,340 1,122,677 366,693 3,291,743	19,336 11,227,471 745,782 3,320,813	15,089 4,876,357 573,871 3,269,500
Including Major Storms Number of Interruptions Number of Customer-Hours Number of Customers Affected Number of Customers Served Average Duration Per Customer Affected (CAIDI)	15,862 9,023,979 733,204 3,218,421 12.31	12,508 1,781,740 570,760 3,244,797 3.12	12,398 1,225,917 452,915 3,271,726 2.71	15,340 1,122,677 366,693 3,291,743 3.06	19,336 11,227,471 745,782 3,320,813 15.05	15,089 4,876,357 573,871 3,269,500 7.25

CON ED (NETWORK)

	2006	2007	2008	2009	2010	5 YR AVG
Number of Interruptions	4,274	5,571	5,485	8,650	7,434	6,283
Number of Customer-Hours	2,947,306	316,477	252,964	273,705	370,405	832,171
Number of Customers Affected	48,467	176,430	40,301	52,994	54,555	74,549
Number of Customers Served	2,363,897	2,361,145	2,385,760	2,403,818	2,439,565	2,390,837
Average Duration Per Customer Affected (CAIDI)	60.81	1.79	6.28	5.16	6.79	16.17
Average Duration Per Customers Served	1.26	0.13	0.11	0.11	0.15	0.35
Interruptions Per 1000 Customers Served	1.83	2.36	2.32	3.63	3.09	2.64
Number of Customers Affected Per Customer Served (SAIFI)	0.021	0.075	0.017	0.022	0.023	0.031

CON ED (RADIAL) Excluding Major Storms

Excluding Major Storms	2006	2007	2008	2009	2010	5 YR AVG
Number of Interruptions	6,267	5,750	6,160	6,285	6,477	6,188
Number of Customer-Hours	1,216,101	673,511	674,419	500,602	716,920	756,310
Number of Customers Affected	457,305	325,109	368,823	287,446	368,288	361,394
Number of Customers Served	854,524	883,652	885,966	887,925	881,248	878,663
Average Duration Per Customer Affected (CAIDI)	2.66	2.07	1.83	1.74	1.95	2.05
Average Duration Per Customers Served	1.43	0.79	0.76	0.57	0.81	0.87
Interruptions Per 1000 Customers Served	7.39	6.73	6.97	7.09	7.29	7.10
Number of Customers Affected Per Customer Served (SAIFI)	0.54	0.38	0.42	0.32	0.41	0.42
CON ED (RADIAL)						
Including Major Storms						
	2006	2007	2008	2009	2010	5 YR AVG
Number of Interruptions	11,588	6,937	6,913	6,690	11,902	8,806
Number of Customer-Hours	6,076,673	1,465,264	972,954	848,971	10,857,066	4,044,185
Number of Customers Affected	684,737	394,330	412,614	313,699	691,227	499,321
Number of Customers Served	854,524	883,652	885,966	887,925	881,248	878,663
Average Duration Per Customer Affected (CAIDI)	8.87	3.72	2.36	2.71	15.71	6.67
Average Duration Per Customers Served	7.17	1.71	1.10	0.96	12.23	4.63
Interruptions Per 1000 Customers Served	13.67	8.12	7.82	7.55	13.40	10.11
Number of Customers Affected Per Customer Served (SAIFI)	0.81	0.46	0.47	0.35	0.78	0.57

LIPA Excluding Major Storms

	2006	2007	2008	2009	2010	5 YR AVG
Number of Interruptions	18,634	18,736	18,135	17,795	17,180	18,096
Number of Customer-Hours	1,129,275	1,190,411	1,166,613	958,679	905,031	1,070,002
Number of Customers Affected	823,396	995,077	856,405	821,723	811,969	861,714
Number of Customers Served	1,103,162	1,108,540	1,110,853	1,114,716	1,117,281	1,110,910
Average Duration Per Customer Affected (CAIDI)	1.37	1.20	1.36	1.17	1.11	1.24
Average Duration Per Customers Served	1.03	1.08	1.05	0.86	0.81	0.97
Interruptions Per 1000 Customers Served	16.99	16.98	16.36	16.02	15.41	16.35
Number of Customers Affected Per Customer Served (SAIFI)	0.75	0.90	0.77	0.74	0.73	0.78
LIPA Including Major Storms						
	2006	2007	2008	2009	2010	5 YR AVG
					2010	0 IRAIO
Number of Interruptions	24,905	20,077	20,471	19,003	22,867	21,465
Number of Interruptions Number of Customer-Hours	24,905 2,564,134	20,077 1,564,559	20,471 1,998,270			
1	,	,	,	19,003	22,867	21,465
Number of Customer-Hours	2,564,134	1,564,559	1,998,270	19,003 1,121,723	22,867 2,125,507	21,465 1,874,839
Number of Customer-Hours Number of Customers Affected	2,564,134 1,289,698	1,564,559 1,142,365	1,998,270 1,208,292	19,003 1,121,723 894,595	22,867 2,125,507 1,153,884	21,465 1,874,839 1,137,767
Number of Customer-Hours Number of Customers Affected Number of Customers Served	2,564,134 1,289,698 1,103,162	1,564,559 1,142,365 1,108,540	1,998,270 1,208,292 1,110,853	19,003 1,121,723 894,595 1,114,716	22,867 2,125,507 1,153,884 1,117,281	21,465 1,874,839 1,137,767 1,110,910
Number of Customer-Hours Number of Customers Affected Number of Customers Served Average Duration Per Customer Affected (CAIDI)	2,564,134 1,289,698 1,103,162 1.99	1,564,559 1,142,365 1,108,540 1.37	1,998,270 1,208,292 1,110,853 1.65	19,003 1,121,723 894,595 1,114,716 1.25	22,867 2,125,507 1,153,884 1,117,281 1.84	21,465 1,874,839 1,137,767 1,110,910 1.62

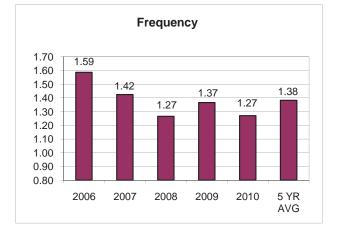
* LIPA is not regulated by the NYS PSC.
 * Customers Served is the number of customers served at the end of the current year.
 ** For those indices that use Customers Served, Customers Served is the December value from the previous year.

NATIONAL GRID Excluding Major Storms

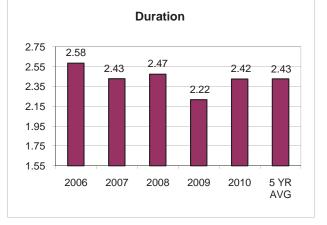
	2006	2007	2008	2009	2010	5 YR AVG
Number of Interruptions	13,665	14,606	12,939	15,915	13,822	14,189
Number of Customer-Hours	3,289,340	3,045,363	2,334,754	2,645,775	2,529,126	2,768,872
Number of Customers Affected	1,607,461	1,518,634	1,188,585	1,387,131	1,277,727	1,395,908
Number of Customers Served	1,589,949	1,594,179	1,583,311	1,589,810	1,593,830	1,590,216
Average Duration Per Customer Affected (CAIDI)	2.05	2.01	1.96	1.91	1.98	1.98
Average Duration Per Customers Served	2.07	1.92	1.46	1.67	1.59	1.74
Interruptions Per 1000 Customers Served	8.62	9.19	8.12	10.05	8.69	8.93
Number of Customers Affected Per Customer Served (SAIFI)	1.01	0.96	0.75	0.88	0.80	0.88
NATIONAL GRID Including Major Storms						
	2006	2007	2008	2009	2010	5 YR AVG
Number of Interruptions	16,279	16,222	18,301	17,060	15,571	16,687
Number of Customer-Hours	16,813,162	5,605,931	9,410,833	3,214,148	3,824,438	7,773,703
Number of Customers Affected	2,341,235	2,075,480	2,177,786	1,599,090	1,553,727	1,949,464
Number of Customers Served	1,589,949	1,594,179	1,583,311	1,589,810	1,593,830	1,590,216
Average Duration Per Customer Affected (CAIDI)	7.18	2.70	4.32	2.01	2.46	3.74
Average Duration Per Customers Served	10.61	3.53	5.90	2.03	2.41	4.89
Interruptions Per 1000 Customers Served	10.27	10.20	11.48	10.77	9.79	10.50

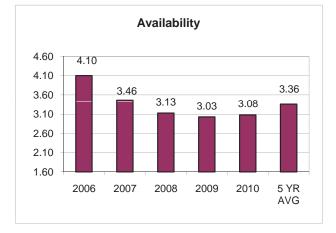
NYSEG Excluding Major Storms

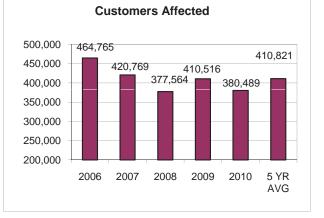
Excluding Major Storms	2006	2007	2008	2009	2010	5 YR AVG
Number of Interruptions	9,682	10.317	10,027	9,643	9,777	9,889
Number of Customer-Hours	1,913,315	2,299,142	1,980,213	1,848,599	1,934,747	1,995,203
Number of Customers Affected	953,941	1,034,113	953,105	922,448	975,375	967,796
Number of Customers Served	859,440	859,963	857,517	858,712	856,474	858,421
Average Duration Per Customer Affected (CAIDI)	2.01	2.22	2.08	2.00	1.98	2.06
Average Duration Per Customers Served	2.24	2.68	2.30	2.16	2.25	2.32
Interruptions Per 1000 Customers Served	11.33	12.00	11.66	11.25	11.39	11.52
Number of Customers Affected Per Customer Served (SAIFI)	1.12	1.20	1.11	1.08	1.14	1.13
NYSEG						
Including Major Storms						
Including Major Storms	2006	2007	2008	2009	2010	5 YR AVG
Including Major Storms Number of Interruptions	2006 12,835	2007 12,928	2008 17,008	2009 11,948	2010 14,976	5 YR AVG 13,939
Number of Interruptions	12,835	12,928	17,008	11,948	14,976	13,939
Number of Interruptions Number of Customer-Hours	12,835 15,787,602	12,928 5,314,914	17,008 12,974,501	11,948 3,369,824	14,976 6,445,599	13,939 8,778,488
Number of Interruptions Number of Customer-Hours Number of Customers Affected Number of Customers Served Average Duration Per Customer Affected (CAIDI)	12,835 15,787,602 1,529,247 859,440 10.32	12,928 5,314,914 1,469,825 859,963 3.62	17,008 12,974,501 1,836,251 857,517 7.07	11,948 3,369,824 1,257,464 858,712 2.68	14,976 6,445,599 1,576,105 856,474 4.09	13,939 8,778,488 1,533,778 858,421 5.55
Number of Interruptions Number of Customer-Hours Number of Customers Affected Number of Customers Served Average Duration Per Customer Affected (CAIDI) Average Duration Per Customers Served	12,835 15,787,602 1,529,247 859,440 10.32 18.48	12,928 5,314,914 1,469,825 859,963 3.62 6.18	17,008 12,974,501 1,836,251 857,517 7.07 15.09	11,948 3,369,824 1,257,464 858,712 2.68 3.93	14,976 6,445,599 1,576,105 856,474 4.09 7.51	13,939 8,778,488 1,533,778 858,421 5.55 10.24
Number of Interruptions Number of Customer-Hours Number of Customers Affected Number of Customers Served Average Duration Per Customer Affected (CAIDI)	12,835 15,787,602 1,529,247 859,440 10.32	12,928 5,314,914 1,469,825 859,963 3.62	17,008 12,974,501 1,836,251 857,517 7.07	11,948 3,369,824 1,257,464 858,712 2.68	14,976 6,445,599 1,576,105 856,474 4.09	13,939 8,778,488 1,533,778 858,421 5.55

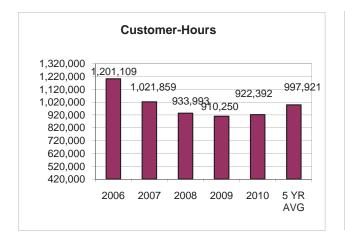

O&R Excluding Major Storms

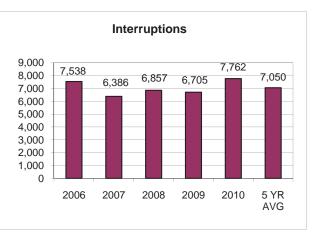
Excluding Major Storms	2006	2007	2008	2009	2010	5 YR AVG
	0.000	0 500	0.000	0.007	0.007	0.000
Number of Interruptions	2,688	2,596	2,993	2,987	2,897	2,832
Number of Customer-Hours	397,977	356,514	470,431	375,064	472,939	414,585
Number of Customers Affected	264,121	222,895	256,943	223,976	263,752	246,337
Number of Customers Served	216,268	215,694	217,373	217,884	218,393	217,122
Average Duration Per Customer Affected (CAIDI)	1.51	1.60	1.83	1.67	1.79	1.68
Average Duration Per Customers Served	1.85	1.65	2.18	1.73	2.17	1.92
Interruptions Per 1000 Customers Served	12.53	12.00	13.88	13.74	13.30	13.09
Number of Customers Affected Per Customer Served (SAIFI)	1.23	1.03	1.19	1.03	1.21	1.14
0.6						
O&R Including Major Storms						
Including Major Storms	2006	2007	2008	2000	2010	
	2006	2007	2008	2009	2010	5 YR AVG
	2006 3,546	2007 2,738	2008 3,655	2009 3,111	2010 3,646	5 YR AVG 3,339
Including Major Storms						
Including Major Storms Number of Interruptions	3,546	2,738	3,655	3,111	3,646	3,339
Including Major Storms Number of Interruptions Number of Customer-Hours	3,546 836,046	2,738 483,938	3,655 1,043,235	3,111 471,941	3,646 1,857,491	3,339 938,530 326,826
Including Major Storms Number of Interruptions Number of Customer-Hours Number of Customers Affected Number of Customers Served	3,546 836,046 388,164	2,738 483,938 252,650	3,655 1,043,235 354,315 217,373	3,111 471,941 249,064	3,646 1,857,491 389,937	3,339 938,530
Including Major Storms Number of Interruptions Number of Customer-Hours Number of Customers Affected Number of Customers Served Average Duration Per Customer Affected (CAIDI)	3,546 836,046 388,164 216,268 2.15	2,738 483,938 252,650 215,694 1.92	3,655 1,043,235 354,315 217,373 2.94	3,111 471,941 249,064 217,884 1.89	3,646 1,857,491 389,937 218,393 4.76	3,339 938,530 326,826 217,122 2.73
Including Major Storms Number of Interruptions Number of Customer-Hours Number of Customers Affected Number of Customers Served Average Duration Per Customer Affected (CAIDI) Average Duration Per Customers Served	3,546 836,046 388,164 216,268 2.15 3.90	2,738 483,938 252,650 215,694 1.92 2.24	3,655 1,043,235 354,315 217,373 2.94 4.84	3,111 471,941 249,064 217,884 1.89 2.17	3,646 1,857,491 389,937 218,393 4.76 8.53	3,339 938,530 326,826 217,122 2.73 4.33
Including Major Storms Number of Interruptions Number of Customer-Hours Number of Customers Affected Number of Customers Served Average Duration Per Customer Affected (CAIDI)	3,546 836,046 388,164 216,268 2.15	2,738 483,938 252,650 215,694 1.92	3,655 1,043,235 354,315 217,373 2.94	3,111 471,941 249,064 217,884 1.89	3,646 1,857,491 389,937 218,393 4.76	3,339 938,530 326,826 217,122 2.73

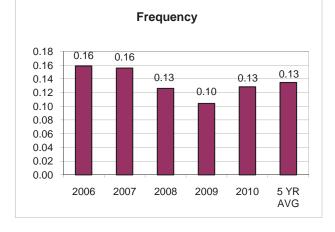

RG&E

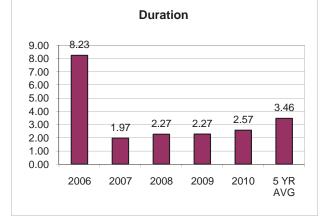

Excluding Major Storms

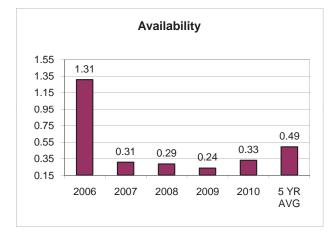

	2006	2007	2008	2009	2010	5 YR AVG
Number of Interruptions	3,004	2,784	2,807	2,950	2,872	2,883
Number of Customer-Hours	508,899	526,175	513,175	378,481	432,921	471,930
Number of Customers Affected	286,388	303,940	277,824	210,698	253,517	266,473
Number of Customers Served	364,759	357,232	356,097	357,177	360,156	359,084
Average Duration Per Customer Affected (CAIDI)	1.78	1.73	1.85	1.80	1.71	1.77
Average Duration Per Customers Served	1.40	1.44	1.44	1.06	1.21	1.31
Interruptions Per 1000 Customers Served	8.24	7.63	7.86	8.28	8.04	8.01
Number of Customers Affected Per Customer Served (SAIFI)	0.79	0.83	0.78	0.59	0.71	0.74
RG&E						
Including Major Storms						
<i>. ,</i>	2006	2007	2008	2009	2010	5 YR AVG
Number of Interruptions	3,241	3,107	3,828	3,110	3,081	3,273
Number of Customer-Hours	762,609	761,368	1,830,153	534,259	615,789	900,835
Number of Customers Affected	356,788	423,383	485,821	263,203	282,347	362,308
Number of Customers Served	364,759	357,232	356,097	357,177	360,156	359,084
Average Duration Per Customer Affected (CAIDI)	2.14	1.80	3.77	2.03	2.18	2.38
Average Duration Per Customers Served	2.09	2.09	5.12	1.50	1.72	2.51
Interruptions Per 1000 Customers Served	8.89	8.52	10.72	8.73	8.63	9.10
Number of Customers Affected Per Customer Served (SAIFI)	0.98	1.16	1.36	0.74	0.79	1.01

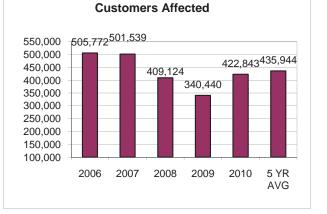


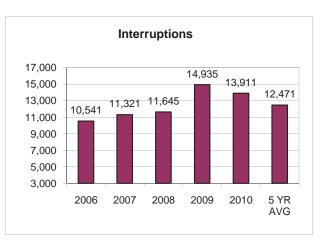

Central Hudson Gas and Electric (Excluding Major Storms)

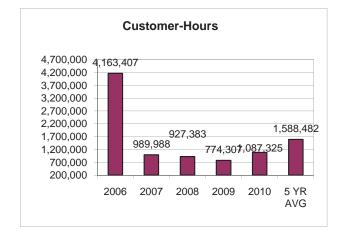


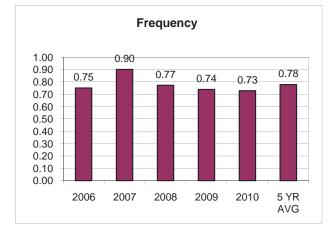


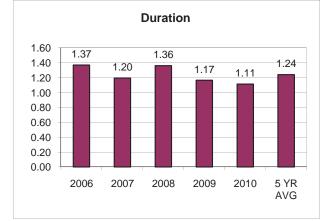


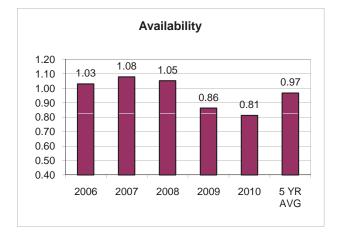


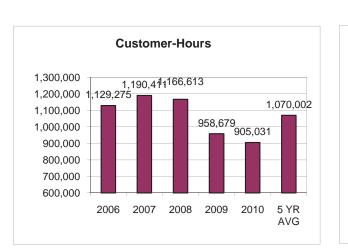


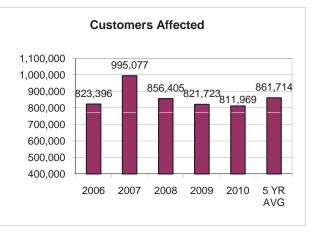

Consolidated Edison - System (Excluding Major Storms)

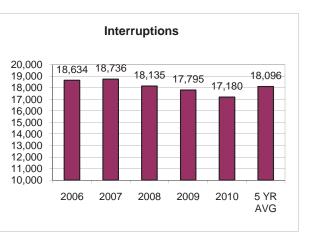


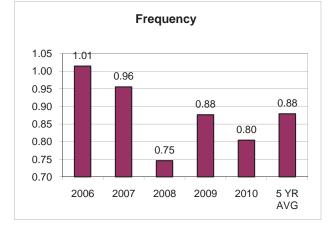


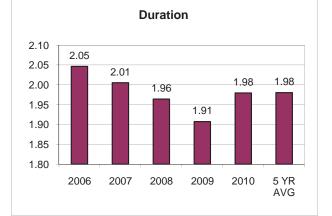


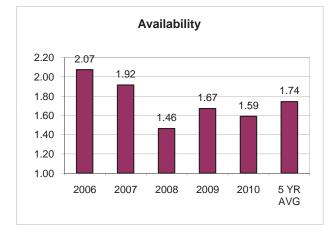


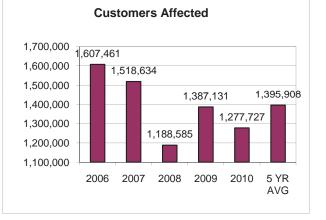

Long Island Power Authority (Excluding Major Storms)

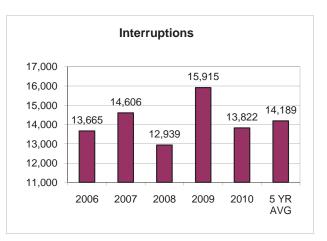


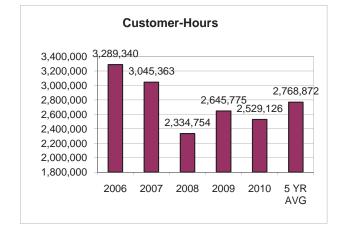


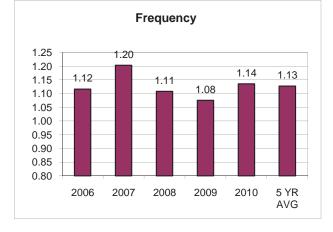

* LIPA is not regulated by the NYS PSC.

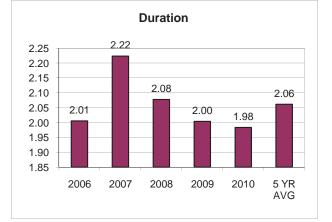


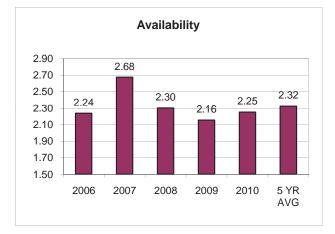


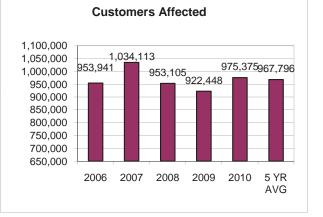


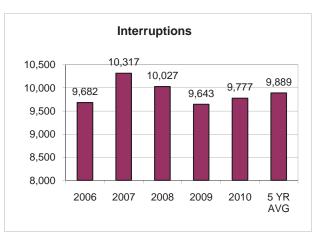

National Grid (Excluding Major Storms)

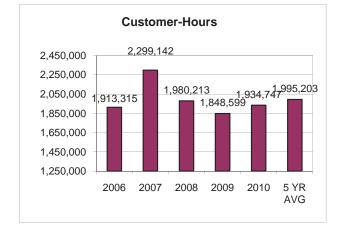


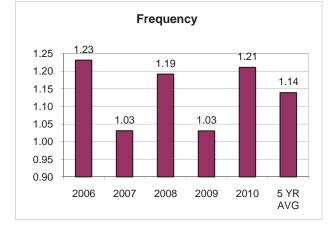


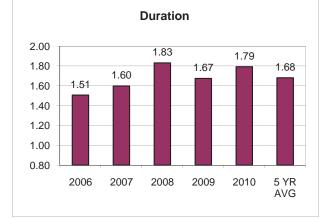


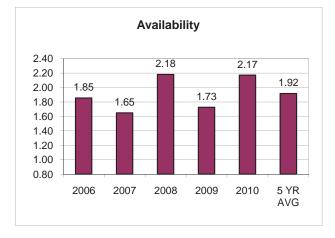


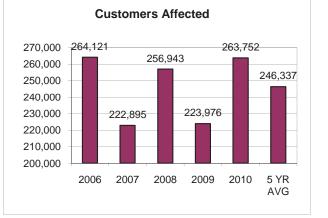


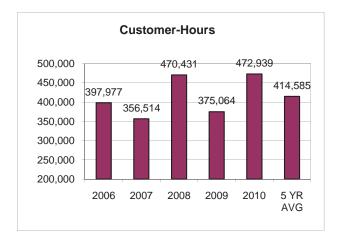

New York State Electric and Gas (Excluding Major Storms)

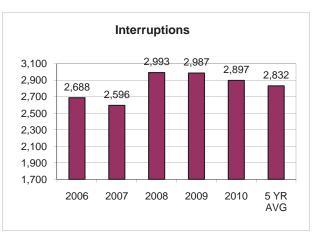


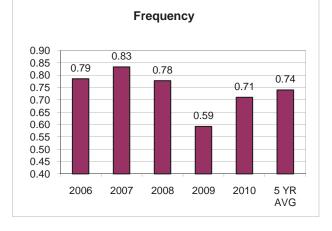


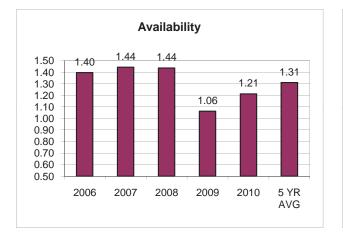


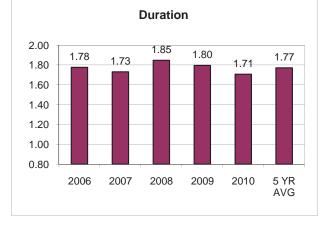


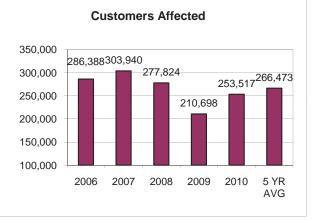


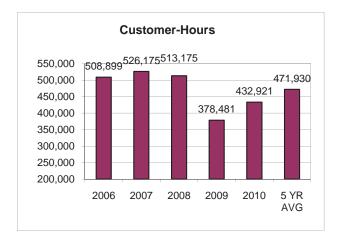

Orange and Rockland Utilities (Excluding Major Storms)

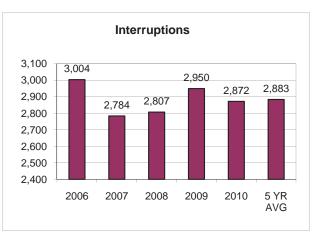











Rochester Gas and Electric (Excluding Major Storms)

July 3, 2007

Ms. Karen Geraghty Administrative Director Maine Public Utilities Commission 242 State Street 18 State House Station Augusta, ME 04330

> Re: CENTRAL MAINE POWER COMPANY, Chapter 120 Information (Post ARP 2000), Transmission and Distribution Utility Revenue Requirement And Rate Design, and Request for Alternative Rate Plan, Docket No. 2007-215

Dear Ms. Geraghty:

Enclosed for filing in the above-captioned proceeding are Central Maine Power Company's responses to the following data requests:

• EX-02-02, 03, 04, 06, 12, 18, 19, 20, 25, and 26.

Sincerely,

Amy Leethan Analyst, Central Maine Power

cc: Service List

An equal opportunity employer

83 Edison Drive | Augusta, ME 04336 tel (207) 623-3521

July 3, 2007

EX-02-02

- **Q.** Referencing the WCI Report at pg. 63. Please fully describe how CMP's program is designed to address the catch-up required to address the current vegetation encroachment issues noted in the WCI Report.
- A. In 2006, CMP deployed an alternate vegetation management practice to clear conductors that were in contact as identified in the WCI report. CMP instructed their contractors to clear fifteen feet above the conductor, eight feet to the side and nothing closer than 10 feet under the conductor. Using this method of trim, CMP cleared the vegetation from the conductors on 6,811 spans (approximately 258 miles). In addition to the initiative described above and as shown in Exhibit MLW-03, CMP proposes to spend an additional \$2 million in 2008 above current levels of vegetation management spending and an additional \$2 million in 2009 above the five year cycle amount to address lines in contact and worst performing circuits. Exhibit MLW-4B provides the circuits that will have additional \$2 million of vegetation management spending for 2008 during the transition to the full cycle program. Exhibit MLW-4A provides the proposed annual work plan by service center and circuit beginning in 2008.

Response Prepared and Submitted by:

Michael L. Watson Director Maintenance Engineering.

July 03, 2007

EX-02-03

- **Q.** Please provide all analyses memoranda, etc. related to what amount would be needed to be spent by CMP to catch up for past under-funding of its vegetation program.
- A. In the testimony, CMP has presented a plan to establish a five year vegetation management cycle where all of the distribution system gets trimmed. At the end of 2013, all of CMP's distribution system will have been trimmed in the past five years and the cycle will begin again in 2014. For CMP's plans to address vegetation currently in danger of contact with conductors, please see the response to EX-02-02.

CMP's current vegetation management approach is not under-funded. The funding is consistent with the program in place for CMP over the past ten or more years and is consistent with the level of vegetation management expense provided for in its revenue requirement. CMP has been successful in increasing the productivity of its vegetation management spending. For example and as noted in the WCI report Section 3.6.1 on page 45, CMP has increased the number of spans trimmed by 20% while spending the same amount, moving from 50,000 spans to 60,000 spans per year in 2003.

Response Prepared and Submitted By: Michael L. Watson Director Maintenance Engineering

July 3, 2007

EX-02-04

- Q. Re: Watson Direct Testimony, pg. 13, lines 12-14. Please provide all backup for Mr. Watson's statement that the number of trees removed by CMP will increase from 175,000 to 300,000.
- A. CMP has maintained an aggressive tree removal program in order to help reduce extended power outages due to tree damage. Tree removals are part of the specification that the contractors are required to follow as they complete vegetation activity in CMP's system. The totally blended unit rate requires ground cutting and edge trees as part of the unit work. The contract with Lucas Tree also has a component for off right of way tree removals (Schedule B, paragraph 7 on page B-6) to keep them focused on tree removals outside of the clear zone that may impact service reliability. The expectation is that if the budget is increased from \$8.7 million to \$15 million the tree removals associated with that work will increase proportionally.

Response Prepared and Submitted By: Michael L. Watson Director Maintenance Engineering

July 3, 2007

EX-02-06

- **Q.** Please provide all support, including references to the WCI Report, to go to a five-year inspection program.
- A. There are several references in the WCI Report that indicate that CMP can improve its distribution system reliability. In the WCI Report, Section 4.1 Conclusions, item 1 states: "[i]mplementing stretch goals for reliability indices, with gradual improvement targets set year by year, will provide an incentive to continue efforts to improve performance." In the WCI Report in Section 5.1.3 Goals, the report indicates: "[t]herefore, a realistic goal for CMP might be to improve its reliability performance into the third quartile of national reliability performance within a period of three years. Obviously, this will require CMP to fund expanded tree trimming and other reliability improvement programs.'

While the WCI Report did not specifically recommend that CMP move to a five year inspection cycle, it did say that CMP would need to expand reliability programs. One of the programs CMP chose to expand was the distribution inspection program in order to improve service reliability and to achieve the new service quality targets proposed in the testimony. Through the inspection process CMP will identify problems in the distribution system and correct them before they impact service to customers. CMP is also proposing additional distribution betterments to improve service reliability. As stated in the testimony, it takes this three pronged approach (including a five year cycle trim program) to achieve the new service reliability levels, as measured by CAIDI and SAIFI. CMP agrees with the WCI report that the improved service reliability levels recommended in the WCI Report cannot be achieved with only an enhanced trim program.

Response Prepared and Submitted By:

Michael L. Watson Director Maintenance Engineering

July 3, 2007

EX-02-12

- **Q.** What is the test year amount of pole replacement spending?
- A. CMP does not currently have a pole replacement program and did not have such a program in place during 2006. Consequently, there is no test year spending for pole replacement. As part of the system improvement proposal, CMP used a work order design to estimate the cost to change out a pole and estimated doing approximately 400 pole replacements per year. As stated in Exhibit MLW-07, CMP will focus on poles installed prior to 1937.

Response Prepared and Submitted By: Michael L. Watson Director Maintenance Engineering

July 3, 2007

EX-02-18

- **Q.** Please fully describe how the betterments, especially those in the 2010-2014 period were identified.
- A. The Distribution Engineer for each area worked closely with Service Center Operations personnel to develop the project list. For each of the years included, they prioritized projects for each area based on their experience with their circuits.

Response Prepared By: Gary Ricci Manager, Distribution Engineering

Response Submitted By: Michael L Watson Director, Maintenance Engineering

July 3, 2007

EX-02-19

- **Q.** Please confirm if CMP has ever calculated and or used for its own use, the System Average Interruption Duration Index (SAIDI). If so, please provide both pre & post exclusion, the historical annual SAIDI figures for the years 1995 through 2006.
- CMP does not calculate the System Average Interruption Duration Index for its own use. CMP measures its performance using the service quality indicators under ARP 2000, namely the System Average Interruption Frequency Index (SAIFI) and the Customer Average Interruption Duration Index (CAIDI). However, CMP does provide the SAIDI calculation as part of the Annual Reliability Report included with its ARP 2000 annual compliance filing. These SAIDI calculations are post exclusion, using outage exclusion criteria in effect at the time.

YEAR	1995	1996	1997	1998	1999
SAIDI	3.71	3.09	2.80	3.85	2.65
SAIFI	1.41	1.30	1.29	1.88	1.47
CAIDI	2.63	2.38	2.01	2.05	1.80
Interruptions	6,597	5,690	5,456	5,892	5,528
Cust. Hrs	2,432,072	2,760,520	1,881,916	2,662,710	2,318,989
Cust. Interrupted	864,308	1,040,186	852,545	993,884	1,020,669
Cust. Served	518,285	523,267	528,121	533,593	539,845
	• ·····		· · · · · · · · · · · · · · · · · · ·		
YEAR	2000	2001	2002	2003	2004

YEAR	2000	2001	2002	2003	2004
SAIDI	4.20	2.90	3.38	3.14	4.17
SAIFI	1.75	1.45	1.72	1.72	1.98
CAIDI	2.40	2.01	1.97	1.82	2.11
Interruptions	4,702	6,635	7,481	7,756	7,655
Cust. Hrs	2,662,710	1,626,688	1,911,814	1,793,608	2,424,422
Cust. Interrupted	957,545	804,549	969,035	982,906	4,148,230
Cust. Served	546,835	556,617	564,076	571,888	581,059

YEAR	2005	2006	
SAIDI	4.24	4.79	
SAIFI	1.94	2.18	
CAIDI	2.18	2.14	
Interruptions	7,188	7604	
Cust. Hrs	2,497,920	2,860,014	
Cust. Interrupted	1,144,991	1,297,753	
Cust. Served	588,820	596,030	

CMP calculated pre exclusion SAIDI numbers and they are as follows:

1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
8.76	7.74	3.55	69.28	4.27	5.48	5.83	9.03	8.11	4.14	5.31	10.00

Response Prepared and Submitted by: Michael L. Watson

Michael L. Watson Director Maintenance Engineering

July 3, 2007

EX-02-20

- **Q.** Please confirm if CMP is familiar with and or has the capability to recalculate its CAIDI & SAIFI measures using the IEEE Beta 2.5 method for exclusions. If so, please provide a similar table as the MLW-1 in Mr. Watson's testimony showing only the actual historic pre and post SAIFI and CAIDI figures excluding any baseline targets for each year that is represented.
- A. CMP has had very little experience with the IEEE 2.5 beta methodology. Since 1995, CMP has used SAIFI and CAIDI with various exclusion criteria but never the 2.5 beta methodology. Attachment 1 is a table similar to MLW-1 showing the CAIDI, SAIFI and SAIDI calculations with no exclusions, with 10% company wide exclusion, and with the 2.5 beta method.

From 1995 through 2006 there were three different methods for calculating outage exclusions. CMP ran the 10% company wide exclusion approach (the method used beginning in 2004) for 1995 through 2006 for consistent comparison purposes. Because the 2.5 beta methodology needs five years of data in order to calculate statistics, reliability statistics using this method begin in 2000.

Response Prepared By: Randall C. Butler Lead Analyst-Maintenance Engineering

Response Submitted By: Michael L. Watson Director Maintenance Engineering

Attachment(s): Attachment #1 System Performance Comparison

EX-02-20 Attachment 1 Docket No. 2007-215 Page 1 of 1

				Syster				ex Com	parison	· · · · · · · · · · · · · · · · · · ·		
					Variou	is Excl	usion	Methods				
	CAIDI Target None 10% 2.5 95 3.00 4.00 2.21 96 96 3.00 2.93 1.98 97 97 3.00 2.19 2.07 98 97 3.00 2.19 2.07 98 97 3.00 2.19 2.07 98 97 3.00 2.19 2.07 98 93.00 2.27 2.17 99 93.00 2.27 2.17 90 3.00 2.78 2.27 91 2.58 3.05 2.40 92 2.58 3.57 2.05 93 2.58 3.48 1.96 93 2.58 3.48 1.96 93<						<u>IFI</u>		SAIDI			
								Criteria				Criteria
<u> </u>				2.5Beta	Target			2.5Beta	Target			2.5Beta
1995					2.00		1.50		6.00		3.32	
1996					2.00				6.00			
1997					2.00	1.62	1.48		6.00			
1998					2.00		1.91		6.00			
1999	3.00	2.27			2.00	1.88	1.78		6.00	4.27	3.86	
2000	3.00	2.78	2.27	2.33	2.00	1.97	1.65	1.70	6.00	5.48	3.75	
2001	2.58	3.05		2.20	1.80	1.91	1.66		4.64	5.83	3.98	3.71
2002	2.58	3.57	2.05	2.11	1.80	2.53	2.01	2.10	4.64	9.03	4.12	4.43
2003	2.58	3.48	1.96	1.76	1.80	2.33	2.03	1.97	4.64	8.11	3.98	3.47
2004	2.32	2.09	2.09	1.94	2.10	1.98	1.98	1.77	4.87	4.14	4.14	
2005				2.09			1.95			5.31	4.27	4.07
2006	2.32	3.28	2.14	2.03	2.10	3.05	2.24	2.26	4.87	10.00	4.79	4.58
							~					
	Targets	for CAID	l and S	AIFI are as	defined in	n ARP a	greeme	ents				
	SAIDI (C	ust Hrs /	Cust S	Srv) can be	calculated	d as CA	DI * SA	NFI				
	"None" s	hows ca	Iculatio	ns where n	o exclusio	ons are o	conside	ered				
<u>.</u>	"10%" st	nows cale	culatior	after exclu	iding ever	nts wher	e 10%	of Custome	ers Serveo	l are imp	acted	· · · ·
	"2.5Beta	" shows	indices	after exclu	sions calo	ulated b	by the 2	.5 Beta me	thod			
	5 years	s of histo	rical da	ita are used	to devel	op 2.5Be	eta crite	eria.				
	Theref	ore, no 2	.5Beta	entries are	shown p	rior to 20	000.					

July 3, 2007

EX-02-25

- **Q.** Referencing page 12 of Mr. Watson's testimony please provide any analysis or back up information that would support CMP estimates that approximately 19% of the distribution system is open and does not require any trim.
- A. CMP determined that 19% of its distribution system was open spans in 2003 using the assumption that if a span was not trimmed or completed over a period of time, then it must be an open span. The open spans were then compared to the total spans. The 19% is also consistent on anecdotal information provided through CMP's arborists.

As a result of the WCI assessment, CMP has added a field in the handheld devices for the contractors to report if a span is open or not. CMP hopes to capture better information about open versus treed spans which will be helpful for future management of vegetation activity and contract negotiations.

It should also be noted that treed versus open spans will be dynamic. Spans that were considered open on one cycle may be a treed span five years later as trees grow and encroach on the clear zone. Alternately, spans that were treed on one cycle may be open on the next five year cycle due to betterments, road jobs, landowners cutting their trees, etc.

Response Prepared and Submitted By: Michael L. Watson Director, Maintenance Engineering

July 3, 2007

EX-02-26

- **Q.** Please provide a copy of any report/documentation used by the arborists to record any non compliance or completed work during the inspection process for the 40% of completed work by the vegetation contractors.
- A. Attachment 1 is the Distribution Line Clearance form (2932) used by CMP arborists in the inspection process. This form is used to document their inspection results. Attachment 2 is the summary of the 2006 inspections completed by the arborists with notice of rework needed. In 2007, CMP built a report for the arborist to use to manage the audit process with contractors. Attachment 3 is the January through May audit results.

Response Prepared and Submitted by:

Michael L Watson Director Maintenance Engineering

Attachment(s):

Attachment #1 Central Maine Power Distribution Line Clearance inspection form Attachment #2 2006 Crew Work Audits Attachment #3 2007 Audit Results January through May

EX-02-26 Attachment 1, p. 1 of 2 Docket No. 2007-215

Form 2932 1/94

Central Maine Power Company Distribution Line Clearance

. . .

		<u> </u>	Audi	t-Eval. [Date (Mo./h	(r.)		(Check One) Monthly Eval W.O. Audit Other Audit					
Site No.	Dist. Code	Contr. Code	Cre Coc		Wk. Ending Date	nding Order		Road Code			T/M \$	Estimate \$	
1.					1 1								
2.					<u> </u>					<u> </u>			
3.					<u> </u>								
4.													
5.													
Site No.	Pole From		omply Code	Act. Code	No. Units	Hrs.	Herb Code	Len	Wid		Comme	ents	
TOTAL N SECTION Detail Con Bework N	IS REVIE			Codes:	D — Dir	earance le ectional t	ess than re	•	S - T -	- Stu - Tre	ngers left mps too h atment no cording tm	used	

Rework Necessary? Y N Date Rework Completed? _____

il-

_ G — Good

CONTRACT

R — Recording tm/cd

EX-02-26 Attachment 1, p. 2 of 2 Docket No. 2007-215

CMP VEGETATION MANAGEME	NT
-------------------------	----

Audit By :			Reviwed Date:					Number of re-do :	
Crew #			Week ending :					Spans Reviewed :	
Town/Sect		Road	Road	From	To	Comply	Unit	Should Crew	Coments
Code	Town Name	Code	Name	Pole	Pole		Code	Claim Span	
			·····					-	
				<u> </u>				,	
				 					
				1					
									······································
								· · · · · · · · · · · · · · · · · · ·	
			<u></u>						
			<u>_</u>	 					

B - Brush not chipped, C - Clearance less than required, D - Directional trim, F - Flushcuts (stubs too long), H - Hangers left, S - Stumps too high, T - Treatment not used, R - Recording tm/cd, GNR- Ground cut, PR5 - Hazard Trees, PR6 - Hazard tree missed, SEC - secondary missed, SER - Service missed

Dist.

2006 Crew Work Audit

	Jan	Feb	Mar	Total	April	May	June	Total	July	Aug	Sept	Total	Oct	Nov	Dec	Total	Totals 3	Count 3/26/2007
Alfred	461	180	344	985	103	649	339	1091	50	124	686	860	612	1077		1689	4625	
Rework	110	7	36	153	2	43	10	55	1	22	72	95	48	107		155	458	405
Augusta	64	205	102	371	240	15	43	298	46	83	151	280	284	119	215	618	1567	
Rework	2	6	33	41	19	5		24	4	4	3	11	14	3	3	20	96	118
Bridgton	219	310	506	1035	189	27	129	345	412	653	794	1859	293	131	823	1247	4486	
Rework	11	30	10	51	12	3	19	34	28	3	8	39	2	25	19	46	170	214
Brunswick	72			72	216	72	768	1056	380		56	436		337	3	340	1904	
Rework	12			12	97	43	306	446	145		20	165		122	3	125	748	748
Dover		2		2	2	101	47	150	109	204	214	527	175	319		494	1173	
Rework				0		6	2	8	7	2	28	37	3	28		31	76	95
Fairfield	14	116	3	133		95	113	208		140	103	243	107	2		109	693	
Rework	1	17		18		45	32	77		6	22	28	5	2		7	130	114
Farmington			134	134	30	388	1109	1527	21	546		567	213	364		577	2805	
Rework			43	43	17	70	108	195	13	176		189	15	33		48	475	475
Lewiston	84	62	282	428	109	182	87	378	46	65	215	326	330	141	97	568	1700	
Rework	3	3	15	21	9	22	13	44	3	3	9	15	8	4	1	13	93	93
Portland	358	180	319	857	184	552	253	989	154	596	160	910	484	489	616	1589	4345	
Rework	25	11	12	48	8	111	42	161	25	31	17	73	22	22	36	80	362	362
Rockland				0				0				0				0	0	
John				0		310		310		10	01	0				0	310	
Corey Tom/Wes			44	<u>0</u> 44			263	<u>0</u> 628	364	18	91	109 364	18	929		<u>947</u>	1056 1036	
Rework			44	<u>44</u> 11		106	<u> </u>	141	60	10		<u> </u>	10	8		18	240	230
Skowhegan	112	129	53	294	41			41				0		44		44	379	
Rework	112	125	5	36	1			1				0		14		14	51	51
Transmission	98	131	62	291	19	2	2	23	2	1	1	4	6			6	324	
Rework				0				0			·	0	17			17	17	17
														Rewor	k		2916	2922
													Total	Spans			26403	

CMP Vegetation Management

<u>Audit Results for 1/1/2007 thru 5/31/2007</u>

			BRIDGTON	<u>Co</u>	tiaux	<u>1/11/2007</u>	5	Sections	Reviewed		
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
2130	,		Bridgton Rd. - smaller pines, see arbor	701 rcultur	702		М	D	38	3/30/2007	1/25/2007
2130	Fryeburg less that 8' side	008	Bridgton Rd.	702	701		М	D	38	3/30/2007	1/25/2007
2130	, .		Bridgton Rd. h) @ 703 - less than 8' sid	703 de cleara	702		М	D	38	3/30/2007	1/25/2007
2130	Fryeburg stubs	800	Bridgton Rd.	703	704		М	D	38	3/30/2007	1/25/2007
		Γ	BRIDGTON	<u>Co</u>	tiaux	<u>1/11/2007</u>	<u>19</u>	Sections	Reviewed]	
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
5230	Sebago hardwoods - need g/c -		Kimball Corner Rd. hi beech	13	14		М	D	139	3/30/2007	
5230	Sebago Read maple stubs	045	Kimball Corner Rd.	3	4		М	D	139	3/30/2007	1/18/2007
5230	Sebago n/d - less than 2 feet	045	Kimball Corner Rd.	4	House		м	D	139	3/30/2007	
5230	Sebago w.p. leader hard on ser	045 v	Kimball Corner Rd.	6	serv		М	D	139	3/30/2007	
5230	Sebago n/done - white house #	045 45	Kimball Corner Rd.	7	serv		М	D	139	3/30/2007	
5230	Sebago	045	Kimball Corner Rd.	9	10		M	D	139	3/30/2007	

 5230
 Sebago
 045
 Kimball Corner Rd.
 9
 10
 M
 D
 139

 a few dead pines PR6

 10
 M
 D
 139

CMP Vegetation Management

<u>Audit Results for</u> <u>1/1/2007</u> <u>thru</u> <u>5/31/2007</u>

		Γ	BRIDGTON	<u>Ca</u>	otiaux	1/30/2007	<u>57</u>	Sections	Reviewed		
	Town	L	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
2130	Fryeburg stumps	088	River Road	024	025	S	М	D	196/24	3/30/2007	3/30/2007
2130	Fryeburg Hi stumps - 196	088	River Road	026	027	S	М	D	196/24	3/30/2007	3/30/2007
2130	Fryeburg Hi stumps - 196	088	River Road	027	028	S	М	D	196/24	3/30/2007	3/30/2007
2130	Fryeburg Some stubs - 24	088	River Road	09	010	С	М	D	196/24	3/30/2007	

			BRIDGTON	Co	otiaux	<u>1/12/2007</u>	<u>75</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town	_	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
5230	Sebago n/d	054	Mack Corner	22.1	meter pol		М	D	85	3/30/2007	
5230	Sebago Brush (whole line) don	054 ne 1/22	Mack Corner	28	28.1	В	М	D	85	3/30/2007	
5230	Sebago Stubs, brush & need c		Mack Corner	31	32	S	М	D	85	3/30/2007	
5230	Sebago not done - sec.	054	Mack Comer	38	38.1		М	D	85	3/30/2007	·
5230	Sebago stubs - on little trees	054	Mack Corner	501	02	S	М	D	85	3/30/2007	
5230	Sebago Stubs	054	Mack Corner	562	03	S	М	D	85	3/30/2007	

Audit Results for <u>1/1/2007</u> thru <u>5/31/2007</u>

		4	BRIDGTON	<u>Co</u>	<u>tiaux</u>	<u>2/9/2007</u>	<u>2</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town	•	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
1580	DENMARK Stubs	079	STANLEY HILL ROAD	22	23	S	М	D	20/4/158	3/30/2007	
1580	DENMARK Pole 1 - Harnden Rd -		STANLEY HILL ROAD	25	1	PR6	м	D	20/4/158	3/30/2007	
			BRIDGTON	Co	tiaux	2/6/2007	<u>45</u>	Sections	Reviewed		
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
5503	STANDISH	068	JOHNSON ROAD	3	4	S	М	D	85 super	3/30/2007	3/23/2007
5503	STANDISH lower hemlock stubs	074	LAKEVIEW LANE SOUT	6	7	S	М	D	85 super	3/30/2007	3/22/2007
5503	STANDISH >2' pone on service	100	PERIMETER AVENUE	9	10	С	М	D	85 super	3/30/2007	3/22/2007
			BRIDGTON	Co	<u>tiaux</u>	2/23/2007	<u>46</u>	<u>Sections</u>	Reviewed		
	Town	•	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
1060	CASCO Look at 11- 11.1 >2' cle		LIBBY ROAD	11 thappened	11.1 1 here	C	М	D	85 Super	3/30/2007	3/23/2007
1060	CASCO Listed both sections "n	052	LIBBY ROAD	13	14	С	М	D	85 Super	3/30/2007	
1060	CASCO Brush all over; listed as		LIBBY ROAD learance	14	15	В	М	D	85 Super	3/30/2007	
1060	CASCO 2 topped trees, please		LIBBY ROAD	17	18	C	М	D	85 Super	3/30/2007	3/23/2007

Audit Results for <u>1/1/2007</u> thru <u>5/31/2007</u>

1060	CASCO	052	LIBBY ROAD	21	22	С	М	D	85 Super	3/30/2007	3/23/2007
	6" w.p. has been hard	l trimm	ed to a "no crown" less	that 1'3 statu:	s -cut dow	n					
1060	CASCO	052	LIBBY ROAD	5	6	PR6	М	D	85 Super	3/30/2007	3/23/2007
	PR6 - 8" w.p. oppositi	e single	e phase line has holes	in butt on banl	(

		BRIDGTON	<u>Co</u>	otiaux	2/23/2007	<u>47</u>	Sections	Reviewed		
	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
5503	STANDISH 1' > 15' aerial percarious wp	18 PRIDE LINE leader	4	5	н	М	D	85	3/30/2007	3/23/2007
5503	STANDISH 14 Listed as "f" cut oak 9" fro	43 SUCKER BROOK ROAD m singe phase	18	19	F	М	D	85	3/30/2007	3/23/2007
5503	STANDISH 14 > 15' aerial over building -	3 SUCKER BROOK ROAD	19	20		м	D	85	3/30/2007	3/23/2007
5503	STANDISH 14 PR6 - 8" dbh nectria infes	I3 SUCKER BROOK ROAD ter poplar	2	3	PR6	М	D	85	3/30/2007	3/23/2007
5503	STANDISH 14 Serv 1 pt. pole - not done		4	4.1	SER	М	D	85	3/30/2007	3/23/2007

			BRIDGTON	Co	otiaux	<u>2/1/2007</u>	<u>49</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town	<u>ـــ</u>	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
2130	Fryeburg Stubs = F	008	Bridgton Road	568	569	S	М	D	various	3/30/2007	
2130	Fryeburg Pop top on hazard n	008 naple	Bridgton Road	569	570	с	М	D	various	3/30/2007	2/19/2007
2130	Fryeburg Stubs	008	Bridgton Road	570	571	S	М	D	various	3/30/2007	
2130	Fryeburg Cut down poorly top	008 ped 6' m	Bridgton Road	600	601	с	М	D	various	3/30/2007	2/19/2007
2130	Fryeburg PR6 unit - flagged p	008 oplar	Bridgton Road	603	604	С	М	D	various	3/30/2007	2/19/2007

Monday, June 25, 2007

S:\Veg_MGT\Shared\TrimReports\TrimTrackRework.mdb _ rAuditResults

<u>Audit Results for 1/1/2007 thru 5/31/2007</u>

			BRIDGTON	<u>Co</u>	tiaux	<u>2/8/2007</u>	<u>58</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town	L .	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
0365	BALDWIN Cut pines at pole	015	CRAM ROAD	509	510		М	D	85	3/30/2007	
0365	BALDWIN Not done	060	MOUNTAIN ROAD	3	3.1		М	D	85	3/30/2007	3/22/200
			BRIDGTON	<u>Co</u>	<u>tiaux</u>	2/9/2007	<u>82</u>	Sections	<u>Reviewed</u>		
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
1580	DENMARK Stubs	036	HARNDEN ROAD	11	12	S	м	D	24/20	3/30/2007	
1580	DENMARK Stubs & W.P. w 1/4 cm		HARNDEN ROAD	14	15	S	м	D	24/20	3/30/2007	
1580	DENMARK Stubs	036	HARNDEN ROAD	5	6	S	М	D	24/20	3/30/2007	
2130	FRYEBURG Stubbing	095	STANLEY HILL ROAD	14	15	S	М	D	20/4/158	3/30/2007	
2130			STANLEY HILL ROAD at mid-span point- 75' nee	15 eded	16	PR6	М	D	20/4/158	3/30/2007	2/16/200
2130	FRYEBURG Beech & brush left (bru		STANLEY HILL ROAD	4	5	С	М	D	20/4/158	3/30/2007	
2130	FRYEBURG 605 Bridgton rd (rt 302		STANLEY HILL ROAD s & small tree toping issue	605 s	1	S	М	D	20/4/158	3/30/2007	
			BRIDGTON	<u>Co</u>	tiaux	2/8/2007	<u>126</u>	Sections	Reviewed		
	Town	L	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date

<u>Audit Results for</u> <u>1/1/2007</u> thru <u>5/31/2007</u>

				31	32	S	м	D	20-24	4/5/2007	
0690	BRIDGTON Hi stumps - need cut		INGALLS HILL ROAD	30	30H	S	М	D	20-24	4/5/2007	
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
			BRIDGTON	<u>Co</u>	tiaux	<u>3/26/2007</u>	<u>41</u>	<u>Sections</u>	<u>Reviewed</u>		
			ch, cankor; each at butt								
1580	DENMARK	089	WARREN ROAD	From	<i>To</i>	PR6	M	D	20	4/5/2007	
	Town		Road	.		Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
			BRIDGTON	<u>Co</u>	tiaux	<u>3/15/2007</u>	<u>35</u>	<u>Sections</u>	Reviewed		
	Cut out maple leader					-		_			
0365	>2 feet BALDWIN	212	SOUTH BRIDGTON ROA	70	70.1	c	м	D	85 super	3/30/2007	3/22/20
0365	BALDWIN	212	SOUTH BRIDGTON ROA	52	serv	С	м	D	85 super	3/30/2007	
0365	BALDWIN Stubs	061	MURCH ROAD	4	5	S	М	D	85 super	3/30/2007	3/22/200
0000	PR6 poplar w/dark h					• •••	(*)				5722720
0365	Stubs & brush in thr BALDWIN		MURCH ROAD	13	14	PR6	м	D	85 super	3/30/2007	3/22/20
0365	BALDWIN		HARRY MURCH ROAD	9	10	S	м	D	85 super	3/30/2007	
0365	BALDWIN p. 72 So Bridgton Ro		HARRY MURCH ROAD Harry Murch >8' PF5 poplar	72 - ROW	1		м	D	85 super	3/30/2007	
	PR 6, leaning disfigu										
0365	BALDWIN		HARRY MURCH ROAD	7	8	PR6	м	D	85 super	3/30/2007	
0365	BALDWIN		CRAM ROAD "F" clearance, 2 birches for 3	506 75" s/b PR	507 6	С	м	D	85 super	3/30/2007	
	BALDWIN Cut pine at pole (sho	- · -	CRAM ROAD learance)	503		F	M	D	85 super	3/30/2007	

<u>Audit Results for 1/1/2007 thru 5/31/2007</u>

0690	BRIDGTON Hi Stumps - nned cut i		INGALLS HILL ROAD t of house	32	33	S	м	D	20-24	4/5/2007	
			BRIDGTON	<u>Co</u>	tiaux	<u>3/8/2007</u>	<u>45</u>	Sections	Reviewed		
	Town	L	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
5503	STANDISH PR6 - very visible defe		LONG POINT LINE w.p. w/several signs on it	44	45	PR6	М	D	8	4/5/2007	
5503	STANDISH > 8' (10' w/ pine) clami		LONG POINT LINE	44	44.1	С	М	D	8	4/5/2007	
			BRIDGTON	<u>Co</u>	tiaux	<u>3/12/2007</u>	<u>79</u>	Sections	Reviewed		
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
1060	CASCO	076	QUAKER RIDGE ROAD			an a	М	D	85	4/5/2007	
1060	CASCO Service not done	076	QUAKER RIDGE ROAD	06	Serv	С	М	D	85	4/5/2007	
1060	CASCO Service not done	113	WATKINS SHORE ROAD	6	6.1	SER	м	D	85	4/5/2007	
1060	CASCO Stubs and the like	113	WATKINS SHORE ROAD	8	9	С	М	D	85	4/5/2007	
			BRIDGTON	<u>Co</u>	tiaux	3/1/2007	<u>104</u>	Sections	Reviewed		
	Town	_	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
1580	DENMARK single phase not done	047	LAKE ROAD	503	503.1	С	М	D	20 etal	4/5/2007	
1580	DENMARK Poplars - nectria PR6	047	LAKE ROAD	503 1/2	504	PR6	м	D	20 etal	4/5/2007	

Audit Results for 1/1/2007 thru 5/31/2007

1580	DENMARK <2' - <i>pine 4</i> "	047	LAKE ROAD	514	serv	С	M	D	20 etal	4/5/2007	
			BRIDGTON	Co	tiaux	<u>3/7/2007</u>	<u>143</u>	Sections	Reviewed		
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
1060	CASCO Service not done	004	CONE ROAD	034	serv		M	D	85 super	4/5/2007	
1060	CASCO Not done	004	CONE ROAD	046	serv	С	M	D	85 super	4/5/2007	<u>, , , , , , , , , , , , , , , , , , , </u>
1060	CASCO (1 Ekland), no ground		CONE ROAD	047	1	С	М	D	85 super	4/5/2007	
1060	CASCO not done >2'	004	CONE ROAD	051	serv	С	М	D	85 super	4/5/2007	
1060	CASCO Not done	004	CONE ROAD	061	serv	С	М	D	85 super	4/5/2007	
1060	CASCO Flagg - hit poplar	004	CONE ROAD	064	065	С	м	D	85 super	4/5/2007	
1060	CASCO >8 >15	004	CONE ROAD	066	066.1	C	M	D	85 super	4/5/2007	
			BRIDGTON	<u>Co</u>	<u>tiaux</u>	<u>4/10/2007</u>	<u>56</u>	<u>Sections</u>	Reviewed		
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
0690	BRIDGTON Ground cut by pole 6	108	NORTH BAY ROAD	5	6	GRN	м	D	85	5/8/2007	
0690	BRIDGTON Topped trees needs t		NORTH BAY ROAD	6	7	С	М	D	85	5/8/2007	
0690	BRIDGTON Brush needs to be ch		NORTH BAY ROAD	7	8	В	М	D	85	5/8/2007	
0690	BRIDGTON Neesds more ground		PONDICHERRY ROAD	16	17	GRN	М	D	85	5/8/2007	

Monday, June 25, 2007

S:\Veg_MGT\Shared\TrimReports\TrimTrackRework.mdb _ rAuditResults

			<u>Au</u>	dit Resi	<u>lts for</u>	<u>1/1/2007</u>	<u>thru</u>	<u>5/31/20</u>	<u>07</u>			
0690	BRIDGTON 1 PR 5 - maple tree inches	27 PONDICHERRY ROAD from 2 phase, cut	3 1/2	4	PF5			М	D	85	5/8/2007	
0690	BRIDGTON 1 Service not done at pole	27 PONDICHERRY ROAD 6.1	6	6.1	SER			М	D	85	5/8/2007	
0690	BRIDGTON 1 servcie not done at pole	27 PONDICHERRY ROAD 9	8	9	SER			М	D	85	5/8/2007	
		BRIDGTON	<u>Co</u>	otiaux		<u>4/2/2007</u>		<u>59</u>	Sections	Reviewed		
	Town	Road	From	То	Con	npliance Issue		Class	Contractor	Crew	Notify Date	Fix Date
0690	BRIDGTON 0 > 8ft - ash need to be cut	49 HILLSIDE DRIVE t; listed as full clearance	5	6	С				D	24/158	5/8/2007	
5640	SWEDEN 0 > 2 ft; not done; crew 15	49 MASCIA ROAD 8	7	7.1	С				D	24/158	5/8/2007	
											1	
		BRIDGTON	<u>Cc</u>	otiaux		<u>4/11/2007</u>	-	<u>89</u>	Sections	Reviewed		
	Town	BRIDGTON Road	<u>Cc</u> From		Con	<u>4/11/2007</u> npliance Issue		<u>89</u> Class	Sections Contractor	<u>Reviewed</u> Crew	Notify Date	Fix Date
		Road 20 DEEP COVE ROAD			Con C						••	
4900	RAYMOND 0 > 15 ft dead oak leader -	Road 20 DEEP COVE ROAD no PR6 birch recorded 20 DEEP COVE ROAD	From	То				Class	Contractor	Crew	Date	
4900 4900	RAYMOND 0 > 15 ft dead oak leader - RAYMOND 0 Secondary off pole5 (5.1	Road 20 DEEP COVE ROAD no PR6 birch recorded 20 DEEP COVE ROAD 4 5.2) 82 PINE LEDGES LINE	From 24	<i>To</i> 25	С			Class M	<i>Contractor</i> D	Crew 85	Date 5/8/2007	
4900 4900 4900 4900	RAYMOND 0 > 15 ft dead oak leader - - RAYMOND 0 Secondary off pole5 (5.1 RAYMOND 0 Need more ground cut by	Road 20 DEEP COVE ROAD no PR6 birch recorded 20 DEEP COVE ROAD 4 5.2) 82 PINE LEDGES LINE	From 24 5	<i>To</i> 25 5.1	C SEC			Class M M	<i>Contractor</i> D D	Crew 85 85	Date 5/8/2007 5/8/2007	

<u>Audit Results for 1/1/2007 thru 5/31/2007</u>

		BRIDGTON	<u>Cc</u>	otiaux	<u>5/24/2007</u>	<u>25</u>	<u>Sections</u>	Reviewed		
	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
0690	BRIDGTON 0 Needs ground cut; stubs	58 HIO RIDGE ROAD too high	1	2	GRN	М	D	20	6/13/2007	
0690	BRIDGTON 0 Needs ground cut; stubs	58 HIO RIDGE ROAD too high	10	11	GRN	М	D	20	6/13/2007	
0690	BRIDGTON 0 Needs ground cut	58 HIO RIDGE ROAD	16	17	GRN	М	D	20	6/13/2007	
0690	BRIDGTON 0 stubs too high	58 HIO RIDGE ROAD	2	4	S	М	D	20	6/13/2007	
0690	BRIDGTON 0 Hazard tree	58 HIO RIDGE ROAD	33	34	Haz	М	D	20	6/13/2007	
0690	BRIDGTON 0 Dead ask top - remove	58 HIO RIDGE ROAD	38	39	С	М	D	20	6/13/2007	
0690	BRIDGTON 0 Needs ground cut; stubs	58 HIO RIDGE ROAD too high	4	5	GRN	Μ	D	20	6/13/2007	
0690	BRIDGTON 0 Knee-high pines - need g	58 HIO RIDGE ROAD	42	43	GRN	М	D	20	6/13/2007	
0690	BRIDGTON 0 Needs ground cut; stubs	58 HIO RIDGE ROAD too high	5	6	GRN	М	D	20	6/13/2007	
0690	BRIDGTON 0 Needs ground cut; stubs	58 HIO RIDGE ROAD too high	9	10	GRN	М	D	20	6/13/2007	
	<u>Service Center</u>	Totals:	<u>103</u> Sec	tions for	. <u>Rework</u>	<u>1693</u> Sectio	ns Reviewed	Ľ	<u>6.08%</u>	

Audit Results for 1/1/2007 thru 5/31/2007

		PORTLAND	Co	<u>tiaux</u>	<u>1/16/2007</u>	<u>114</u>	Sections	Reviewed		
	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
1280	Cumberland 03 Hugh stub & stubletts - cre	9 Methodist Road w 58	2	3	S	М	D	73	3/30/2007	1/22/2007
1280	Cumberland 03 Hugh pine stub	9 Methodist Road	3	4	S	М	D	73	3/30/2007	1/22/2007
1280		9 Methodist Road ce listed)>8'Maple - crew 73	8	8.01		М	D	73	3/30/2007	
1280	Cumberland 03 Needs more g/c (full cleara	9 Methodist Road ance listed) - crew 73	8.01	8.02		м	D	73	3/30/2007	
1280	Cumberland 03 Needs more g/c (full cleara	9 Methodist Road ance listed) - crew 73	8.03	8.04		м	D	73	3/30/2007	
1280	Cumberland 51 sev @ 11 - less than 2' - c	1 Forest Lane Frew 173	10	11		М	D	73/173	3/30/2007	
1280	Cumberland 51 Tree (3" dhb) on wire- live	1 Forest Lane tree - remove 9 cre 73	5	5.1		М	D	73/173	3/30/2007	1/22/2007
1280	Cumberland 51 stubs-limbs on tel (10' nelo	1 Forest Lane w rule) full clear - crew 73	5	6	S	Μ	D	73/173	3/30/2007	
1280	Cumberland 51 stubs & rips - crew 173	1 Forest Lane	8	9	S	М	D	73/173	3/30/2007	
1280	Cumberland 51 stubs & rips - crew 173	1 Forest Lane	9	10	S	М	D	73/173	3/30/2007	
2305	Gray 03 PR6 -birch & defective bee	1 Forest Lake West Shore ech - crew 73	26	27	PR6	М	D	173/73	3/30/2007	2/28/2007
2305	Gray 03 PR6 - maple w/butt damag	1 Forest Lake West Shore e & dead birch - crew 73	27	28	PR6	М	D	173/73	3/30/2007	2/28/2007
2305	Gray 03 PR6 - or top dead hemlock	1 Forest Lake West Shore w/in 8' - crew 173	30	31		М	D	various	3/30/2007	
2305	Gray 03 birch rubbing on secondar	Forest Lake West Shore	33	34		М	D	various	3/30/2007	

	Gray 0 Its should be made to		Forest Lake West Shore ch collars - crew 173	37	38		Μ	D	various	3/30/2007	
	Gray (topping trees - cuts n		Forest Lake West Shore aight cut	44	45		М	D	various	3/30/2007	
	Gray (OW needs more cleara		Forest Lake West Shore - crew 58	49	50		М	D	various	3/30/2007	
	Gray (ubs - poorly topped eve		Forest Lake West Shore en - crew 73	51	52	S	М	D	173/73	3/30/2007	
	Windham (azard Tree	054	Critter Drive	6	7	2000 yr y 14 y 20 y 2	М	D	69	3/30/2007	
	Windham 15' aerial= w pine	171	Maynards Rogers Road	26			М	D	various	3/30/2007	
	Windham 8' oak on 1phase + op.		Maynards Rogers Road æ	28	*****		Μ	D	various	3/30/2007	
	Windham 1 ubs	171	Maynards Rogers Road	29	30	S	М	D	various	3/30/2007	
		Ē	PORTLAND	<u>Co</u>	tiaux	2/26/2007	<u>20</u>	Sections	Reviewed		
То	own		PORTLAND	<u>Co</u> From	tiaux To	<u>2/26/2007</u> Compliance Issue	<u>20</u> Class	Sections	<u>Reviewed</u> Crew	Notify Date	Fix Date
1280 0			Road SKILLINGS ROAD								Date
1280 0	CUMBERLAND (081 for "F	Road SKILLINGS ROAD	From 22	То	Compliance Issue	Class	<i>Contractor</i> D	Crew	Date	Date
1280 C Bri	CUMBERLAND (1081 for "F	Road SKILLINGS ROAD " clearance -red maple	From 22	<i>To</i> 23	Compliance Issue C	Class M	<i>Contractor</i> D	Crew 73	Date	Date
1280 C Bn To 2305 C	CUMBERLAND (rush needs cut & treat i	1 081 for "F F	Road SKILLINGS ROAD " clearance -red maple PORTLAND	From 22 <u>Co</u>	<i>To</i> 23 tiaux	Compliance Issue C <u>2/17/2007</u>	Class M <u>36</u>	Contractor D Sections	Crew 73 Reviewed	Date 3/30/2007 Notify	Date 4/10/200 Fix
1280 C Bn To 2305 C 2305 C 2305 C	CUMBERLAND (rush needs cut & treat own GRAY (R6- dead elm (or top)	<i>F</i> 081 <i>for "F</i> <i>F</i> 050	Road SKILLINGS ROAD "clearance -red maple PORTLAND Road HYDE ROAD WHITNEY ROAD	From 22 <u>Co</u> From	То 23 <u>tiaux</u> То	Compliance Issue C <u>2/17/2007</u> Compliance Issue	Class M <u>36</u> Class	Contractor D Sections Contractor	Crew 73 Reviewed Crew	Date 3/30/2007 Notify Date	Date 4/10/200 Fix

<u>Audit Results for 1/1/2007 thru 5/31/2007</u>

		<u>PORTLAND</u>	<u>Co</u>	<u>tiaux</u>	<u>2/23/2007</u>	<u>38</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
2305	GRAY dead tree - why left?	057 LONG HILL ROAD	44	46	PR6	М	D	73,58,173,46	3/30/2007	4/10/200
		PORTLAND	Co	<u>tiaux</u>	2/7/2007	<u>39</u>	Sections	Reviewed]	
	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
1280		081 SKILLINGS ROAD	19	20	С	М	D	58/73	3/30/2007	4/10/200
1280	CUMBERLAND Dead pine leader left - µ	081 SKILLINGS ROAD	9	10	С	М	D	58/73	3/30/2007	4/10/200
2010	Falmouth Stubs - conifer; watch si	225 Gristmill Road mall stublets	3	4	С	М	D	various	3/30/2007	4/12/2007
2010	Falmouth	225 Gristmill Road	4	5	С	м	D	various	3/30/2007	4/12/200
2010	Falmouth 2 Also stubs	225 Gristmill Road	5	6	С	М	D	various	3/30/2007	
2305	GRAY Big stubs in oak over sir	013 COTTON ROAD	4	5	С	M	D	73	3/30/2007	4/12/200
		PORTLAND	<u>Co</u>	tiaux	2/2/2007	<u>43</u>	Sections	Reviewed]	
	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
2010	FALMOUTH stubs poor topped-maple	016 BLACKSTRAP ROAD	162	163	С	М	D	58/46	3/30/2007	
2010	FALMOUTH Hang	016 BLACKSTRAP ROAD	162	161	C	М	D	58/46	3/30/2007	

				<u>Au</u>	lit Resi	<u>ults for</u>	<u>1/1/2007</u>	<u>thru</u>	<u>5/31/20</u>	<u>07</u>			
2010	FALMOUTH Maple leader by 167 - p		LACKSTRAP ROAD d out PR6	167	168	С			М	D	58/46	3/30/2007	
2010	FALMOUTH "Pop top" dead pine-PR		LACKSTRAP ROAD	173	174	С			М	D	58/46	3/30/2007	
2010	FALMOUTH Maple stubs	016 B	LACKSTRAP ROAD	174	175	С			М	D	58/46	3/30/2007	4/11/2007
		<u>P</u>	ORTLAND	<u>Co</u>	<u>tiaux</u>		<u>3/20/2007</u>		<u>34</u>	<u>Sections</u>	Reviewed		
	Town	Ro	ad	From	То	Col	mpliance Issue		Class	Contractor	Crew	Notify Date	Fix Date
2010	FALMOUTH Point pole to serv, n/d	105 M	ERRILL ROAD	18	18.1	С			М	D	73	4/5/2007	
		<u>P</u>	ORTLAND	Co	tiaux		<u>3/22/2007</u>		<u>46</u>	Sections	Reviewed		
	Town	Ro	ad	From	То	Coi	mpliance Issue		Class	Contractor	Crew	Notify Date	Fix Date
2010	FALMOUTH >8 feet - listd as "F"	144 P	LEASANT HILL ROAD	8	9	С	<u> </u>		М	D	73	4/5/2007	
4730			ARSONS ROAD aple leader is >15,could b	6 be removed	5 d & tree tra	C ained awa	y from 1phase		М	D	69	4/5/2007	4/10/2007
		<u>P</u>	DRTLAND	Co	<u>tiaux</u>		<u>3/15/2007</u>		<u>50</u>	Sections	Reviewed		
	Town	Ro	ad	From	То	Coi	mpliance Issue		Class	Contractor	Crew	Notify Date	Fix Date
4730	PORTLAND - EAS Cut but no chemical - hi		CEAN AVENUE	100	101	С			М	D	58	4/5/2007	4/10/2007
4730			ARSONS ROAD	8	8H	С			М	D	173	4/5/2007	

<u>CMP Vegetation Management</u>

Audit Results for <u>1/1/2007</u> thru <u>5/31/2007</u>

		PORTLAND	Co	<u>tiaux</u>	<u>3/6/2007</u>	<u>71</u>	<u>Sections</u>	Reviewed		
	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
2010		06 MIDDLE ROAD woodpecker holes tree is PR5	133.3 /cose at lea	133.4 d PF6	С	М	D	73/173	4/5/2007	
2010	FALMOUTH 1 House 226 - Service not	06 MIDDLE ROAD done	210	н	С	М	D	73/173	4/5/2007	
		PORTLAND	Co	tiaux	3/27/2007	<u>92</u>	<u>Sections</u>	Reviewed	1	
	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
2010	FALMOUTH 1 Pole 55 - service not don	55 FALMOUTH ROAD e - house 20	54	55	С	М	D	73/58	4/5/2007	4/10/2007
2010		55 FALMOUTH ROAD < - 18" dhb, need permission -	88 >8" Isites a	89 s full	PF5	М	D	73/58	4/5/2007	
4730	PORTLAND - EAS 0 Parsons - > 8'; need to ge	18 AUSTIN STREET ht this 1phase leader	6	7	С	М	D	69	4/5/2007	
4730	PORTLAND - EAS 0 Pole 8 to service > 2 feet	75 CHENERY STREET	8	9	SER	М	D	69	4/5/2007	4/10/2007
4730	PORTLAND - EAS 7	24 RAINBOW MALL ROAD	1	2		М	D	37	4/5/2007	
4730		24 RAINBOW MALL ROAD (1); service not done on pole 1	5H on Ledgewo	1 ood Dr (72	SER 9).	М	D	27	4/5/2007	
	Service Center	Totals:	<u>51</u> Sect	ions for	Rework	995 Sectio	ns Reviewed	<u>d</u>	<u>5.13%</u>	

			ROCKLAND		<u>Cummings 1/24/2007</u>		<u>15</u>	Sections	<u>Reviewed</u>]	
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
0970	Camden Topped hemlock-PR6	033	Carle Farm Rd.	1	2	С	Μ	D	70/47	3/30/2007	
0970	Camden Dead oak in ROW	033	Carle Farm Rd.	2	3	С	Μ	D	70/47	3/30/2007	
0970	Camden Service not done	033	Carle Farm Rd.	5	5.01	С	М	D	70/47	3/30/2007	
0970	Camden Watch shelves, dead n	033 naple-	Carle Farm Rd. PF6, topped hemlock-PR6	5.2	5.1	С	М	D	70/47	3/30/2007	
0970	Camden Service not done	033	Carle Farm Rd.	5.3	5.31	С	Μ	D	70/47	3/30/2007	
0970	Camden Service deflecting	033	Carle Farm Rd.	7	8	С	M	D	70/47	3/30/2007	

			ROCKLAND	<u>Cu</u>	<u>mmings</u>	<u>1/23/2007</u>	<u>19</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
4580	Penobscot Not 2' on secondary	012	Brooksville Rd.(Deans Rd	22	22.1	C	М	D	96	3/30/2007	
4580	Penobscot Service - overhead on	012 oak	Brooksville Rd.(Deans Rd	23	23 1/2	С	М	D	96	3/30/2007	
4580	Penobscot Service - spruce	012	Brooksville Rd.(Deans Rd	23 1/2	24	С	М	D	96	3/30/2007	
4580	Penobscot Why pine shelf?	012	Brooksville Rd.(Deans Rd	24	25	С	М	D	96	3/30/2007	
4580	Penobscot 2 services	012	Brooksville Rd.(Deans Rd	27	28	С	М	D	96	3/30/2007	
4580	Penobscot Service	034	Nute Line	1	1.1	C	М	D	96	3/30/2007	
Mona	lay, June 25, 2007		S:\Veg_MG	T\Shared	TrimReport	s\TrimTrackRework.mdb _	rAuditResult	' s		Page	16 of 94

4580	Penobscot Service	034	Nute Line	8	9	С		M	D	96	3/30/2007	
		[ROCKLAND	Cu	mming	IS	1/24/2007	<u>24</u>	Sections	Reviewed		
	Town	L	Road	From	То	Com	pliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
0970	Camden Remove pine in ROW		Frankel Line	10	11	С		М	D	72/45	3/30/2007	
0970	Camden Remove birch leaning		Frankel Line ines	13	14	С		М	D	72/45	3/30/2007	
0970	Camden Service to yellow hou		Frankel Line t done	9	9.1	С		М	D	72/45	3/30/2007	
		[ROCKLAND	Cu	mming	IS	2/2/2007	<u>25</u>	Sections	Reviewed		
	Town	L	Road	From	То	Com	pliance Issue	Class	Contractor	Crew	Notify Date	Fix Dat
0970	CAMDEN Small stubs near drive		START ROAD	503	504	S		М	D	70	3/30/2007	
0970	CAMDEN Service	238	START ROAD	508	509	SER		м	D	70	3/30/2007	
0970	CAMDEN Oak limb too close to		START ROAD	519.02	519.03	С		М	D	70	3/30/2007	
		Γ	ROCKLAND	Cu	mming	IS	2/22/2007	<u>52</u>	Sections	Reviewed		
	Town	-	Road	From	То	Com	pliance Issue	Class	Contractor	Crew	Notify Date	Fix Dat
3300	LINCOLNVILLE Ground cut needed	100	MARTINS CORNER ROA	502	503	GRN	44.00AU -	М	D	45/70	3/30/2007	
3300	LINCOLNVILLE Services not done	102	MOODY MOUNTAIN RO	4	5	SER		м	D	45/70	3/30/2007	

		<u> </u>	OCKLAND	<u>Cu</u>	mmings		<u>2/23/2007</u>	<u>60</u>	<u>Sections</u>	Reviewed		
	Town	R	load	From	То	Cor	npliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
3300	LINCOLNVILLE Trim Service	191	WILEYS CORNER ROAD	18	19	SER		м	D	70/45	3/30/2007	
3300	LINCOLNVILLE Cut down topped hem		WILEYS CORNER ROAD	22	22.1	PR5		М	D	70/45	3/30/2007	
3300	LINCOLNVILLE Finsih taking down pin		WILEYS CORNER ROAD	22.1	22.2	PR6		М	D	70/45	3/30/2007	
		Ē	OCKLAND	<u>Cu</u>	mmings	<u> </u>	<u>3/21/2007</u>	<u>58</u>	<u>Sections</u>	Reviewed		
	Town	R	Road	From	То	Cor	npliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
0970	CAMDEN Remove cherry tree	167	MOUNTAIN STREET	90	90H	PR6		M	D	70	4/5/2007	
		R	OCKLAND	Cu	mmings	<u> </u>	3/13/2007	<u>78</u>	Sections	Reviewed		
	Town	R	load	From	То	Cor	npliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
0970	CAMDEN Limb on service	025	BEAUCAIRE ROAD	35	36	С		М	D	70	4/5/2007	
		R	OCKLAND	Cu	mmings	2	<u>4/24/2007</u>	<u>37</u>	Sections	Reviewed		
	Town	R	coad	From	То	Con	npliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
5965	UNITY Brush	206	STEVENS ROAD	38	39	В	<u> </u>	М	D		5/8/2007	

<u>Audit Results for</u> <u>1/1/2007</u> thru <u>5/31/2007</u>

		ROCKLAND Road		<u>c</u>	<u>Cummings</u> <u>4/12/200</u>		<u>106</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town			From To		Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
5965	UNITY Need to ground cut	090	HUNTER ROAD	1	2	G	М	D	110	5/8/2007	
5965	UNITY Need to ground cut	090	HUNTER ROAD	21	22	G	М	D	110	5/8/2007	
5965	UNITY PR 6	090	HUNTER ROAD	34	35	PR6	М	D	110	5/8/2007	
5965	UNITY Need to ground cut	090	HUNTER ROAD	9	10	G	М	D	110	5/8/2007	
	Service Cen	ter To	otals:	<u>31</u> Sec	ctions for .	Rework	474 Sectio	ns Reviewea	!	<u>6.54%</u>	

<u>Audit Results for 1/1/2007 thru 5/31/2007</u>

			FARMINGTON	<u>Drake</u>		2/22/2007	<u>12</u>	Sections	Reviewed		
	Town	.	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
4610	PERU Service off 13.1	290	RIDGE ROAD	13	13.1	SER	М	D	55	3/30/2007	
4610	PERU Stubs	290	RIDGE ROAD	13	14	S	М	D	55	3/30/2007	
4610	PERU Remove topped pine	290	RIDGE ROAD	14	15	С	М	D	55	3/30/2007	
4610	PERU Stubs	290	RIDGE ROAD	8	9	S	М	D	55	3/30/2007	

			FARMINGTON	D	rake	<u>2/1/2007</u>	<u>44</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town		Road	Froi	m To	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
0155	Anson Leaning fir	019	Hallbrook	1	2	С	М	D	1,87	3/30/2007	4/2/2007
0155	Anson Serv	019	Hallbrook	18	serv	С	М	D	1,87	3/30/2007	
0155	Anson serv	019	Hallbrook	20	serv	С	М	D	1,87	3/30/2007	
0155	Anson Cut fir/box alder	019	Hallbrook	22	23	С	М	D	1,87	3/30/2007	2/9/2007
0155	Anson Leaning fir	019	Hallbrook	4	5	С	М	D	1,87	3/30/2007	3/15/2007
0155	Anson PR6 - poplar	019	Hallbrook	5	6	С	М	D	1,87	3/30/2007	
0155	Anson Trim not 8 feet	019	Hallbrook	8	9	С	М	D	1,87	3/30/2007	

<u>Audit Results for 1/1/2007 thru 5/31/2007</u>

			FARMINGTON	Dra	<u>ake</u>	<u>2/21/2007</u>	<u>49</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
5580	STRONG Ground cut	107	SPAULDING ROAD	1	2	GRN	М	F		3/30/2007	
5580	STRONG Dieihg Maple	107	SPAULDING ROAD	13	14		М	F		3/30/2007	4/26/200
5580	STRONG Not 15"	107	SPAULDING ROAD	2	3	С	М	F		3/30/2007	4/26/200
		[FARMINGTON	Dra	ake	<u>2/22/2007</u>	<u>93</u>	<u>Sections</u>	Reviewed		
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
2030	FARMINGTON Ground cut	010	BACK FALLS ROAD	02	03	GRN	М	D	55	3/30/2007	
2030	FARMINGTON PR6 poplar	114	LUCY KNOWLES ROAD	25H	26	PR6	М	D	55	3/30/2007	
2030	FARMINGTON Not 8" cut & trim	114	LUCY KNOWLES ROAD	27	28	С	М	D	55	3/30/2007	
2030	FARMINGTON Not 8" cut & trim	114	LUCY KNOWLES ROAD	28	29	С	М	D	55	3/30/2007	
2030	FARMINGTON Not 8" - fir	114	LUCY KNOWLES ROAD	44	46	С	М	D	55	3/30/2007	
2030	FARMINGTON cut	114	LUCY KNOWLES ROAD	48	49		М	D	55	3/30/2007	
2030	FARMINGTON Cut	114	LUCY KNOWLES ROAD	49	50		М	D	55	3/30/2007	
2030	FARMINGTON not 15'	114	LUCY KNOWLES ROAD	50	51	С	М	D	55	3/30/2007	
2030	FARMINGTON Cut	114	LUCY KNOWLES ROAD	51	55		М	D	55	3/30/2007	

Monday, June 25, 2007

S:\Veg_MGT\Shared\TrimReports\TrimTrackRework.mdb _ rAuditResults

EX-02-26 Attachment 3, page 22 of 94 Docket No. 2007-215

CMP Vegetation Management

Audit Results for 1/1/2007 thru 5/31/2007

2030	FARMINGTON Cut	114	LUCY KNOWLES ROAD	55	56		Μ	D	55	3/30/2007
2030	FARMINGTON Not 15'	114	LUCY KNOWLES ROAD	57	58	С	М	D	55	3/30/2007
2030	FARMINGTON PR 6 dead fir	114	LUCY KNOWLES ROAD	67	68	PR6	М	D	55	3/30/2007
2030	FARMINGTON PR 6 dead fir	114	LUCY KNOWLES ROAD	68	69	PR6	Μ	D	55	3/30/2007
2030	FARMINGTON Fir not 8' and cut top	185 bed maj	ROBBINS LINE	2	3		М	D	55	3/30/2007
2030	FARMINGTON Not 8'	185	ROBBINS LINE	3	4		Μ	D	55	3/30/2007
2030	FARMINGTON Cut fir	185	ROBBINS LINE	5	6		М	D	55	3/30/2007
2030	FARMINGTON Not 8'	185	ROBBINS LINE	7	8		Μ	D	55	3/30/2007

			FARMINGTON	Dr	<u>ake</u>	<u>2/5/2007</u>	<u>131</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town	-	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
2835	Industry Cut fir	185	West Mills Rd.	101	102	C	М	D	9	3/30/2007	
2835	Industry Trim not 8 feet	185	West Mills Rd.	104	105	С	М	D	9	3/30/2007	
4075	New Sharon Front leaders in maple	053	West Mills Road	25	26	С	м	D	154	3/30/2007	3/20/2007
4075	New Sharon Trim not 8 feet	053	West Mills Road	52	53	С	М	D	154	3/30/2007	3/20/2007
4075	New Sharon Trim not 8 feet	053	West Mills Road	53	54	С	М	D	154	3/30/2007	3/20/2007
4075	New Sharon Cut fir	053	West Mills Road	59	59.01	С	М	D	154	3/30/2007	

4075	New Sharon Trim not 8 feet	053	West Mills Road	59	60	С	М	D	154	3/30/2007	3/20/2007
4075	New Sharon Trim not 8 feet	053	West Mills Road	69	70	С	М	D	154	3/30/2007	3/20/2007
4075	New Sharon PR6 - 3 leaning birch tr	053 ees	West Mills Road	70	71	С	M	D	154	3/30/2007	3/20/2007
4075	New Sharon Trim not 8 feet	053	West Mills Road	71	72	С	М	D	154	3/30/2007	
4075	New Sharon Cust 2 fir near pole 74	053	West Mills Road	73	74	С	М	D	154	3/30/2007	
4075	New Sharon Trim apple tree	053	West Mills Road	93	94	С	М	D	154	3/30/2007	3/20/2007
4075	New Sharon Cut birch tree	053	West Mills Road	95	96	С	М	D	154	3/30/2007	3/20/2007
4075	New Sharon Pine not 8 feet	053	West Mills Road	96	97	С	М	D	154	3/30/2007	3/20/2007
4075	New Sharon Trim not 8 feet	053	West Mills Road	97	98	С	Μ	D	154	3/30/2007	
4075	New Sharon Trim not 8 feet	053	West Mills Road	98	99	С	М	D	154	3/30/2007	3/20/2007

			FARMINGTON	Dra	<u>ake</u>	<u>2/22/2007</u>	<u>159</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town	L	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
4610	PERU Stubs	020	CANTON-LEWISTON RO	31	32	S	М	D	55	3/30/2007	
4610	PERU PR6 - yellow birch	020	CANTON-LEWISTON RO	33	34	PR6	М	D	55	3/30/2007	
4610	PERU PR6 - leaning birch	020	CANTON-LEWISTON RO	34H	36	PR6	М	D	55	3/30/2007	
4610	PERU PR6 - pine near pole 3	020 9	CANTON-LEWISTON RO	38	39	PR6	М	D	55	3/30/2007	

EX-02-26 Attachment 3, page 24 of 94 Docket No. 2007-215

CMP Vegetation Management

<u>Audit Results for</u> <u>1/1/2007</u> thru <u>5/31/2007</u>

						· · · · · · · · · · · · · · · · · · ·				
4610	PERU	020	CANTON-LEWISTON RO	50	51	PR6	м	D	55	3/30/2007
	PR6 - dead pine									
4610	PERU	020	CANTON-LEWISTON RO	51	52	PR6	М	D	55	3/30/2007
	2 PR6 - pines with split	sean	1							
4610	PERU	020	CANTON-LEWISTON RO	52	53		М	D	55	3/30/2007
	Birch under wires									
4610	PERU	020	CANTON-LEWISTON RO	54	55		М	D	55	3/30/2007
	Pines under wires									
4610	PERU	080	DICKVALE ROAD	12	13		M	D	55	3/30/2007
	Remove maple - bad t	rim jo	b							
4610	PERU	080	DICKVALE ROAD	2	2.01	GRN	м	D	55	3/30/2007
	Ground cut									
4610	PERU	080	DICKVALE ROAD	2.1	2.2	GRN	М	D	55	3/30/2007
	Ground cut									
4610	PERU	080	DICKVALE ROAD	5	7		М	D	55	3/30/2007
	Cut									
4610	PERU	080	DICKVALE ROAD	7	8		M	D	55	3/30/2007
	Cut									
4610	PERU	080	DICKVALE ROAD	8	9	С	м	D	55	3/30/2007
	Remove trees within 8'									
4610	PERU	080	DICKVALE ROAD	9	10		М	D	55	3/30/2007
	Cut									
4610	PERU	230	MAIN STREET	505	1	S	M	D	55	3/30/2007
	Oak stub									
4610	PERU	230	MAIN STREET	516	516.1		M	D	55	3/30/2007
	Not 15" cut									
4610	PERU	230	MAIN STREET	516.1	516.2	C	M	D	55	3/30/2007
	Cut/trim					· · · · · · · · · · · · · · · · · · ·				
4610	PERU	230	MAIN STREET	516.2	516.3	C	M	D	55	3/30/2007
	Cut/trim						<u></u>			
4610	PERU	230	MAIN STREET	516.3	516.4	C	М	D	55	3/30/2007
	Cut/trim									

<u>Audit Results for 1/1/2007 thru 5/31/2007</u>

5020	RUMFORD Stubs	130	DIXFIELD ROAD	14	15	S	М	D	55	3/30/2007
5020	RUMFORD Stubs	130	DIXFIELD ROAD	15	16	S	М	D	55	3/30/2007
5020	RUMFORD Stubs	130	DIXFIELD ROAD	16	17	S	М	D	55	3/30/2007
5020	RUMFORD Cut hemlock	273	INDUSTRIAL PARK RD (7	7.1		М	D	55	3/30/2007
5020	RUMFORD Service	500	SMITHVILLE ROAD	64	Serv		М	D	55	3/30/2007
5020	RUMFORD Service	500	SMITHVILLE ROAD	65	serv	С	М	D	55	3/30/2007
5020	RUMFORD Bad leader on popler	500	SMITHVILLE ROAD	72	73		М	D	55	3/30/2007
5020	RUMFORD not 15'	500	SMITHVILLE ROAD	74	75	С	Μ	D	55	3/30/2007
5020	RUMFORD 3 PR6 - maples	500	SMITHVILLE ROAD	75	76	PR6	M	D	55	3/30/2007
5020	RUMFORD Pole 1 Dixfield rd Dea	500 ad limt	SMITHVILLE ROAD	80	1	С	М	D	55	3/30/2007

		Γ	FARMINGTON	D	rake	<u>3/23/2007</u>	<u>127</u>	Sections	Reviewed		
	Town	b	Road	From	ı To	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
0155	ANSON Service not done	032	ANSON VALLEY ROAD	533	534	SER	m	D	87	4/5/2007	4/26/2007
4080	NEW VINEYARD Overhead not 15 feet	001	ANSON VALLEY ROAD	42	43	С	m	D	170/1	4/5/2007	4/26/2007
4080	NEW VINEYARD Ground cut	001	ANSON VALLEY ROAD	503	504	С	m	D	170/1	4/5/2007	4/26/2007
4080	NEW VINEYARD Ground cut	001	ANSON VALLEY ROAD	504	505	С	m	D	170/1	4/5/2007	4/26/2007

EX-02-26 Attachment 3, page 26 of 94 Docket No. 2007-215

CMP Vegetation Management

Audit Results for 1/1/2007 thru 5/31/2007

4080	NEW VINEYARD Ground cut	001	ANSON VALLEY ROAD	507	508	С	m	D	170/1	4/5/2007	4/26/2007
4080	NEW VINEYARD Ground cut	001	ANSON VALLEY ROAD	513	514	С	m	D	170/1	4/5/2007	4/26/2007
4080	NEW VINEYARD Ground cut	001	ANSON VALLEY ROAD	514	515	С	m	D	170/1	4/5/2007	4/26/2007
4080	NEW VINEYARD PR6 - 2 poplar	001	ANSON VALLEY ROAD	51H	52	PR6	m	D	170/1	4/5/2007	4/26/2007
4080	NEW VINEYARD Cut birch	001	ANSON VALLEY ROAD	66	67	С	m	D	170/1	4/5/2007	4/26/2007
4080	NEW VINEYARD Cut fir	001	ANSON VALLEY ROAD	69	70	С	m	D	170/1	4/5/2007	

		4	FARMINGTON	Dr	<u>ake</u>	3/22/2007	<u>226</u>	Sections	<u>Reviewed</u>		
	Town	L	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
4075	NEW SHARON Secondary n/d	024	GLENN HARRIS ROAD	2	2.1	C	М	D	9	4/5/2007	
4075	NEW SHARON Veins	024	GLENN HARRIS ROAD	4	5	С	М	D	9	4/5/2007	
4075	NEW SHARON Not 8' and service off po	024 ole 6	GLENN HARRIS ROAD	5	6	C	М	D	9	4/5/2007	
4075	NEW SHARON Beech with dead top	025	GRAY ROAD	327	328	С	М	D	9	4/5/2007	4/23/2007
4075	NEW SHARON Veins	025	GRAY ROAD	330H	331	С	М	D	9	4/5/2007	4/23/2007
4075	NEW SHARON PR6 - 2 firs and 1 yellow		GRAY ROAD th PR5	336	336	PR6	М	D	9	4/5/2007	
4075	NEW SHARON PR6's 2 poplar	025	GRAY ROAD	337	338	PR6	М	D	9	4/5/2007	4/23/2007
4075	NEW SHARON 2 poplar	025	GRAY ROAD	339H	340	С	М	D	9	4/5/2007	4/23/2007

EX-02-26 Attachment 3, page 27 of 94 Docket No. 2007-215

CMP Vegetation Management

<u>Audit Results for 1/1/2007 thru 5/31/2007</u>

4075	NEW SHARON Service	025	GRAY ROAD	357	357.1	SER	Λ	Λ	D	9	4/5/2007	4/23/2007
4075	NEW SHARON Split ash	025	GRAY ROAD	357H	358	С	Ν	1	D	9	4/5/2007	
4075	NEW SHARON Secondary not done	025	GRAY ROAD	359	359.1	SEC	Ν	Λ	D	9	4/5/2007	4/23/2007
4075	NEW SHARON Cut cherry	042	STARKS ROAD	187	188	С	Ν	٨	D	9	4/5/2007	
4075	NEW SHARON PR6 leaner	042	STARKS ROAD	189	190	PR6	٨	Λ	D	9	4/5/2007	
4075	NEW SHARON PR6 - 2 leaning poplar		STARKS ROAD	190	191	PR6	N	Λ	D	9	4/5/2007	
4075	NEW SHARON Trim not 8'	042	STARKS ROAD	215	216	С	N	Λ	D	9	4/5/2007	
4075	NEW SHARON Trim not 8'	042	STARKS ROAD	222	223	С	N	Λ	D	9	4/5/2007	
4075	NEW SHARON PR6 - 2 leaning poplar	-	STARKS ROAD	223	227	PR6	Ν	Λ	D	9	4/5/2007	
4075	NEW SHARON Leaning birch	042	STARKS ROAD	227	228	С	N	Λ	D	9	4/5/2007	
4075	NEW SHARON 2 leaning birch	042	STARKS ROAD	228	229	С	٨	Λ	D	9	4/5/2007	
4075	NEW SHARON Service	042	STARKS ROAD	239	239.1	SER	Ν	Λ	D	9	4/5/2007	
4075	NEW SHARON Ground cut hardwoods		STARKS ROAD	239	240	С	٨	A	D	9	4/5/2007	
4075	NEW SHARON Ground cut hardwoods		STARKS ROAD	243	244	С	Ν	Λ	D	9	4/5/2007	
4075	NEW SHARON Ground cut hardwoods		STARKS ROAD	247	247.1	С	Ν	/	D	9	4/5/2007	4/23/2007
4075	NEW SHARON Stumps	042	STARKS ROAD	249	250	S	Ν	Λ	D	9	4/5/2007	

EX-02-26 Attachment 3, page 28 of 94 Docket No. 2007-215

CMP Vegetation Management

<u>Audit Results for 1/1/2007 thru 5/31/2007</u>

4075	NEW SHARON Stumps	042	STARKS ROAD	250	251	S	М	D	9	4/5/2007	
4075	NEW SHARON PR6 - leaning birch	042	STARKS ROAD	252	266	PR6	М	D	9	4/5/2007	
4075	NEW SHARON Overhead not 15'	042	STARKS ROAD	267	268	С	М	D	9	4/5/2007	
4075	NEW SHARON Veins	042	STARKS ROAD	280	290	С	Μ	D	9	4/5/2007	
4075	NEW SHARON Not 8'	042	STARKS ROAD	311	312	С	М	D	9	4/5/2007	4/23/2007
4075	NEW SHARON Secondary not done	042	STARKS ROAD	312	312.1	SEC	М	D	9	4/5/2007	4/23/2007
5515	STARKS Maple double top with	052 bad s	GRAY ROAD eam	352	353	С	М	D	9	4/5/2007	
5515	STARKS Poplar	052	GRAY ROAD	355	356	С	Μ	D	9	4/5/2007	4/23/2007

			FARMINGTON	<u>Dı</u>	<u>rake</u>	<u>5/8/2007</u>	<u>158</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town		Road	From	ı To	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
2030	FARMINGTON Cut poplar PR6	012	BARKER ROAD	1	2	PR6		D	9	6/13/2007	
4080	NEW VINEYARD PR6 - poplar	010	BARKER ROAD	17	18	PR6		D	9	6/13/2007	
4080	NEW VINEYARD Trim not 8 feet	010	BARKER ROAD	37.4	37.41	С		D	9	6/13/2007	
4080	NEW VINEYARD 2 PR6 - maple and ba	010 asswoo	BARKER ROAD d	55	56	PR6		D	9	6/13/2007	
4080	NEW VINEYARD Cut birches	010	BARKER ROAD	7	8	С		D	9	6/13/2007	
4080	NEW VINEYARD Trim not 8 feet by 15	132 feet	WITHEY ROAD	2	3	С	<u>-</u>	D	9	6/13/2007	

<u>Audit Results for 1/1/2007 thru 5/31/2007</u>

			FARMINGTON	Dra	ake	<u>5/9/2007</u>	<u>349</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
2030	FARMINGTON Service	010	BACK FALLS ROAD	039	039.1	SER	М	D	55/9	6/13/2007	
2030	FARMINGTON Secondary	010	BACK FALLS ROAD	049	049.1	SEC	М	D	55/9	6/13/2007	
2030	FARMINGTON Trim not 8 feet	129	MARWICK ROAD	12	13	С	M	D	55/9	6/13/2007	
2030	FARMINGTON Cut 6 pines under lines	129 3	MARWICK ROAD	9	10	С	М	D	55/9	6/13/2007	
2030	FARMINGTON Service needs trim	135	NEW SHARON ROAD	10	11	SER	М	D	55/9	6/13/2007	
2030	FARMINGTON Stumps	135	NEW SHARON ROAD	17	18	S	М	D	55/9	6/13/2007	
2030	FARMINGTON Veins	135	NEW SHARON ROAD	9	10	V	М	D	55/9	6/13/2007	
4075	NEW SHARON Stumps	035	NEW SHARON ROAD	58	59	S	М	D	55/9	6/13/2007	
4075	NEW SHARON Stumps	035	NEW SHARON ROAD	59	60	S	М	D	55/9	6/13/2007	
4075	NEW SHARON Secondary	035	NEW SHARON ROAD	68	68.1	SEC	М	D	55/9	6/13/2007	
	Service Cente	er T	otals:	<u>135</u> Sect	ions foi	r <u>Rework</u>	1348 Sectio	ns Reviewed	!	<u>10.01%</u>	

Audit Results for 1/1/2007 thru 5/31/2007

		DOVER	<u>H</u>	ammon	<u>d 1/26/2007</u>	<u>37</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town	Road	From	n To	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
1610	Dexter s/c to trim off 31	161 Old Newport Rd.	30	31	С	М	D	various	3/30/2007	
1610	Dexter claimed - no work found	161 Old Newport Rd. (pond)	39	40	R	М	D	various	3/30/2007	
1610	Dexter claimed - no work found	161 Old Newport Rd. (pond)	41	42	R	М	D	various	3/30/2007	
1610	Dexter claimed - no work found	161 Old Newport Rd. (pond)	42	43	R	М	D	various	3/30/2007	
1610	Dexter S/c to trim off 45	161 Old Newport Rd.	44	45	С	М	D	various	3/30/2007	
1610	Dexter Skipped secondary	161 Old Newport Rd.	45	45.1	С	М	D	various	3/30/2007	
1610	Dexter fon found *1-223) only v	161 Old Newport Rd. vork claimed	59	60	R	М	D	various	3/30/2007	
1610	Dexter 1 pr6 to cut (22) leaning	161 Old Newport Rd. fir in r/w	61	62	С	M	D	various	3/30/2007	
		DOVER	H	ammon	d <u>2/2/2007</u>	<u>2</u>	<u>Sections</u>	Reviewed]	
	Town	Road	From	n To	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
4520	PARKMAN Cut 1 tall cedar & pine b	190 STONEBRIDGE LANE wush (flagged)	11	12	С	m	D	137	3/30/2007	
4520	PARKMAN	190 STONEBRIDGE LANE	12	13	С	m	D	137	3/30/2007	

4520 PARKMAN 190 STONEBRIDGE LANE 12 Cut flagged brush on curve (per line dept request)

Audit Results for <u>1/1/2007</u> thru <u>5/31/2007</u>

		DOVER	Ha	mmond	<u>3/7/2007</u>	<u>62</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
1220	CORINNA 05 Dead limb near pole 28	3 FIVE CORNERS ROAD	28	29	С	М	D	various	4/5/2007	
1220	CORINNA 05 Apple trees/bursh left - cut	3 FIVE CORNERS ROAD	35	36	С	М	D	various	4/5/2007	
1220	CORINNA 05 Apple trees/bursh left - cut	3 FIVE CORNERS ROAD	36	37	С	М	D	various	4/5/2007	
1220	CORINNA 05 Apple trees/bursh left - cut	3 FIVE CORNERS ROAD	37	38	С	М	D	various	4/5/2007	
1220	CORINNA 14 Skipped - cut brush & trim	2 OLD NEWPORT ROAD s/c - road crossing span	68	69	с	М	D	various	4/5/2007	
1220	CORINNA 14 Cut hardwood brush in ceo	2 OLD NEWPORT ROAD	69	70	С	М	D	various	4/5/2007	
		DOVER	Ha	mmona	<u>3/7/2007</u>	<u>118</u>	Sections	Reviewed		
	Town	DOVER Road	<u>Ha</u> From	mmond To	<u>3/7/2007</u> Compliance Issue	<u>118</u> Class	Sections	Reviewed	Notify Date	
1220		Road 2 RIPLEY ROAD							••	
1220 1610	CORINNA 17 Cut small flagged maple -	Road 2 RIPLEY ROAD 6' from line 2 RAND HILL ROAD	From	То	Compliance Issue	Class	Contractor	Crew	Date	
_	CORINNA17Cut small flagged mapleDEXTER20Skipped secondary and skipped	Road 2 RIPLEY ROAD 6' from line 2 RAND HILL ROAD	<i>From</i> 503	<i>To</i> 504	Compliance Issue C	Class M	Contractor D	<i>Crew</i> 116	Date 4/5/2007	Fix Date
1610	CORINNA17Cut small flagged mapleDEXTER20Skipped secondary and skipped secondary and skip	Road 2 RIPLEY ROAD 6' from line 2 RAND HILL ROAD c span 6 FIVE CORNERS ROAD 6 FIVE CORNERS ROAD	<i>From</i> 503 06	<i>To</i> 504 06.1	Compliance Issue C C	Class M M	Contractor D D	Crew 116 various	Date 4/5/2007 4/5/2007	
1610 5105	CORINNA17Cut small flagged maple-DEXTER20Skipped secondary and skipped secondar	Road 2 RIPLEY ROAD 6' from line 2 RAND HILL ROAD c span 6 FIVE CORNERS ROAD 6 FIVE CORNERS ROAD	<i>From</i> 503 06 102	<i>To</i> 504 06.1 103	Compliance Issue C C F	Class M M M	Contractor D D D	Crew 116 various various	Date 4/5/2007 4/5/2007 4/5/2007	

<u>Audit Results for 1/1/2007 thru 5/31/2007</u>

5105	ST ALBANS cut birch brush (among		FIVE CORNERS ROAD	75	76	C	M	D	various	4/5/2007	
			DOVER	Ha	nmond	4/11/2007	<u>3</u>	Sections	Reviewed		
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
2470	HAMPDEN 58 Coldbrook Rd., more		NEW COLDBROOK ROA	18.01	58	С	М	D	8/155	5/8/2007	
		[DOVER	Ha	mmond	<u>4/11/2007</u>	<u>81</u>	<u>Sections</u>	<u>Reviewed</u>		
-	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
1020	CARMEL Trim overhead - maple		DYER ROAD ble 1	1	701	С		D	varous	5/8/2007	
1020			PARTRIDGE ROAD ole 14 and one PR6 (223) fla	14 agged	15	С		D	various	5/8/2007	
1020	CARMEL Pine limb to chip and m		PARTRIDGE ROAD	3	4	В		D	various	5/8/2007	
1020	CARMEL Cut flagged PF6 (223)	153	PLYMOUTH ROAD	24	25	PR6		D	various	5/8/2007	
1020	CARMEL More overhead trim	153	PLYMOUTH ROAD	26	27	С		D	various	5/8/2007	
1020	CARMEL Cut rtipped pine	153	PLYMOUTH ROAD	27	27.1	С		D	various	5/8/2007	
1020	CARMEL Shelf on oak	153	PLYMOUTH ROAD	29	30	C		D	various	5/8/2007	
1020	CARMEL Cut brush by pole 35	153	PLYMOUTH ROAD	35	35.01	С	11_1	D	various	5/8/2007	
1020	CARMEL shelf on pine - woodlot	153	PLYMOUTH ROAD	36	37	С	·····	D	various	5/8/2007	-
1020	CARMEL Cut topped spruce	153	PLYMOUTH ROAD	45	46	C		D	various	5/8/2007	

Audit Results for 1/1/2007 thru 5/31/2007

						1110 101	<u>1/1/2007</u> (111)	<u> </u>	07			
1020	CARMEL Cut topped fir at pole		PLYMOUTH ROAD	46	47	С			D	various	5/8/2007	
1020		153	PLYMOUTH ROAD	48	49	С			D	various	5/8/2007	
1020	CARMEL Cut dead maple (this i		PLYMOUTH ROAD done)	49	50	С			D	various	5/8/2007	
1020	CARMEL Cut toped conifers and		PLYMOUTH ROAD tall stumps	51	51H	С			D	various	5/8/2007	
		Γ	DOVER	<u>Ha</u>	mmor	<u>nd</u>	<u>4/11/2007</u>	<u>138</u>	Sections	Reviewed		
	Town	January 1	Road	From	То	C	ompliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
1890	ETNA Remove leader with w		CENTER ROAD	755	756	С			D	various	5/8/2007	
1890	ETNA Pole 701 (Dixmont Ro		CENTER ROAD	767	701	С			D	various	5/8/2007	
1890	ETNA Cut topped brush	023	CENTER ROAD	768	769	С			D	various	5/8/2007	
1890	ETNA Cut topped hardwood	031 s	DIXMONT ROAD	36	36.01	С			D	various	5/8/2007	
1890	ETNA Cut pine at pole 42	031	DIXMONT ROAD	41	42	С			D	various	5/8/2007	
1890	ETNA Fir hedge not trimmed		YOUNG ROAD	12	13	С			D	various	5/8/2007	
		[DOVER	<u>Ha</u>	mmor	<u>nd</u>	<u>4/11/2007</u>	<u>146</u>	<u>Sections</u>	Reviewed		
	Town		Road	From	То	C	ompliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
1637	DIXMONT Cut topped pines and		ETNA ROAD	01	02	С			D	various	5/8/2007	
1637	DIXMONT Cut brush and high stu		MEADOW ROAD	65	66	S		<u> </u>	D	various	5/8/2007	
Mon	-	•	S:\Veg)		A Trim Re	norts\Tri	nTrackRework.mdb _	rAuditResult	······	01.887 **	Pae	e 33 of 1

Monday, June 25, 2007

S:\Veg_MGT\Shared\TrimReports\TrimTrackRework.mdb _ rAuditResults

1637	DIXMONT	135	MEADOW ROAD	66	67	С	D	various	5/8/2007
	Cut brush and high stu	mps		-					
1637	DIXMONT	135	MEADOW ROAD	67	68	S	D	various	5/8/2007
	Cut high stumps			_					
1637	DIXMONT	135	MEADOW ROAD	72	73	S	D	various	5/8/2007
	Cut high stumps and tr	im ove	erhead						
1637	DIXMONT	135	MEADOW ROAD	73	74	S	D	various	5/8/2007
	Cut high stumps								
1637	DIXMONT	138	MOORE ROAD				 D	various	5/8/2007
1637	DIXMONT		SOUTH ETNA ROAD	2	3	PR6	D	various	5/8/2007
	Cut PR6 (223) poplar -	flagg	ed by pole 3				 		
1637	DIXMONT	244	WHITE SCHOOL ROAD	1	2	PR6	D	various	5/8/2007
	Cut PR6 (223) flagged	popla	r and chip it				 		
1637	DIXMONT	244	WHITE SCHOOL ROAD	14	14.1	С	D	various	5/8/2007
	Cut elm brush by road								
1637	DIXMONT	244	WHITE SCHOOL ROAD	46	47	С	D	various	5/8/2007
	Chip at pole 46 and trir	n on p	oles 47 - 471. (Secondary)						
1637	DIXMONT	244	WHITE SCHOOL ROAD	47	1	SER	D	various	5/8/2007
	Pole 1 on So. Etna Rd	- Trim	service off pole 1						

<u>Audit Results for</u> <u>1/1/2007</u> thru <u>5/31/2007</u>

		[FAIRFIELD	Ha	mmon	<u>d 1/5/2007</u>	<u>28</u>	Sections	Reviewed		
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
5210	Waterville Pine limbs at pole 1	382	Thomas Drive	1	2	C	М	D	119	3/30/2007	
5210	Waterville Too close	382	Thomas Drive	2	3	С	М	D	119	3/30/2007	
5210	Waterville Leaner should be cut	382	Thomas Drive	3	4	с	М	D	119	3/30/2007	
5325	Sidney Pines to cut	184	West River Road	0223	0224	С	М	D	115	3/30/2007	

		_									-	
		E	AIRFIEL	D	Ha	mmona	1/24/2007	<u>78</u>	Sections	<u>Reviewed</u>		
	Town	R	Road		From	To	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
1155	China 1 1 pine to cut	49	Stanley Road	7	7 5	76	С	M	D		3/30/2007	3/19/2007
1155	China 1 side clearance in R/W <		Stanley Road	7	6	76.1	С	Μ	D		3/30/2007	
6035	Vassalboro 0 Limb by pole 3	11	Brann Road	2	2	3	С	М	D		3/30/2007	3/21/2007
6035	Vassalboro 0 retrim s/c off 27	11	Brann Road	2	25	27	С	М	D		3/30/2007	3/21/2007
6035	Vassalboro 0 Cut leaning ash (flagged)		Brann Road 5	2	27H	28	С	М	D		3/30/2007	3/21/2007
6035	Vassalboro 0 2 pines to cut -OROW-co		Brann Road 23 (flagged)	3	}	4	С	М	D		3/30/2007	3/21/2007
6035	Vassalboro 0 no work found	11	Brann Road	Ę	j	6	R	Μ.	D		3/30/2007	
6035	Vassalboro 0 Cut stubbed hardwoods	21 (China Road	2	25	26	С	М	D		3/30/2007	3/19/2007
Mond	lay, June 25, 2007	2 762)	n nada na mata na sila	S:\Veg_MGT	Sharea	A TrimRepo	rts\TrimTrackRework.mdb _	rAuditResult	S	ne se	Page	e 35 of 94

Audit Results for 1/1/2007 thru 5/31/2007

6035	Vassalboro Side trim - ash (too clo	021 se)	China Road	53	54	С	М	D	3/30/2007	3/19/2007
6035	Vassalboro	058	Gray Road	702	703	С	М	D	3/30/2007	3/21/2007
	Trim s/c- spruces									

		FAIRFIELD	Ha	mmond	<u>1/24/2007</u>	<u>79</u>	Sections	Reviewed]	
	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
6035	Vassalboro 06 Cut flagged maple - ORO	64 Hussey Hill Road W - Code 223	509	1-Masse	C	M	D		3/30/2007	
6035	Vassalboro 10 Cut leaner - OROW - code	00 Lombard Dam Road e 223	19	20	С	М	D		3/30/2007	3/22/2007
6035	Vassalboro 11 Cut 2 plagged maples (PF	10 Masse Ln R5)	3	4	C	М	D		3/30/2007	3/22/2007
6035	Vassalboro 11 Cut tipped firs by pole 4 -	0 Masse Ln brush size	4	5	С	М	D		3/30/2007	3/22/2007
6035	Vassalboro 11 Recut brush	5 Nelson Road	704	705	С	М	D		3/30/2007	3/22/2007
6035	Vassalboro 11 Cut stubbed trees (PR5)	5 Nelson Road	705	706	C	М	D	<u> </u>	3/30/2007	3/22/2007
6035	Vassalboro 13 Cut pine (+ brush under it,	31 Priest Hill Road	012	013	С	М	D		3/30/2007	3/23/2007
6035	Vassalboro 13 Sec to trim off 04	31 Priest Hill Road	03	04	C	М	D	e,	3/30/2007	3/23/2007
6035	Vassalboro 13 2 sec to trim off 05	31 Priest Hill Road	04	05	C	М	D		3/30/2007	3/23/2007
6035	Vassalboro 13 Sec to trim off 06	31 Priest Hill Road	05	06	С	М	D		3/30/2007	3/23/2007
6035	Vassalboro 13 Ash to cut - PR5	37 Quaker Lane	502	503	С	М	D		3/30/2007	3/23/2007
6035	Vassalboro 13 No work found	37 Quaker Lane	503	503.1	C	М	D		3/30/2007	

Monday, June 25, 2007

S:\Veg_MGT\Shared\TrimReports\TrimTrackRework.mdb _ rAuditResults

1100011110000000000

Audit Results for <u>1/1/2007</u> thru 5/31/2007

6035	Vassalboro Cut hardwood, at leas	137 st	Quaker Lane	503.2	503.3	С	M	D	3/30/2007
6035	Vassalboro Change to lim clr; if c	137 an not	Quaker Lane	503.3	503.4	C	М	D	3/30/2007
6035	Vassalboro Cut topped fir	137	Quaker Lane	512	513	C	М	D	3/30/2007 3/23/2
6035	Vassalboro Trim sec to garage (o	149 ff 294)	So. China Road	293	294	С	М	D	3/30/2007 3/22/
6035	Vassalboro Retrim sec - spruces	149 (off 296	So. China Road 6)	295	296	С	М	D	3/30/2007 3/22/2
6035	Vassalboro Retrim sec off 326	149	So. China Road	325	326	С	М	D	3/30/2007 3/22/
6035	Vassalboro Cut topped hardwood	149 Is	So. China Road	327	328	C	М	D	3/30/2007 3/22/
6035	Vassalboro Cut flagged leaner - C	149 DROW		329	330	C	М	D	3/30/2007 3/22/
6035	Vassalboro No work here - road c	149 crossing		329	329.1	С	M	D	3/30/2007

			FAIRFIELD	Ha	ammond	2/7/2007	<u>73</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town		Road	Fron	ı To	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
4300	OAKLAND Needs more side trim (056 <8') ii	EAST SIDE TRAIL	11	11.1	С	М	D	115,119	3/30/2007	3/23/2007
4300	OAKLAND Ash brush by road	056	EAST SIDE TRAIL	4	5	С	М	D	115,119	3/30/2007	3/23/2007
4300	OAKLAND Skipped s/c off 8	056	EAST SIDE TRAIL	7	8	С	М	D	115,119	3/30/2007	3/23/2007
4300	OAKLAND Chip (and danger tree)	078	GAGE ROAD	01	02	В	М	D	115,119	3/30/2007	3/23/2007
4300	OAKLAND More timr on cedars	078	GAGE ROAD	2	3	С	М	D	115,119	3/30/2007	3/23/2007

Monday, June 25, 2007

S:\Veg_MGT\Shared\TrimReports\TrimTrackRework.mdb _ rAuditResults

Audit Results for 1/1/2007 thru 5/31/2007

							<u> </u>				
4300	OAKLAND More ash brush to cut	078 (and c		t/o 47	01	С	Μ	D	115,119	3/30/2007	
4300	OAKLAND Skipped s/c off pole 2	100	JOLICOEUR LINE	1	2	·····	М	D	115,119	3/30/2007	3/23/2007
4300	OAKLAND Skipped s/c off pole 3	100	JOLICOEUR LINE	2	3		М	D	115,119	3/30/2007	3/23/2007
4300	OAKLAND Skipped sec & s/c - no	222 ot billat	SUMMER STREET	57	57.1	С	М	D	115,119	3/30/2007	
4300	OAKLAND No work found	222	SUMMER STREET	t/o 09	57	R	М	D	115,119	3/30/2007	
4300	OAKLAND Cut brush on curve	226	SIERRA TRAIL	6	7	С	М	D	115,119	3/30/2007	3/23/2007

		FAIRFIELD Road		<u>Hammond</u>		<u>2/7/2007</u> Compliance Issue	<u>114</u> Class	Sections Reviewed			
	Town			From To				Contractor	Crew	Notify Date	Fix Date
4300	OAKLAND Skipped s/c off 24 (acr	067 oss ro	FAIRFIELD STREET ad)	25	24	С	М	D	115,119	3/30/2007	3/23/2007
4300	OAKLAND Skipped s/c off 49H - n	067 ot bill	FAIRFIELD STREET able 309	50	49H	C	м	D	115,119	3/30/2007	3/23/2007
4300	OAKLAND Skipped sec. & s/c	067	FAIRFIELD STREET	57	57.1	C	М	D	115,119	3/30/2007	3/26/2007
4300	OAKLAND Skipped sec	091	HIGH STREET	1	1.1	С	М	D	115,119	3/30/2007	
4300	OAKLAND Skipped sec	091	HIGH STREET	16	16.1	С	М	D	115,119	3/30/2007	3/23/2007
4300	OAKLAND More side trim needed	091 (<8')	HIGH STREET	24.01	24.02	С	М	D	115,119	3/30/2007	
4300	OAKLAND No work seen	091	HIGH STREET	27	28	С	М	D	115,119	3/30/2007	
4300	OAKLAND Skipped sec - not billal	091 ble 30	HIGH STREET 8	31	31.1	С	М	D	115,119	3/30/2007	

				Au	<u>dit Rest</u>	ults for	<u>1/1/2007</u>	<u>thru</u>	<u>5/31/20</u>	<u>07</u>			
4300	OAKLAND Topped birches s/b		HIGH STREET	39	39.01	С	·····		м	D	115,119	3/30/2007	3/23/2007
4300	OAKLAND Topped birches s/b		HIGH STREET	39.01	39.02	С	· · · · · · · · · · · · · · · · · · ·		M	D	115,119	3/30/2007	3/23/2007
			FAIRFIELD	<u>Ha</u>	mmon	d	3/16/2007	2	<u>6</u>	<u>Sections</u>	Reviewed		
	Town		Road	From	То	Со	mpliance Issue		Class	Contractor	Crew	Notify Date	Fix Date
4650	PITTSFIELD Needs cut; hardwoo		BATES STREET	5	6	С		_	М	D	89	4/5/2007	3/20/2007
4650	PITTSFIELD Needs cut, stump tr		BATES STREET t and topped brush	7	8	С			M	D	89	4/5/2007	3/20/2007
		Γ	FAIRFIELD	Ha	mmor	d	3/9/200	ζ	<u>44</u>	Sections	Reviewed		
	Town	-	Road	From	То	Co	mpliance Issue	,	Class	Contractor	Crew	Notify Date	Fix Date
6420	WINSLOW Stubs left & should i		DALLAIRE STREET front leader (Boxfeder)	3	4	С			М	D	137	4/5/2007	
6420	WINSLOW Shelf left - town tree		DALLAIRE STREET	6	7	С			М	D	137	4/5/2007	
6420	WINSLOW 1 (St. John) retirm s		HALLOWELL STREET rubbing (paid 5/6)	4	1	С			М	D	166	4/5/2007	
6420	WINSLOW Stubs	110	HALLOWELL STREET	8	9	F		_	М	D	166	4/5/2007	
6420	WINSLOW	186	POULIN STREET						М	D	89	4/5/2007	
6420	WINSLOW 3 (Rancourt) cut bru		POULIN STREET nd pole 3	01	3	с			M	D	89	4/5/2007	
6420	WINSLOW 26 (Halifax) stubs &		POULIN STREET more trim on s/c	26	1	С			M	D	89	4/5/2007	
6420	WINSLOW Charged for 305 - s/	⁄b (2) 30		9	10	R			М	D	89	4/5/2007	

Monday, June 25, 2007

S:\Veg_MGT\Shared\TrimReports\TrimTrackRework.mdb _ rAuditResults

Audit Results for 1/1/2007 thru 5/31/2007

oole 0166 2' 04 and high stu	Road 13 WINSLOW ROAD 13 WINSLOW ROAD 148 CLINTON AVENUE 148 CLINTON AVENUE	<i>From</i> 0165 0170 159	<i>To</i> 0166 0171	Com C S	pliance Issue	Class M	Contractor D	Crew various	Notify Date 4/5/2007	Fix Date
oole 0166 2 [.] 04 and high stu	13 WINSLOW ROAD 18 CLINTON AVENUE 1mps	0170				M	D	various	4/5/2007	
04 and high stu	48 CLINTON AVENUE	<u></u>	0171	S						
and high stu 04	imps	159				М	D	various	4/5/2007	
			160	S		М	D	various	4/5/2007	
		160	161	С		М	D	various	4/5/2007	
22 ole 504	28 SMILEY AVENUE	503	504	С		м	D	various	4/5/2007	
22 ole 505	28 SMILEY AVENUE	504	505	С		М	D	various	4/5/2007	
22 ole 505	28 SMILEY AVENUE	505	505H	С		м	D	various	4/5/2007	
22 ole 509	8 SMILEY AVENUE	508	509	с		м	D	various	4/5/2007	
	FAIRFIELD	Ha	mmon	d	<u>3/27/2007</u>	<u>70</u>	<u>Sections</u>	Reviewed		
_	Road	From	То	Com	pliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
01 e to chip @	4 BESSEY RIDGE RO	DAD 21H	22	В		М	D	various	4/5/2007	
01 ut by pole 5	4 BESSEY RIDGE RO	DAD 507	508	С		М	D	various	4/5/2007	
01	4 BESSEY RIDGE RO	DAD 519	520	С		м	D	various	4/5/2007	
ut	0 DANFORTH ROAD	1	2	S		М	D	various	4/5/2007	
ut b	01	014 BESSEY RIDGE RC 040 DANFORTH ROAD	014 BESSEY RIDGE ROAD 519 040 DANFORTH ROAD 1	014 BESSEY RIDGE ROAD 519 520 040 DANFORTH ROAD 1 2 nps	014 BESSEY RIDGE ROAD 519 520 C 040 DANFORTH ROAD 1 2 S aps	014 BESSEY RIDGE ROAD 519 520 C 040 DANFORTH ROAD 1 2 S aps	014 BESSEY RIDGE ROAD 519 520 C M 040 DANFORTH ROAD 1 2 S M nps	014 BESSEY RIDGE ROAD 519 520 C M D 040 DANFORTH ROAD 1 2 S M D nps M D M D	014 BESSEY RIDGE ROAD 519 520 C M D various 040 DANFORTH ROAD 1 2 S M D various nps N 1 2 S M D various	014 BESSEY RIDGE ROAD 519 520 C M D various 4/5/2007 040 DANFORTH ROAD 1 2 S M D various 4/5/2007 ops Image: State

Monday, June 25, 2007

S:\Veg_MGT\Shared\TrimReports\TrimTrackRework.mdb _ rAuditResults

			4	<u>Audit Resul</u>	<u>ts for</u>	<u>1/1/2007</u>	<u>thru</u>	<u>5/31/2007</u>			
0050	ALBION 080 Brush piles in ROW - chip		58	59	В			M	D	various	4/5/2007
0050	ALBION 080 Brush to cut	HUSSEY ROAD	61	62	С			М	D	various	4/5/2007
0050	ALBION 080 More overhead tirm in yard		79	80	С			М	D	various	4/5/2007
0050	ALBION 080 More side teim to do) HUSSEY ROAD	81	83	С			М	D	various	4/5/2007
0050	ALBION 080 Missed s/c across road) HUSSEY ROAD	85	86	С			М	D	various	4/5/2007
0050	ALBION 145 More trim needed - weak lii		20	21	С			М	D	various	4/5/2007

			FAIRFIELD	<u>H</u>	<u>ammond</u>	<u>3/21/2007</u>	<u>96</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town		Road	From	n To	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
0050	ALBION Recut stumps and spra		BOG ROAD	1	2	S	М	D	various	4/5/2007	
0050	ALBION Not open -stubs on map	015 ole	BOG ROAD	20	21	C	М	D	various	4/5/2007	
0050	ALBION Recut stumps	015	BOG ROAD	22	24	S	М	D	various	4/5/2007	
0050	ALBION Recut stumps and spra	015 V	BOG ROAD	27	28	S	М	D	various	4/5/2007	
0050	ALBION Recut stumps and spra		BOG ROAD	28	29	S	М	D	various	4/5/2007	
0050	ALBION Trim s/c to red house	015	BOG ROAD	44	46	C	М	D	various	4/5/2007	
0050	ALBION Cut birch by pole 52	015	BOG ROAD	51	52	С	М	D	various	4/5/2007	
0050	ALBION Cut flagged fir and spru		BOG ROAD pole 73	72	73	С	М	D	various	4/5/2007	

				1100	an xcon		<u> </u>				
0050	ALBION		BOG ROAD	80	81	С	M	D	various	4/5/2007	
	High pine stumps an	d cut br	ush								
0050	ALBION	015	BOG ROAD	81	82	c	M	D	various	4/5/2007	
	High pine stumps an	d cut br	ush								
		<u> </u>	FAIRFIELD	Ha	mmon	d <u>3/27/2007</u>	<u>101</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town	L	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
0050	ALBION Chip and flagged ma	120 Iple to c		18	19	B/C	М	D	various	4/5/2007	
0050	ALBION Chip by pole 12/1	120	LIBBY HILL ROAD	2	2.1	В	М	D	various	4/5/2007	
0050	ALBION Stubs on willow	120	LIBBY HILL ROAD	20	21	F	М	D	various	4/5/2007	
0050	ALBION hanger in pine	120	LIBBY HILL ROAD	28	29	Han	М	D	various	4/5/2007	
	AL SLOUL			4.0							

	hanger in pine	_									_
0050	ALBION 26 Brush to cut by pole 10	60	YORK TOWN ROAD	10	11	С	М	D	various	4/5/2007	
0050	ALBION 26 High stumps - cut/treat	60	YORK TOWN ROAD	4	5	S	М	D	various	4/5/2007	
0050	ALBION 26 High stumps - cut/treat	80	YORK TOWN ROAD	5	6	S	М	D	various	4/5/2007	
0050	ALBION 26 High stumps - cut/treat	60	YORK TOWN ROAD	6	7	S	М	D	various	4/5/2007	
0050	ALBION 26 High stumps - cut/treat	60	YORK TOWN ROAD	7	8	S	М	D	various	4/5/2007	
0050	ALBION 26 High stumps - cut/treat	60	YORK TOWN ROAD	8	9	S	М	D	various	4/5/2007	
0050	ALBION 26 High stumps - cut/treat	30	YORK TOWN ROAD	9	10	S	М	D	various	4/5/2007	

		FAIRFIELD	Ha	mmond	3/21/2007	<u>103</u>	Sections	Reviewed		
	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
4300	OAKLAND 02 1 birch top - woodlot	29 CRAIG DRIVE	16	17	С	М	D	various	4/5/2007	
4300	OAKLAND 20 More brush to cut	06 RICE RIPS ROAD	501	502	С	м	D	various	4/5/2007	
4300	OAKLAND 20 Missed s/c off pole 511 - f	06 RICE RIPS ROAD Ĩr	510	511	С	М	D	various	4/5/2007	
4300	OAKLAND 20 Missed s/c to yellow hous	06 RICE RIPS ROAD e off pole 517	516	517	С	М	D	various	4/5/2007	
4300	OAKLAND 20 More to cut (clump - maple	06 RICE RIPS ROAD e)	519	520	С	м	D	various	4/5/2007	
4300	OAKLAND 20 Two to cut (per Ara Cooks	06 RICE RIPS ROAD	520	521	С	м	D	various	4/5/2007	
6210	WATERVILLE 22 Recut high stumps and sp	28 MARSTON ROAD	Н	1	с	М	D	various	4/5/2007	
6210	WATERVILLE 25 Cut ash closest to pole 50	59 NORTH STREET 04 - 4 ft from pole	503	504	С	M	D	various	4/5/2007	
		FAIRFIELD	Ha	mmond	3/23/2007	<u>120</u>	Sections	Reviewed	I	
	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
6420	WINSLOW 04 Cut flagged elms (small)	8 CLINTON AVENUE	40H	41	С	m	D	various	4/5/2007	
6420	WINSLOW 04 Cut flagged elm and high	8 CLINTON AVENUE stumps	43H	44	S	m	D	various	4/5/2007	
6420	WINSLOW 04 Cut limb off pole	18 CLINTON AVENUE	91	91.1	С	m	D	various	4/5/2007	

Audit Results for 1/1/2007 thru 5/31/2007

		FAIRFIELD	Ha	<u>mmond</u>	<u>4/25/2007</u>	<u>61</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
0440		5 PINKHAM COVE EXTEN and consult with customer off p		14	С		D	various	5/8/2007	
0440		5 PINKHAM COVE EXTEN		16	C	<u></u>	D	various	5/8/2007	<u> </u>
0440	BELGRADE 16 Secondary not done & che	5 PINKHAM COVE EXTEN ck s/c	17	17.1	SEC		D	various	5/8/2007	
0440	BELGRADE 16 Cut oak brush by pole 19	5 PINKHAM COVE EXTEN	19	20	С		D	various	5/8/2007	
0440	BELGRADE 16 Cut oak brush by pole 20	5 PINKHAM COVE EXTEN	20	21	C		D	various	5/8/2007	
0440	BELGRADE 16 Secondary not done	5 PINKHAM COVE EXTEN	21	21.1	SEC		D	various	5/8/2007	
0440	BELGRADE 16. Secondary and s/c not dor	5 PINKHAM COVE EXTEN	24	24.1	SEC		D	various	5/8/2007	
0440		5 PINKHAM COVE EXTEN le 25 and windrow limbs in r/w		26	В		D	various	5/8/2007	
0440	BELGRADE 16. Windrow limbs in r/w	5 PINKHAM COVE EXTEN	26	27	В		D	various	5/8/2007	
0440	BELGRADE 16 Remove shelf on hemlocks	5 PINKHAM COVE EXTEN s in r/w	27	28	С		D	various	5/8/2007	
0440	BELGRADE 16 Trim s/c off pole 29	5 PINKHAM COVE EXTEN	28	29	С		D	various	5/8/2007	
0440	BELGRADE 16 Trim s/c off pole 30	5 PINKHAM COVE EXTEN	29	30	С		D	various	5/8/2007	
0440	BELGRADE 16 Cut one Orow birch (code	5 PINKHAM COVE EXTEN 223) flagged	30	31	C		D	various	5/8/2007	
0440		5 PINKHAM COVE EXTEN 33 and remove shelf in r/w	32	33	С		D	various	5/8/2007	

_								
0440	BELGRADE	165 PINKHAM COVE EXTEN	33	34	С	D	various	5/8/2007
	Trim ash for primary an	d s/c off pole 33						
0440	BELGRADE	165 PINKHAM COVE EXTEN	34	35	С	D	various	5/8/2007
	More side trim - hemloo	<u></u>						
0440	BELGRADE	165 PINKHAM COVE EXTEN	35	36	с	D	various	5/8/2007
	More side trim - maple							
0440	BELGRADE	165 PINKHAM COVE EXTEN	36	36.1	SEC	D	various	5/8/2007
_	Secondary and 2 s/c to	trim (not done)						
0440	BELGRADE	165 PINKHAM COVE EXTEN	45	46	С	D	various	5/8/2007
	Cut small brush by pole	45 in r/w						
0440	BELGRADE	165 PINKHAM COVE EXTEN	47	47H	С	D	various	5/8/2007
_	Trim beech by pole 47,	cut brush by pole 47H, trim ceda	ars s/c off p	ole 47H				
0440	BELGRADE	165 PINKHAM COVE EXTEN	48	48.1	SEC	D	various	5/8/2007
	Secondary not done							
0440	BELGRADE	165 PINKHAM COVE EXTEN	50	51	С	D	various	5/8/2007
	Trim beech by pole 50	- shelf						
0440	BELGRADE	165 PINKHAM COVE EXTEN	51	52	С	D	various	5/8/2007
_	Trim s/c off pole 52 - ru	bbing						
0440	BELGRADE	165 PINKHAM COVE EXTEN	52	53	С	D	various	5/8/2007
_	Cut Orow tree (code 22	3) flagged in r/w						
0440	BELGRADE	165 PINKHAM COVE EXTEN	55	56	с	D	various	5/8/2007
	Cut Orow tree (code 22	5) flagged in r/w; trim hemlock b	y pole 56					
0440	BELGRADE	165 PINKHAM COVE EXTEN	56	57	С	D	various	5/8/2007
	Cut and trim for s/c off	oole 57 - flagged						
0440	BELGRADE	165 PINKHAM COVE EXTEN	57	58	С	D	various	5/8/2007
	Remove shelf and trim	s/c off pole 58						
0440	BELGRADE	165 PINKHAM COVE EXTEN	57	57.1	SEC	D	various	5/8/2007
-	Secondary and 2 s/c to	do - not done						
0440	BELGRADE	165 PINKHAM COVE EXTEN	60	61	С	D	various	5/8/2007
	Cut brush by pole 60							

<u>Audit Results for</u> <u>1/1/2007</u> thru <u>5/31/2007</u>

		FAIRFIELD	Ha	mmond	5/18/2007	<u>59</u>	Sections	Reviewed		
	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
0440		FOSTER POINT ROAD	28	30	GRN	М	D	various	6/13/2007	
	Cut brush in r/w by pole 2	······································						- <u></u>	<u></u>	<u> </u>
0440	BELGRADE 00 Poplar to cut	61 FOSTER POINT ROAD	30	31	GRN	М	D	various	6/13/2007	
0440	BELGRADE 00 OH on ash	51 FOSTER POINT ROAD	32	33	С	М	D	various	6/13/2007	
0440	BELGRADE 00 oak/maple brush to cut	1 FOSTER POINT ROAD	5	6	GRN	M	D	various	6/13/2007	
0440	BELGRADE 00 Needs more cut & trim in	61 FOSTER POINT ROAD	57	58	С	М	D	various	6/13/2007	
0440	BELGRADE 00 Skipped span & cut split l	61 FOSTER POINT ROAD eaning maple	64	65	С	М	D	various	6/13/2007	
0440	BELGRADE 00 Recut by pole 67	51 FOSTER POINT ROAD	66	67	С	М	D	various	6/13/2007	
0440	BELGRADE 00 Dying pine by pole 70 - to	61 FOSTER POINT ROAD	69	70	с	M	D	various	6/13/2007	
0440	BELGRADE 00 Dying hemlock - too close	51 FOSTER POINT ROAD	70	71	С	М	D	various	6/13/2007	
0440	BELGRADE 10 s/c off pole 4 to trim	5 PINKHAM COVE EXTEN	3	4	SER	М	D	various	6/13/2007	
6420	WINSLOW 09 Retrim s/c to house #8	52 CORBETT LANE	3	4	SER	М	D	various		
6420	WINSLOW 05 Stubbed branch	52 CORBETT LANE	5	6	S	М	D	various		
6420	WINSLOW 09 Retrim s/c off pole 7	52 CORBETT LANE	6	7	SER	М	D	various		
6420	WINSLOW 09 More trim needed at pole	00 FRANKWOOD DRIVE 2	1	2	С	М	D	various		

Monday, June 25, 2007

S:\Veg_MGT\Shared\TrimReports\TrimTrackRework.mdb _ rAuditResults

Page 46 of 94

Audit Results for 1/1/2007 thru 5/31/2007

6420	WINSLOW More cut at pole 12	228	3 SMILEY AVENUE	11	12	С	M	D	various		
		ſ	FAIRFIELD	Ha	mmono	<u>5/1/2007</u>	<u>75</u>	Sections	Reviewed		
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
4300	OAKLAND Recut and chop by po	02: ble 2	3 BLAKE EXTENSION	1	2	В	М	D	various	6/13/2007	
4300	OAKLAND Retrim pine shelf	023	3 BLAKE EXTENSION	2	3	С	М	D	various	6/13/2007	
4300	OAKLAND Cut topped hardwood	22 brus	1 SMITHFIELD ROAD h and brush by box trailer	47H	48	С	М	D	various	6/13/2007	_
4300	OAKLAND Cut ash brush - flagge		1 SMITHFIELD ROAD	49	50	С	М	D	various	6/13/2007	
4300	OAKLAND Clained but not done		5 TOWN FARM ROAD	515	515.1	С	М	D	various	6/13/2007	_
4300	OAKLAND Chip by pole 534	23	5 TOWN FARM ROAD	533	534	В	м	D	various	6/13/2007	_
4300	OAKLAND Cut rush at pole 534	23	5 TOWN FARM ROAD	534	535	С	М	D	various	6/13/2007	
4300	OAKLAND Chip by pole 537	23	5 TOWN FARM ROAD	537	539	В	М	D	various	6/13/2007	
4300	OAKLAND Retrim shelf and hang		5 TOWN FARM ROAD	550.1	550.1H	C	М	D	various	6/13/2007	
4300	OAKLAND Retrim shelf	23	5 TOWN FARM ROAD	550.1H	550.2	C	М	D	various	6/13/2007	
4300	OAKLAND Chip brush	23	5 TOWN FARM ROAD	553	555	В	М	D	various	6/13/2007	
4300	OAKLAND Retrim shelf - beech b		5 TOWN FARM ROAD le 551 & S/R off pole 557	555	557	С	М	D	various	6/13/2007	
4300	OAKLAND Cut hardwood brush c		5 TOWN FARM ROAD	562	563	С	М	D	various	6/13/2007	

Monday, June 25, 2007

S:\Veg_MGT\Shared\TrimReports\TrimTrackRework.mdb _ rAuditResults

Page 47 of 94

<u>Audit Results for 1/1/2007 thru 5/31/2007</u>

4300	OAKLAND Trim limb over road	235 TOWN FARM ROAD	572	574	с	М	D	various	6/13/2007
	<u>Service Cen</u>	ter Totals:	<u>174</u> <u>Se</u>	ctions fo	r Rework	1386 Section	is Reviewe	e <u>d</u>	<u>12.55%</u>

		SKOWHEGAN	<u>Ha</u>	<u>mmond</u>	<u>1/25/2007</u>	<u>45</u>	<u>Sections</u>	<u>Reviewed</u>		
Town	£	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
Athens claimed, no work found		W. Athens Road	13	14	R	М	D	various	3/30/2007	
Athens Skipped secondary	243	W. Athens Road	25	25.1	С	М	D	various	3/30/2007	
Athens claimed, no work foun		W. Athens Road	34	35	R	М	D	various	3/30/2007	
Athens Leaning fir - PR6 (223			38	39	С	М	D	various	3/30/2007	3/29/2007
Athens Skipped secondary	243	W. Athens Road	41	41.1	С	M	D	various	3/30/2007	
Athens claimed, no work foun		W. Athens Road	42	43	R	М	D	various	3/30/2007	
Athens claimed, no work foun		W. Athens Road	43	44	R	М	D	various	3/30/2007	
		SKOWHEGAN	Ha	<u>mmond</u>	2/1/2007	<u>98</u>	Sections	Reviewed]	
Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
Skowhegan Claimed, not done (PF		E. Front Street	19	20	С	M	D	various	3/30/2007	4/12/200
Skowhegan Fir to wire (or top)	063	E. Front Street	29	30	С	М	D	various	3/30/2007	4/12/200
Skowhegan Retrim secondary	367	Waterville Road	57	57.01	С	М	D	various	3/30/2007	4/12/200
Skowhegan Skipped - 2 sections to			59	59.1	С	М	D	various	3/30/2007	4/12/200
				70.1	<u>с</u>	M	D	various	3/30/2007	4/12/200
	Athens <i>claimed, no work found</i> Athens <i>Skipped secondary</i> Athens <i>claimed, no work found</i> Athens <i>Leaning fir - PR6 (223)</i> Athens <i>Skipped secondary</i> Athens <i>claimed, no work found</i> Athens <i>claimed, no work found</i> <i>Town</i> <i>Skowhegan</i> <i>Fir to wire (or top)</i> <i>Skowhegan</i> <i>Retrim secondary</i> <i>Skowhegan</i>	Town Athens 243 claimed, no work found 43 Athens 243 Skipped secondary 43 Athens 243 claimed, no work found 43 Athens 243 claimed, no work found 43 Athens 243 Leaning fir - PR6 (223) to cu Athens 243 Skipped secondary Athens 243 claimed, no work found Athens 243 claimed, no work found Athens 243 claimed, no work found Skowhegan 063 Claimed, not done (PR20) Skowhegan 063 Fir to wire (or top) Skowhegan 367 Retrim secondary 367	Athens243W. Athens Roadclaimed, no work found243W. Athens RoadAthens243W. Athens Roadclaimed, no work found243W. Athens RoadAthens243W. Athens Roadclaimed, no work found243W. Athens RoadLeaning fir - PR6 (223) to cutAthens243Athens243W. Athens RoadLeaning fir - PR6 (223) to cutAthens243Athens243W. Athens Roadclaimed, no work foundAthens RoadAthens243W. Athens Roadclaimed, no work foundSKOWHEGANSkowhegan063E. Front StreetClaimed, not done (PR20)SkowheganSkowhegan367Waterville RoadRetrim secondary367Waterville Road	TownRoadFromAthens243W. Athens Road13claimed, no work foundAthens243W. Athens Road25Skipped secondaryAthens243W. Athens Road34claimed, no work foundAthens243W. Athens Road34Athens243W. Athens Road38Leaning fir - PR6 (223) to cutAthens243W. Athens Road41Skipped secondaryAthens243W. Athens Road41Skipped secondary41Athens243W. Athens Road42claimed, no work found42claimed, no work found43Athens243W. Athens Road43claimed, no work found43claimed, no work found43TownRoadFromSkowhegan063E. Front Street1919Claimed, not done (PR20)Skowhegan063E. Front Street2957Skowhegan367Waterville Road57Retrim secondarySkowhegan367Waterville Road5959	TownRoadFromToAthens243W. Athens Road1314claimed, no work found1314Athens243W. Athens Road2525.1Skipped secondary243W. Athens Road3435Athens243W. Athens Road3435claimed, no work found4141.1Athens243W. Athens Road3839Leaning fir - PR6 (223) to cut4141.1Skipped secondary4141.1Athens243W. Athens Road4243claimed, no work found4344Athens243W. Athens Road4344claimed, no work found5557.0157.01TownRoad5757.017.01Retrim secondary367Waterville Road5959.1	Town Road From To Compliance Issue Athens 243 W. Athens Road 13 14 R claimed, no work found 243 W. Athens Road 25 25.1 C Skipped secondary	Town Road From To Compliance Issue Class Athens 243 W. Athens Road 13 14 R M claimed, no work found 243 W. Athens Road 25 25.1 C M Athens 243 W. Athens Road 25 25.1 C M Athens 243 W. Athens Road 34 35 R M Athens 243 W. Athens Road 38 39 C M Leaning fir - PR6 (223) to cut Athens 243 W. Athens Road 41 41.1 C M Skipped secondary Athens 243 W. Athens Road 42 43 R M claimed, no work found 243 W. Athens Road 43 44 R M claimed, no work found 243 W. Athens Road 43 44 R M claimed, no work found 243 W. Athens Road 43 44 R M claimed, no work found 25 57.00 C M Clais	Town Road From To Compliance Issue Class Contractor Athens 243 W. Athens Road 13 14 R M D Athens 243 W. Athens Road 25 25.1 C M D Skipped secondary Athens 243 W. Athens Road 34 35 R M D Athens 243 W. Athens Road 38 39 C M D Leaning fir - PR6 (223) to cut Athens 243 W. Athens Road 41 41.1 C M D Athens 243 W. Athens Road 42 43 R M D Skipped secondary Athens 243 W. Athens Road 42 43 R M D Athens 243 W. Athens Road 43 44 R M D claimed, no work found Immond 2/1/2007 98 Sections Town Road From To Compliance Issue Class Contractor <	Town Road From To Compliance Issue Class Contractor Crew Athens 243 W. Athens Road 13 14 R M D various claimed, no work found 243 W. Athens Road 25 25.1 C M D various Skipped secondary Athens 243 W. Athens Road 34 35 R M D various Athens 243 W. Athens Road 34 35 R M D various claimed, no work found	TownRoadFrom ToCompliance IssueClassContractorCrewNotify DateAthens243W. Athens Road1314RMDvarious3/30/2007Athens243W. Athens Road2525.1CMDvarious3/30/2007Skipped secondaryAthens243W. Athens Road3435RMDvarious3/30/2007Athens243W. Athens Road3435RMDvarious3/30/2007Caimed, no work foundItalians243W. Athens Road3839CMDvarious3/30/2007Athens243W. Athens Road4141.1CMDvarious3/30/2007Athens243W. Athens Road4243RMDvarious3/30/2007Athens243W. Athens Road4243RMDvarious3/30/2007Athens243W. Athens Road4344RMDvarious3/30/2007Athens243W. Athens Road4344RMDvarious3/30/2007Athens243W. Athens Road4344RMDvarious3/30/2007Athens243W. Athens Road4344RMDvarious3/30/2007Claimed, no work foundRoadFromToCompliance

Audit Results for 1/1/2007 thru 5/31/2007

			SKOWHEGAN	L	lammon	4	3/9/2007	5	Saction	s Reviewed		
5330	Skowhegan Skipped - trim section		Waterville Road	87	87.1	С		M	D	various	3/30/2007	4/12/2007
5330	Skowhegan Cut 1 pine in ROW	367	Waterville Road	84	84.1	с		М	D	various	3/30/2007	4/12/2007
5330	Skowhegan Skipped secondary s		Waterville Road	80	80.1	c	······································	M	D	various	3/30/2007	4/12/2007
5330	Skowhegan Primary - cut/trim	367	Waterville Road	72	72.1	С		м	D	various	3/30/2007	

							–				
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
3510	MADISON Left one poplar uncut	152	RUSSELL ROAD	509	509H	С	М	D	88	4/5/2007	3/14/2007
3510	MADISON Left shelf (resprout limb		RUSSELL ROAD	509H	510	С	М	D	88	4/5/2007	3/14/2007
3510	MADISON Left one maple uncut	152	RUSSELL ROAD	509H	509H.1	С	М	D	88	4/5/2007	3/14/2007
5330	SKOWHEGAN Left dead limbs on pine	373 by p	WEST RIDGE ROAD ole 129 & shelf left by pole	128 e 128	129	С	М	D	88	4/5/2007	

			SKOWHEGAN	<u>Ha</u>	mmond	<u>5/23/2007</u>	<u>50</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town	k	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
0200	ATHENS Pole 392 on Skowhe	191 gan to p	SKOWHEGAN ROAD hole 291 on Cornville Rd	392 recut stumps	391 s	S	М	D	62,88,154		
1250	CORNVILLE Confier stumps	180	SHADAGEE ROAD	30	31	S	М	D	62,88,154		
1250	CORNVILLE Confier stumps	180	SHADAGEE ROAD	4	5	S	М	D	62,88,154		
1250	CORNVILLE Not full clearance	185	SKOWHEGAN ROAD	386	386.1	С	М	D	62,88,154		

Monday, June 25, 2007

S:\Veg_MGT\Shared\TrimReports\TrimTrackRework.mdb _ rAuditResults

		Sk	<u>(OWHEGAN</u>	Ha	<u>mmond</u>	<u>5/9/2007</u>	<u>54</u>	Sections	Reviewed		
	Town	Ro	ad	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
4150	NORRIDGEWOCK (Remove shelft; pines wo		HILDS ROAD add 2 PF6 (222) don	14 e- not claimed	15 f	С	м	D	62,154,88	6/13/2007	
4150	NORRIDGEWOCK	020 CI	HILDS ROAD	3	4	С	М	D	62,154,88	6/13/2007	
4150	NORRIDGEWOCK (Chip pine limbs	020 CI	HILDS ROAD	30	31	В	М	D	62,154,88	6/13/2007	
4150	NORRIDGEWOCK (New shelf	020 CI	HILDS ROAD	4	5	С	м	D	62,154,88	6/13/2007	
4150	NORRIDGEWOCK (Childs Rd to Pine St tri		HILDS ROAD woods	5	H	С	м	D	62,154,88	6/13/2007	
4150	NORRIDGEWOCK (Remove shelf	020 CI	HILDS ROAD	7	8	С	м	D	62,154,88	6/13/2007	
4150	NORRIDGEWOCK Cut hardwoods under wi	-	EBECCA STREET helf	4	5	С	М	D	62,154,88	6/13/2007	
	Service Center	r Tota	uls:	<u>31</u> Sect	ions for I	<u>Rework</u>	296 Sectio	ns <u>Reviewe</u> d	<u>1</u>	<u>10.47%</u>	

Audit Results for 1/1/2007 thru 5/31/2007

		<u>AUGUSTA</u>	<u>Irwin</u>	<u>1/17/2007</u>	<u>8</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town	Road	From To	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
6450	Winthrop Trim service	023 Case Road	14 15		М	D	663	3/30/2007	
		AUGUSTA	Irwin	<u>1/17/2007</u>	<u>19</u>	<u>Sections</u>	Reviewed		
	Town	Road	From To	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
6450	Winthrop Not enough cleara	003 Augusta Road	78 79	С	M	D	663	3/30/2007	
		AUGUSTA	Irwin	1/2/2007	<u>21</u>	Sections	Reviewed		
	Town	Road	From To	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
0240	Augusta trim service	254 Mt. Vernon Road	26 26.1	R	М	D	157	3/30/2007	
		AUGUSTA	<u>Irwin</u>	<u>1/17/2007</u>	22	Sections	Reviewed		
	Town	Road	From To	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
6450	Winthrop trim service so serv	023 Case Road vice hangs free	5 6		М	D	667	3/30/2007	
		AUGUSTA	<u>Irwin</u>	<u>1/30/2007</u>	<u>31</u>	Sections	Reviewed		
	Town	Road	From To	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
			23 24	с	M	D	4	3/30/2007	4/4/20

Monday, June 25, 2007

S:\Veg_MGT\Shared\TrimReports\TrimTrackRework.mdb _ rAuditResults

<u>Audit Results for 1/1/2007 thru 5/31/2007</u>

3540	Manchester Trim sevice	003	Appletree Lane	1		с	М	D		3/30/2007	<u> </u>
		Γ	AUGUSTA	Irv	vin	1/15/2007	<u>36</u>	Sections	Reviewed]	
	Town	_	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
6300	West Gardiner Trim service and sec		Davis Cobb	6	6.1	· · · · · · · · · · · · · · · · · · ·	м	D	662	3/30/2007	
		Γ	AUGUSTA	Irv	vin	2/5/2007	<u>12</u>	Sections	Reviewed		
	Town	-	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
1150	CHINA PR6	002	ALDER PARK ROAD	13	14	PR6	м	D	157	3/30/2007	2/27/2007
1150	CHINA PR6	002	ALDER PARK ROAD	17	18	PR6	М	D	157	3/30/2007	2/27/2007
1150	CHINA clearance - lower st		ALDER PARK ROAD	4	5	С	М	D	157	3/30/2007	2/27/2007
			AUGUSTA	Irv	vin	2/20/2007	<u>15</u>	Sections	Reviewed]	
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
3540	MANCHESTER Ground cut	140	ROLLINS ROAD	10	11	GRN	М	D	663	3/30/2007	
3540	MANCHESTER Ground cut	140	ROLLINS ROAD	11	12	GRN	М	D	662	3/30/2007	
3540	MANCHESTER Ground cut	140	ROLLINS ROAD	2	1	GRN	М	D	662	3/30/2007	
3540	MANCHESTER Ground cut	140	ROLLINS ROAD	3	2	GRN	М	D	662	3/30/2007	

EX-02-26 Attachment 3, page 54 of 94 Docket No. 2007-215

CMP Vegetation Management

					<u>Audit Res</u>	<u>sults for</u>	<u>1/1/2007</u> the	<u>ru 5/31/20</u>	<u>07</u>		
3540	MANCHESTER Ground cut	140	ROLLINS ROAD	3	4	GRN	<u></u>	М	D	667	3/30/2007
3540	MANCHESTER Ground cut	140	ROLLINS ROAD	4	5	GRN		М	D	663	3/30/2007
3540	MANCHESTER Ground cut	140	ROLLINS ROAD	5	6	GRN		М	D	667	3/30/2007
3540	MANCHESTER Ground cut	140	ROLLINS ROAD	6	7	GRN		М	D	663	3/30/2007
3540	MANCHESTER Ground cut	140	ROLLINS ROAD	7	8	GRN		Μ	D	667	3/30/2007
3540	MANCHESTER Ground cut	140	ROLLINS ROAD	9	10	GRN		M	D	662	3/30/2007
		Γ	AUGUSTA		Irwin		2/6/2007	<u>18</u>	Sections	s Reviewed	

		<u>AUGUSTA</u>	<u>Irw</u>	<u>vin</u>	<u>2/6/2007</u>	<u>18</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
6450	WINTHROP Need to cut major whit	030 COBB LINE te birch leader rubbing on second	2 lary	2.1	В	М	D	663	3/30/2007	
6450	WINTHROP Need to cut spruce w/	128 NORTH SHORE ROAD top broken out of it in yard	pole 5		PR6	М	D	663	3/30/2007	

		<u>AUGUSTA</u>	<u>h</u>	win	<u>2/5/2007</u>	<u>32</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town	Road	Fro	m To	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
1150	CHINA (04 AUGUSTA ROAD	14	14.1	С	M	D	4	3/30/2007	4/4/2007
	Would like to see spruce	on corner "stripped" of lowe	er shelf							
1150	CHINA (04 AUGUSTA ROAD	9	11	C	M	D	4	3/30/2007	4/4/2007
	Must do "point poles" to	claim span								

		4	AUGUSTA	<u>Įr</u> m	<u>'in</u>	2/6/2007	<u>37</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
6450	WINTHROP Must cut top our of birc		FOSTER ROAD	7	8	PR6	М	D	662	3/30/2007	
6450	WINTHROP Need to cut popple w/a		ISLAND PARK ROAD	3 e	4	PR6	М	D	662	3/30/2007	
6450	WINTHROP Not 2' clearance on ser		PACKARD CAMP LINE	5	5.1	с	М	D	662	3/30/2007	_
		Γ	AUGUSTA	Irv	<u>vin</u>	3/5/2007	<u>27</u>	Sections	Reviewed		
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
6300	WEST GARDINER Need to cut	007	BENSON ROAD	25	26	С	М	D	662	4/5/2007	
6300	WEST GARDINER Need to cut small spruce		BENSON ROAD ar pole 29 (woodlot)	28	29	С	М	D	662	4/5/2007	
6300	WEST GARDINER Need to trim secondary			32	33	С	М	D	662	4/5/2007	
6300	WEST GARDINER Cut ask tree at pole	007	BENSON ROAD	7	8	с	М	D	662	4/5/2007	
			AUGUSTA	<u>Irv</u>	<u>vin</u>	4/27/2007	<u>112</u>	<u>Sections</u>	Reviewed		
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
5380	SOMERVILLE PL Trim section 3 - 3.1	126	PALERMO ROAD	2	3	SEC		D	super	5/8/2007	
5380	SOMERVILLE PL Trim section 36- 6.1	126	PALERMO ROAD	5	6	SEC		D	super	5/8/2007	

5380	SOMERVILLE PL Cut leaning popple	143	ROUTE 105	16	17	PF6	 D	super	5/8/2007
5380	SOMERVILLE PL Trim section 40 to 40-	143 1	ROUTE 105	39	40	SEC	D	super	5/8/2007
5380	SOMERVILLE PL Brush on ground	143	ROUTE 105	47	48	В	 D	super	5/8/2007
5380	SOMERVILLE PL Brush on ground	143	ROUTE 105	49	50	В	D	super	5/8/2007
5380	SOMERVILLE PL Huge pone over prima	143 ries	ROUTE 105	60	61	Н	 D	super	5/8/2007
5380	SOMERVILLE PL Brush on ground	185	WEEKS MILLS ROAD	7	8	В	D	super	5/8/2007

		<u>AUGUSTA</u>	<u>[rw</u>	<u>/in</u>	<u>4/4/2007</u>	<u>182</u>	<u>Sections</u>	<u>Reviewed</u>		
Town	L	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
6185 WASHINGTON Service off pole 144	19: 1	3 WEST WASHINGTON RI	143	144	SER	M	D	super crew	5/8/2007	
6185 WASHINGTON	19:	3 WEST WASHINGTON RI	145	146	С	М	D	super crew	5/8/2007	
6185 WASHINGTON Secondary and serv	19: /ice	3 WEST WASHINGTON RI	146	146.1	SEC	М	D	super crew	5/8/2007	
6185 WASHINGTON Service	19	3 WEST WASHINGTON RI	148	149	SER	М	D	super crew	5/8/2007	
6185 WASHINGTON Service off pole 172	19:	3 WEST WASHINGTON RI	171	172	SER	М	D	super crew	5/8/2007	
6185 WASHINGTON Service off pole 177	19:	3 WEST WASHINGTON RI	176	177	SER	М	D	super crew	5/8/2007	
	ſ	AUGUSTA	Irw	<u>vin</u>	5/14/2007	<u>20</u>	Sections	Reviewed		
Town	-	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
Monday, June 25, 2007		S:\Veg_M(GT\Shared	\TrimRep	orts\TrimTrackRework.mdb _	rAuditResult	,2 	40000 - 700000 0.500000-9-, 2000-0-40	Page	e 56 of 9

				Au	<u>dit Resi</u>	<u>ults for</u>	<u>1/1/2007</u>	<u>thru</u>	<u>5/31/20</u>	<u>07</u>			
2045	FAYETTE Overhead clearance	119	OAK HILL ROAD	25	26	С			M	D	663/667	6/13/2007	
2045	FAYETTE Cut birch tree	119	OAK HILL ROAD	28	29	PR6			М	D	663/667	6/13/2007	
2045	FAYETTE Trim secondary & cut b		OAK HILL ROAD near pole	30	31	SEC			М	D	663/667	6/13/2007	
2045	FAYETTE Cut 2 tagged maples	153	SANDERSON ROAD	5	4	PR6			М	D	663/667	6/13/2007	
			AUGUSTA	<u></u>	<u>vin</u>		<u>5/11/2007</u>		<u>64</u>	<u>Sections</u>	Reviewed		
	Town		Road	From	То	Con	npliance Issue		Class	Contractor	Crew	Notify Date	Fix Date
4910	READFIELD Cut bad popple - tagge		FAYETTE ROAD	22	23	PR6			М	D	663	6/13/2007	
		[AUGUSTA	Irv	<u>/in</u>		<u>5/9/2007</u>		<u>91</u>	<u>Sections</u>	Reviewed		
	Town	L	Road	From	То	 Con	npliance Issue		Class	Contractor	Crew	Notify Date	Fix Date
2045	FAYETTE Service off pole 57.1 nc		READFIELD ROAD	57	57.1	SER			М	D	663/667	6/13/2007	
6400	WINDSOR Trim nasty stubs on pin		SOUTH BELFAST ROAD	24	25	F			М	D	super	6/13/2007	
	min hasty stude on pin	-										0/40/0007	
6400	WINDSOR Trim service at pole 30		SOUTH BELFAST ROAD	29	30	SER			М	D	super	6/13/2007	
6400	WINDSOR	135	SOUTH BELFAST ROAD	29 		SER	5/23/2007		м <u>119</u>		super Reviewed	6/13/2007	
6400	WINDSOR	135					5/23/2007	•	-		·	Notify Date	Fix Date

EX-02-26 Attachment 3, page 58 of 94 Docket No. 2007-215

CMP Vegetation Management

				A	udit Res	<u>sults for</u>	<u>1/1/2007</u>	<u>thru 5/31/200</u>	<u>07</u>			
5380	SOMERVILLE PL Cut tagged red pine	185	WEEKS MILLS ROAD	23	24	PR6		М	D	superc	6/13/2007	
5380	SOMERVILLE PL More side trim and gr	185 round c	WEEKS MILLS ROAD	6	7	С		М	D	superc	6/13/2007	
6400	WINDSOR Trim service	133	SAMPSON ROAD	16	17	SER		М	D	superc	6/13/2007	
6400	WINDSOR Cut popples	133	SAMPSON ROAD	17	18	PR6		М	D	superc	6/13/2007	
	<u>Service Cen</u>	ter T	otals:	<u>58</u> Se	ections fo	or Rewor	<u>·k</u>	936 Section	is Review	ed	<u>6.20%</u>	

4 1. D

× .

<u>Audit Results for</u> <u>1/1/2007</u> thru <u>5/31/2007</u>

			LEWISTON	<u>Ir</u>	<u>win</u>	<u>1/30/2007</u>	<u>13</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town	L	Road	From	n To	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
3710	Minot Stubs	032	Harris Road	40(098) 1 (032)	S	М	D	196	3/30/2007	
3710	Minot Cut PR6 - big ash tree	068	Pottle School Road	12	13		М	D	79	3/30/2007	
			LEWISTON	In	<u>win</u>	1/24/2007	<u>21</u>	<u>Sections</u>	Reviewed		
	Town		Road	From	n To	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
3710	Minot Stubs - pruning; remove	-	Harris Road Id stub	Take o	ff 1	S	м	D		3/30/2007	
					·····	······		······		1	
			<u>LEWISTON</u>	<u>Ir</u>	<u>win</u>	<u>2/22/2007</u>	<u>10</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town	Ľ	LEWISTON Road	<u>Ir</u> Fron		<u>2/22/2007</u> Compliance Issue	<u>10</u> Class	Sections Contractor	Reviewed Crew	Notify Date	Fix Date
6140		042									
	WALES Need to cut danger tree	042	Road	Fron	n To	Compliance Issue	Class	Contractor	Crew	Date	Date
6140	WALES Need to cut danger tree SABATTUS	042 005 p	Road THE AVENUE ROAD	Fron 11 507	11 1/2	Compliance Issue PR6	Class M	Contractor D D	Crew 784	Date 3/30/2007	Date
	WALES Need to cut danger tree SABATTUS	042 005 p	Road THE AVENUE ROAD BOWDOIN ROAD	Fron 11 507	1 To 11 1/2 508 win	Compliance Issue PR6 S	Class M M	Contractor D D	Crew 784 784	Date 3/30/2007	Date
	WALES Need to cut danger tree SABATTUS Need to cut 4 foot sturn	042 005 p	Road THE AVENUE ROAD BOWDOIN ROAD	Fron 11 507	1 To 11 1/2 508 win	Compliance Issue PR6 S <u>2/1/2007</u>	Class M M <u>55</u>	Contractor D D Sections	Crew 784 784 Reviewed	Date 3/30/2007 3/30/2007 Notify	Date 4/10/200 Fix

Audit Results for 1/1/2007 thru 5/31/2007

0230	Auburn stubs	228	Manley Road	5	6	S	Μ	D	784	3/30/2007	
		Γ	LEWISTON	Irw	<u>vin</u>	2/23/2007	<u>79</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
3610	MECHANIC FALLS Need to trim seconda			31	32	С	М	D	79	3/30/2007	
3610	MECHANIC FALLS Need to trim seconda			35	36	С	М	D	79	3/30/2007	
3610	MECHANIC FALLS			48	49	с	М	D	196	3/30/2007	
3610	MECHANIC FALLS Need to trim limb ove			49	50	С	М	D	196	3/30/2007	
3610	MECHANIC FALLS Need to trim Seconda			55	56	С	М	D	196	3/30/2007	
3610	MECHANIC FALLS Need to trim seconda			61	62	С	м	D	79	3/30/2007	
3610	MECHANIC FALLS Need to trim seconda			64	65	С	М	D	79	3/30/2007	
3610	MECHANIC FALLS Need to trim seconda			69	70	С	М	D	79	3/30/2007	
3710	MINOT PR6 -need to cut pop		CENTER MINOT HILL R anger tree	011	012	PR6	М	D	79	3/30/2007	
4425	OXFORD Need to trim seconda		MECHANIC FALLS ROA 76.1	75	76	с	М	D	196	3/30/2007	
			LEWISTON	<u>Irw</u>	<u>rin</u>	<u>3/20/2007</u>	<u>19</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
6140	WALES Trim service off pole :		ANDREWS ROAD	11	12	С	M	D	784	4/5/2007	

Monday, June 25, 2007

S:\Veg_MGT\Shared\TrimReports\TrimTrackRework.mdb _ rAuditResults

Page 60 of 94

				Au	<u>dit Res</u>	ults for 1/	<u>/1/2007_t</u>	<u>hru 5/31/20</u>	<u>07</u>			
6140	WALES Trim service off pole 1		ANDREWS ROAD	12	13	С		м	D	784	4/5/2007	
6140	WALES Take dead leader out o		ANDREWS ROAD ble near pole 14	13	14	С		М	D	784	4/5/2007	
		[LEWISTON	Irv	<u>/in</u>	3	/29/2007	<u>29</u>	Sections	Reviewed		
	Town		Road	From	То	Compl	iance Issue	Class	Contractor	Crew	Notify Date	Fix Date
6140	WALES Knock broken branch		ANDREWS ROAD	18	19	Н		М	D	784		
6140	WALES Secondary	001	ANDREWS ROAD	2	3	SEC		М	D	784		
6140	WALES Take more out of big n	001 naple	ANDREWS ROAD	20	21	С		M	D	784		
			LEWISTON	<u>Irv</u>	<u>/in</u>		3/5/2007	<u>30</u>	Sections	Reviewed		
	Town	-	Road	From	To	Compl	iance Issue	Class	Contractor	Crew	Notify Date	Fix Date
6140	WALES Cut small apple saplin		LEWISTON-AUGUSTA R	70	71	C		М	D	784	4/5/2007	
6140	WALES Trim 96.1 to service po		LEWISTON-AUGUSTA R	96	96.1	С	· · · · · · · · · · · · · · · · · · ·	М	D	784	4/5/2007	
		[LEWISTON	Irv	<u>/in</u>	<u>3</u>	/30/2007	<u>35</u>	Sections	Reviewed		
	Town	••••	Road	From	То	Compl	iance Issue	Class	Contractor	Crew	Notify Date	Fix Date
5880	TURNER Cut 1 more PF6 - popp		TORY HILL ROAD	5	6	PR6		M	D	196	4/5/2007	-
6230	SABATTUS Cut hawthome sapling		LONE PINE DRIVE	2	3	С		М	D	774	4/5/2007	

6230	SABATTUS	062	PLEASANT HILL CORNE 14	15	С	Μ	D	774	4/5/2007	
	Trim service to service	e pole								

		LEWISTON	<u>In</u>	<u>vin</u>	<u>3/6/2007</u>	<u>39</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town	Road	From	n To	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
3610	MECHANIC FALLS Need to trim tree off po		23	23.1	C	М	D	79	4/5/2007	
3610	MECHANIC FALLS Trim secondary	061 NORWAY ROAD	32	32.1	C	М	D	79	4/5/2007	<u> </u>
4425	OXFORD Trim service off pole 2	170 VERRILL ROAD	2	3	С	М	D	79	4/5/2007	
4425	OXFORD Cut dead maple next to	170 VERRILL ROAD secondary	4	4.01	С	М	D	79	4/5/2007	
6230		056 OLD LISBON ROAD 305-0, record sec span as 30	85 8-0	86	SEC	М	D	774		
		LEWISTON	In	<u>win</u>	3/20/2007	<u>58</u>	Sections	Reviewed]	
	Town	Road	From	ı To	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
5880	TURNER Cut tree on service - ok	061 MUD STREET (ay with customer	4	5	С	М	D	196	4/5/2007	
		LEWISTON	In	<u>win</u>	4/3/2007	<u>10</u>	<u>Sections</u>	Reviewed		
	Town	Road	From	n To	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
6140	WALES	023 LEWISTON-AUGUSTA	R		<u></u>	м	D	784	5/8/2007	_
6140	WALES Trim maples after sap s	023 LEWISTON-AUGUSTA	R 101	102	С	М	D	784	5/8/2007	

<u>Audit Results for 1/1/2007 thru 5/31/2007</u>

		LEWISTON	<u>Irwin</u>	<u>4/3/2007</u>	<u>13</u>	<u>Sections</u>	Reviewed		
	Town	Road	From I	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
0780	BUCKFIELD cut 1 PR6 missed	005 BEAR POND ROAD	018 019	PR6	M	D	196	5/8/2007	
		LEWISTON	<u>Irwin</u>	5/25/2007	<u> </u>	Sections	Reviewed		
	Town	Road	From T	o Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
6230	SABATTUS Record as 308-1, spar	020 FURBUSH ROAD	5 5.1	SEC	M	D	784	6/13/2007	
		LEWISTON	<u>Irwin</u>	5/12/2007	<u>57</u>	<u>Sections</u>	Reviewed		
	Town	Road	From T	o Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
5230	SABATTUS Snip service at pole 11	056 OLD LISBON ROAD	10 11	SER	М	D	774	6/13/2007	
6230	SABATTUS Trim for servcie	056 OLD LISBON ROAD	13 13.0	01 SER	М	D	774	6/13/2007	
6230	SABATTUS Service	056 OLD LISBON ROAD	20 20.0	11 SER	М	D	774	6/13/2007	
6230	SABATTUS <i>PR</i> 6	056 OLD LISBON ROAD	30 31	PF6	М	D	774	6/13/2007	
	<u>Service Cent</u>	er Totals:	43 Sections	for Rework	<u>655</u> Sectio	ns Reviewed	1	<u>6.56%</u>	

Audit Results for 1/1/2007 thru 5/31/2007

			<u>ALFRED</u>	Le	<u>ssard</u>	<u>1/11/2007</u>	<u>688</u>	Sections Reviewed		
	Town		Road	From	То	Compliance Issue	Class	Contractor Crew	Notify Date	Fix Date
4160	North Berwick Cut vine	046	Hammond Raod	1			М	D	3/30/2007	2/13/2007
4160	North Berwick Cut vine	046	Hammond Raod	4			М	D	3/30/2007	2/13/2007
4160	North Berwick Secondary needs trim	060	Linscott Road	2	2.1		M	D	3/30/2007	2/13/2007
4160	North Berwick Secondary needs trim	060	Linscott Road	3	3.1		М	D	3/30/2007	2/13/2007
4160	North Berwick Secondary needs trim	060	Linscott Road	4	4.1		М	D	3/30/2007	2/13/2007
4160	North Berwick Serv needs trim	119	Turkey Street	503.1	serv		М	D	3/30/2007	2/13/2007
4160	North Berwick Serv needs trim	119	Turkey Street	512.1	Serv		М	D	3/30/2007	2/13/2007
4160	North Berwick Hazard Tree	119	Turkey Street	519	520		М	D	3/30/2007	2/13/2007
4160	North Berwick Hazard Tree	119	Turkey Street	524	525		М	D	3/30/2007	2/13/2007
4160	North Berwick Tree on secondary	124	Valley Road	34.1			М	D	3/30/2007	2/13/2007
4160	North Berwick Cut vine	302	Fox Farm Hill Road	15			М	D	3/30/2007	2/13/2007
4160	North Berwick Cut vine	302	Fox Farm Hill Road	20			М	D	3/30/2007	2/13/2007
4160	North Berwick Cut vine	302	Fox Farm Hill Road	22			М	D	3/30/2007	2/13/2007
4160	North Berwick Cut vine	302	Fox Farm Hill Road	23			М	D	3/30/2007	2/13/2007

Monday, June 25, 2007

S:\Veg_MGT\Shared\TrimReports\TrimTrackRework.mdb _ rAuditResults

<u>Audit Results for</u> <u>1/1/2007</u> thru <u>5/31/2007</u>

4160	North Berwick Service needs trim	302	Fox Farm Hill Road	32			М	D	3/30/2007	2/13/2007
4160	North Berwick Cut vine	302	Fox Farm Hill Road	37			М	D	3/30/2007	2/13/2007
4160	North Berwick Secondary needs trim	302	Fox Farm Hill Road	48	48.1		М	D	3/30/2007	2/13/2007
4160	North Berwick	302	Fox Farm Hill Road	6	7	С	М	D	3/30/2007	2/13/2007
4160	North Berwick Secondary needs trim	305	Ford Quint Road	013	013.1		M	D	3/30/2007	2/13/2007
4160	North Berwick Hazard tree	307	Oak Woods Road	102	103		М	D	3/30/2007	2/13/2007
4160	North Berwick Hazard tree	307	Oak Woods Road	104	105		М	D	3/30/2007	2/13/2007
4160	North Berwick Hazard tree	307	Oak Woods Road	91	92		М	D	3/30/2007	2/13/2007
4160	North Berwick Hazard tree	307	Oak Woods Road	98	99		М	D	3/30/2007	2/13/2007
4160	North Berwick Hazard Tree	308	Bauneg Bea Hill Road	511	512		М	D	3/30/2007	2/13/2007
4160	North Berwick Hazard tree	308	Bauneg Bea Hill Road	702	703		М	D	3/30/2007	2/13/2007
4160	North Berwick Secondary needs trim	308	Bauneg Bea Hill Road	703	703.1		М	D	3/30/2007	2/13/2007
4160	North Berwick Secondary needs trim	308	Bauneg Bea Hill Road	706	706.01		М	D	3/30/2007	2/13/2007
4160	North Berwick Secondary needs trim	308	Bauneg Bea Hill Road	707	707.1		М	D	3/30/2007	2/13/2007
4160	North Berwick Secondary needs trim	308	Bauneg Bea Hill Road	708	708.1		M	D	3/30/2007	3/16/2007
4160	North Berwick Secondary needs trim	308	Bauneg Bea Hill Road	716	716.1		M	D	3/30/2007	3/16/2007

Secondary needs trim

Audit Results for 1/1/2007 thru 5/31/2007

5170	Sanford Hazard tree	204	Javica Lane	20.1	20.2		Μ	D	3/30/2007	<u> </u>
			ALFRED	Le	ssard	<u>1/11/2007</u>	<u>963</u>	Sections Reviewed	!	
	Town		Road	From	То	Compliance Issue	Class	Contractor Crew	Notify Date	Fix Date
5170	Sanford Service need trim - pole		Grammar Road	58	60		М	D	3/30/2007	
5170	Sanford Hazard tree - pine - coo		Hansom Ridge Road	25	26	Н	М	D	3/30/2007	1/24/2007
5170	Sanford Cut vine on pole 56	158	Hansom Ridge Road	55	56		М	D	3/30/2007	3/27/2007
5170	Sanford Hazard tree - pine	158	Hansom Ridge Road	92	93	Н	M	D	3/30/2007	1/24/2007
5170	Sanford Secondary needs trim	171	Harvey House Road	010	011		М	D	3/30/2007	1/24/2007
5170	Sanford Secondary needs trim	171	Harvey House Road	011	012		М	D	3/30/2007	1/24/2007
5170	Sanford Hazard tree	241	Main Street	165	166	н	M	D	3/30/2007	1/24/2007
5170	Sanford Secondary needs trim	294	Oak Street	95	95.1		Μ	D	3/30/2007	1/24/2007
5170	Sanford Service needs trim at p		Rankin Street	5	6		М	D	3/30/2007	3/27/2007
5170	Sanford Service needs trim at p		Rankin Street	7	8		М	D	3/30/2007	1/24/2007
5170	Sanford Service needs trim - po		Sherburne Street	3	4		М	D	3/30/2007	1/24/2007
			ALFRED	Le	ssard	2/1/2007	<u>1</u>	Sections Reviewed	!	
	Town	L	Road	From	То	Compliance Issue	Class	Contractor Crew	Notify Date	Fix Date

Monday, June 25, 2007

S:\Veg_MGT\Shared\TrimReports\TrimTrackRework.mdb - rAuditResults

Page 66 of 94

Audit Results for 1/1/2007 thru 5/31/2007

4160 NORTH BERWICK 060 LINSCOTT HILL ROAD 7 8 SER M D 3/30/2007 Service need trim pole 8

		<u>ALFRED</u>	Les	sard	2/1/2007	<u>197</u>	Sections	Reviewed		
	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
5410	SOUTH BERWICK 01 Dead tree on service and	2 BENNETT LOT ROAD several hazard trees	3	3.1	Haz	М	D		3/30/2007	3/20/2007
5410	SOUTH BERWICK 01 Hazard trees	2 BENNETT LOT ROAD	5	6	Haz	М	D		3/30/2007	3/30/2007
5410	SOUTH BERWICK 01 Hazard tree	6 CHICKS HILL ROAD	10	11	Haz	м	D		3/30/2007	
5410	SOUTH BERWICK 01 Dead limbs over primary	6 CHICKS HILL ROAD	108	1	Н	М	D		3/30/2007	
5410	SOUTH BERWICK 01 Hazard tree	6 CHICKS HILL ROAD	8	9	Haz	М	D		3/30/2007	
5410	SOUTH BERWICK 03 Hazard tree	3 EMERYS BRIDGE ROAD	105	106	Haz	М	D		3/30/2007	3/30/2007
5410	SOUTH BERWICK 03 Deal Limbs over primary	3 EMERYS BRIDGE ROAD	106	107	н	М	D		3/30/2007	
5410	SOUTH BERWICK 03 Hazard tree	3 EMERYS BRIDGE ROAD	109	110	Haz	М	D		3/30/2007	3/30/2007
5410	SOUTH BERWICK 03 Secondary needs trim	3 EMERYS BRIDGE ROAD	115	115.1	SEC	Μ	D		3/30/2007	3/22/2007
5410	SOUTH BERWICK 03 Secondary needs trim	3 EMERYS BRIDGE ROAD	115	115.01	SEC	М	D		3/30/2007	3/22/2007
5410	SOUTH BERWICK 03 Chicks Hill Tap - secondar	3 EMERYS BRIDGE ROAD y needs trim	115	1	SEC	М	D		3/30/2007	3/30/2007
5410	SOUTH BERWICK 03 Rubbing hard on service	3 EMERYS BRIDGE ROAD	117	118	н	М	D		3/30/2007	
5410	SOUTH BERWICK 03 Dead limbs over primary	3 EMERYS BRIDGE ROAD	119	120	С	м	D		3/30/2007	3/21/2007

Monday, June 25, 2007

S:\Veg_MGT\Shared\TrimReports\TrimTrackRework.mdb _ rAuditResults

5410	SOUTH BERWICK Service needs trim	033	EMERYS BRIDGE ROAD	120	121	С	M	D	3/30/2007	3/20/2007
5410	SOUTH BERWICK Hazard tree	033	EMERYS BRIDGE ROAD	123	124	Haz	М	D	3/30/2007	
5410	SOUTH BERWICK Hazard tree	033	EMERYS BRIDGE ROAD	125	126	Haz	м	D	3/30/2007	3/21/2007
5410	SOUTH BERWICK Hazard tree	033	EMERYS BRIDGE ROAD	126	127	Haz	М	D	3/30/2007	3/30/2007
5410	SOUTH BERWICK 2 Hazard trees	033	EMERYS BRIDGE ROAD	127	1 (john G	Haz	м	D	3/30/2007	3/30/2007
5410	SOUTH BERWICK Secondary need trim	033	EMERYS BRIDGE ROAD	129	129.1	SEC	м	D	3/30/2007	
5410	SOUTH BERWICK 3 Hazard trees	033	EMERYS BRIDGE ROAD	136	135	Haz	м	D	3/30/2007	
5410	SOUTH BERWICK Secondary needs trim	033	EMERYS BRIDGE ROAD	142	141	SEC	м	D	3/30/2007	3/21/2007
5410	SOUTH BERWICK Secondary needs trim	033	EMERYS BRIDGE ROAD	143	142	SEC	M	D	3/30/2007	3/21/2007
5410	SOUTH BERWICK Secondary needs trim	065	JOHN GRAY ROAD	14	14S	SEC	м	D	3/30/2007	3/28/2007
5410	SOUTH BERWICK Secondary needs trim	065	JOHN GRAY ROAD	14	14.01	SEC	м	D	3/30/2007	3/28/2007
5410	SOUTH BERWICK Hazard tree	065	JOHN GRAY ROAD	15	15H	Haz	М	D	3/30/2007	3/21/2007
5410	SOUTH BERWICK Service needs trim	065	JOHN GRAY ROAD	16	17	SER	М	D	3/30/2007	3/28/2007
5410	SOUTH BERWICK 2 hazard trees	065	JOHN GRAY ROAD	3	4	Haz	М	D	3/30/2007	
5410	SOUTH BERWICK Hazard tree- maple	065	JOHN GRAY ROAD	3	3.1	Haz	М	D	3/30/2007	
5410	SOUTH BERWICK 4 Hazard trees	065	JOHN GRAY ROAD	3.1	3.2	Haz	M	D	3/30/2007	

<u>Audit Results for</u> <u>1/1/2007</u> <u>thru</u> <u>5/31/2007</u>

SOUTH BERWICK Service needs trim	065	JOHN GRAY ROAD	3.4	3.5	SER	М	D	3/30/2007	3/22/2007
SOUTH BERWICK 2 hazard trees	065	JOHN GRAY ROAD	4	5	Haz	Μ	D	3/30/2007	3/21/2007
SOUTH BERWICK 2 Hazard trees	065	JOHN GRAY ROAD	6	7	Haz	М	D	3/30/2007	3/21/2007
SOUTH BERWICK Service needs trim	065	JOHN GRAY ROAD	6	6.1	SER	Μ	D	3/30/2007	3/22/2007
SOUTH BERWICK Servcie needs trim	065	JOHN GRAY ROAD	6.1	6.11	SER	М	D	3/30/2007	<u> </u>
SOUTH BERWICK Dead limb over primar	065 Y	JOHN GRAY ROAD	6.1	6.2	Н	М	D	3/30/2007	3/26/2007
SOUTH BERWICK Overhead clearance	065	JOHN GRAY ROAD	6.2	6.3	С	M	D	3/30/2007	3/26/2007
			6.3	6.4	С	М	D	3/30/2007	3/26/2007
SOUTH BERWICK Overhead clearancq	065	JOHN GRAY ROAD	6.4	6.5	С	M	D	3/30/2007	3/26/2007
		JOHN GRAY ROAD	8	9	С	М	D	3/30/2007	3/21/2007
SOUTH BERWICK Dead trim by service	127	THURELL ROAD	503	503.1	С	М	D	3/30/2007	3/20/2007
SOUTH BERWICK Hazard tree	127	THURELL ROAD	504	505	Haz	М	D	3/30/2007	3/20/2007
SOUTH BERWICK Brush left	127	THURELL ROAD	507	507H	В	М	D	3/30/2007	
			507	507.1	B/C	М	D	3/30/2007	3/20/2007
SOUTH BERWICK Brush left	127	THURELL ROAD	507H	588	В	M	D	3/30/2007	
SOUTH BERWICK Hazard tree	127	THURELL ROAD	510	511	Haz	М	D	3/30/2007	
	Service needs trim SOUTH BERWICK 2 hazard trees SOUTH BERWICK 2 Hazard trees SOUTH BERWICK Service needs trim SOUTH BERWICK Dead limb over primar SOUTH BERWICK Dead limb over primar SOUTH BERWICK Overhead clearance SOUTH BERWICK Overhead clearance SOUTH BERWICK Dead limbs over primar SOUTH BERWICK Dead limbs over primar SOUTH BERWICK Dead limbs over primar SOUTH BERWICK Dead trim by service SOUTH BERWICK Hazard tree SOUTH BERWICK Brush left SOUTH BERWICK Brush left SOUTH BERWICK	Service needs trim SOUTH BERWICK 065 2 hazard trees SOUTH BERWICK 065 2 Hazard trees SOUTH BERWICK 065 Service needs trim SOUTH BERWICK 065 Dead limb over primary SOUTH BERWICK 065 Overhead clearance & dead SOUTH BERWICK 065 Dead limbs over primary SOUTH BERWICK 065 Dead limbs over primary SOUTH BERWICK 127 Dead trim by service SOUTH BERWICK 127 Hazard tree SOUTH BERWICK 127 Brush left SOUTH BERWICK 127	Service needs trimSOUTH BERWICK065JOHN GRAY ROAD2 hazard treesSOUTH BERWICK065JOHN GRAY ROAD2 Hazard treesSOUTH BERWICK065JOHN GRAY ROADSouth BERWICK065JOHN GRAY ROADService needs trimSOUTH BERWICK065JOHN GRAY ROADServcie needs trimSouth BERWICK065SOUTH BERWICK065JOHN GRAY ROADDead limb over primarySOUTH BERWICK065SOUTH BERWICK065JOHN GRAY ROADOverhead clearanceSouth BERWICK065SOUTH BERWICK065JOHN GRAY ROADOverhead clearanceSouth BERWICK065SOUTH BERWICK065JOHN GRAY ROADOverhead clearanceSouth BERWICK065SOUTH BERWICK127THURELL ROADDead limbs over primarySOUTH BERWICK127SOUTH BERWICK127THURELL ROADHazard treeSOUTH BERWICK127SOUTH BERWICK127THURELL ROADBrush leftSOUTH BERWICK127SOUTH BERWICK127THURELL ROAD	Service needs trimSOUTH BERWICK065JOHN GRAY ROAD42 hazard treesSOUTH BERWICK065JOHN GRAY ROAD62 Hazard treesSOUTH BERWICK065JOHN GRAY ROAD6Service needs trimSOUTH BERWICK065JOHN GRAY ROAD6.1Service needs trimSOUTH BERWICK065JOHN GRAY ROAD6.1Service needs trimSOUTH BERWICK065JOHN GRAY ROAD6.1South BERWICK065JOHN GRAY ROAD6.20Overhead clearanceSOUTH BERWICK065JOHN GRAY ROAD6.3Overhead clearance & dead limbSOUTH BERWICK065JOHN GRAY ROAD6.4SOUTH BERWICK065JOHN GRAY ROAD6.40Overhead clearanceSOUTH BERWICK127THURELL ROAD503Dead limbs over primarySOUTH BERWICK127THURELL ROAD507SOUTH BERWICK127THURELL ROAD507Brush leftSOUTH BERWICK127THURELL ROAD507Secondary & service needs trim - brust leftSOUTH BERWICK127THURELL ROAD507Secondary & service needs trim - brust leftSOUTH BERWICK127THURELL ROAD507Secondary & service needs trim - brust leftSOUTH BERWICK127THURELL ROAD507Secondary & service needs trim - brust leftSOUTH BERWICK127THURELL ROAD507SoUTH BERWICK127THURELL ROAD507Secondary & service needs trim - brust left <td>Service needs trimSOUTH BERWICK065JOHN GRAY ROAD452 hazard treesSOUTH BERWICK065JOHN GRAY ROAD672 Hazard treesSOUTH BERWICK065JOHN GRAY ROAD66.1SOUTH BERWICK065JOHN GRAY ROAD6.16.11Service needs trimSOUTH BERWICK065JOHN GRAY ROAD6.16.11South BERWICK065JOHN GRAY ROAD6.16.26.3SOUTH BERWICK065JOHN GRAY ROAD6.26.36.4Overhead clearanceSOUTH BERWICK065JOHN GRAY ROAD6.46.5SOUTH BERWICK065JOHN GRAY ROAD6.46.56.5Overhead clearanceSOUTH BERWICK065JOHN GRAY ROAD89SOUTH BERWICK065JOHN GRAY ROAD899Dead limbs over primarySOUTH BERWICK127THURELL ROAD503503.1Dead limbs over primarySOUTH BERWICK127THURELL ROAD507507HSOUTH BERWICK127THURELL ROAD507507H507HHazard treeSOUTH BERWICK127THURELL ROAD507507.1SOUTH BERWICK127THURELL ROAD507507.1SoUTH BERWICK127THURELL ROAD507507.1SoUTH BERWICK127THURELL ROAD507507.1SoUTH BERWICK127THURELL ROAD507507.1SoUTH BERWICK127<t< td=""><td>Service needs trimSOUTH BERWICK065JOHN GRAY ROAD45Haz2 hazard treesSOUTH BERWICK065JOHN GRAY ROAD67Haz2 Hazard treesSOUTH BERWICK065JOHN GRAY ROAD66.1SERSouth BERWICK065JOHN GRAY ROAD6.16.11SERService needs trimSOUTH BERWICK065JOHN GRAY ROAD6.16.1SISouth BERWICK065JOHN GRAY ROAD6.16.2HDead limb over primarySOUTH BERWICK065JOHN GRAY ROAD6.26.3CSouth BERWICK065JOHN GRAY ROAD6.36.4COverhead clearanceSouth BERWICK065JOHN GRAY ROAD6.46.5CSouth BERWICK065JOHN GRAY ROAD6.46.5CSouth BERWICK065JOHN GRAY ROAD89CDead limbs over primarySouth BERWICK127THURELL ROAD503503.1CSouth BERWICK127THURELL ROAD507507.1B/CSouth BERWICK127THURELL ROAD507507.1B/CSouth BERWICK127THURELL ROAD507507.1B/CSouth BERWICK127THURELL ROAD507507.1B/CSouth BERWICK127THURELL ROAD507507.1B/CSouth BERWICK127THURELL ROAD507507.1B/CSouth BERWI</td><td>Service needs trim SOUTH BERWICK 065 JOHN GRAY ROAD 4 5 Haz M SOUTH BERWICK 065 JOHN GRAY ROAD 6 7 Haz M 2 hazard trees </td><td>Service needs trim SOUTH BERWICK 065 JOHN GRAY ROAD 4 5 Haz M D SOUTH BERWICK 065 JOHN GRAY ROAD 6 7 Haz M D SOUTH BERWICK 065 JOHN GRAY ROAD 6 7 Haz M D SOUTH BERWICK 065 JOHN GRAY ROAD 6 6.1 SER M D South BERWICK 065 JOHN GRAY ROAD 6.1 6.11 SER M D South BERWICK 065 JOHN GRAY ROAD 6.1 6.2 H M D South BERWICK 065 JOHN GRAY ROAD 6.2 6.3 C M D South BERWICK 065 JOHN GRAY ROAD 6.2 6.3 C M D South BERWICK 065 JOHN GRAY ROAD 6.3 6.4 C M D South BERWICK 065 JOHN GRAY ROAD 6.3 6.4 6.5 C M D South BERWICK 065 JOHN GRAY ROAD 8 9</td><td>Service needs trim SOUTH BERWICK 065 JOHN GRAY ROAD 4 5 Haz M D 3/30/2007 2 hazard trees SOUTH BERWICK 065 JOHN GRAY ROAD 6 7 Haz M D 3/30/2007 2 Hazard trees SOUTH BERWICK 065 JOHN GRAY ROAD 6 6.1 SER M D 3/30/2007 SoUTH BERWICK 065 JOHN GRAY ROAD 6 6.1 SER M D 3/30/2007 Service needs trim SOUTH BERWICK 065 JOHN GRAY ROAD 6.1 6.2 H M D 3/30/2007 Service needs trim SOUTH BERWICK 065 JOHN GRAY ROAD 6.1 6.2 H M D 3/30/2007 South BERWICK 065 JOHN GRAY ROAD 6.1 6.2 C M D 3/30/2007 South BERWICK 065 JOHN GRAY ROAD 6.4 6.5 C M D 3/30/2007 South BERWICK 065 JOHN GRAY ROAD 8 9 C M D 3/30/2007 South BERWICK 127 THURELL ROAD 503 503,1 C</td></t<></td>	Service needs trimSOUTH BERWICK065JOHN GRAY ROAD452 hazard treesSOUTH BERWICK065JOHN GRAY ROAD672 Hazard treesSOUTH BERWICK065JOHN GRAY ROAD66.1SOUTH BERWICK065JOHN GRAY ROAD6.16.11Service needs trimSOUTH BERWICK065JOHN GRAY ROAD6.16.11South BERWICK065JOHN GRAY ROAD6.16.26.3SOUTH BERWICK065JOHN GRAY ROAD6.26.36.4Overhead clearanceSOUTH BERWICK065JOHN GRAY ROAD6.46.5SOUTH BERWICK065JOHN GRAY ROAD6.46.56.5Overhead clearanceSOUTH BERWICK065JOHN GRAY ROAD89SOUTH BERWICK065JOHN GRAY ROAD899Dead limbs over primarySOUTH BERWICK127THURELL ROAD503503.1Dead limbs over primarySOUTH BERWICK127THURELL ROAD507507HSOUTH BERWICK127THURELL ROAD507507H507HHazard treeSOUTH BERWICK127THURELL ROAD507507.1SOUTH BERWICK127THURELL ROAD507507.1SoUTH BERWICK127THURELL ROAD507507.1SoUTH BERWICK127THURELL ROAD507507.1SoUTH BERWICK127THURELL ROAD507507.1SoUTH BERWICK127 <t< td=""><td>Service needs trimSOUTH BERWICK065JOHN GRAY ROAD45Haz2 hazard treesSOUTH BERWICK065JOHN GRAY ROAD67Haz2 Hazard treesSOUTH BERWICK065JOHN GRAY ROAD66.1SERSouth BERWICK065JOHN GRAY ROAD6.16.11SERService needs trimSOUTH BERWICK065JOHN GRAY ROAD6.16.1SISouth BERWICK065JOHN GRAY ROAD6.16.2HDead limb over primarySOUTH BERWICK065JOHN GRAY ROAD6.26.3CSouth BERWICK065JOHN GRAY ROAD6.36.4COverhead clearanceSouth BERWICK065JOHN GRAY ROAD6.46.5CSouth BERWICK065JOHN GRAY ROAD6.46.5CSouth BERWICK065JOHN GRAY ROAD89CDead limbs over primarySouth BERWICK127THURELL ROAD503503.1CSouth BERWICK127THURELL ROAD507507.1B/CSouth BERWICK127THURELL ROAD507507.1B/CSouth BERWICK127THURELL ROAD507507.1B/CSouth BERWICK127THURELL ROAD507507.1B/CSouth BERWICK127THURELL ROAD507507.1B/CSouth BERWICK127THURELL ROAD507507.1B/CSouth BERWI</td><td>Service needs trim SOUTH BERWICK 065 JOHN GRAY ROAD 4 5 Haz M SOUTH BERWICK 065 JOHN GRAY ROAD 6 7 Haz M 2 hazard trees </td><td>Service needs trim SOUTH BERWICK 065 JOHN GRAY ROAD 4 5 Haz M D SOUTH BERWICK 065 JOHN GRAY ROAD 6 7 Haz M D SOUTH BERWICK 065 JOHN GRAY ROAD 6 7 Haz M D SOUTH BERWICK 065 JOHN GRAY ROAD 6 6.1 SER M D South BERWICK 065 JOHN GRAY ROAD 6.1 6.11 SER M D South BERWICK 065 JOHN GRAY ROAD 6.1 6.2 H M D South BERWICK 065 JOHN GRAY ROAD 6.2 6.3 C M D South BERWICK 065 JOHN GRAY ROAD 6.2 6.3 C M D South BERWICK 065 JOHN GRAY ROAD 6.3 6.4 C M D South BERWICK 065 JOHN GRAY ROAD 6.3 6.4 6.5 C M D South BERWICK 065 JOHN GRAY ROAD 8 9</td><td>Service needs trim SOUTH BERWICK 065 JOHN GRAY ROAD 4 5 Haz M D 3/30/2007 2 hazard trees SOUTH BERWICK 065 JOHN GRAY ROAD 6 7 Haz M D 3/30/2007 2 Hazard trees SOUTH BERWICK 065 JOHN GRAY ROAD 6 6.1 SER M D 3/30/2007 SoUTH BERWICK 065 JOHN GRAY ROAD 6 6.1 SER M D 3/30/2007 Service needs trim SOUTH BERWICK 065 JOHN GRAY ROAD 6.1 6.2 H M D 3/30/2007 Service needs trim SOUTH BERWICK 065 JOHN GRAY ROAD 6.1 6.2 H M D 3/30/2007 South BERWICK 065 JOHN GRAY ROAD 6.1 6.2 C M D 3/30/2007 South BERWICK 065 JOHN GRAY ROAD 6.4 6.5 C M D 3/30/2007 South BERWICK 065 JOHN GRAY ROAD 8 9 C M D 3/30/2007 South BERWICK 127 THURELL ROAD 503 503,1 C</td></t<>	Service needs trimSOUTH BERWICK065JOHN GRAY ROAD45Haz2 hazard treesSOUTH BERWICK065JOHN GRAY ROAD67Haz2 Hazard treesSOUTH BERWICK065JOHN GRAY ROAD66.1SERSouth BERWICK065JOHN GRAY ROAD6.16.11SERService needs trimSOUTH BERWICK065JOHN GRAY ROAD6.16.1SISouth BERWICK065JOHN GRAY ROAD6.16.2HDead limb over primarySOUTH BERWICK065JOHN GRAY ROAD6.26.3CSouth BERWICK065JOHN GRAY ROAD6.36.4COverhead clearanceSouth BERWICK065JOHN GRAY ROAD6.46.5CSouth BERWICK065JOHN GRAY ROAD6.46.5CSouth BERWICK065JOHN GRAY ROAD89CDead limbs over primarySouth BERWICK127THURELL ROAD503503.1CSouth BERWICK127THURELL ROAD507507.1B/CSouth BERWICK127THURELL ROAD507507.1B/CSouth BERWICK127THURELL ROAD507507.1B/CSouth BERWICK127THURELL ROAD507507.1B/CSouth BERWICK127THURELL ROAD507507.1B/CSouth BERWICK127THURELL ROAD507507.1B/CSouth BERWI	Service needs trim SOUTH BERWICK 065 JOHN GRAY ROAD 4 5 Haz M SOUTH BERWICK 065 JOHN GRAY ROAD 6 7 Haz M 2 hazard trees	Service needs trim SOUTH BERWICK 065 JOHN GRAY ROAD 4 5 Haz M D SOUTH BERWICK 065 JOHN GRAY ROAD 6 7 Haz M D SOUTH BERWICK 065 JOHN GRAY ROAD 6 7 Haz M D SOUTH BERWICK 065 JOHN GRAY ROAD 6 6.1 SER M D South BERWICK 065 JOHN GRAY ROAD 6.1 6.11 SER M D South BERWICK 065 JOHN GRAY ROAD 6.1 6.2 H M D South BERWICK 065 JOHN GRAY ROAD 6.2 6.3 C M D South BERWICK 065 JOHN GRAY ROAD 6.2 6.3 C M D South BERWICK 065 JOHN GRAY ROAD 6.3 6.4 C M D South BERWICK 065 JOHN GRAY ROAD 6.3 6.4 6.5 C M D South BERWICK 065 JOHN GRAY ROAD 8 9	Service needs trim SOUTH BERWICK 065 JOHN GRAY ROAD 4 5 Haz M D 3/30/2007 2 hazard trees SOUTH BERWICK 065 JOHN GRAY ROAD 6 7 Haz M D 3/30/2007 2 Hazard trees SOUTH BERWICK 065 JOHN GRAY ROAD 6 6.1 SER M D 3/30/2007 SoUTH BERWICK 065 JOHN GRAY ROAD 6 6.1 SER M D 3/30/2007 Service needs trim SOUTH BERWICK 065 JOHN GRAY ROAD 6.1 6.2 H M D 3/30/2007 Service needs trim SOUTH BERWICK 065 JOHN GRAY ROAD 6.1 6.2 H M D 3/30/2007 South BERWICK 065 JOHN GRAY ROAD 6.1 6.2 C M D 3/30/2007 South BERWICK 065 JOHN GRAY ROAD 6.4 6.5 C M D 3/30/2007 South BERWICK 065 JOHN GRAY ROAD 8 9 C M D 3/30/2007 South BERWICK 127 THURELL ROAD 503 503,1 C

			ALFRED	Le	ssard	2/1/2007	<u>649</u>	Sections Reviewed		
	Town	•	Road	From	То	Compliance Issue	Class	Contractor Crew	Notify Date	Fix Date
4160	NORTH BERWICK Hazard tree	010	BEECH RIDGE ROAD	20H	21	Haz	М	D	3/30/2007	3/30/2007
4160	NORTH BERWICK Hazard tree pole 25.1	010	BEECH RIDGE ROAD	24	25	Haz	М	D	3/30/2007	2/2/2007
4160	NORTH BERWICK Hazard tree	010	BEECH RIDGE ROAD	26	27	Haz	Μ	D	3/30/2007	2/2/2007
4160	NORTH BERWICK Hazard tree	010	BEECH RIDGE ROAD	27H	28	Haz	М	D	3/30/2007	
4160	NORTH BERWICK Service needs trim pole		BEECH RIDGE ROAD	508	507	SER	М	D	3/30/2007	
4160	NORTH BERWICK Hazard tree	010	BEECH RIDGE ROAD	520	521	Haz	Μ	D	3/30/2007	2/2/2007
4160	NORTH BERWICK Dead tree	010	BEECH RIDGE ROAD	7	7.01	С	Μ	D	3/30/2007	3/20/2007
4160	NORTH BERWICK Hazard tree - code 241	058	LEBANON ROAD	73	74	Haz	М	D	3/30/2007	3/30/2007
4160	NORTH BERWICK Secondary needs trim 9		LEBANON ROAD	96	97	SEC	Μ	D	3/30/2007	3/30/2007
4160	NORTH BERWICK Service needs trim pole		LOWER MAIN STREET	30	31	SER	М	D	3/30/2007	3/28/2007
4160	NORTH BERWICK Secondary neds trim 35		LOWER MAIN STREET	34	35	SEC	Μ	D	3/30/2007	
4160	NORTH BERWICK Service need trim pole 3		LOWER MAIN STREET	38	39	SER	Μ	D	3/30/2007	
5410	SOUTH BERWICK Dead pine by serv pole		BENNETT LOT ROAD	48	47	SER	Μ	D	3/30/2007	3/22/2007
5410	SOUTH BERWICK 2 hazard trees	033	EMERYS BRIDGE ROAD	166	165	Haz	М	D	3/30/2007	

Audit Results for 1/1/2007 thru 5/31/2007

5410	SOUTH BERWICK Hazard tree	033	EMERYS BRIDGE ROAD	167.3	167.4	Haz	М	D	3/30/2007	3/30/2007
6273	WELLS Hazard tree	125	HAMILTON ROAD	501	502	Haz	М	D	3/30/2007	3/30/2007

			ALFRED	Le	<u>ssard</u>	<u>4/1/2007</u>	<u>806</u>	Sections	<u>Reviewed</u>		
	Town		Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
1830	ELIOT Ground cut & stubs	002	BEECH RIDGE ROAD	1	2	GRN	М	D		5/8/2007	_
1830	ELIOT Stubs	002	BEECH RIDGE ROAD	10	11	S	М	D		5/8/2007	
1830	ELIOT Stubs	002	BEECH RIDGE ROAD	11	12	S	М	D		5/8/2007	
1830	ELIOT Stubs	002	BEECH RIDGE ROAD	12	13	S	М	D		5/8/2007	
1830	ELIOT Ground cut & stubs	002	BEECH RIDGE ROAD	2	3	GRN	М	D		5/8/2007	
1830	ELIOT Ground cut	002	BEECH RIDGE ROAD	3	4	GRN	М	D		5/8/2007	
1830	ELIOT Hazard tree, ground cu		BEECH RIDGE ROAD	4	5	Haz	М	D		5/8/2007	
1830	ELIOT Stubs	002	BEECH RIDGE ROAD	5	6	S	М	D		5/8/2007	
1830	ELIOT Ground cut & stubs	002	BEECH RIDGE ROAD	6	7	GRN	М	D		5/8/2007	
1830	ELIOT Stubs	002	BEECH RIDGE ROAD	7	8	S	м	D		5/8/2007	
1830	ELIOT Hazard tree & stubs	002	BEECH RIDGE ROAD	8	9	Haz	M	D		5/8/2007	
1830	ELIOT Stubs	002	BEECH RIDGE ROAD	9	10	S	м	D		5/8/2007	

					<u>Audit Resi</u>	ults for	<u>1/1/2007</u>	<u>thru 5/31/2007</u>		
1830	ELIOT Stubs	015	BAYBERRY DRIVE	1	2	S		Μ	D	5/8/2007
1830	ELIOT Stubs	015	BAYBERRY DRIVE	2	3	S		М	D	5/8/2007
1830	ELIOT Stubs	015	BAYBERRY DRIVE	2	1	S		Μ	D	5/8/2007
1830	ELIOT Stubs	015	BAYBERRY DRIVE	3	4	S		Μ	D	5/8/2007
1830	ELIOT Stubs	015	BAYBERRY DRIVE	4	5	S		Μ	D	5/8/2007
1830	ELIOT Hazard tree	018	BEECH ROAD	11	11.1	Haz		Μ	D	5/8/2007
1830	ELIOT Ground cut	018	BEECH ROAD	11	11H	GRN		М	D	5/8/2007
1830	ELIOT Ground cut	018	BEECH ROAD	11H	I 12	GRN		М	D	5/8/2007
1830	ELIOT Ground cut	018	BEECH ROAD	12	13	GRN		Μ	D	5/8/2007
1830	ELIOT Ground cut	018	BEECH ROAD	13	14	GRN		Μ	D	5/8/2007
1830	ELIOT Service needs trim at p		BEECH ROAD 4.2 & clearance	14.1	14.2	SER		M	D	5/8/2007
1830	ELIOT Clearance & cut vine	018	BEECH ROAD	14.2	2 14.3	С		М	D	5/8/2007
1830	ELIOT Clearance	018	BEECH ROAD	14.3	3 14.4	С		М	D	5/8/2007
1830	ELIOT Clearance	018	BEECH ROAD	14.4	14.5	С		M	D	5/8/2007
1830	ELIOT Clearance	018	BEECH ROAD	14.5	5 14.51	С		М	D	5/8/2007
1830	ELIOT Clearance	018	BEECH ROAD	14.5	5 14.6	С		М	D	5/8/2007

<u>Audit Results for 1/1/2007 thru 5/31/2007</u>

1830	ELIOT 01 Clearance	8 BEECH ROAD	14.51	14.52	С	М	D	5/8/2007
1830		8 BEECH ROAD	16	16.1	SEC	M	D	5/8/2007
	Secondary & service need							
1830		8 BEECH ROAD	18	18.1	SER	М	D	5/8/2007
	Service needs trim at pole	18.1						
1830	ELIOT 01	8 BEECH ROAD	21	22	GRN	м	D	5/8/2007
	Ground cut							
1830	ELIOT 01	8 BEECH ROAD	22H	23	GRN	M	D	5/8/2007
	Ground cut							
1830	ELIOT 01	8 BEECH ROAD	23	24	S	M	D	5/8/2007
.000	Stubs	0 DEEDITIOND	20		e		U	0.0.2001
1830		8 BEECH ROAD	25H	26	SER	M	D	5/8/2007
1030	Service needs trim at pole		2011	20	SER	IVI	U	5/8/2007
1830		8 BEECH ROAD	3	4	S	М	D	5/8/2007
	Stubs						·····	
1830	ELIOT 01	8 BEECH ROAD	36	36.1	С	М	D	5/8/2007
	Clearance							
1830	ELIOT 01	8 BEECH ROAD	36.2	36.3	SER	м	D	5/8/2007
	Service needs trim at pole	36.3						
1830	ELIOT 01	8 BEECH ROAD	4	5	Haz	M	D	5/8/2007
	Hazard tree & stubs							
1830	·····	8 BEECH ROAD	4.	4.1	SEC	M	D	5/8/2007
1000	Seconardy needs trim	0 BELONNOAD	ч.	4.1	320	141	D	5/0/2007
4000								
1830		8 BEECH ROAD	4.1	4.2	SEC	М	D	5/8/2007
	Seconardy needs trim			<u></u>				
1830		8 BEECH ROAD	40	41	S	М	D	5/8/2007
	Stubs			<u> </u>				
1830	ELIOT 01	8 BEECH ROAD	41	42	S	М	D	5/8/2007
	Stubs							
1830	ELIOT 01	8 BEECH ROAD	42	43	Haz	М	D	5/8/2007
	Hazard tree & stubs							

Audit Results for 1/1/2007 thru 5/31/2007

1830	ELIOT (018	BEECH ROAD	43	44	S	M	D	5/8/2007
	Stubs								
1830	ELIOT (018	BEECH ROAD	44	44H	S	M	D	5/8/2007
	Stubs								
1830	ELIOT ()18	BEECH ROAD	44H	45	Haz	M	D	5/8/2007
	Hazard tree & stubs								
1830	ELIOT (018	BEECH ROAD	47	48	S	M	D	5/8/2007
	Stubs								
1830	ELIOT ()18	BEECH ROAD	48	1	GRN	М	D	5/8/2007
	Ground cut & clearance								
1830	ELIOT (018	BEECH ROAD	48	49	GRN	М	D	5/8/2007
	Ground cut								
1830	ELIOT	018	BEECH ROAD	49	49.1	S	М	D	5/8/2007
	Secondary needs trim								
1830	ELIOT ()18	BEECH ROAD	50	51	GRN	М	D	5/8/2007
	Ground cut				<u></u>		- <u></u>	· · · · · · · · · · · · · · · · · · ·	
1830	ELIOT (018	BEECH ROAD	51	51.1	SEC	М	D	5/8/2007
	Secondary need trim	_					<u></u>		
1830)18	BEECH ROAD	51.1	51.2	SEC	М	D	5/8/2007
.	Secondary need trim		<u> </u>						
1830	ELIOT)18	BEECH ROAD	54	55	SER	М	D	5/8/2007
	Service needs trim								
1830	ELIOT	018	BEECH ROAD	55	56	S	М	D	5/8/2007
-	Stubs								
1830	ELIOT C)18	BEECH ROAD	58	58.1	SEC	М	D	5/8/2007
	Secondary & service nee	eds t	rim						
1830	ELIOT (018	BEECH ROAD	58	59	S	М	D	5/8/2007
	Stubs & service needs tr	im a	t pole 61			<u> </u>	·	······································	
1830	ELIOT C)18	BEECH ROAD	6	7	S	М	D	5/8/2007
	Stubs								
1830	ELIOT C)18	BEECH ROAD	60	61	GRN	М	D	5/8/2007
	Ground cut & service nee	eds i	trim at pole 61						

Ground cut & service needs trim at pole 61

Audit Results for 1/1/2007 thru 5/31/2007

				_					
1830	ELIOT Ground cut & stubs	018	BEECH ROAD	62	61	GRN	М	D	5/8/2007
1830	ELIOT Hazard	018	BEECH ROAD	63	62	Haz	М	D	5/8/2007
1830	ELIOT Stubs	018	BEECH ROAD	64	63	S	M	D	5/8/2007
1830	ELIOT Secondary needs trim	018	BEECH ROAD	64	64.1	SEC	м	D	5/8/2007
1830	ELIOT Stubs & service needs		BEECH ROAD at pole 65	65	64	S	М	D	5/8/2007
1830	ELIOT Secondary needs trim	018	BEECH ROAD	65	65.1	SEC	М	D	5/8/2007
1830	ELIOT Ground cut	018	BEECH ROAD	67	66	GRN	Μ	D	5/8/2007
1830	ELIOT Stubs	018	BEECH ROAD	69	68	S	М	D	5/8/2007
1830	ELIOT Secondary needs trim	018	BEECH ROAD	69	69.1	SEC	М	D	5/8/2007
1830	ELIOT Stubs	018	BEECH ROAD	7	8	S	М	D	5/8/2007
1830	ELIOT Ground cut & stubs	018	BEECH ROAD	70	69	GRN	М	D	5/8/2007
1830	ELIOT Secondary needs trim	018	BEECH ROAD	70.1	70.2	SEC	М	D	5/8/2007
1830	ELIOT Ground cut	018	BEECH ROAD	71	70	GRN	М	D	5/8/2007
1830	ELIOT Ground cut	018	BEECH ROAD	72	73	GRN	M	D	5/8/2007
1830	ELIOT Ground cut (selective c		BEECH ROAD	72	71	GRN	М	D	5/8/2007
1830	ELIOT Service needs trim at p		BEECH ROAD	9	10	SER	М	D	5/8/2007

Audit Results for <u>1/1/2007</u> thru <u>5/31/2007</u>

1830	ELIOT	027	BRADSTREET LANE	6	7	SER	M	D	5/8/2007
	Service needs trim								
1830	ELIOT	027	BRADSTREET LANE	7	8	Haz	М	D	5/8/2007
	Hazard trim								
1830	ELIOT	031	BUNKER LINE	2	3	Haz	М	D	5/8/2007
	3 hazard trees								
1830	ELIOT	068	DEPOT ROAD	15	16	Haz	М	D	5/8/2007
	Hazard tree & ground	cut							
1830	ELIOT	068	DEPOT ROAD	16	16.1	Haz	М	D	5/8/2007
	Hazard tree								
1830	ELIOT	068	DEPOT ROAD	16	18	С	М	D	5/8/2007
	Clearance								
1830	ELIOT	068	DEPOT ROAD	16.1	16.2	Haz	M	D	5/8/2007
	Hazard tree & clearand	æ							
1830	ELIOT	068	DEPOT ROAD	16.3	16.4	Haz	M	D	5/8/2007
	Hazard tree & clearand	e							
1830	ELIOT	068	DEPOT ROAD	16.5	16.51	Haz	M	D	5/8/2007
	Hazard tree								
1830	ELIOT	068	DEPOT ROAD	16.51	16.52	Haz	М	D	5/8/2007
	Hazard tree								
1830	ELIOT	068	DEPOT ROAD	18	19	SER	М	D	5/8/2007
	Service nees trim								
1830	ELIOT	068	DEPOT ROAD	19	20	GRN	М	D	5/8/2007
	Ground cut							_	
1830	ELIOT	068	DEPOT ROAD	26	27	SER	M	D	5/8/2007
	Service needs trim								
1830	ELIOT	068	DEPOT ROAD	28	29	SER	M	D	5/8/2007
	Service needs trim & g	round	cut						
1830	ELIOT	068	DEPOT ROAD	39	40	С	M	D	5/8/2007
	Clearance								
1830	ELIOT	068	DEPOT ROAD	41	42	GRN	M	D	5/8/2007
	Ground cut								

Audit Results for 1/1/2007 thru 5/31/2007

1830	ELIOT 0	68	DEPOT ROAD	42	43	GRN	М	D	5/8/2007
	Ground cut								
1830	ELIOT 0	68	DEPOT ROAD	43	44	GRN	М	D	5/8/2007
	Ground cut								
1830	ELIOT 0	68	DEPOT ROAD	51	52	GRN	M	D	5/8/2007
	Ground cut								
1830	ELIOT 0	68	DEPOT ROAD	55	56	v	М	D	5/8/2007
	Cut vine on pole								
1830	ELIOT 0	68	DEPOT ROAD	56	57	С	M	D	5/8/2007
	Clearance & ground cut								
1830	ELIOT 0	68	DEPOT ROAD	57	58	GRN	М	D	5/8/2007
	Ground cut & selective cu	ıt							
1830	ELIOT 0	68	DEPOT ROAD	58	59	GRN	M	D	5/8/2007
	Ground cut & selective cu	ıt							
1830	ELIOT 0	68	DEPOT ROAD	59	60	SER	M	D	5/8/2007
	Service needs trim at pol	e 60	& selective ground cut						
1830	ELIOT 0	68	DEPOT ROAD	6	7	Haz	М	D	5/8/2007
	Hazard tree								
1830	ELIOT 0	68	DEPOT ROAD	7	8	Haz	M	D	5/8/2007
	Hazard tree								
1830	ELIOT 0	90	FERNALD LANE	1	2	GRN	М	D	5/8/2007
	Ground cut & clearance								
1830	ELIOT 0	90	FERNALD LANE	2	3	с	M	D	5/8/2007
	Overhead clearance								
1830	ELIOT 0	94	FORE ROAD	1	3	S	M	D	5/8/2007
	Stubs								
1830	ELIOT 0	94	FORE ROAD	11	12	GRN	M	D	5/8/2007
	Ground cut								
1830	ELIOT 0	94	FORE ROAD	12	13	GRN	M	D	5/8/2007
	Ground cut								
1830	ELIOT 0	94	FORE ROAD	13	14	GRN	M	D	5/8/2007
	Ground cut								

Audit Results for 1/1/2007 thru 5/31/2007

					· · ·			
1830	ELIOT 094	FORE ROAD	14	15	GRN	M	D	5/8/2007
	Ground cut							
1830	ELIOT 094	FORE ROAD	15	16	Haz	M	D	5/8/2007
	Hazard tree & ground cut							
1830	ELIOT 094	FORE ROAD	22	23	Haz	м	D	5/8/2007
	Hazard tree & ground cut							
1830	ELIOT 094	FORE ROAD	27	28	SER	М	D	5/8/2007
	Service needs trim							
1830	ELIOT 094	FORE ROAD	28	29	S	М	D	5/8/2007
	Stubs							
1830	ELIOT 094	FORE ROAD	34	36	Haz	М	D	5/8/2007
	4 hazard trees							
1830	ELIOT 094	FORE ROAD	6	7	S	М	D	5/8/2007
	Stubs						<u> </u>	·····
1830	ELIOT 110	GOODWIN ROAD	1	2	GRN	М	D	5/8/2007
	Ground cut & stubs							
1830	ELIOT 110	GOODWIN ROAD	1	1.1	SEC	М	D	5/8/2007
	Secondary & service needs	s trim						·
1830	ELIOT 110	GOODWIN ROAD	10	11	S	М	D	5/8/2007
	Stubs				· · · · · · · · · · · · · · · · · · ·			
1830	ELIOT 110	GOODWIN ROAD	15	16	S	М	D	5/8/2007
	Stubs				······································			·
1830	ELIOT 110	GOODWIN ROAD	16	1	S	М	D	5/8/2007
	Stubs							
1830	ELIOT 110	GOODWIN ROAD	19	20	S	М	D	5/8/2007
	Stubs						- <u></u>	
1830	ELIOT 110	GOODWIN ROAD	20	21	SER	М	D	5/8/2007
	Service needs trim & stubs					<u> </u>		
1830	ELIOT 110	GOODWIN ROAD	21	22	S	M	D	5/8/2007
	Stubs							
1830	ELIOT 110	GOODWIN ROAD	22	23	S	М	D	5/8/2007
	Stubs							

Monday, June 25, 2007

<u>Audit Results for 1/1/2007 thru 5/31/2007</u>

1830	ELIOT Ground cut	110	GOODWIN ROAD	4	5	GRN	м	D	5/8/2007
1830	ELIOT Ground cut	110	GOODWIN ROAD	5	6	GRN	М	D	5/8/2007
1830	ELIOT Ground cut	110	GOODWIN ROAD	6	7	GRN	М	D	5/8/2007
1830	ELIOT Stubs	110	GOODWIN ROAD	7	8	S	М	D	5/8/2007
1830	ELIOT Stubs	110	GOODWIN ROAD	8	9	S	М	D	5/8/2007
1830	ELIOT Service needs trim & s		GOODWIN ROAD	9	10	SER	Μ	D .	5/8/2007
1830	ELIOT Servcie neets trim & cu		K GROVER LINE	3	4	SER	М	D	5/8/2007
1830	ELIOT Service needs trim	171	KEITH LANE	3	4	SER	M	D	5/8/2007
1830	ELIOT Secondary needs trim	171	KEITH LANE	3	3.1	SEC	M	D	5/8/2007
1830	ELIOT Secondary need trim	171	KEITH LANE	5.	5.1	SEC	M	D	5/8/2007
1830	ELIOT Secondary need trim	171	KEITH LANE	5.1	5.2	SEC	м	D	5/8/2007
1830	ELIOT Stubs	188	LAUREL LANE	2	3	S	м	D	5/8/2007
1830	ELIOT Stubs	188	LAUREL LANE	4	5	S	М	D	5/8/2007
1830	ELIOT Stubs	188	LAUREL LANE	5	1	S	м	D	5/8/2007
1830	ELIOT Stubs & improper cut	205	MAIN STREET	104	105	S	М	D	5/8/2007
1830	ELIOT Stubs & improper cut	205	MAIN STREET	105	106	S	M	D	5/8/2007

<u>CMP Vegetation Management</u>

<u>Audit Results for</u> <u>1/1/2007</u> thru <u>5/31/2007</u>

1830	ELIOT 20 Stubs	5 MAIN STREET	117	118	S	М	D	5/8/2007
1830	ELIOT 20 Stubs	5 MAIN STREET	121	122	S	M	D	5/8/2007
1830	ELIOT 20 Service needs trim at pole	5 MAIN STREET 124 & stubs	123	124	SER	М	D	5/8/2007
1830		5 MAIN STREET	128	129	Haz	М	D	5/8/2007
1830	ELIOT 20 Secondary needs trim	5 MAIN STREET	131	131.1	SEC	M	D	5/8/2007
1830	ELIOT 20 Hazard tree & service need	5 MAIN STREET ds trim at pole 133	132	133	Haz	Μ	D	5/8/2007
1830	ELIOT 20 Service needs trim at pole	5 MAIN STREET 134	134	135	SER	М	D	5/8/2007
1830	ELIOT 20 Hazard tree	5 MAIN STREET	135	136	Haz	M	D	5/8/2007
1830	ELIOT 20 Dead limb over three phas	5 MAIN STREET	136	137	н	М	D	5/8/2007
1830	ELIOT 20. Secondary needs trim	5 MAIN STREET	139.1	139.2	SEC	М	D	5/8/2007
1830	ELIOT 20 Service needs trim	5 MAIN STREET	140	140.1	SER	М	D	5/8/2007
1830	ELIOT 20 Ground cut	5 MAIN STREET	142	143	GRN	М	D	5/8/2007
1830	ELIOT 20 Secondary needs trim	5 MAIN STREET	143	143.1	SEC	M	D	5/8/2007
1830	ELIOT 20 Hazard tree	5 MAIN STREET	148	148.1	Haz	Μ	D	5/8/2007
1830	ELIOT 20 Ground cut	5 MAIN STREET	152	153	GRN	М	D	5/8/2007
1830	ELIOT 20 Ground cut	5 MAIN STREET	155	156	GRN	М	D	5/8/2007

Audit Results for 1/1/2007 thru 5/31/2007

1830		205	MAIN STREET	156	157	GRN	M	D	5/8/2007
	Ground cut								·
1830	ELIOT	205	MAIN STREET	161	162	GRN	М	D	5/8/2007
	Ground cut								
1830	ELIOT	205	MAIN STREET	165	166	GRN	M	D	5/8/2007
	Ground cut								
1830	ELIOT	205	MAIN STREET	166	167	GRN	М	D	5/8/2007
	Ground cut								
1830	ELIOT	205	MAIN STREET	173	174	vin	M	D	5/8/2007
	Cut vine at pole 174								
1830	ELIOT	205	MAIN STREET	174	1	GRN	M	D	5/8/2007
	Ground cut								
1830	ELIOT	205	MAIN STREET	259	260		M	D	5/8/2007
	Remove shelf								
1830	ELIOT	205	MAIN STREET	265	266		M	D	5/8/2007
	Remove shelf								
1830	ELIOT	205	MAIN STREET	268	269	GRN	M	D	5/8/2007
	Ground cut								
1830	ELIOT	210	MARSHALL FARM	23	24	GRN	M	D	5/8/2007
	Ground cut								
1830	ELIOT	210	MARSHALL FARM	25	26	S	M	D	5/8/2007
	Stubs								
1830	ELIOT	210	MARSHALL FARM	26	27	S	M	D	5/8/2007
	Stubs								
1830	ELIOT	210	MARSHALL FARM	27	73	GRN	M	D	5/8/2007
	Ground cut								
1830	ELIOT	210	MARSHALL FARM	5	6	GRN	M	D	5/8/2007
	Ground cut	-							
1830	ELIOT	212	MARSHWOOD ESTATE	504	505	С	M	D	5/8/2007
	Clearance								
1830	ELIOT	228	NORTH CRESCENT DRI	1	2	S	M	D	5/8/2007
_	Stubs								

					Audit Result	ts for	<u>1/1/2007</u>	<u>thru</u>	5/31/2007	-	
1830	ELIOT Stubs	228	NORTH CRESCENT DRI	3	1	S		<u> </u>	M	D	5/8/2007
1830	ELIOT Cut vines on pole 1.1	255	OLD ROAD	1	1.1	С			М	D	5/8/2007
1830	ELIOT Stubs	255	OLD ROAD	10	11	S			Μ	D	5/8/2007
1830	ELIOT Stubs	255	OLD ROAD	11	12	S			М	D	5/8/2007
1830	ELIOT Stubs	255	OLD ROAD	23	24	S			м	D	5/8/2007
1830	ELIOT Stubs	255	OLD ROAD	25	26	S			М	D	5/8/2007
1830	ELIOT Stubs	255	OLD ROAD	26	27	S			М	D	5/8/2007
1830	ELIOT Hazard tree & stubs	255	OLD ROAD	27	28	Haz		_	М	D	5/8/2007
1830	ELIOT Stubs	255	OLD ROAD	28	29	S			М	D	5/8/2007
1830	ELIOT Secondary needs trim	255	OLD ROAD	29	29.1	SEC			М	D	5/8/2007
1830	ELIOT Stubs & improper cuts	255	OLD ROAD	29	30	S			М	D	5/8/2007
1830	ELIOT Stubs & improper cuts	255	OLD ROAD	30	31	S			М	D	5/8/2007
1830	ELIOT Stubs	255	OLD ROAD	4	5	S		_	м	D	5/8/2007
1830	ELIOT Stubs	255	OLD ROAD	6	7	S			м	D	5/8/2007
1830	ELIOT Hangers & Stubs	286	RIVER ROAD	1	2	н			м	D	5/8/2007
1830	ELIOT	286	RIVER ROAD	4	5	S			м	D	5/8/2007

Stubs & improper cuts

Monday, June 25, 2007

<u>Audit Results for</u>	<u>1/1/2007</u>	<u>thru</u>	<u>5/31/2007</u>	

1830	ELIOT	302	ROUTE 236	29	1	GRN	М	D	5/8/2007
1830	ELIOT Ground cut	302	ROUTE 236	29H	30	GRN	М	D	5/8/2007
1830	ELIOT Ground cut	302	ROUTE 236	37	37	GRN	М	D	5/8/2007
1830	ELIOT Ground cut	302	ROUTE 236	37	38	GRN	М	D	5/8/2007
1830	ELIOT Ground cut	302	ROUTE 236	44H	45	GRN	М	D	5/8/2007
1830	ELIOT Ground cut	302	ROUTE 236	45H	1	GRN	М	D	5/8/2007
1830	ELIOT Ground cut	302	ROUTE 236	50	50.1	GRN	М	D	5/8/2007
1830	ELIOT Ground cut	302	ROUTE 236	51	51.1	GRN	М	D	5/8/2007
1830	ELIOT Ground cut	401	GREAT CREEK DRIVE	1	2	GRN	м	D	5/8/2007
1830	ELIOT Ground cut	401	GREAT CREEK DRIVE	3	4	GRN	м	D	5/8/2007
1830	ELIOT Ground cut	406	AGGREGATE RECYCLIN	1	2	GRN	Μ	D	5/8/2007
1830	ELIOT Ground cut	406	AGGREGATE RECYCLIN	2	3	GRN	М	D	5/8/2007
1830	ELIOT Brush left	406	AGGREGATE RECYCLIN	7	8	В	M	D	5/8/2007
1830	ELIOT Ground cut	412	LIBBEY ROAD	1	2	GRN	M	D	5/8/2007
1830	ELIOT Ground cut	412	LIBBEY ROAD	2	3	GRN	М	D	5/8/2007
	ELIOT Hazard tree	412	LIBBEY ROAD	3	4	Haz	М	D	5/8/2007

<u>CMP Vegetation Management</u>

					<u>Audit Res</u>	ults for	<u>1/1/2007</u>	<u>thru 5/31/2007</u>	-	
3100	KITTERY Ground cut & service		PICKERNELL LANE	1	2	GRN		M	D	5/8/2007
3100	KITTERY Ground cut & stubs	385	PICKERNELL LANE	2	3	GRN		М	D	5/8/2007
3100	KITTERY Ground cut & stubs	385	PICKERNELL LANE	3	4	GRN		М	D	5/8/2007
3100	KITTERY Ground cut & stubs	385	PICKERNELL LANE	5	5.1	GRN		М	D	5/8/2007
3100	KITTERY Ground Cut	516	WILSON ROAD	24	25	GRN		М	D	5/8/2007
3100	KITTERY Ground Cut	516	WILSON ROAD	25	26	GRN		M	D	5/8/2007
3100	KITTERY Ground Cut	516	WILSON ROAD	26	27	GRN		М	D	5/8/2007
3100	KITTERY Ground Cut	516	WILSON ROAD	27	28	GRN		M	D	5/8/2007
3100	KITTERY Ground Cut & stubs	516	WILSON ROAD	28	29	S/G		М	D	5/8/2007
3100	KITTERY Ground Cut & stubs	516	WILSON ROAD	29	30	S/G		М	D	5/8/2007
3100	KITTERY Stubs	516	WILSON ROAD	30	31	S		М	D	5/8/2007
3100	KITTERY Stubs	516	WILSON ROAD	31	32	S		М	D	5/8/2007
3100	KITTERY Hazard tree & stubs	516	WILSON ROAD	32	33	Haz		М	D	5/8/2007
3100	KITTERY Stubs	516	WILSON ROAD	33	34	S		М	D	5/8/2007
3100	KITTERY Stubs	516	WILSON ROAD	34	35	S	<u></u>	M	D	5/8/2007
3100	KITTERY Stubs & directional	516	WILSON ROAD	35	36	S		М	D	5/8/2007

Monday, June 25, 2007

<u>Audit Results for 1/1/2007 thru 5/31/2007</u>

					_				
3100	KITTERY	516	WILSON ROAD	36	37	S	M	D	5/8/2007
	Stubs & directional								
3100	KITTERY	516	WILSON ROAD	37	37.1	GRN	М	D	5/8/2007
	Ground cut								
3100	KITTERY	516	WILSON ROAD	37	38	S	М	D	5/8/2007
	Stubs								
3100	KITTERY	516	WILSON ROAD	37.1	37.2	GRN	M	D	5/8/2007
	Ground cut								
3100	KITTERY	516	WILSON ROAD	37.4	37.5	GRN	M	D	5/8/2007
	Ground cut & fir balso	n by po	ole						
3100	KITTERY	516	WILSON ROAD	66	67	S	М	D	5/8/2007
	Stubs								
3100	KITTERY	516	WILSON ROAD	67	68	S	M	D	5/8/2007
	Stubs								
3100	KITTERY	516	WILSON ROAD	68	1	GRN	М	D	5/8/2007
	Ground Cut								
3100	KITTERY	516	WILSON ROAD	69	70	Haz	Μ	D	5/8/2007
	Hazard tree								
3100	KITTERY	516	WILSON ROAD	70	71	S	Μ	D	5/8/2007
	Broken top over 3 pha	se & s	tubs						
3100	KITTERY	516	WILSON ROAD	71	1	GRN	Μ	D	5/8/2007
	Ground cut								
3100	KITTERY	516	WILSON ROAD	71	72	Haz	Μ	D	5/8/2007
	Hazard tree & stubs								
3100	KITTERY	516	WILSON ROAD	72	73	Haz	М	D	5/8/2007
	Hazard tree & stubs								
3100	KITTERY	516	WILSON ROAD	73	74	S	М	D	5/8/2007
	Stubs								
3100	KITTERY	516	WILSON ROAD	75	76	S	М	D	5/8/2007
	Stubs								
3100	KITTERY	516	WILSON ROAD	76	77	S	М	D	5/8/2007
	Stubs								

<u>Audit Results for</u>	<u>1/1/2007</u>	<u>thru</u>	<u>5/31/2007</u>	
--------------------------	-----------------	-------------	------------------	--

3100	KITTERY Stubs	516	WILSON ROAD	77	78	S	М	D	5/8/2007
3100	KITTERY Stubs	516	WILSON ROAD	82	82H	S	М	D	5/8/2007
3100	KITTERY Stubs	516	WILSON ROAD	83	85	S	M	D	5/8/2007
3100	KITTERY Stubs	516	WILSON ROAD	85	86	S	М	D	5/8/2007
3100	KITTERY Stubs	516	WILSON ROAD	87	88	S	М	D	5/8/2007
3100	KITTERY Ground cut	516	WILSON ROAD	89	1	GRN	М	D	5/8/2007
3100	KITTERY Ground cut	540	PATTEN LANE	1	2	GRN	M	D	5/8/2007
3100	KITTERY Ground cut (sele	540 ctive cut)	PATTEN LANE	45	5	GRN	М	D	5/8/2007
	<u>Service</u>	Center To	otals:	<u>348 Se</u>	ctions fo	r Rework	3304 Section	s Reviewed	<u>10.53%</u>

Audit Results for 1/1/2007 thru 5/31/2007

					<u>1/9/2007</u>	<u>2</u>		<u>Reviewed</u>	1	
0000	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
2933	Jefferson 07 Clearance secondary	1 Hinks Road	28.1	28.2		м	D	182	3/30/2007	1/10/2007
		BRUNSWICK	Rai	ndall	2/23/2007	<u>32</u>	Sections	Reviewed		
2	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
0710	BRISTOL 06 Clearance >8	2 FOSSETT LINE	1	2	С	m	D		3/30/2007	
0710	BRISTOL 06 Clerance >8	2 FOSSETT LINE	8	8.1	С	m	D		3/30/2007	3/14/2007
0710	BRISTOL 06 Clearance >8 fir behind po	2 FOSSETT LINE ble 9	9	8	С	m	D		3/30/2007	3/14/2007
0710 /	BRISTOL 07 Missed service off 1.01	6 HANLEY LINE	1	1.01	SER	m	D		3/30/2007	3/14/2007
0710 /	BRISTOL 07 Need more gound cut	6 HANLEY LINE	3	2	GRN	m	D		3/30/2007	3/14/200
0710 /	BRISTOL 07 Need more ground cut, sto	6 HANLEY LINE ubs, and hangers	4	3	GRN	m	D		3/30/2007	
0710 /	BRISTOL 07 Need more ground cut, stu	6 HANLEY LINE	5	6	C/F	m	D		3/30/2007	3/14/2007
0710 /	BRISTOL 07 Need more ground cut	6 HANLEY LINE	5	4	GRN	m	D		3/30/2007	3/14/2007
0710 /	BRISTOL 17 Missed service off pole 10	4 SPRING LANE ROAD & 11, brush not chipped	11	10	SER	m	D		3/30/2007	3/14/2007
0710 /	BRISTOL 17 Missed dead spruce behin	4 SPRING LANE ROAD	3	4	PR6	m	D		3/30/2007	
0710 /	BRISTOL 21 Missed secondary	4 WEST ROAD	13	13.1	SEC	m	D		3/30/2007	

Monday, June 25, 2007

S:\Veg_MGT\Shared\TrimReports\TrimTrackRework.mdb _ rAuditResults

<u>Audit Results for 1/1/2007 thru 5/31/2007</u>

		BRUNSWICK	<u>Randall</u>	<u>2/9/2007</u>	<u>41</u>	Sections Reviewed		
	Town	Road	From To	Compliance Issue	Class	Contractor Crew	Notify Date	Fix Date
2110	FREEPORT 06 Clearance overhead	6 DUMP ROAD	2 3	С	М	D	3/30/2007	4/9/200
2110	FREEPORT 06 Missed ground cut	6 DUMP ROAD	4 5	С	М	D	3/30/2007	4/9/200
2110		6 DUMP ROAD ed, from pole 44 Pownal Rd to	44-powe 1 Dump o pole 1 Dump Rd.	r PR6	Μ	D	3/30/2007	
2110	FREEPORT 06 Missed ground cut	6 DUMP ROAD	6 7	C	М	D	3/30/2007	4/9/2007
2110	FREEPORT 22 Clearance side & overhea		10 10.1	С	М	D	3/30/2007	
2110	FREEPORT 22 Missed service off pole 11		11 13	SER	М	D	3/30/2007	4/12/200
2110	FREEPORT 22 Stubs & hazard tree	1 LANDING ROAD	13 14	F	М	D	3/30/2007	4/12/2007
2110	FREEPORT 22 Missed PR6 poplar (marke		8 9	PR6	М	D	3/30/2007	
2110	FREEPORT 22 Missed secondary	1 LANDING ROAD	8 8.1	SEC	М	D	3/30/2007	
2110	FREEPORT 22 Missed secondary & servi		8.1 8.2	SEC	М	D	3/30/2007	
2110	FREEPORT 22 Missed secondary & servi		8.2 8.3	SEC	М	D	3/30/2007	
2110	FREEPORT 24 Missed PR6 - marked	5 MAST LANDING ROAD	09 010	PR6	М	D	3/30/2007	4/9/2007
		BRUNSWICK	<u>Randall</u>	<u>2/23/2007</u>	<u>45</u>	Sections Reviewed		
	Town	Road	From To	Compliance Issue	Class	Contractor Crew	Notify Date	Fix Date
Mond	ay, June 25, 2007	S:\Veg_M	GT\Shared\TrimRep	orts\TrimTrackRework.mdb _	rAuditResult	ann mean a thairte an an tartainn a a channaisteann an tartainn an tartainn an tartainn an tartainn an tartainn R	Pag	e 88 of 94

<u>Audit Results for</u> <u>1/1/2007</u> thru <u>5/31/2007</u>

0710	BRISTOL 1	39 PEMAQUID POINT LIGH	10	11	SER	M	D	3/30/2007	3/14/2007
	Missed service off pole 1	1							
0710	BRISTOL 1	39 PEMAQUID POINT LIGH	13	14	В	M	D	3/30/2007	3/14/2007
	Brushed not chipped								
0710	BRISTOL 1	39 PEMAQUID POINT LIGH	19	20	С	М	D	3/30/2007	
	Clerance & ground cut								
0710	BRISTOL 1	39 PEMAQUID POINT LIGH	20	21	SER	M	D	3/30/2007	
	Missed service off pole 2	1							
0710	BRISTOL 1	39 PEMAQUID POINT LIGH	20	20.1		M	D	3/30/2007	
	No such span - wants cre	dit							
0710	BRISTOL 1	39 PEMAQUID POINT LIGH	8	9	В	M	D	3/30/2007	3/14/2007
	Brush not chipped -piled l	by pole 9							
0710	BRISTOL 1	39 PEMAQUID POINT LIGH	9.01	9.02	В	M	D	3/30/2007	3/14/2007
	Brush not chippled & mis	sed service off 9.01							
0710	BRISTOL 2	14 WEST ROAD	10	10.1	SEC	M	D	3/30/2007	
	Missed secondary								
0710	BRISTOL 2	14 WEST ROAD	12	13	PR6	М	D	3/30/2007	
	Remove dead birch								
0710	BRISTOL 2	14 WEST ROAD	13	14	GRN	м	D	3/30/2007	_
	Ground cut 3 softwood cl	ose to pole 13					· · · · · · · · · · · · · · · · · · ·		
0710	BRISTOL 2	14 WEST ROAD	3	ЗH	SER	М	D	3/30/2007	
	Missed service off pole 3								
0710	BRISTOL 2	14 WEST ROAD	3	3.1	SER	М	D	3/30/2007	
	Missed secondary & Serv	ice							
0710	BRISTOL 2	14 WEST ROAD	4	5	GRN	M	D	3/30/2007	
	Missed some softwood gi	round cut							
0710	BRISTOL 2	14 WEST ROAD	8	9	С	М	D	3/30/2007	
	Remove tree mark & little	more side clearn on spruce n	ear house						
		BRUNSWICK		ndall	3/22/2007	5	Sections Reviewed]	
			<u></u>			<u>×</u>]	
								Notify	Fix
	Town	Road	From	То	Compliance Issue	Class	Contractor Crew	Date	Date

Monday, June 25, 2007

S:\Veg_MGT\Shared\TrimReports\TrimTrackRework.mdb _ rAuditResults

Audit Results for 1/1/2007 thru 5/31/2007

2510		4 CUNDY'S HARBOR ROA - 3' from primary, tree is marke		44H	PR5	м	D	28	4/5/2007	
		BRUNSWICK	Ra	ndall	3/30/2007	<u>16</u>	Sections	Reviewed		
	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
2110		00 TORREY RANGE ROAD 1 Torrey Range rd. under clear	19 rance	1	С	М	D	<u></u>	4/5/2007	
2110	FREEPORT 40 Remove several dead oal	00 TORREY RANGE ROAD	5.4	5.5	Haz	M	D		4/5/2007	
		BRUNSWICK	Ra	ndall	3/29/2007	<u>33</u>	Sections	Reviewed		
	Town	Road	From	To	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
2110	FREEPORT 00 Remove dying hemlock F	1 ALLEN RANGE ROAD PR6 22inches	1	2	PR6	М	D		4/5/2007	
2110		1 ALLEN RANGE ROAD os and 20 ft stump; remove ha	12 nger	12.1	SEC	М	D		4/5/2007	
2110		01 ALLEN RANGE ROAD	120 oved bad n	1 naple elad	C her heading to primary	М	D		4/5/2007	
2110		ALLEN RANGE ROAD	4 hemlock	5	R	М	D		4/5/2007	
2110	FREEPORT 00 Remove topped p ine - 5	1 ALLEN RANGE ROAD	5	6	С	Μ	D		4/5/2007	
2110		1 ALLEN RANGE ROAD	7 res PR6	8	PR6	М	D		4/5/2007	
2110	FREEPORT 00	1 ALLEN RANGE ROAD	9	10	PF6	M	D		4/5/2007	

<u>Audit Results for 1/1/2007 thru 5/31/2007</u>

		BRUNSWICK	Ra	ndall	<u>3/29/2007</u>	<u>38</u>	<u>Sections</u>	<u>Reviewed</u>		
	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
2110	FREEPORT 04 Badly leaning 1/2 dead po	1 CUSHING BRIGGS ROA	7	8	PR6	Μ	D		4/5/2007	
2110	FREEPORT 04 Missed secondary	1 CUSHING BRIGGS ROA	9.2	9.3	SEC	Μ	D	······································	4/5/2007	
2110	FREEPORT 27 Missed service off pole 4	3 NOBLE DRIVE	4	5	SER	М	D		4/5/2007	
2110	FREEPORT 37 Clearance at pole 5.2 and	5 SANDY BEACH ROAD missed service at 5.2	5.2	5.3	С	М	D		4/5/2007	
		BRUNSWICK	Ra	ndall	3/23/2007	<u>56</u>	Sections	Reviewed		
	Town	Road	From	То	Compliance Issue	Class	Contractor	Crew	Notify Date	Fix Date
2110	FREEPORT 10 Missed service off pole 3	5 FERNALD ROAD	3	зн	SER	М	D	174	4/5/2007	
2110	FREEPORT 25 Missed service off pole 1	1 MURCH ROAD	1	2	SER	М	D		4/5/2007	
2110	FREEPORT 25 Missed secondary	1 MURCH ROAD	1	1.1	SEC	Μ	D		4/5/2007	
2110	FREEPORT 25 Missed secondary	1 MURCH ROAD	2	2.01	SEC	Μ	D		4/5/2007	
2110	FREEPORT 25 Missed secondary	1 MURCH ROAD	3	3.1	SEC	М	D		4/5/2007	
2110	FREEPORT 35 Missed service off pole 4	0 RANGE "E" ROAD - stubs, maple	4	5	SER	М	D	174	4/5/2007	
2110	FREEPORT 35 Missed service off pole 6	0 RANGE "E" ROAD	5	6	SER	М	D	174	4/5/2007	
2110	FREEPORT 35 Missed secondary	0 RANGE "E" ROAD	5	5.1	SEC	М	D	174	4/5/2007	

Monday, June 25, 2007

S:\Veg_MGT\Shared\TrimReports\TrimTrackRework.mdb _ rAuditResults

Audit Results for <u>1/1/2007</u> thru <u>5/31/2007</u>

		[]	BRUNSWICK	<u>R</u>	andall		<u>4/3/2007</u>	<u>6</u>	Sections	Reviewed		
	Removed dead oak 6	inches										<u> </u>
2110	FREEPORT	400	TORREY RANGE ROAD	5.3	5.4	С		М	D		4/5/2007	
	Remove small topped	pine			· · · · · · · · · · · · · · · · · · ·							
2110	FREEPORT	400	TORREY RANGE ROAD	5.2	5.3	С		М	D		4/5/2007	
	Missed secondary											
2110	FREEPORT	400	TORREY RANGE ROAD	34	34.1	SEC		M	D		4/5/2007	
	Side clearnace, under	cleara	nce, topped softwood									
2110	FREEPORT	400	TORREY RANGE ROAD	31	32	с		M	D	······	4/5/2007	
	Remove fir tree behin					-			-			
2110	·····		TORREY RANGE ROAD	25	26	с	<u></u>	M	D	<u> </u>	4/5/2007	
	Remove small topped			20	10	C		IVI	U		-10/2001	
2110			TORREY RANGE ROAD	20	19	с		M	D		4/5/2007	
2110	FREEPORT Remove bad fir - 50 ft		TORREY RANGE ROAD	20	20.1	PR5		М	D		4/5/2007	
0440	Clearance under	400									4/5/0007	
2110		400	TORREY RANGE ROAD	18	17	С		М	D		4/5/2007	
	Ground cut small fir n											
2110			TORREY RANGE ROAD	17	16	С		М	D		4/5/2007	
	Remove front oak clo	sed to	pole 16									
2110	FREEPORT	400	TORREY RANGE ROAD	16	15	С		М	D		4/5/2007	
	Bad stubbing maple	_										
2110	FREEPORT	350	RANGE "E" ROAD	9	10	S		M	D	174	4/5/2007	
2110	FREEPORT Missed secondary	000	RANGE "E" ROAD	6	6.1	SEC		М	D	174	4/5/2007	

To	wn	Road	From	То	Compliance Issue	Class	Contractor	Crew	Date	Date
		4 CUNDY'S HARBOR ROA	66	67	В	М	D		5/8/2007	
Cr	nip brush & finish removi	ng topped trees								
2510 H	HARPSWELL 06	4 CUNDY'S HARBOR ROA	67	68	В	M	D		5/8/2007	
Ch	nip brush & finish removi	ng topped trees								

Monday, June 25, 2007

S:\Veg_MGT\Shared\TrimReports\TrimTrackRework.mdb = rAuditResults

Audit Results for	<u>1/1/2007</u>	<u>thru</u>	<u>5/31/2007</u>
-------------------	-----------------	-------------	------------------

OOLWICH h never chipped - OOLWICH h never chipped -	asap 093	OLD COUNTY ROAD	134.1 134.2	134.2 134.3	B B	M M	D	150	5/8/2007 5/8/2007
h never chipped -	asap	·····				···			
		OLD COUNTY ROAD	134.1	134.2	В	М	D	150	5/8/2007
h never chipped -	asap								
DOLWICH	093	OLD COUNTY ROAD	134	134.1	В	M	D	150	5/8/2007
h never chipped -			00.1	00.2	0	IVI	U	1/4	0.0/2007
		MIDDLE ROAD	66.1	66.2	B	M	D	174	5/8/2007
OLWICH h never chipped -		MIDDLE ROAD	66	66.1	В	М	D	174	5/8/2007
h removing toppe									
RPSWELL	064	CUNDY'S HARBOR ROA	71	72	С	М	D		5/8/2007
ut high stumps									
RPSWELL	064	CUNDY'S HARBOR ROA	70	71	S	M	D		5/8/2007
brush & finish ren	-				-		2		
RPSWELL		CUNDY'S HARBOR ROA	69	70	В	M	D		5/8/2007
RPSWELL brush & finish ren	-		68	69	В	M	D		5/8/2007
-			WELL 064 CUNDY'S HARBOR ROA th & finish removing topped trees						

EX-02-26 Attachment 3, page 94 of 94 Docket No. 2007-215

CMP Vegetation Management

Audit Results for 1/1/2007 thru 5/31/2007

Corporate Totals:	1129 Sections for Rework	<u>12460</u> Sections Reviewed	<u>9.06%</u>

the state of the second second second

Central Maine Power Company July 2009 Distribution Rate Design Excluding One-Year Adjustment ARP 2008 Docket No. 2010-051 July 2010 ARP Price Change

4 · · ~

1000

». مر

	2009 Core Rate Billing Units 1/	Distribution Rates 7/1/09 Including One Year Adjustments 2/	Distribution Revenue 3/	Distribution Rates 7/1/09 Less One Year Adjustments	Distribution Revenue Check
	(1)	(2)	(3)	(4)	(5)
ARP Increase July 2009 less one year adjustments			(1)*(2) 3.72%	(2)*% Change	(1)*(4)
RATES A & R					
Minimum Charge	6,394,164	\$ 5.21	\$ 33,313,594	\$ 5.02	\$ 32,098,703
kWh 100 or less kWh Charge for kWh > 100	586,505,456 2,741,797,508	0.040160	110.110.588	\$ 0.038666	106,014,342
Total kWh and Revenue	3,328,302,964		143,424,182		138,113,046
Increase in Distribution Revenue			(5,335,380)		(5,311,137)
					24,243
A & R-TOU					
Service Charge	69,805	6.99	487,937	6.73	469,788
kWh-On Winter kWh-Sh Winter	8,551,357 3,222,358	0.068193 0.056162	583,143 180,974	0.065656 0.054073	561,448 174,243
kWh-Off Winter	20,891,886	0.017965	375,323	0.017297	361,367
kWh-On Other	11,190,257	0.068193	763,097	0.065656	734,708
kWh-Sh Other	4,373,531	0.056162	245,626	0.054073	236,490
kWh-Off Other	25,019,103	0.017965	449,468	0.017297	432,755
Total kWh and Revenue Increase in Distribution Revenue	73,248,492		3,085,568 (114,783)		<u>2,970,798</u> (114,770)
			(114,700)		13
<u>A-LM</u>					
Service Charge	2,639	9.13 0.001303	24,094	8.79 0.001255	23,197
kWh Winter kWh Other	648,292 349,117	0.001303	845 455	0.001255	814 438
Total kWh and Revenue	997,409		25,394	0.001200	24,449
Increase in Distribution Revenue			(945)		(945) (0)
<u>SGS (0 - 20 kW)</u>					
Service Charge - Single Phase	510,315	10.47	5,342,998	10.08	5,143,975
Service Charge - Three Phase	92,160	17.39	1,602,662	16.74	1,542,758
kWh Winter	189,318,599	0.029927 0.029927	5,665,738	0.028814	5,455,026 10,226,992
kWh Other Total kWh and Revenue	<u>354,931,336</u> 544,249,935	0.029927	10,622,030 23,233,428	0.028814	22,368,751
Increase in Distribution Revenue	011,210,000		(864,284)		(864,677)
MGS-S					(393)
Service Charge - Single Phase	41,045	25.87	1,061,834	24.91	1,022,431
Service Charge - Three Phase	89,151	33.72	3,006,172	32.47	2,894,733
kW Winter kW Other	1,792,274 3,898,000	3.92 2.91	7,025,713 11,343,180	3.77 2.80	6,756,872 10,914,400
kWh Winter	586,984,020	-	-	-	-
kWh Other	1,202,237,651	•	-	-	-
KVAR	206,077	0.66	136,011	0.64	131,889
Total kWh and Revenue	1,789,221,671		22,572,909		21,720,325
Increase in Distribution Revenue			(839,712)		(852,585) (12,872)
MGS-P					
Service Charge - Single Phase Service Charge - Three Phase	405 1,538	73.31 113.47	29,691 174,517	70.58 109.25	28,585
kW Winter	69,589	3.49	174,517 242,867	109.25	168,027 233,820
kW Other	146,588	2.10	307,835	2.02	296,108
kWh Winter	23,709,450	•	-	-	
kWh Other	45,412,096	-	-	-	-
KVAR	88,917	0.66	58,686	0.64	56,907
Total kWh and Revenue	69,121,546		813,594		783,446
Increase in Distribution Revenue			(30,266)		(30,148) 118

.

.

Central Maine Power Company July 2009 Distribution Rate Design Excluding One-Year Adjustment ARP 2008 Docket No. 2010-051 July 2010 ARP Price Change

	2009 . Core Rate Billing Units 1/	Distribution Rates 7/1/09 Including One Year Adjustments 2/	Distribution Revenue 3/	Distribution Rates 7/1/09 Less One Year Adjustments	Distribution Revenue Check
	(1)	(2)	(3) (1)*(2)	(4) (2)*% Change	(5) (1)*(4)
ARP increase July 2009 less one year adjustments			(1)*(2) 3.72%	(2) % Change	(1) (4)
<u>IGS-S</u>					
Service Charge	2,486	99.42	247,158	95.72	237,960
kW-On Winter	341,907 336,732	1.96 1.11	670,139	1.89 1.07	646,205 360,304
kW-Sh Winter kW-On Other	770,324	1.70	373,773 1,309,551	1.64	1,263,332
kW-Sh Other	768,763	1.11	853,327	1.07	822,576
kWh-On Winter	43,701,780	-	-	-	
kWh-Sh Winter	34,303,420	-	-	-	-
kWh-Off Winter	67,327,670	-	-	-	-
kWh-On Other	98,225,460	-	-	-	-
kWh-Sh Other	48,825,200	-	-	-	· · •
kWh-Off Other	168,841,740	-	-	-	-
KVAR Total kW/b and Bayanun	117,044	0.66	77,249 3,531,196	0.64	74,908
Total kWh and Revenue Increase in Distribution Revenue	461,225,270		(131,361)		(125,912)
			(101,001)		. 5,449
IGS-P Service Charge	726	144.36	104,805	138.99	100,907
kW-On Winter	111,696	3.80	424,444	3.66	408,807
kW-Sh Winter	110,936	1.18	130,905	1.14	126,467
kW-On Other	242,408	1.70	412,094	1.64	397,550
kW-Sh Other	241,799	1.18	285,322	1.14	275,650
kWh-On Winter	13,896,450	0.002890	40,161	0.002782	38,660
kWh-Sh Winter	10,832,322	0.002359	25,553	0.002271	24,600
kWh-Off Winter	22,400,858	0.000905	20,273	0.000871	19,511
kWh-On Other kWh-Sh Other	30,033,260 15,246,772	0.001717 0.001623	51,567 24,746	0.001653 0.001563	49,645 23,831
kWh-Off Other	50,491,286	0.000354	17,874	0.000341	17,218
KVAR	53,277	0.66	35,163	0.64	34,097
Total kWh and Revenue	142,900,948		1,572,907		1,516,943
Increase in Distribution Revenue			(58,512)		(55,965) 2,548
					_,
LGS-S	494	402.21	65.070	474.00	63,516
Service Charge kW-On Winter	134 46,384	492.31 2.86	65,970 132,657	474.00 2.75	127,555
kW-Sh Winter	45,285	1.45	65,664	1.40	63,399
kW-On Other	98,275	2.27	223,084	2.19	215,222
kW-Sh Other	98,209	1.45	142,403	1.40	137,493
kWh-On Winter	6,157,234	-	-	-	-
kWh-Sh Winter	4,839,263	•	-	-	-
kWh-Off Winter	10,673,535	•	-	-	-
kWh-On Other kWh-Sh Other	13,999,378 6,888,940	•	•	-	-
kWh-Off Other	26,850,344	-	-	-	-
KVAR	18,926	0.66	12,491	0.64	12,113
Total kWh and Revenue	69,408,694		642,269	_	619,298
Increase in Distribution Revenue			(23,892)	_	(22,971) 921
LGS-P					
Service Charge	589	535.78	315,574	515.85	303,836
kW-On Winter	332,948	4.85	1,614,798	4.67	1,554,868
kW-Sh Winter	328,236	1.36	446,401	1.31	429,989
kW-On Other kW-Sh Other	698,386 696,269	1.96 1.23	1,368,836 856,411	1.89 1.18	1,319,949 821,597
kWh-On Winter	44,944,306	-		-	
kWh-Sh Winter	34,877,582		-	-	
kWh-Off Winter	77,540,261	-	-	-	-
kWh-On Other	99,290,729	-	-	-	-
kWh-Sh Other	48,675,302	-	-	-	-
kWh-Off Other	183,911,290	-	-	-	-
KVAR	220,186	0.66	145,323	0.64	140,919
Total kWh and Revenue	489,239,470		4,747,343		4,571,157
Increase in Distribution Revenue			(176,601)		(176,185) 416

. مورد ا

> م م

Central Maine Power Company July 2009 Distribution Rate Design Excluding One-Year Adjustment ARP 2008 Docket No. 2010-051 July 2010 ARP Price Change

ARP Increase July 2009 less one year adjustments	2009 Core Rate Billing Units 1/ (1)	Distribution Rates 7/1/09 Including One Year Adjustments 2/ (2)	Distribution Revenue 3/ (3) (1)*(2) 3.72%	Distribution Rates 7/1/09 Less One Year Adjustments (4) (2)*% Change	Distribution Revenue <u>Check</u> (5) (1)*(4)
LGS-ST-TOU					
Service Charge	624	521.01	325,110	501.63	313,017
kW-On Winter	444,780	-		-	-
kW-Sh Winter	454,081	-	-	-	-
kW-On Other	850,147	-	-	-	-
kW-Sh Other	831,904	-		-	
kWh-On Winter	55,993,527	-	-	-	-
kWh-Sh Winter	48,313,588	-	-	· -	•
kWh-Off Winter	108,424,203	•	-	-	-
kWh-On Other	113,553,616	•	-	-	-
kWh-Sh Other	52,865,563	•	-	-	-
kWh-Off Other	253,982,393	-	-	-	-
KVAR	301,657		<u> </u>		-
	633,132,890	-	325,110		313,017
			(12,094)		(12,093)
					1
LGS-T-TOU					
Service Charge	208	727.96	151,416	700.88	145,783
kW-On Winter	344,599	-	-	-	-
kW-Sh Winter	346,792	-	-	•	-
kW-On Other	979,003	-	-	•	-
kW-Sh Other	843,070	-	-	•	-
kWh-On Winter	25,573,777	-	-	•	-
kWh-Sh Winter	24,714,260	-	-	-	-
kWh-Off Winter	65,270,882 74,234,154	-	-	-	•
kWh-On Other kWh-Sh Other	31,319,593		-	_	-
kWh-Off Other	199,644,775				
KVAR	554,533	_		-	-
NYAN.	420,757,441	-	151,416		145,783
		-	(5,633)		(5,633)
			(-,)		0
		A			
<u>AL_4/</u>	9,554,110	0.161587	1,543,820	0.155576	1,486,390
<u>SL_4/</u>	27,380,923	0.203709	5,577,740	0.196131	5,370,248
Total	8,058,741,763	-	<u>\$2</u> 11,246,878	 	\$ 203,408,935
Total Increase			\$ (7,858,384)		\$ (7,837,942) \$ 20,442
					-3.71%
Nataa					

Notes:

. 8*

Adjusted 2009 core billing units.
Aly See Compliance Attachment 4, ARP Filing, June 10, 2009, Docket No. 2009-071
See Compliance Attachment 1, Page 2, ARP Filing, June 10, 2009, Docket No. 2009-071
Individual fixture prices will be provided in the compliance filing.

~~,

.....

Central Maine Power Company Distribution Rate Design ARP 2008 Docket No. 2010-051 July 2010 Price Change

13 an

	2009 Core Rate Billing Units 1/	Distribution Rates 7/1/09 Less One Year Adjustments 2/	Distribution Revenue 3/	Distribution Rates 7/1/10 2/	Distribution Revenue Check
	(1)	(2)	(3)	(4)	(5)
ARP Decrease July 2010			(1)*(2) 1.93000%	(2)*% Change	(1)*(4)
RATES A & R		* = -00	•	* 540	A 00 700 400
Minimum Charge kWh 100 or less	6,394,164 586,505,456	\$ 5.02	\$ 32,098,703	\$ 5.12	\$ 32,738,120
kWh Charge for kWh > 100	2,741,797,508	0.038666	106,014,342	0.039412	108,059,723
Total kWh and Revenue	3,328,302,964		138,113,046		140,797,843
Increase in Distribution Revenue			2,665,582		2,684,797
					19,216
A&R-TOU	50 00F	6 70	400 700	0.00	470.000
Service Charge	69,805 8,551,357	6.73 0.065656	469,788 561,448	6.86 0.066923	478,862 572,282
kWh-On Winter kWh-Sh Winter	3,222,358	0.054073	174,243	0.055117	177,607
kWh-Off Winter	20,891,886	0.017297	361,367	0.017631	368,345
kWh-On Other	11,190,257	0.065656	734,708	0.066923	748,886
kWh-Sh Other	4,373,531	0.054073	236,490	0.055117	241,056
kWh-Off Other	25,019,103	0.017297	432,755	0.017631	441,112
Total kWh and Revenue	73,248,492		2,970,798		3,028,150
Increase in Distribution Revenue			57,336		57,352 15
A-LM					
Service Charge	2,639	8.79	23,197	8.96	23,645
kWh Winter	648,292	0.001255	814	0.001279	829
kWh Other	349,117	0.001255	438	0.001279	447
Total kWh and Revenue	997,409		24,449		24,921
Increase in Distribution Revenue			472		47 3 1
SGS (0 - 20 kW)	540.045	40.00	5 4 40 0 7 5	10.07	5 0 40 005
Service Charge - Single Phase	510,315	10.08	5,143,975	10.27	5,240,935
Service Charge - Three Phase kWh Winter	92,160 189,318,599	16.74 0.028814	1,542,758 5,455,026	17.06 0.029366	1,572,250 5,559,530
kWh Other	354,931,336	0.028814	10,226,992	0.029366	10,422,914
Total kWh and Revenue	544,249,935		22,368,751		22,795,628
Increase in Distribution Revenue			431,717	-	426,877
MGS-S					(4,840)
Service Charge - Single Phase	41,045	24.91	1,022,431	25.38	1,041,722
Service Charge - Three Phase kW Winter	89,151 1,792,274	32.47 3.77	2,894,733 6,756,872	33.09 3.84	2,950,007 6,882,331
kW Other	3,898,000	2.80	10,914,400	2.85	11,109,300
kWh Winter	586,984,020		-	-	-
kWh Other	1,202,237,651	•	-	-	-
KVAR	206,077	0.64	131,889	0.65	133,950
Total kWh and Revenue	1,789,221,671		21,720,325		22,117,309
Increase in Distribution Revenue			419,202		396,985 (22,218)
MGS-P Service Charge - Single Phase	405	70 59	70 505	74.04	00.400
Service Charge - Single Phase	1,538	70.58 109.25	28,585 168,027	71.94 111.36	29,136 171,272
kW Winter	69,589	3.36	233,820	3.42	237,995
kW Other	146,588	2.02	296,108	2.06	301,971
kWh Winter	23,709,450	-	-	-	-
kWh Other	45,412,096	-	-	-	-
KVAR	88,917	0.64	56,907	0.65	57,796
Total kWh and Revenue	69,121,546		783,446		798,170
Increase in Distribution Revenue			15,121		14,724

Docket No. 2010-051 March 15, 2010 Attachment 18 Page 2 of 3

Central Maine Power Company Distribution Rate Design ARP 2008 Docket No. 2010-051 July 2010 Price Change

محمد مستحادهما

- 410⁰⁰

		Distribution Rates 7/1/09			
	2009 Core Rate Billing Units 1/	Less One Year Adjustments 2/	Distribution Revenue 3/	Distribution Rates 7/1/10 2/	Distribution Revenue Check
ARP Decrease July 2010	(1)	(2)	(3) (1)*(2) 1.93000%	(4) (2)*% Change	(5) (1)*(4)
<u>IGS-5</u>					
Service Charge	2,486	95.72	237,960	95.81	238,184
kW-On Winter	341,907	1.89	646,205	1.93	659,881
kW-Sh Winter	336,732	1.07	360,304	1.09	367,038
kW-On Other kW-Sh Other	770,324 768,763	1.64 1.07	1,263,332 822,576	1.67 1.09	1,286,441 837,951
kWh-On Winter	43,701,780	-	-	-	
kWh-Sh Winter	34,303,420	-	-		-
kWh-Off Winter	67,327,670	-	-	-	-
kWh-On Other	98,225,460	-	-	-	-
kWh-Sh Other	48,825,200	-	-	-	-
kWh-Off Other	168,841,740	-	-	-	76 070
KVAR Total kWh and Revenue	461,225,270	0.64 _	74,908 3,405,285	0.65	76,079 3,465,575
Increase in Distribution Revenue	401,223,270	-	65,722		60,290
			00,712		(5,432)
IGS-P Service Charge	726	138.99	100,907	141.67	102,852
kW-On Winter	111,696	3.66	408,807	3.73	416,626
kW-Sh Winter	110,936	1.14	126,467	1.16	128,686
kW-On Other	242,408	1.64	397,550	1.67	404,822
kW-Sh Other	241,799	1.14	275,650	1.16	280,486
kWh-On Winter	13,896,450	0.002782	38,660	0.002824	39,244
kWh-Sh Winter	10,832,322	0.002271	24,600	0.002303	24,947
kWh-Off Winter	22,400,858	0.000871	19,511	0.000876	19,623
kWh-On Other	30,033,260	0.001653	49,645	0.001673	50,246
kWh-Sh Other kWh-Off Other	15,246,772 50,491,286	0.001563 0.000341	23,831 17,218	0.001581 0.000336	24,105 16,965
KVAR	53,277	0.64	34,097	0.65	34,630
Total kWh and Revenue	142,900,948		1,516,943		1,543,232
Increase in Distribution Revenue		_	29,277		26,289 (2,988)
LGS-S			а.		
Service Charge	134	474.00	63,516	488.20	65,419
kW-On Winter	46,384	2.75	127,555	2.80	129,874
kW-Sh Winter	45,285	1.40	63,399	1.43	64,758
kW-On Other	98,275	2.19	215,222	2.23	219,153
kW-Sh Other	98,209	1.40	137,493	1.43	140,439
kWh-On Winter kWh-Sh Winter	6,157,234 4,839,263		-		-
kWh-Off Winter	10,673,535	-	_	-	-
kWh-On Other	13,999,378	-	-	-	-
kWh-Sh Other	6,888,940	-	-	-	-
kWh-Off Other	26,850,344	-	-	-	-
KVAR	18,926	0.64	12,113	0.65	12,302
Total kWh and Revenue Increase in Distribution Revenue	69,408,694	-	<u>619,298</u> 11,952		<u>631,945</u> 12,647
			11,502		695
LGS-P			200 000	E0F 04	000 300
Service Charge	589 332 048	515.85	303,836 1,554,868	525.81 4.76	309,702 1 584 833
kW-On Winter kW-Sh Winter	332,948 328,236	4.67 1.31	429,989	4.76	1,584,833 439,836
kW-On Other	698,386	1.89	1,319,949	1.93	1,347,885
kW-Sh Other	696,269	1.18	821,597	1.20	835,522
kWh-On Winter	44,944,306	-	-	•	-
kWh-Sh Winter	34,877,582	-	-	-	-
kWh-Off Winter	77,540,261	-	-	-	-
kWh-On Other	99,290,729	-	-	-	-
kWh-Sh Other kWh-Off Other	48,675,302	-	-	-	-
	183,911,290	-	-	-	-

Docket No. 2010-051 March 15, 2010 Attachment 18 Page 3 of 3

Central Maine Power Company Distribution Rate Design ARP 2008 Docket No. 2010-051 July 2010 Price Change

	2009	Distribution Rates 7/1/09 Less			Distribution
	Core Rate Billing Units 1/	One Year Adjustments 2/	Distribution Revenue 3/	Distribution Rates 7/1/10 2/	Revenue Check
	(1)	(2)	(3)	(4)	(5)
ARP Decrease July 2010			(1)*(2) 1.93000%	(2)*% Change	(1)*(4)
KVAR	220,186	0.64	140,919	0.65	143,121
Total kWh and Revenue	489,239,470	_	4,571,157		4,660,899
Increase in Distribution Revenue			88,223		89,742 1,518
LGS-ST-TOU					1,010
Service Charge	624	501.63	313,017	511.31	319,057
kW-On Winter	444,780	-	-		•
kW-Sh Winter	454,081	-	-		-
kW-On Other	850,147	-	-		•
kW-Sh Other	831,904	-	-		•
kWh-On Winter	55,993,527	-	-		-
kWh-Sh Winter	48,313,588	-	-		-
kWh-Off Winter	108,424,203	-	-		-
kWh-On Other	113,553,616	-	-		-
kWh-Sh Other	52,865,563	-	-		-
kWh-Off Other	253,982,393	-	•		-
KVAR	301,657	-	-		-
Total kWh and Revenue	633,132,890	-	313,017		319,057
Increase in Distribution Revenue		-	6,041		6,040
					(1)
LGS-T-TOU	208	700.88	145,783	714.41	148,597
Service Charge	208	700.00	140,700	7 14.41	140,087
kW-On Winter	344,599	-	•		•
kW-Sh Winter	346,792	-	•		-
kW-On Other	979,003	•	-		-
kW-Sh Other	843,070	•	-		•
kWh-On Winter	25,573,777	•	-		•
kWh-Sh Winter	24,714,260	-	-		•
kWh-Off Winter	65,270,882	-			-
kWh-On Other	74,234,154	•	-		-
kWh-Sh Other	31,319,593	•	-		•
kWh-Off Other	199,644,775	-	-		•
KVAR	554,533	• •	446 700	• •	149 507
Total kWh and Revenue	420,757,441	•	145,783		<u>148,597</u> 2,814
Increase in Distribution Revenue			2,814		2,014
AL4/	9,554,110	0.155576	1,486,390	0.158579	1,515,081
<u>SL 4/</u>	27,380,923	0.196131	5,370,248	0.199916	5,473,885
Total	8,058,741,763	-	\$ 203,408,935		\$ 207,320,293
Total Increase			\$ 3,925,792		\$
Notes:					1.92%

Notes:

· **** -

بالمستقصات بالجارية

ي مو

1/ Adjusted 2009 core billing units. 2/ See Attachment 17

3/ Distribution Rate change from Attachment 1 - July 2010 Price Change applied to revenue, by class, to determined the expected r 4/ Individual fixture prices will be provided in the compliance filing.

s and

Docket No. A 51 March 15, 2010 Attachment 19 Page 1 of 8

Central Maine Power Company Rate Summary For Rates Effective July 1, 2010

Stranded Transmission Total Rates % Cha Effective Total Rates % Cha Effective % Cha 711/2009 2/ 711/2010 711/2010 711/2010 711/2010 Compo 711/2009 2/ 1.51 5 1.42 5 8.27 5 8.36 - 711/2010 - 0.015475 0.057269 0.058017 - - 0 0.005167 0.015475 0.059033 0.092163 - - 0 0.005113 0.015475 0.037234 0.037568 - - 0 0.005146 0.015475 0.037234 0.037568 - - 0 0.00517 0.015475 0.037234 0.037568 - - 0 0.001746 0.015475 0.037234 0.037568 - - 0.001746 0.015475 0.037234 0.037568 - - - - - - - - - - - - - </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>•</th> <th></th> <th></th> <th></th>						•			
6 5 5,12 5 0.008 5 1,44 5 1,42 5 8,27 5 8,36 Mh > 100 0.033412 0.006822 0.001500 0.015475 0.015475 0.003018 0.0037560 0.0037766 P 0.066823 0.0016802 0.001500 0.001740 0.015475 0.079068 0.0037766 P 0.066872 0.001500 0.001740 0.015475 0.079068 0.037766 0.017531 0.000882 0.001500 0.001746 0.015475 0.079068 0.037766 0.017531 0.000882 0.001500 0.001746 0.015475 0.079056 0.0397768 0.017531 0.000882 0.001500 0.001746 0.015475 0.079056 0.0397768 0.017731 0.000882 0.001500 0.001746 0.015475 0.079056 0.010574 0.017739 0.000882 0.001500 0.001746 0.015475 0.010552 0.010552 0.017739 0.001779 0.015476		Distribution Rates 7/1/2010 1/	ELP Assessment 7/1/2010	Conservation and Solar Assessment 7/1/2010	Stranded Cost Rates 7/1/2009 2/	Transmission Rates 7/1/2009 3/	Total Rates Effective 7/1/2010	Total Rates Effective 7/1/2009	% Change in Component
Mh > 100 0.033412 0.000882 0.001500 0.015475 0.057269 0.056071 0.07508 0.056071 0.07508 0.07508 0.07508 0.07508 0.07508 0.07508 0.07508 0.002724 0.007508 0.007574 0.007552 0.007562 0.007562 0.007574 0.007552 0.007552 0.007562 0.007562 0.0	R large								-1.12%
Image: bit is a constrained of the constraint of the constrant of the constraint of the constraint of the constrain	e kWh > 100	0.039412	0.000882	0.001500	•	0.015475	0.057269	0.058017	-1.29%
0.055117 0.000882 0.001500 0.005667 0.015475 0.075966 0.075966 0.017531 0.000882 0.001500 0.001465 0.015475 0.037568 0.037568 0.017531 0.000882 0.001500 0.001465 0.015475 0.039568 0.037568 0.017531 0.000882 0.001500 0.001500 0.0015475 0.037548 0.037568 0.017731 0.000882 0.001500 0.001500 0.015475 0.037544 0.037548 0.01779 0.001279 0.001500 0.001500 0.001500 0.010574 0.037548 0.01779 0.001279 0.001500 0.001500 0.002188 0.01550 0.010574 0.001279 0.001500 0.001500 0.002188 0.004701 0.010550 0.010574 0.001279 0.001500 0.001500 0.002188 0.004701 0.01574 0.047 0.01729 0.001200 0.001500 0.001500 0.001500 0.01551 0.047 0.047 0	harge eak	6.86 0.066923	0.000882	0.001500	0.006113	0.015475	6.86 0.090893	6.99 0.092163	-1.86% -1.38%
0.017531 0.000822 0.001500 0.001745 0.015575 0.037568 0.017531 0.000882 0.001500 0.001500 0.001550 0.01557 0.037568 0.015517 0.000882 0.001500 0.001500 0.001574 0.037568 0.017531 0.000882 0.001500 0.001500 0.001574 0.037648 0.01779 0.000882 0.001500 0.001500 0.001574 0.037648 0.01779 0.000882 0.001500 0.002188 0.004701 0.0195574 0.019574 0.001279 0.000882 0.001500 0.002188 0.004701 0.0195574 0.019574 0.001279 0.000882 0.001500 0.002188 0.004701 0.015554 0.015574 0.01779 0.000882 0.001500 0.002188 0.004701 0.015552 0.015574 0.023366 0.000882 0.001500 0.0023047 0.015166 0.015552 0.17.39 0.023366 0.000882 0.001500 0.00347 0.015166	der	0.055117	0.000882	0.001500	0.005067	0.015475	0.07 8041	0.079086	-1.32%
Image: 1000882 0.000150 0.000150 0.000150 0.000150 0.000151 0.0015417 0.000882 0.000156 0.01745 0.000883 0.003566 0.001763 0.017634 0.0078041 0.007804 0.007805 0.007574 0.007805 0.001574 0.007804 0.007574 0.007574 0.007574 0.007574 0.007574 0.007574 0.007574 0.007574 0.001574 0.001574 0.001574 0.007574 0.001574 0.001574 0.001574 0.001574 0.0015574 0.007574 0.0015574 0.0015574 0.0015574 0.0015574 0.0015574 0.0015574 0.0015574 0.0015574 0.0015574 0.0015574 0.001552 0.0015522 0.0015522 0.0015522 0.0015522 0.0015522 0.0015552 0.0	eak	0.017631	0.000882	0.001500	0.001746	0.015475	0,037234	0.037568	-0.89%
Parase 10.27 0.000882 0.001500 0.001575 0.00756 0.01574 0.00756 Pe 8.96 0.001279 0.000882 0.001500 0.001574 0.00756 0.01574 0.00756 Pe 0.001279 0.000882 0.001500 0.001500 0.001574 0.007556 0.001574 0.007574 Pe 0.001279 0.000882 0.001500 0.001500 0.001574 0.01574 0.01574 Perse 110.27 1	¥e ja	0.066923	0.000882	0.001500	0.006113	0.015475	0.090893	0.092163 D.072086	-1.38%
Image: Big b	i K	0.017631	0,000882	0.001500	0.001746	0.015475	0.037234	0.037568	-0.89%
le Phase 10.27 10.27 10.47 e Phase 17.06 17.06 17.39 e Phase 17.06	arge sr	8.96 0.001279 0.001279	0.000882 0.000882	0.001500 0.001500	0.002188 0.002188	0.004701 0.004701	8.96 0.010550 0.010550	9.13 0.010574 0.010574	-1.86% -0.23% -0.23%
25.38 - 25.38 25.87 33.09 - 0.49 4.74 9.07 9.15 33.09 - 0.49 4.74 9.07 9.15 33.09 33.72 0.001500 0.001500 0.004784 0.004784 0.004784 - 0.000882 0.001500 0.002402 0.004784 0.004784 0.004784 - 0.0007802 0.001500 0.002402 0.004784 0.004784 0.004784 - 0.0007802 0.001500 0.002402 0.004784 0.004784 0.004784 - 0.001500 0.002402 0.004784 0.004784 0.004784 0.004784 - 0.001500 0.002402 0.004784 0.004784 0.004784 111.36 - - 0.41 4.49 8.32 8.39 - 0.00882 0.001500 0.002467 0.004849 0.004849 - 0.001500 0.002467 0.004849 0.004849 0.004849 - 0.004849 0.004849 0.004849 0.004849 0.04	<u>W</u> ingle Phase hree Phase ar	10.27 17,06 0.029366 0.029366	- 0.000882 0.000882	0.001500 0.001500	0.003047 0.003047	0.015166 0.015166	10.27 17.06 0.049961 0.049961	10.47 17.39 0.050522 0.050522	-1.91% -1.90% -1.11%
33.09 - 0.49 4.74 9.07 9.15 2.85 - 0.001500 0.049 4.74 9.07 9.15 2.85 - 0.000882 0.001500 0.002402 0.004784 0.004784 0.004784 - 0.000882 0.001500 0.002402 0.004784 0.004784 0.004784 - 0.000882 0.001500 0.002402 0.004784 0.004784 0.004784 - 0.000882 0.001500 0.002402 0.004784 0.004784 0.004784 - 0.001500 0.002402 0.004784 0.004784 0.004784 0.004784 - 0.001500 0.002402 0.004784 0.004784 0.004784 0.004784 - 0.44 - - 71.94 73.31 111.36 113.47 - 0.001500 0.002467 0.04849 0.004849 0.004849 0.04849 - 0.001500 0.002467 0.004849 0.004849 0.048489 0.048489	single Phase	25.38	ı				25.38	25.87	-1.89%
r 3.84 - 0.49 4.74 9.07 9.15 2.85 - 0.000882 0.001500 0.04794 0.004784 0.004784 - 0.000882 0.001500 0.002402 0.004784 0.004784 0.004784 - 0.000882 0.001500 0.002402 0.004784 0.004784 0.004784 - 0.00382 0.001500 0.002402 0.004784 0.004784 0.004784 - 0.004784 0.004784 0.004784 0.004784 0.004784 - 0.65 - 0.004784 0.004784 0.004784 - 0.65 - 0.004784 0.004784 0.004784 - 0.65 - 0.004784 0.004784 0.004784 - 0.44 - - 0.44 7.3.31 - 3.42 - 0.41 4.49 8.32 8.39 - 0.001500 0.001500 0.002467 0.004849 0.004849 - 0.000882 0.001500 0.002467 0.004849 0.004849 - 0.004849 0.004849 0.004849 0.004849	hree Phase	33.09	ı				33.09	33.72	-1.87%
2.85 - 0.49 4.74 8.08 8.14 - 0.000882 0.001500 0.002402 0.004784 0.004784 - 0.000882 0.001500 0.002402 0.004784 0.004784 - 0.00382 0.001500 0.002402 0.004784 0.004784 - 0.00382 0.001500 0.002402 0.004784 0.004784 - 0.055 - 0.004784 0.004784 0.004784 - 0.055 - 0.004784 0.004784 0.004784 - 0.65 0.004784 0.004784 0.004784 - 0.65 - 0.65 0.66 - 3.42 - - 111.36 113.47 - 2.06 - 0.41 4.49 8.32 8.39 - 0.000882 0.001500 0.002467 0.004849 0.004849 - 0.000882 0.001500 0.002467 0.004849 0.004849 - 0.001500 0.002467 0.004849 0.004849	ter	3.84	•		0.49	4.74	9.07	9.15	-0.87%
- 0.000882 0.001500 0.002402 0.004784 0.004849 0.	er E	2.85	•		0.49	4.74	8.08	8.14	-0.74%
- 0.000882 0.001500 0.002402 0.004764 0.004764 0.004764 0.004764 0.004764 0.004764 0.004764 0.004764 0.004764 0.004764 0.00466 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.004849 0.004867 0.004867 0.004867 0.004867 0.004867 0.004869 0.004867 0.004867 0.004867 0.004	L	·	0.000882	0.001500	0.002402		0.004784	0.004784	0.00%
ree 71.94 73.31 ree Phase 71.94 73.31 ree Phase 111.36 - re Phase 111.36 - r 3.42 - 0.41 4.49 8.32 r 2.06 - 0.41 4.49 8.32 r 2.06 - 0.001500 0.002467 0.004849 0.65 0.000882 0.001500 0.002467 0.004849		- 0.65	0,000882	nneLnn.n	0.002402		0.004/84	0.66	u.uu% -1.52%
The Phase 111.36 - 113.47 - 111.36 113.47 - 111.36 113.47 - 111.36 113.47 - 111.36 113.47 - 111.36 113.47 - 111.36 113.47 - 111.36 113.47 - 111.36 113.47 - 113.47 - 113.49 113.47 - 113.49 113.47 - 113.49 113.47 - 113.49 113.47 - 113.49 113.47 - 113.49 113.47 - 113.49 113.47 - 113.49 113.47 - 113.49 113.47 - 113.49 113.47 - 113.49 113.47 - 113.49 113.47 - 113.49 113.47 - 113.49 113.47 - 113.47 - 113.49 113.47 - 113.47 - 113.48 113.47 - 113.48 113.47 - 113.48 113.47 - 113.48 113.47 - 113.48 113.47 - 113.48 113.47 - 113.48 113.47 - 113.48 113.47 - 113.48 113.47 - 113.48 113.47 - 113.48 113.47 - 113.48 113.47 - 113.48 113	ingle Phase	71.94	ı				71.94	73.31	-1.87%
r 3.42 - 0.41 4.49 8.32 8.39 - 0.41 4.49 8.32 8.39 - 0.41 4.49 8.32 8.39 - 0.41 4.49 6.96 7.00 - 0.000882 0.001500 0.002467 4.49 0.004860 0.004849 0.004849 0.004849 0.004860 0.004849 0.004849 0.004849 0.004849 0.004849 0.004849 0.004849 0.004860 0.004849 0.004860 0.004849 0.004860 0.004849 0.004849 0.004849 0.004849 0.004860 0.004849 0.004849 0.004860 0.004849 0.004860 0.004849 0.004860 0.004849 0.004860 0.004849 0.004860 0.004860 0.004860 0.004860 0.004860 0.004860 0.004860 0.004860 0.004860 0.004860 0.004860 0.004860 0.004860 0.004860	hree Phase	111.36	•				111.36	113.47	-1.86%
- 2.06 - 0.000882 0.001500 0.002467 4.49 6.96 7.00 - 0.002882 0.001500 0.002467 0.004849 0.004849 - 0.004849 0.004840000004849 0.004849 0.004849 0.004849 0.004849 0.004849 0.004849 0.	ter	3,42	•		0.41	4.49	8.32	8.39	-0.83%
- 0.000882 0.001500 0.002467 0.004849 0.004849 - 0.000882 0.001500 0.002467 0.004849 0.004849 0.65 0.66	5	2.06	I		0.41	4.49	6.96	7.00	-0.57%
0.000882 0.001500 0.002467 0.004849 0.004849 0.65 0.66	-	٠	0.000882	0.001500	0.002467		0.004849	0.004849	0.00%
		-065	0.000882	0.001500	0.002467		0.004849 0.65	0.004849 0.66	0.00%

M:\P&A\RRRVARP in 2010\Final_Mar15 filing\ARP2010 Attachments.xls

elivery Price Summary

h

Docket No. 3 151 March 15, 2010 Attachment 19 Page 2 of 8

٤

• •

Central Maine Power Company Rate Summary For Rates Effective July 1, 2010

	Rates 7/1/2010 1/	Assessment 7/1/2010	Assessment 7/1/2010	Cost Rates 7/1/2009 2/	Rates 7/1/2009 3/	Effective 7/1/2010	Effective 7/1/2009	in Component
6\$-\$								
Customer Charge	95.81	- 1				95.81	99.42	-3.63%
kW-On Winter	1.93	ı		0.41	6.09	8.43	8.46	-0.35%
kW-Sh Winter	1.09	•		0.41		1.50	1.52	-1.32%
-On Other	1.67	'		0.41	6.09	8.17	8.20	-0.37%
kW-Sh Other	1.09	•		0.41		1.50	1.52	-1.32%
kWh-On Winter		0.000882	0.001500	0.003086		0.005468	0.005468	0.00%
kWh-Sh Winter	•	0.000882	0.001500	0.003086		0.005468	0.005468	0.00%
kWh-Off Winter	,	0.000882	0.001500	0.003086		0.005468	0.005468	0.00%
h-On Other		0.000882	0.001500	0.003086		0.005468	0.005468	%00'0
h-Sh Other	•	0.000882	0.001500	0.003086		0.005468	0.005468	0.00%
kWh-Off Other	•	0.000882	0.001500	0.003086		0.005468	0.005468	0.00%
KVAR	0.65					0.65	0.66	-1.52%
GS-P								
Customer Charge	141,67	•				141.67	144.36	-1.86%
kW-On Winter	3.73	•		0.23	5.51	9.47	9.54	-0.73%
kW-Sh Winter	. 1.16			0.23		1.39	1.41	-1.42%
-On Other	1.67	ı		0.23	5.51	7.41	7.44	-0.40%
kW-Sh Other	1.16	•		0.23		1.39	1.41	-1.42%
kWh-On Winter	0.002824	0.000882	0.001500	0.002691		0.007897	0.007963	-0.83%
h-Sh Winter	0.002303	0.000882	0.001500	0.002691		0.007376	0.007432	-0.75%
kWh-Off Winter	0.000876	0.000882	0.001500	0.002691		0.005949	0.005978	-0.49%
kWh-On Other	0.001673	0.000882	0.001500	0,002691		0.006746	0.006790	-0.65%
kWh-Sh Other	0.001581	0.000882	0.001500	0.002691		0.006654	0.006696	-0.63%
kWh-Off Other	0.000336	0.000882	0.001500	0,002691		0.005409	0.005427	-0.33%
KVAR	0.65	•	,	1		0.65	0.66	-1.52%

M:\P&A\RRRVARP in 2010\Final_Mar15 filing\ARP2010 Attachments.xls

.

ی مربقہ Athen Rrice Summary

Docket No. 2 × 1 March 15, 2010 Attachment 19 Page 3 of 8

Central Maine Power Company Rate Summary For Rates Effective July 1, 2010

Assessment Cost Rates Rates Effective		Distribution	đ	Conservation and Solar	Stranded	Transmission	Total Rates	Total Rates	% Change
71/2010 // 71/2010 71/2009 2/ 71/2009 3/ 71/2010 3/		Rates	Assessment	Assessment	Cost Rates	Rates	Effective	Effective	in
488.20 - - - 488.20 - 42.31 <th></th> <th>7/1/2010 1/</th> <th>7/1/2010</th> <th>7/1/2010</th> <th>7/1/2009 2/</th> <th>7/1/2009 3/</th> <th>7/1/2010</th> <th>7/1/2009</th> <th>Component</th>		7/1/2010 1/	7/1/2010	7/1/2010	7/1/2009 2/	7/1/2009 3/	7/1/2010	7/1/2009	Component
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LGS-S								
2.80 - 0.36 6.15 9.31 9.37 1.43 1.43 - 0.00082 0.001500 0.005512 0.0055844 0.0055844 0.0055844 0.0055844 0.0055844 0.0055844 0.0055844 0.0055844 0.0055844 0.0055844 0.0055844 0.0055844 0.0055844 0.0055844 0.0055844 0.0055844 0.0055844 0.0055844 0	Customer Charge	488.20	•		ı		488.20	492.31	-0.83%
$ \begin{bmatrix} 143 & . & . & . & . & . & . & . & . & . & $	kW-On Winter	2.80	I		0.36	6.15	9.31	9.37	-0.64%
223 - 0.00682 0.001500 0.005594 0.01564 0.43 0.43 0.43 0	kW-Sh Winter	1.43	1		0.36		1.79	1.81	-1.10%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	kW-On Other	2.23	•		0.36	6.15	8.74	8.78	-0.46%
- 0.000882 0.001500 0.003512 0.003594 0.003594 - 0.000882 0.001500 0.003512 0.003594 0.003594 - 0.000882 0.001500 0.003512 0.003594 0.003594 - 0.000882 0.001500 0.003512 0.003594 0.003594 - 0.000882 0.001500 0.003512 0.003594 0.003594 - 0.000882 0.001500 0.003512 0.003594 0.003594 - 0.000882 0.001500 0.003512 0.003594 0.003594 - - 0.001500 0.003512 0.005584 0.005594 - - 0.001500 0.002397 0.005596 0.005596 - - 0.001500 0.002399 0.005596 0.005596 - - 0.001500 0.002399 0.005596 0.005596 - - 0.000302 0.001500 0.002399 0.005596 0.005596 - <	kW-Sh Other	1,43	•		0.36		1.79	1.81	-1.10%
- 0.000882 0.001500 0.003512 0.003594 0.003594 - 0.000882 0.001500 0.003512 0.003594 0.003594 - 0.000882 0.001500 0.003512 0.003594 0.005594 - 0.000882 0.001500 0.003512 0.005594 0.005594 - 0.000882 0.001500 0.003512 0.005594 0.005594 - 0.000882 0.001500 0.003512 0.005594 0.005594 - 0.000882 0.001500 0.003512 0.005594 0.005594 - 0.000882 0.001500 0.002397 0.005599 0.005599 - 1.20 0.000882 0.001500 0.002399 0.005599 - 0.000882 0.001500 0.002399 0.005599 0.005599 - 0.000882 0.001500 0.002399 0.005599 0.005599 - 0.000882 0.001500 0.002399 0.005599 0.005599 -	kWh-On Winter		0.000882	0.001500	0.003512		0.005894	0.005894	0.00%
- 0.000882 0.001500 0.005504 0.005594 0.005594 - 0.000882 0.001500 0.005512 0.005594 0.005594 - 0.000882 0.001500 0.005512 0.005594 0.005594 - 0.000882 0.001500 0.005512 0.005594 0.005594 - 0.000882 0.001500 0.005591 0.005594 0.005594 - 0.000582 0.001500 0.005591 0.005594 0.005594 - - 0.000582 0.001500 0.005595 0.005594 0.005594 - - - 0.001500 0.001500 0.005595 0.005596 0.005596 - - 0.000182 0.001500 0.002387 0.005596 0.005596 0.005596 - - 0.000182 0.001500 0.002387 0.005596 0.005596 - - 0.000182 0.001500 0.002596 0.005596 0.005596 - - 0.000192 0.001590 0.005596 0.005596 0.005596	kWh-Sh Winter	•	0.000882	0.001500	0.003512		0.005894	0.005894	0,00%
- 0.00082 0.001500 0.005594 0.005594 0.005594 - 0.000882 0.001500 0.005594 0.005594 0.005594 - 0.00682 0.001500 0.005591 0.005594 0.005594 - 0.00682 0.001500 0.005594 0.005594 0.005594 - 0.00682 0.005694 0.005594 0.005594 0.005594 - - - - - - 0.65 0.005594 - - - - - - - 0.005594 0.005594 0.005594 - - 0.28 6.18 1.122 11.31 - - 1.42 - - - 0.000882 0.001500 0.002367 0.005596 0.005596 0.005596 0.005596 0.005596 0.005596 0.005596 0.005596 0.005596 0.005596 0.005596 0.005596 0.005596 0.005596 0.005596 0.005596 0.005596	kWh-Off Winter	•	0.000882	0.001500	0.003512		0.005894	0.005894	0.00%
5.25.81 5.35.78 0.005599	kWh-On Other	•	0 000882	0.001500	0 003512		0 005894	0 005894	000%
- -	kWh-Sh Other	•	0 000882	0.001500	0.003512		0.005894	0.005894	%0UU
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	kWh-Off Other		0.000882	0.001500	0.003512		0.00000	0.005894	0.00%
525.81 - - - 525.81 535.78 1.34 - - 0.28 6.18 1.1.22 11.31 1.34 - 0.28 6.18 1.1.21 11.31 1.34 - 0.28 6.18 1.62 1.64 1.34 - 0.28 9.18 1.61 1.33 - 0.000882 0.001500 0.002369 0.005369 0.005369 - 0.000882 0.001500 0.002367 0.005369 0.005369 - 0.000882 0.001500 0.002367 0.005369 0.005369 - 0.000882 0.001500 0.002367 0.005369 0.005369 - 0.000882 0.001500 0.002367 0.005369 0.005369 - 0.000882 0.001500 0.002367 0.005369 0.005369 - 0.000882 0.001500 0.002369 0.005369 0.005369 - 0.000882 0.001500 0.002369 0.005369 0.005369 - 0.000882 0.001500 0.002369 0.005369 0.005369 - 0.000882 0.001500 0.005369 0.005369 0.005369 -	KVAR	0.65	-				0.65	0.66	-1.52%
525.81 - - - - 525.81 535.78 - 4.76 - - 0.28 6.18 11.22 11.31 - 1.34 - - 0.28 6.18 11.22 11.31 - 1.34 - - 0.28 6.18 11.22 11.31 - 1.20 - 0.000882 0.001500 0.002887 0.005869 0.005569 - 0.000882 0.001500 0.002887 0.005369 0.005569 0.005569 - 0.000882 0.001500 0.002887 0.005369 0.005569 0.005569 - 0.000882 0.001500 0.002887 0.005589 0.005569 0.005569 - 0.000882 0.001500 0.002887 0.005589 0.005589 0.005589 - 0.000882 0.001500 0.002389 0.005589 0.005589 0.005589 - 0.000882 0.001500 0.0025887 0.005589 0.005589 0.05589 - 0.000882 0.001500 0.005589									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LGS-P								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Customer Charge	525.81	•		•		525.81	535.78	-1.86%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	kW-On Winter	4.76	ı		0.28	6.18	11.22	11.31	-0.80%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	kW-Sh Winter	1.34			0.28		1.62	1.64	-1.22%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	kW-On Other	1.93	•		0.28	6.18	8.39	8.42	-0.36%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	kW-Sh Other	1.20	1		0.28		1.48	1.51	-1.99%
- 0.000882 0.001500 0.002987 0.005369 0.0165 0.0165 0.0165 0.0165 0.01665 0.01665 0.01665 0.010650 0.010650 0.010650 0.010650 0.010650 0.010650 0.010650 0.010650 0.010650 0.000050 0.0100500 0.010650	kWh-On Winter	•	0.000882	0.001500	0.002987		0.005369	0.005369	0.00%
- 0.000882 0.001500 0.002987 0.005369 0.43 0.0106	kWh-Sh Winter	••	0.000882	0.001500	0.002987		0.005369	0.005369	0.00%
- 0.000882 0.001500 0.002987 0.005369 0.005369 0.005369 - 0.000882 0.001500 0.002987 0.005369 0.005369 0.005369 - 0.000882 0.001500 0.002987 0.005369 0.005369 0.005369 - 0.000882 0.001500 0.002987 0.005369 0.005369 0.005369 - 0.000882 0.001500 0.002987 0.005369 0.005369 0.005369 0.65 - - 0.002367 0.002369 0.005369 0.005369 1.31 - - - - 0.01316 0.43 0.43 - - 0.43 0.43 0.43 0.43 0.43 - - 0.043 0.43 0.43 0.43 - - 0.00050 0.001055 0.001065 0.001065 - - 0.43 0.43 0.43 0.43 - - 0.00050 0.001065 0.001065 0.001065 - - 0.000050 -<	kWh-Off Winter	•	0.000882	0.001500	0.002987		0.005369	0.005369	0.00%
- 0.000882 0.001500 0.002987 0.005369 0.005369 0.005369 - 0.000882 0.001500 0.002987 0.005369 0.005369 0.005369 - 0.000882 0.001500 0.002987 0.005369 0.005369 0.005369 0.65 - 0.001500 0.002987 0.005369 0.005369 0.005369 0.131 - - - - - - 0.055 0.0565 - - - - - - - - 0.055 0.005369 - - - - - - - 0.055 0.055 0.055 - - - - - - 0.43 0.43 0.43 0.43 - - - - - 0.043 0.043 0.043 0.43 - - - - 0.043 0.43 0.43 0.43 - - - 0.00050 0.000050 0.001065 0.001065 0.001065 <td>kWh-On Other</td> <td>•</td> <td>0.000882</td> <td>0.001500</td> <td>0,002987</td> <td></td> <td>0.005369</td> <td>0.005369</td> <td>0.00%</td>	kWh-On Other	•	0.000882	0.001500	0,002987		0.005369	0.005369	0.00%
- 0.000882 0.001500 0.002987 0.005369 0.043 0.01005 <td>kWh-Sh Other</td> <td>•</td> <td>0.000882</td> <td>0.001500</td> <td>0.002987</td> <td></td> <td>0.005369</td> <td>0.005369</td> <td>0.00%</td>	kWh-Sh Other	•	0.000882	0.001500	0.002987		0.005369	0.005369	0.00%
0.65 0.65 0.65 0.65 0.65 0.66 511.31 - - - 511.31 521.01 - - - 0.43 0.43 0.43 0.43 0.43 - - 0.43 0.43 0.43 0.43 0.43 - - 0.43 0.43 0.43 0.43 0.43 - - 0.43 0.43 0.43 0.43 0.43 - - 0.00050 0.001015 0.43 0.43 0.43 - - 0.00050 0.001015 0.001065 0.001065 0.001065 - - 0.000050 - 0.000050 0.000050 0.000050 0.000050 - - 0.19 0.19 0.19 0.19 0.19 0.19	kWh-Off Other		0.000882	0.001500	0.002987		0.005369	0.005369	0.00%
511.31 521.01 - - - 511.31 521.01 - - 0.43 0.43 0.43 0.43 - - 0.43 0.43 0.43 0.43 0.43 - - 0.43 0.43 0.43 0.43 0.43 - - 0.43 Note 4 0.43 0.43 0.43 - - 0.000050 0.001015 0.0301065 0.001065 0.001065 0.001065 - - 0.000050 0.001015 0.001065 0.001065 0.001065 0.001065 - - 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 - - 0.19 0.19 0.19 0.19 0.19 0.19	KVAR	0.65	•				0.65	0.66	-1.52%
511.31 - - 511.31 521.01 - - - - 0.43 0.43 0.43 0.43 - - - 0.43 0.43 0.43 0.43 - - - 0.43 0.43 0.43 0.43 - - - 0.43 0.43 0.43 0.43 - - 0.00050 0.001015 0.001065 0.001065 0.001065 - - 0.000050 - 0.001065 0.001065 0.0000650 - - 0.000050 - 0.000050 0.000050 0.000050 - - 0.000050 - 0.000050 0.000050 0.000050 - - 0.000050 - 0.000050 0.000050 0.000050 - - - 0.19 0.19 0.19 0.19 0.19	LGS-ST-TOU								
- - 0.43 0.43 0.43 - - - 0.43 0.43 0.43 - - - 0.43 0.43 0.43 - - - 0.43 0.43 0.43 - - - 0.43 0.43 0.43 - - 0.43 0.43 0.43 0.43 - - 0.00050 0.00105 0.01055 0.001065 - - 0.00050 0.001065 0.001065 0.001065 - - 0.000050 - 0.000050 0.000050 - - 0.000050 - 0.000050 0.000050 - - 0.000050 - 0.000050 0.000050 - - 0.000050 - 0.000050 0.000050	Customer Charge	511.31	•		1		511,31	521.01	-1.86%
- 0.43 0.43 0.43 0.43 - - - 0.43 0.43 0.43 - - - 0.43 0.43 0.43 - - - 0.00050 0.01015 0.43 - - - 0.00050 0.001055 0.001065 - - 0.00050 - 0.00050 - - 0.00050 - 0.00050 - - 0.00050 - 0.00050 - - 0.00050 - 0.00050 - - 0.00050 - 0.00050 - - 0.00050 - 0.00050 - - 0.00050 - 0.00050	kW-On Winter		ı		0.43		0.43	0.43	0.00%
- - 0.43 Note 4 0.43 0.43 - - - 0.43 0.43 0.43 0.43 - - - 0.00050 0.001015 0.001065 0.001065 0.001065 - - - 0.00050 0.001015 0.001065 0.001065 0.001065 - - 0.000050 - 0.001055 0.001065 0.001065 - - 0.000050 - 0.000050 0.000050 0.000050 - - 0.000050 - 0.000050 0.000050 0.000050 - - 0.000050 - 0.000050 0.000050 0.000050 - - 0.000050 - 0.000050 0.000050 0.000050 - - 0.19 0.19 0.19 0.19 0.19	kW-Sh Winter	ı	•		0.43		0.43	0.43	0.00%
- - - 0.43 0.43 0.43 - - - 0.00050 0.001015 0.001065 0.001065 - - - 0.00050 0.001015 0.001065 0.001065 - - - 0.00050 - 0.001065 0.001065 - - 0.00050 - 0.00050 0.00050 - - 0.00050 - 0.00050 0.00050 - - 0.00050 - 0.00050 0.00050 - - 0.00050 - 0.00050 0.00050 - - 0.00050 - 0.00050 0.00050	kW-On Other	•	ı		0.43	Note 4	0.43	0.43	%00.0
- - 0.00050 0.001055 0.001065 0.000050 0.0000050 0.000050<	kW-Sh Other	•			0.43		0.43	0.43	0.00%
· ·	kWh-On Winter	1	•	0,000050	0.001015		0.001065	0.001065	0.00%
· · 0.00050 · 0.00050 0.000050 0.00050	kWh-Sh Winter	•	ı	0.000050	0.001015		0.001065	0.001065	%00.0
0.00050 - 0.00050 0.00050 0.00050 - 0.00050 0.00050 0.00050 - 0.00050 0.00050 - 0.00050 - 0.19 0.19	kWh-Off Winter	•	•	0,000050	•		0,000050	0.000050	%00.0
0.00050 - 0.00050 0.00050 0.00050 - 0.00050 0.00050 0.19 0.19	kWh-On Other	•	•	0.000050	•		0.000050	0.000050	%00 ^{.00}
· • • • • • • • • • • • • • • • • • • •	kWh-Sh Other	•	ı	0.000050	•		0.000050	0,000050	%00.0
0,19 0,19 0,19 0,19	kWh-Off Other		•	0.000050	•		0.000050	0.000050	%00.0
	KVAR	•	'		0.19		0.19	0.19	%0000

M:/P&A/RRR/ARP in 2010/Final_Mar15 filing/ARP2010 Attachments.xls

Jelivery Price Summary Ť

ہ Docket No. گھ 15, 2010 Attachment 19 Page 4 of 8

•

Central Maine Power Company Rate Summary For Rates Effective July 1, 2010

	Distribution	ELP Accessment	Conservation and Solar	Stranded	Transmission Dates	Total Rates Effective	Total Rates Effective	% Change in
	7/1/2010 1/	7/1/2010	7/1/2010	7/1/2009 2/	7/1/2009 3/	7/1/2010	7/1/2009	Component
LGS-T-TOU Customer Chame	714.41			ı		714.41	727.96	-1.86%
kW-On Winter	•	,		0.40		0.40	0.40	00
kW-Sh Winter	•			0.40		0.40	0.40	0.0
kW-On Other	•	,		0.40	Note 4	0.40	0.40	0.0
kW-Sh Other		1		0.40		0.40	0.40	0.0
kWh-On Winter			0.000050	0.001210		0.001260	0.001260	0.0
kWh-Sh Winter	•	•	0.000050	0.001210		0.001260	0.001260	0.00%
kWh-Off Winter		ı	0.000050	•		0.000050	0.000050	0.0
kWh-On Other	•	•	0.000050	•		0.000050	0.000050	0.0
kWh-Sh Other	•	•	0.000050	•		0.000050	0.000050	0.0
kWh-Off Other	•	•	0.000050	٠		0.000050	0.000050	0.0
KVAR	•	•		0.19		0.19	0.19	0.0
Å 양	0.158579 0.199916	0.000882 0.000882	0.001500 0.001500	0.002284 0.002289	0.011524 0.011524	0.174769 0.216111	0.177777 0.219904	-1.69% -1.72%
Total								

Notes:

Distribution Rates from Docket No. 2010-051
 Stranded Cost Rates from Docket No. 2009-090
 I ransmission rates for distribution level customers, effective July 1, 2009. Will be updated later in this proceeding 4/ Transmission level customers purchase transmission services in accordance with the ISO Transmission Market and Services Tariff, and as a result, the prices are not included here.

M:/P&A\RRRVARP in 2010/Final_Mar15 filing\ARP2010 Attachments.xls

Chell Mane France Cancel Ball Remark Chell Mane France Cancel Ball Remark Chell Remar	Å Jelivery Price Summary	mary				- 34 - 24					Docket No. 24 51 March 15, 2010 Attachment 19 Page 5 of 8	5. 24 51 ch 15, 2010 achment 19 Page 5 of 8
AB: Controlling Control						Central Maine Rate S For Rates Effec	Power Company ummary tive July 1, 2010					
ALR LIGROUCION Addition Lignoutication Lignoutication <thlignoutication< th=""> <</thlignoutication<>		2009 Core Rate		ELP	Revenues Ju Conseration	ly 1, 2010 Stranded		Total	7/1/2010	Total Delivery Revenue		Total Delivery
ALAL 6.34,14 2.73,120 511.53 6.65,166 6.07,177 5.277,176 5.277,176 5.277,176 5.277,166 5.277,166 5.277,166 5.277,166 5.277,166 5.277,166 5.277,166 5.277,166 5.277,166 5.277,166 5.277,166 5.277,166 7.516,177 5.000 5.177,266 7.68,19 5.000 5.177,266 7.68,19			Distribution	Assessment	Assessment	Costs	Iransmission	Delivery	Avg KWh	6007/1//	Avg KWh	Change
Derivative constraints 248.368 411.666 - 24.203.31 617.0001 169.0001 169.0001 169.0006	<u>RATES A & R</u> Minimum Charge	6,394,164 586 505 456	32,738,120	511,533	895,183	9,655,188	9,076,758	52,876,782		53,476,995		
QL Clippe 67.867 77.286 7.54 2.271 12.332 777.86 467.67 Prevent 3.551.567 57.2322 7.54 1.2.332 777.86 769.11 Prevent 2.1351.567 57.232 7.345 56.34 1.3.232 777.86 769.11 Prevent 2.1351.567 7.3.356 56.34 1.3.23 77.366 769.11 769.11 Prevent 2.1351.567 7.3.351.368 57.77.366 1.0.77.166 1.0.73.23 764.16 1.0.73.23 Prevent 2.111.2 2.2.007 4.503 68.477 2.3.3.32 77.346 7.3.43.66 Prevent 2.501.010 4.111.73 2.3.06 2.0.07 2.3.06 2.0.07 2.3.06 2.0.07 2.3.06 2.0.07 2.3.06 2.0.07 2.3.06 2.0.07 2.3.06 2.0.07 2.3.06 2.0.07 2.3.06 2.0.07 2.0.07 2.0.07 2.0.07 2.0.07 2.0.07 2.0.07 2.0.07 2.0.06 2.0.07	kWh Charge kWh > 100 .	2,741,797,508 3 328 302 964	108,059,723 140 797 843	2,418,265 2,929,799	4,112,696 5 007 879	9 655 18R	42,429,316 51 506 075	157,020,001 209 896 783	0.063064	159,070,866 212 547 861	0.063861	-1.25%
Time 660 475.65 7.4 2.5 4.5 5.5 4.6 5.5 4.6 5.5 4.6 5.5 4.6 5.5 4.6 5.5 4.6 5.5 4.6 5.5 4.6 5.5 4.6 5.5 4.6 5.5 4.6 5.5 4.6 5.5 4.6 5.5 4.6 5.5 5.6 5.5 5.6 5.5 5.6 5.7 5.7 5.6 5.7 5.7 5.6 5.7 5.7 5.6 5.7 5.6 5.7 5.6 5.7 5.7	A & R-TOU		210 22 20		2000	2021	0.00010	00,000	100000	100, 100, 111		
On-Peak 5551.30 77.202 7.542 1.2.87 65.1.47 7.2.24 17.2.34 17.2.34 77.2.66 7.611.9 7.7.66 7.7.66 7.7.66 7.7.66 7.7.66 7.7.66 7.7.66 7.7.66	Customer Charge	69,805	478,862	•	•	ı	•	478,862		487,937		
(F) Peak (1) (0) (1) (0) (1) (0) (1) (0) (1) (0) (1) (1) (0) (1) (1) (0) (1) (1) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	Winter On-Peak Winter Shoulder	8,551,357 3 222,358	572,282 177,607	7,542 2,842	12,827 4,834	52,274 16 328	132,332 49.866	777,258 251 476		788,119 254,843		
In-Peak 11/11 23/11 01/11 10/11/28 10/12/28 10/11	Winter Off-Peak	20,891,886	368,345	18,427	31,338	36,477	323,302	777,888		784,866		
Includer 431:31 210:63 3677 6500 221:61 631:51 341:55 345:685<	Other On-Peak	11,190,257	748,886	9,870	16,785	68,406	173,169	1,017,116		1,031,328		
Threak 23-019-103 41/12 2.067 97.261 0.062465 0.063476 0.063476 0.063476 0.063465 0.063465 0.063476 0.063476 0.063465 0.063476 0.063465 0.063476 0.063465 0.063465 0.063465 0.063465 0.063465 0.063465 0.0	Other Shoulder	4,373,531	241,056	3,857	6,560	22,161	67,680	341,315		345,885		
Indiant Indiant <t< th=""><th>Other Off-Peak</th><th>25,019,103</th><th>441 112</th><th>22,067</th><th>37,529</th><th>43,683</th><th>387,171</th><th>931,561</th><th>0.000165</th><th>939,918</th><th>0.000010</th><th>10101</th></t<>	Other Off-Peak	25,019,103	441 112	22,067	37,529	43,683	387,171	931,561	0.000165	939,918	0.000010	10101
Charge 2 534 2 545 - - 2 4004 2 4004 Winter 643172 829 772 1418 3 483 5 883 6 885 Winter 643172 829 724 1418 3 483 5 883 6 885 Other 943177 477 300 1,496 2,182 4,684 3 461 0 1034731 -20 MM 91316396 5,540,550 166,977 234,085 5,465,503 3 461 0 1034731 -20 MM 913,115,96 5,540,550 166,977 233,07 1,653,330 2,510,500 166,472 3 13,044 6 865,754 3 461,10 0 1034731 -24,4349335 2,104,1722 - - - 5,522,800 1,061,476 5,540,550 3,445,754 1,763,764 1,661,732 3 445,754 0,052479 3 445,756 0,052479 3,445,756 0,052479 3,445,756 1,763,161 1,763,161 1,763,161 1,763,161 1,763,161 1,763,161 1,763,161 1,763,161		70,440,486	001 0700	04'000	C /o'en	670'607	1, 100,020	4,010,4	0.4200.0	060'700' t	647000.0	0/ 1 7 1 -
Witter 643 22 972 1,418 3,048 6,539 6,835 6,847 6,835 6,847	Customer Charge	2,639	23,645	•		·		23,645		24,094		
Other 0x91/1 41/1 0x0 1,496 2,182 1,691 3,168 0.03257 3,041 0.03471 -2.0 kMine 510,115 5,240,855 - - - 5,240,855 3,411 0.03473 -2.0 kMine 510,315 5,240,855 - - - 5,240,855 3,411 0.03473 3,063 1,002,662 3,4141 0.03473 3,063 3,063 5,342,968 3,534,256 3,534,286 3,541,2260 1,005,662 3,441 0.052344 1,005,662 3,441 0.05234 3,541,56 0,065264 1,005,303 1,661,37 1,004,466 0,062,479 3,441,5266 0,065284 er<- Single Phase	Energy Winter	648,292	829	572	972 574	1,418	3,048	6,839		6,855		
Jointical State		349,117 997,409	24 921	RBU	1 496	2 182	4 689	34 168	0.034257	34 641	0.034731	-1 36%
	SGS (0 - 20 KW)				-	Ī						
Here Time 137,200 1,37,200 1,37,200 1,37,200 1,37,200 1,37,200 1,37,200 1,37,200 1,300,205 1,000,202 1,000,172 1,000,302	Customer - Single Phase	510,315	5,240,935	•	ı	•	ı	5,240,935		5,342,998		
Writter 189,15,399 10,472 23,397 10,11476 2,325,307 10,11476 2,325,307 10,11476 2,325,304 10,342,256 0.062,479 3,442,256 0.062,324 er- Single Phase 81,15 2,906,007 - - - 1,041,722 1,061,834 1,041,722 0,063,172 0,066,172 0,066,172 0,066,172 0,066,172 0,066,172 0,066,172 0,066,172 0,066,172 0,066,172 0,066,172 0,066,172 0,066,172 0,066,172 0,066,172 0,066,172 0,066,172 0,066,172 0,066,172	Customer - Inree Phase	92,160 100 010 000	1,572,250		-		- 110 0	1,572,250		1,602,662		
644,249.35 22,795,628 480,023 816,375 1,658,330 8,254,095 3,004,456 0.062479 3,442,256 0.063284 er<	Energy Other	354,931,336	5,559,530 10,422,914	313.049	532,397	1,081,476	2,871,206 5,382,889	9,458,547 17,732,724		9,504,754 17,931,841		
er - Single Phase 41,045 1,041/722 2,860,007 - 2,860,007 - 2,860,007 - 2,860,007 - 2,860,007 2,860,007 - 3,006,172 - 3,006,172 2,860,007 2,860,102 - 1,100,300 - 1,100,300 - 1,11,100,300 - 1,11,002 - 1,11,002 - 1,11,002 - 1,11,002 2,860,102 2,860,102 2,860,102 2,860,102 2,860,102 1,33,960 3,1728,190 - 1,36,011 - 33,960 3,1728,190 - 1,36,011 - 33,960 2,360,122 2,867,175 1,33,960 - 1,36,011 - 36,011 - 36,011 - 36,011 - 36,011 - 36,011 - 36,180 - 1,020,252 - 1,74,517 - 1,33,960 30,1971 - 2,24,56 - 58,180 - 1,71,772 - 1,33,960 - 1,36,011 - 1,36,116 - 1,71,772 1,33,960 - 1,36,011 - 36,181 - 1,1202,216 - 0,034033 2,86,388 2,86,388 2,86,388 2,86,388 2,86,388 2,86,388 2,86,388 2,86,388 2,86,388 2,86,388 2,86,388 2,86,388 2,86,388 2,86,388 2,86,388 2,86,383 2,86,383 2,86,383 2,86,388 2,86	1	544,249,935	22,795,628	480,028	816,375	1,658,330	8,254,095	34,004,456	0.062479	34,442,256	0.063284	-1.27%
eff	MGS-S											
Minter 1,92,10 1,92,00 1,103,300 5,17,120 878,214 8,495,377 1,550,000 16,399,304 Minter 5,86,984,020 - - 1,910,020 18,76,517 5,56,922 16,399,304 Minter 5,86,984,020 - 1,00,300 - 1,910,020 18,775 - 2,808,132 2,808,132 Winter 5,86,984,020 - 1,003,305 2,887,775 - 5,751,505 5,761,505 5,761,505 5,761,505 5,761,505 5,761,505 5,761,505 5,761,505 5,761,505 5,761,505 5,761,505 5,761,712 1,74,517 1,74,517 <th>Customer - Single Phase Customer - Three Phase</th> <td>41,045 90 151</td> <td>1,041,722</td> <td>ı</td> <td>•</td> <td></td> <td></td> <td>1,041,722 2,050,007</td> <td></td> <td>1,061,834 3 006 179</td> <td></td> <td></td>	Customer - Single Phase Customer - Three Phase	41,045 90 151	1,041,722	ı	•			1,041,722 2,050,007		1,061,834 3 006 179		
d Other 3,896,000 11,109,000 - 1,910,020 18,47,519 31,456,193 31,728,195 31,728,195 Winter 586,984,020 - 517,720 880,476 1,409,936 - 2,808,132 2,816,91 1,4,95 2,133,128 6,0,437,077 0,034033 2,174,517 1,74,517 2,174,517 2,174,517 1,74,517 1,74,517 1,74,517 1,74,967	Demand Winter	1 792 274	6 882 331	• •	, ,	R7R 214	8 495 377	16 255 922		0,000,172 16.399.304		
Winter 586,984,020 - 517,720 880,476 1,409,936 - 2,808,132 2,903,132 2,903,132 2,903,132 2,903,132 2,903,132 2,903,132 2,903,132 2,903,133 2,903,133 2,903,133 2,903,133 2,903,133 2,903,133 2,903,133 2,903,133 2,903,133 2,903,133 2,903,133 2,903,133	Demand Other	3,896,000	11,109,300	,	1	1,910,020	18,476,519	31,495,839		31,729,719		
Other 1,202,237,551 1,060,374 1,803,356 2,887,775 5,751,505 136,011 133,950 1,333,950 1,333,950 1,356,011 133,950 1,356,011 136,011 136,011 136,011 136,011 136,011 136,011 133,950 1,356,011 136,011 136,011 136,011 136,011 136,011 136,011 136,011 136,011 136,011 136,011 136,011 136,011 136,011 136,011 136,011 136,011 136,011 136,011 132,135 29,135 29,135 29,591 136,011 136,011 136,011 136,011 136,011 134,617 134,617 134,617 134,617 134,957 134,957 134,957 134,957 134,957 132,202,203 136,958 134,957 <th>Energy Winter</th> <th>586,984,020</th> <th></th> <th>517,720</th> <th>880,476</th> <th>1,409,936</th> <th>•</th> <th>2,808,132</th> <th></th> <th>2,808,132</th> <th></th> <th></th>	Energy Winter	586,984,020		517,720	880,476	1,409,936	•	2,808,132		2,808,132		
206.077 133,950 - - 133,950 136,011 I,789,221,671 22,117,309 1,578,094 2,683,833 7,085,945 26,971,897 60,437,077 0.033778 60,892,676 0.034033 er - Three Phase 405 29,136 - - 29,136 29,691 174,517 er - Three Phase 1,538 171,272 - - 29,136 29,691 er - Three Phase 1,538 171,272 - 174,517 174,517 d Winter 66,569 237,995 - - 28,532 312,456 578,853 583,854 d Other 146,568 301,971 - 20,9101 658,803 1,026,116 1,026,116 Winter 23,709,450 - 20,9101 658,803 1,022,155 1,026,116 Xinter 23,709,450 - 20,9101 658,804 - 1,026,116 Xinter 23,709,50 - 20,9101 658,804 - 1,026,116 1,026,116 </td <th>Energy Other</th> <td>1,202,237,651</td> <td>•</td> <td>1,060,374</td> <td>1,803,356</td> <td>2,887,775</td> <td>ı</td> <td>5,751,505</td> <td></td> <td>5,751,505</td> <td></td> <td></td>	Energy Other	1,202,237,651	•	1,060,374	1,803,356	2,887,775	ı	5,751,505		5,751,505		
1, (89, 221, 6/1) 22, 117, 309 1, 578, 094 2, 633, 633 7, 085, 945 26, 945 29, 136 0.033//8 60, 692, 5/5 0.034033 er - Three Phase 405 29, 136 - - - 29, 136 29, 591 0.034033 er - Three Phase 1,538 171, 272 - - 29, 136 29, 591 er - Three Phase 1,538 171, 272 - - 174, 517 174, 517 d Winter 68, 569 237, 995 - - 28, 532 312, 456 578, 983 583, 854 d Other 146, 588 301, 971 - 20, 910 658, 180 1,020, 252 1,026, 116 Winter 23, 709, 450 - 20, 912 35, 564 58, 491 - 14, 967 1,026, 116 Vinter 23, 7096 - - 220, 203 220, 203 220, 203 88, 917 57, 796 - - - - 57, 796 58, 686	KVAR .	206,077	133,950	-	-			133,950		136,011		
ler - Single Phase 405 29,136 - - 29,136 ler - Three Phase 1,538 171,272 - - 171,272 d Winter 69,589 237,995 - - 28,532 312,456 578,983 d Winter 146,588 301,971 - 28,534 58,491 1,020,252 1, Winter 23,709,450 - 20,912 35,564 58,491 - 114,957 1, Other 45,412,096 - 40,053 68,118 112,032 - 220,203 37,796 S8,917 57,796 - - - - 27,796 57,796 - 57,796	WGS-P	1,789,221,671	22,117,309	1,5/8,094	2,683,833	/,U85,945	70'AL1'8A	60,437,077	0.033778	00'887'P/0	0.034033	%c/.n-
ner - Three Phase 1,538 171,272 171,272 - 171,272 - 171,272 - 171,272 - 171,272 - 171,272 - 171,272 - 171,272 - 171,272 - 171,275 - 171,275 - 171,275 - 171,275 - 171,957	Customer - Single Phase	405	29,136	I	ı		•	29,136		29,691		
rd Vuniter 05,309 237,395 - 5 20,395 - 5 20,395 301,971 - 5 20,301 31,2450 376,365 10 0 1,020,252 1,0 0 Winter 23,709,450 - 23,709,450 - 20,912 35,564 58,491 - 114,967 1,0 1,0 0 ther 45,412,096 - 40,053 68,118 112,032 - 220,203 2 1 0 0 ther 88,917 57,796 - 5 5,796 -	Customer - Three Phase	1,538	171,272	•	•			171,272		174,517		
Minter 23,709,450 - 20,912 35,564 58,491 - 114,967 - 114,967 - 114,967 - 000 - 220,203 - 220,203 - 220,203 - 57,796 - 57	Demand Other	09,369 146.588	301971			20,032 60,101	312,430 658 180	0.00,963 1 020,252		303,034 1.026.116		
/ Other 45,412,096 - 40,053 68,118 112,032 - 220,203 2 88,917 57,796 - 57,796 - 57,796	Energy Winter	23,709,450	-	20,912	35,564	58,491	•	114,967		114,967		
88,917 57,796 57,796	Energy Other	45,412,096	•	40,053	68,118	112,032		220,203		220,203		
	KVAR	88,917	57,796	ı	•		. 1	57,796		58,686		

M:/P&A/RRR\ARP in 2010/Final_Mar15 filing\ARP2010 Attachments.xls

3/9/2010 3:25 PM

12 H

• 24 · /**

	Belivery Price Summary
۰.	~~

Docket No. Z 51 March 15, 2010 Attachment 19 Page 6 of 8

> Central Maine Power Company Rate Summary For Rates Effective July 1, 2010

	2009			Revenues July 1, 2010	ıly 1, 2010				Total Delivery		Total
	Core Rate Billing Units	Distribution	ELP Assessment	Conseration Assessment	Stranded Costs	Transmission	Total Deliverv	7/1/2010 Avg KWh	Revenue 7/1/2009	7/1/2009 Avg kWh	Delivery Change
	69,121,546	798,170	60,965	103,682	259,156	970,636	2,192,609	0.031721	2,208,033	0.031944	-0.70%
IGS-S Customer Charge	2,486	238,184					238,184		247,158		
kW-On Winter	341,907	659,881	•		140,182	2,082,216	2,882,280		2,892,537		
kW-Sh Winter	336,732	367,038	•	•	138,060	•	505,098		511,833		
kW-On Other	770,324	1,286,441			315,833	4,691,274	6,293,548		6,316,658		
kW-Sh Other	768,763	837,951	•	•	315,193	•	1,153,144		1,168,519		
kWh-On Winter	43,701,780	ı	38,545	65,553	134,864	•	238,961		238,961		
kWh-Sh Winter	34,303,420	•	30,256	51,455	105,860		187,571		187,571		
kWh-Off Winter	67,327,670		59,383	100,992	207,773	•	368,148		368,148		
kWh-On Other	98,225,460	•	86,635	147,338	303,124	•	537,097		537,097		
kWh-Sh Other	48,825,200	•	43,064	73,238	150,675		266,976		266,976		
kWh-Off Other	168,841,740		148,918	253,263	521,046	•	923,227		923,227		
KVAR	117,044	76,079	•	•		•	76,079		77,249	1	
	461,225,270	3,465,575	406,801	691,838	2,332,609	6,773,490	13,670,313	0.029639	13,735,934	0.029781	-0.48%
IGS-P											
Customer Charge	726	102,852	•	•	•	•	102,852		104,805		
kW-On Winter	111,696	416,626	ı	ı	25,690	615,444	1,057,760		1,065,579		
kW-Sh Winter	110,936	128,686		ı	25,515	ı	154,201		156,420		
kW-On Other	242,408	404,822	•	•	55,754	1,335,670	1,796,246		1,803,518		
kW-Sh Other	241,799	280,486	ı	ı	55,614	ı	336,100		340,936		
kWh-On Winter	13,896,450	39,244	12,257	20,845	37,395	•	109,740		110,657		
kWh-Sh Winter	10,832,322	24,947	9,554	16,248	29,150	•	79,899		80,506		
kWh-Off Winter	22,400,858	19,623	19,758	33,601	60,281		133,263		133,912		
kWh-On Other	30,033,260	50,246	26,489	45,050	80,820		202,604		203,926		
kWh-Sh Other	15,246,772	24,105	13,448	22,870	41,029	•	101,452		102,092		
kWh-Off Other	50,491,286	16,965	44,533	75,737	135,872	•	273,107		274,016		
KVAR	53,277	34,630	•		•	•	34,630		35,163		
	142,900,948	1,543,232	126,039	214,351	547,119	1,951,114	4,381,856	0.030664	4,411,531	0.030871	-0.67%

M:\P&A\RRRVARP in 2010\Final_Mar15 filing\ARP2010 Attachments.xls

3/9/2010 3:25 PM

Price Summary
Ålivery
¥¥ ∀

ŧ

Docket No. 2 31 March 15, 2010 Attachment 19 Page 7 of 8

Central Maine Power Company Rate Summary For Rates Effective July 1, 2010

	2009			Revenues July 1, 2010	ily 1, 2010				Total Delivery		Total
	Core Rate Core Rate	Distribution	ELP Assessment	Conseration Assessment	Stranded Costs	Transmission	Total Delivery	7/1/2010 Avg kWh	Revenue 7/1/2009	7/1/2009 Avg kWh	Delivery Change
3 3 3											
Customer Charge	134	65,419	I	•	ı	ı	65 419		65.970		
kW-On Winter	46.384	129.874	•	ı	16 698	285 260	431,832		434,615		
kW-Sh Winter	45.285	64.758		ı	16.303	•	81.061		81,966		
kW-On Other	98 275	219 153	,	•	35,379	604 391	858 G73		862 854		
MACH Other		140 430			35.255		475 704		177 758		
		140,403			30,00	•			oc /' / / l		
kwn-On Winter	6,157,234	4	5,431	9,236	21,624	•	36,291		36.291		
kWh-Sh Winter	4,839,263		4,268	7,259	16,995	•	28,523		28,523		
kwh-Off Winter	10,673,535	ı	9,414	16,010	37,485	•	62,910		62,910		
kWh-On Other	13,999,378	•	12,347	20,999	49,166	•	82,512		82,512		
kWh-Sh Other	6,888,940	,	6,076	10,333	24,194	•	40,603		40,603		
kWh-Off Other	26,850,344		23,682	40,276	94,298	•	158,256		158,256		
KVAR	18,926	12,302	•				12,302		12,491		
	69,408,694	631,945	61,218	104.113	347,498	889,650	2,034,425	0.029311	2,044,749	0.029460	-0.50%
LGS-P	C C C										
customer charge	200	309,/02	•		•	•	203'102		4/0.015		
kW-On Winter	332,948	1,584,833	'	•	93,225	2,057,619	3,735,678		3,765,643		
kW-Sh Winter	328,236	439,836		•	91,906	•	531,742		538,307		
kW-On Other	698,386	1,347,885	•	•	195,548	4,316,024	5,859,457		5,880,408		
kW-Sh Other	696,269	835,522	,	•	194,955		1,030,478		1,051,366		
kWh-On Winter	44,944,306	•	39,641	67,416	134,249		241,306		241,306		
kWh-Sh Winter	34,877,582		30,762	52,316	104,179	•	187,258		187,258		
kWh-Off Winter	77,540,261	•	68,391	116,310	231,613		416,314		416,314		
kWh-On Other	99,290,729	•	87,574	148,936	296,581		533,092		533,092		
kWh-Sh Other	48,675,302	•	42,932	73,013	145,393	•	261,338		261,338		
kWh-Off Other	183,911,290	I	162,210	275,867	549,343	•	987,420		987,420		
KVAR	220,186	143,121	-	-	•	•	143,121		145,323		
	489,239,470	4,660,899	431,509	733,859	2,036,993	6,373,644	14,236,904	0.029100	14,323,348	0.029277	-0.60%
LGS-ST-TOU									ļ		
Customer Charge	624	319,057	•	•	•	•	319,057		325,110		
kW-On Winter	444,780	•	•	•	191,255	•	191,255		191,255		
kW-Sh Winter	454,081	٩	•	•	195,255	•	195,255		195,255		
kW-On Other	850, 147	•	•		365,563		365,563		365,563		
kW-Sh Other	831,904	•	•	•	357,719	,	357,719		357,719		
kWh-On Winter	55,993,527	1	•	2,800	56,833	I	59,633		59,633		
kWh-Sh Winter	48,313,588	•	•	2,416	49,038	•	51,454		51,454		
kWh-Off Winter	108,424,203	1	•	5,421	1	·	5,421		5,421		
kWh-On Other	113,553,616	ı	•	5,678	ı	·	5,678		5,678		
kWh-Sh Other	52,865,563			2,643	•	•	2,643		2,643		
kwn-Off Other	253,982,393	•	•	12,699	•	•	12,699		12,699		

- --- ---

M:\P&A\RRR\ARP in 2010\Final_Mar15 filing\ARP2010 Attachments.xls

o. Ž 51 ch 15, 2010 achment 19 Page 8 of 8		Total	Delivery Change	15.40%											6.99%	-1.69% -1.72%		-0.69%
Docket No. 🏅 , j51 March 15, 2010 Attachment 19 Page 8 of 8			7/1/2009 Avg kWh	4											0.006918	0.177777 0.219904		0.045639
		Total Delivery	Revenue 7/1/2009	7,891,315	151,416	137,840	138,717	337.228	32,223	31,140	3,264	3,712	1,566	9,982 105,361	2,910,682	1,698,501 6,021,174		367,795,598
			7/1/2010 Avg kWh	0.014383											0.007402	0.174769 0.216111		0.045326
			Total Delivery	9,106,340	148,597	137,840	138,717 201 501	337,228	32,223	31,140	3,264	3,712	1,566	9,982	3,114,258	1,669,762 5,917,319		365,271,747
	Central Maine Power Company Rate Summary For Rates Effective July 1, 2010		Transmission	7,482,647	۰	•	I	,	•	•	ı	ı	•		1,773,027	110,102 315,538		114,510,123
ve.	Central Maine F Rate Su For Rates Effect	/ 1, 2010	D.	626	•	137,840	138,717 301 501	337,228	30,944	29,904	۱	·	•	- 105 361	1,171,595	21,822 62,675		26,693,420
		Revenues July 1, 2010	Conseration Assessment	31,657		•	ı		1,279	1,236	3,264	3,712	1,566	7.96'6	21,038	14,331 41,071		10,575,396
			ELP Assessment		•	ı			,	ı	1	•	•		.	8,427 24,150		6,172,514
			Distribution	319,057	148,597	١	•	• •	,			•	•	, ,	148,597	1,515,081 5,473,885		207,320,293
mary		2009	Core Rate Billing Units	633,132,890	208	344,599	346,792	843.070	25,573,777	24,714,260	65,270,882	74,234,154	31,319,593	199,644,775 554,533	420,757,441	9,554,110 27,380,923		8,058,741,763
A & alivery Price Summary					Lustomer Charge	kW-On Winter	KW-Sh Winter	kW-Sh Other	kWh-On Winter	kWh-Sh Winter	kWh-Off Winter	kWh-On Other	kwh-Sh Other	KVMP-UTI UTHER KV/AR		<u>AL</u> SL	j	Total

3/9/2010 3:25 PM

M:/P&A\RRR\ARP in 2010/Final_Mar15 filing/ARP2010 Attachments.xls

Docket No. 2010-051 March 12, 2010 Attachment 20

REDACTED

Central Maine Power Company Effect of Targeted Programs and Contracts on T&D Sales and Revenue March 11, 2010

Docket No. 2010-051 March 15, 2010 Attachment 21 Page 1 of 10

January 25, 2010

Karen Geraghty Administrative Director Maine Public Utilities Commission 242 State Street, State House Station 18 Augusta, ME 04333-0018

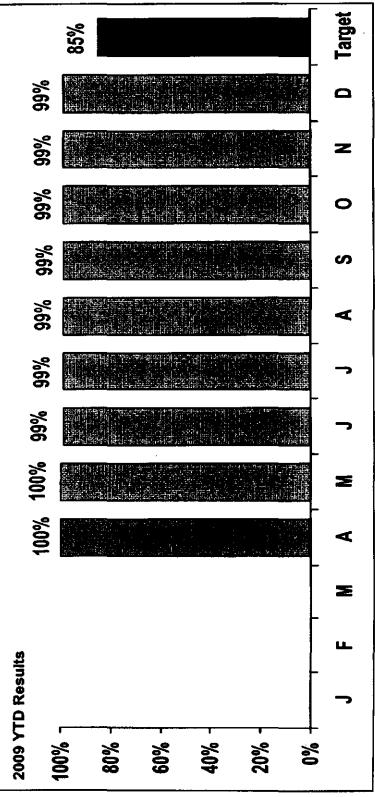
RE: Docket No. 2007-355 Reorganization/Acquisition of Energy East by IBERDROLA. S. A. Docket Nos. 2007-215 and 2008-111 Post Merger Alternative Rate Plan (ARP 2008) and Annual Price Change for Remaining Items from ARP 2000 - Revised

Dear Ms. Geraghty:

Pursuant to 1) Paragraph 40 of the January 10, 2008 Stipulation in Docket No. 2007-355 which was approved by Commission Order dated February 7, 2008, 2) Paragraph 38 of the June 6, 2008 Stipulation in Docket Nos. 2007-215 and 2008-111, which was approved by Commission Order dated July 1, 2008, and 3) Attachment 1 to the Stipulation in Docket No. 2008-294, which was approved by Commission Order dated March 31, 2009, CMP hereby files its quarterly report including service quality metrics and other miscellaneous items. The indicators below are reported on a year-to-date basis. Graphs of these metrics are contained in Attachment 1.

	Indicator	YTD October	YTD November	YTD December	2009 Target
1.	New Service Installation (on-time delivery; this target is effective April 1, 2009)	99%	99%	99%	85%
2.	Business Calls Answered (within 30 seconds)	82%	82%	82%	80%
3.	Meters Read	95%	95%	95%	94%
4.	Call Center Service Quality (on knowledgeability & customer satisfaction)	88%	89%	89%	85%
5.	MPUC Customer Complaints (per 1,000 customers)	2.26	2.43	2.47	1.00
6.	SAIFI (using IEEE 2.5 Beta approach)	1.67	1.88	2.04	2.10
7.	CAIDI (using IEEE 2.5 Beta approach)	1.95	2.10	1.87	2.18

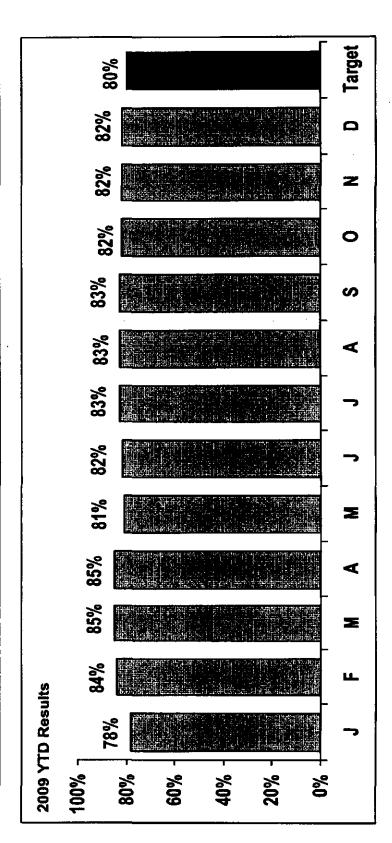
Attachment 2 shows that for the fourth quarter, ten of CMP's distribution circuits exceeded the Circuit Average Interruption Frequency Index ("CAIFI") of 6.3. The O & M activities report, required by Paragraph 40(a), is provided in Attachment 3. There have not been any changes to CMP's O & M practices and no material change in technical operations staffing levels in the fourth quarter 2009.


Please contact me if you have questions.

Sincerely,

Paul A. Dumais Director of Regulatory Services Docket No. 2010-051 March 15, 2010 Attachment 21 Page 2 of 10

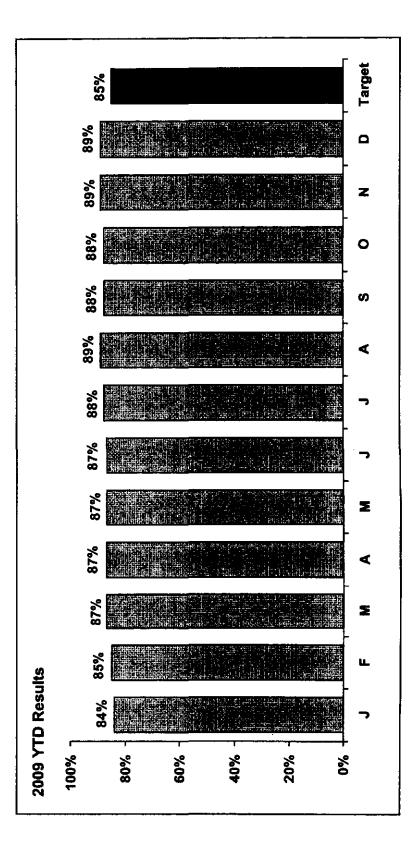
New Service Installation



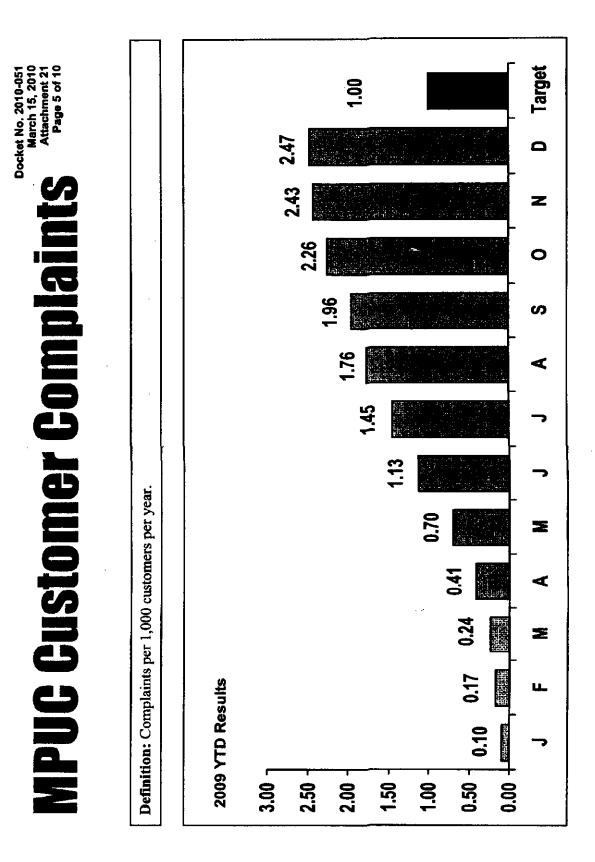
Business Calls Answered

Docket No. 2010-051 March 15, 2010 Attachment 21 Page 3 of 10

Definition: Percent of calls answered within 30 seconds, CMP may exclude from this calculation the days that are excluded from the CAIDI and SAIFI calculations which are determined using the IEEE 2.5 Beta approach.



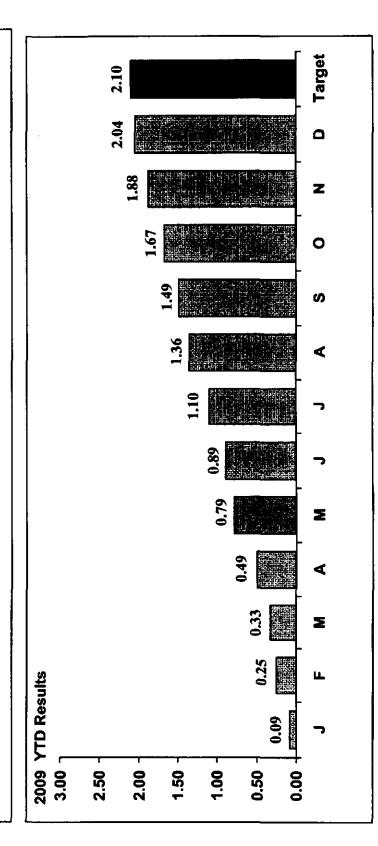
Source: D. Houston, Customer Relations Center


Call Center Service Quality

Definition: Percent favorable survey response on the Rep's knowledgeability and customer satisfaction with call

Docket No. 2010-051 March 15, 2010 Attachment 21 Page 4 of 10

Source: K. Duplessis, Marketing & Sales



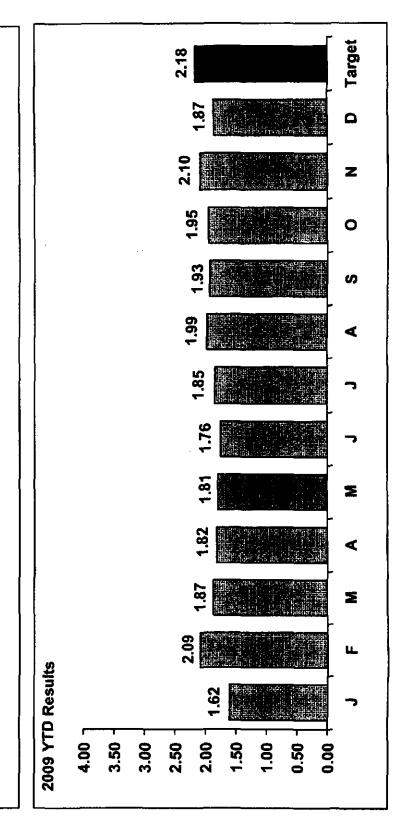
Source: A. Brooks, Customer Service Quality

Interruption Frequency Index (Salfi **System Average**

م د

Definition: Average interruptions per customer. CMP excludes outages from the calculation of this indicator using the IEEE 2.5 Beta approach described in IEEE Standard 1366.

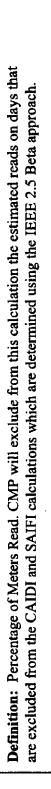
Source: R. Butler, Electric Maintenance Engineering

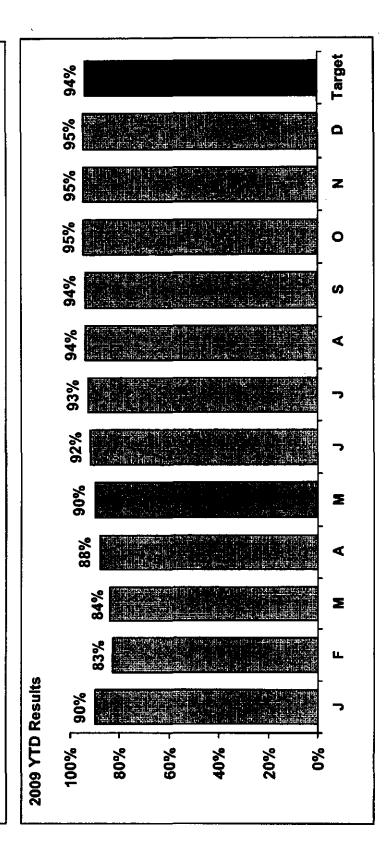

Docket No. 2010-051 March 15, 2010 Attachment 21 Page 6 of 10

Customer Average

Docket No. 2010-051 March 15, 2010 Attachment 21 Page 7 of 10

nterruption Duration Index (cald)


Definition: Average interruption duration for customers whose service is interrupted. CMP excludes outages from the calculation of this indicator using the IEEE 2.5 Beta approach described in IEEE Standard 1366.



Source: R. Butler, Electric Maintenance Engineering

Meters Read

Docket No. 2010-051 March 15, 2010 Attachment 21 Page 8 of 10

Source: B. Benner, Regional Operations - Lewiston

Docket No. 2010-051 March 15, 2010 Atlachment 21 Page 9 of 10

	9 Total 2009 Hours	6 of Hours for T&D
		100
(560) Operation - Supervision and Engineering	16,880.69	
(561) Load Dispatching - FERC 561.0	5,817.00	
(561.1) Load Dispatch - Reliability	9,987.50	
(561.2) Load Dispatch - Monitor and Operate		
Trans System	44,054.50	
(561.5) Reliability, Planning		
and Stindards Development	859.50	
(561.6) Transmission Service Studies	•	
(561.7) Generation Interconnection Studies	1,172.40	
(562) Station Expenses	14,392.65	
(563) Overhead Lines Expenses	3,459.50	
(564) Underground Line Expenses	27.50	
(566) Miscellaneous Transmission Expenses	26,728.09	· · · · · · · · · · · · · · · · · · ·
	123,379.33	
(568) Maintenance - Supervision and Engineering	4,551.60	
(569) Maintenance of Structures	3,029.75	
(570) Maintenance of Station Equipment	39,194.25	
(571) Maintenance of Overhead Lines	5,053.28	
(572) Maintenance of Overhead Lines	2,420.50	
(573) Maintenance of Miscellaneous	.,	
Transmission Plant	72.24	
BEAG THE CONTRACTOR STRUCTURE STRUCTURE	54,321.62	
	177,700.95	17.8%
(580) Operation - Supervision Engineering	17,912.81	
5801) Substation - Operation and Supervision	-	
581) Load Dispatching	37.60	
582) Station Expenses	22,474.60	
583) Overhead Line Expenses	70,411.15	
584) Underground Line Expenses	4,396.69	
(585) Street Lighting and Signal System Expenses	5,372.50	
(586) Meter Expenses	148,053.75	
(587) Customer Installations Expense	18,585.75	
586) Miscellaneous Expenses 589) Rents	224,529.96	
	511,774.81	
590) Maintenance Supervision Engineering	35,197.03	
591) Maintenance of Structures	1,654.25	
592) Maintenance of Station Equipment	22,195.25	
593) Maintenance of Overhead Lines	203,403.89	
594) Maintenance of Underground Lines	13,871.46	
595) Maintenance of Line Transformers	2,283.29	
596) Maintenance of Street Lighting	•	
nd Signal Systems	10,531.11	
597) Maintenance of Meters	20,098.75	
598) Maintenance of Miscellaneous		
Distribution Plant	2,210.76	
	311,445.78	82.2%
	823,220.59	
	1.000.921.54	

Docket No. 2010-051 March 15, 2010 Attachment 21 Page 10 of 10

ъr

مر

Circuits with FAIFI Greater than 6.3

ARP Reportable Outages 01/01/09 to 12/31/09

			Cr	Customer				
Dst	Dist	Ckt	Rank	Hours	Impacted	CAIDI	SAIFI	FAIFI
014 014	BRUNSWICK BRUNSWICK	204D6 217D3	ωα	39172.3 40304.8	22246 26074	1.760 9 1.5458	0.0368 0.0432	7.5385 6.9401
021	FAIRFIELD	237D1	10	2204.30	2528	0.8720	0.0042	8.0767
024 024	FARMINGTON FARMINGTON	875D1 881D1	4 Ø	20231.3 750.800	15288 632	1.3233 1.1880	0.0253 0.0010	8.9039 6.7234
046 046	ALFRED ALFRED	603D2 691D1	а а	23102.4 2694.27	12025 2126	1.9212 1.2673	0.0199 0.0035	6.6290 9.7972
051	LEWISTON	220D1		7838.28	3734	2.0992	0.0062	18.3039
054	BRIDGTON BRIDGTON	463D1 692D1	~ ~	21004.3 2388.27	7855 3185	2.6740	0.0130 0.0053	7.0575 10,1433

C:\4ccPrf)Test\Cur\OutRptGUL.mdb - rCktPerfWithHiFaift

Report Run On 03/04/2010

Puge 1 of 1

Docket No. 2010-051 March 12, 2010 Attachment 22

REDACTED

Central Maine Power Company 2009 Annual Reliability Improvement Report

Docket No. 2010-051 March 15, 2010 Attachment 23 Page 1 of 2

.

Central Maine Power

SAIDI, CAIDI, SAIFI, and Meters Read with and without Excluded Events 2009 Monthly Year To Date

		With Exclud	led Event	\$	Wi	thout Exclu	uded Eve	nts
	<u>SAIDI</u>	<u>CAIDI</u>	SAIFI	Meters Read	SAIDI	<u>CAIDI</u>	<u>Saifi</u>	Meters Read
January	0.15	1.62	0.09	90%	0.15	1.62	0.09	90%
February	4.93	8.85	0.56	81%	0.52	2.09	0.25	83%
March	5.04	7.81	0.64	83%	0.63	1.87	0.33	84%
April	5.35	6.53	0.82	87%	0.90	1.82	0.49	88%
May	5.73	5.59	1.02	89%	1.27	1.81	0.70	90%
June	6.02	4.96	1.21	91%	1.57	1.76	0.89	92%
July	6.5 6	4.59	1.43	92%	2.03	1.85	1.10	93%
August	7.24	4.28	1.69	93%	2.71	1.99	1.36	94%
September	7.41	4.07	1.82	94%	2.88	1.93	1.49	94%
October	7.78	3.89	2.00	94%	3.25	1.95	1. 67	95%
November	8.47	3.84	2.21	95%	3.94	2.10	1.88	95%
December	8.92	3.62	2.46	95%	3.80	1.87	2.04	95%

···•.

** * * *

~~

Docket No. 2010-051 March 15, 2010 Attachment 23 Page 2 of 2

.

Central Maine Power Excluded Events For the Year 2009

10.00

iger a

Event	Dates	Customers Impacted	Custom er Hours	Number Outages
1	2/22/2009	37,922	566,651	100
2	2/23/2009	167,265	2,241,485	970
3	11/28/2009	51,453	274,315	408
	3	256,640	3,082,451	1,478

Total Company

Docket No. 2010-051 March 15, 2010 Attachment 24 Page 1 of 17

Central Maine Power

2009 Interruption Summary by Cause

	CATEGORY	CAUSE	Customers Interrupted	Number of Interruptions	Customer Hours
	EQUIPMENT	Cable Failure	10620	32	13956.2
		Connector or Splice Failure	6855	17	12049.8
		Crossarm Failure	5974	6	8525.9
		Cutout Broken, Burned, etc.	15908	121	22124.1
		Guy/Anchor Failure	33	1	23.1
		Hot Line Clamp-(Specify)	263	4	738.2
		Hot Line Clamp-Burned Conducto	4435	17	3607.1
		Insulator Broken or Defective	58195	173	96666.4
		Lightning Arrestor Failure	18190	104	20963.7
		Other Equipment Failure	44727	88	72757.1
		Pole Failure	9866	24	28101.6
		Recloser Failure	5657	6	16933.7
		Terminator Failure	42	3	182.0
		Tie Wire Failure	8326	25	14907.3
		Transformer Failure	21860	110	75089.8
18~2		Tot	ał 210951	731	386626.1
	GENERAL	Fire	11801	23	15460.7
		Overload	6160	25	5663.9
		Planned	17189	34	28991.4
		Unknown	197882	2632	299075.8
		Tota	al 233032	2714	349191.9
	HUMAN ERROR	Auto Accident	117420	296	294906.5
		Cable Dig In	393	4	528.0
		CMP Cont. Error	15	1	17.0
		CMP Crew Error	8040	5	854.2
		CMP Tree Cont. Error	119	1	107. 1
		Crane Contact	40	2	36.4
		Customer Error	522	11	842.0
		Other Human Error	14562	21	17504.0
		Road Cont. Error	1889	4	393.2
		Snowplow Damage	1965	6	6160.3
		Telephone Crew Error	97	1	111.5
		Tree Cont. Error	9358	45	9962.3
		Tota	al 154420	397	331422.6

 ······		Customers	Number of ag	15, 2010 iment 24 e 2 of <i>Frome</i> i
 CATEGORY	CAUSE	Interrupted	Interruptions	Hours
NATURAL	Animal or Bird Contact	97916	2290	121386.6
	Ice or Snow Broken Conductors	3294	3	5045.4
	Lightning	20022	141	36765.4
	Other Natural Cause	2033	6	2561.5
	Storm	53672	385	283821.1
	Tree Condition	381875	2813	735086.1
	Wind or Snow Crossed Conductor	2390	38	8185.6
	Total	561202	5676	1192851.8
SUPPLY	Station Outage	11711	5	17132.9
	Transmission	60883	15	87974.8
	Totał	72594	20	105107.7

.....

... من - ----

Corporate Totals

1232199

9538 2365200.1

Docket No. 2010-051 March 15, 2010 Attachment 24 Page 3 of 17

Central Maine Power

2009 Interruption Summary by Cause

(Exclusions Removed)

	CATEGORY	CAUSE	Customers Interrupted	Number of Interruptions	Customer Hours
Alfred	EQUIPMENT	Cable Failure	74	2	334.2
		Connector or Splice Failure	33	1	66.5
		Cutout Broken, Burned, etc.	3822	25	5429.7
		Hot Line Clamp-(Specify)	125	1	487.5
		Hot Line Clamp-Burned Conducto	344	2	459.1
		Insulator Broken or Defective	3658	54	7455.2
		Lightning Arrestor Failure	4640	19	5462.2
		Other Equipment Failure	9246	16	9365.0
		Pole Failure	238	5	1296.0
		Recloser Failure	236	2	370.7
		Terminator Failure	4	1	5.0
		Tie Wire Failure	3015	5	5629.0
		Transformer Failure	1324	15	2910.4
		Total	26759	148	39270.6
Alfred	GENERAL	Fire	36	1	17.4
		Overload	1062	10	1062.7
		Planned	1209	3	247.0
		Unknown	31646	377	54186.3
		Total	33953	391	55513.5
Alfred	HUMAN ERROR	Auto Accident	13646	33	29459.3
		Customer Error	43	1	91.0
		Other Human Error	6573	11	3133.4
		Snowplow Damage	622	1	3918.6
		Tree Cont. Error	2438	10	2692.7
		Total	23322	56	39295.0
Alfred	NATURAL	Animal or Bird Contact	21386	519	33002.9
		Ice or Snow Broken Conductors	251	1	681.9
		Lightning	69	7	188.4
		Other Natural Cause	1859	1	2385.7
		Tree Condition	78135	421	142507.0
		Wind or Snow Crossed Conductor	635	1	105.8
		Total	102335	950	178871.8
Alfred	SUPPLY	Station Outage	2218	1	4022.7
	,	Transmission	3276	1	3494.4
		Total	5494	2	7517.1

÷

Docket No. 2010-051 March 15, 2010 Attachment 24 Page 4 of 17

Central Maine Power

2009 Interruption Summary by Cause

(CATEGORY	CAUSE		Number of Interruptions	Customer Hours
		Alfred District Total	191863	1547	320468.1

, r

Docket No. 2010-051 March 15, 2010 Attachment 24 Page 5 of 17

....

Central Maine Power

2009 Interruption Summary by Cause

	CATEGORY	CAUSE		Customers Interrupted	Number of Interruptions	Custom Hours
Augusta	EQUIPMENT	Cable Failure		1046	1	882.1
		Cutout Broken, Burned, etc.		385	4	665.4
		Insulator Broken or Defective		3541	5	3527.9
		Lightning Arrestor Failure		452	9	1188.1
		Other Equipment Failure		2963	7	5759.6
		Pole Failure		128	1	657.1
		Tie Wire Failure		2621	11	6292.0
		Transformer Failure		6113	11	47198.8
			Total	17249	49	66170.9
Augusta	GENERAL	Fire		333	3	434.6
		Overload		290	1	910.0
		Planned		94	3	138.6
		Unknown		25339	322	41222.4
			Total	26056	329	42705.6
Augusta	HUMAN ERROR	Auto Accident		4581	13	7961.7
		Cable Dig In		33	1	57.8
		CMP Crew Error		1329	1	132.9
		Customer Error		11	1	46.4
		Other Human Error		22	1	82.1
		Tree Cont. Error		56	3	560.3
			Total	6032	20	8841.2
Augusta	NATURAL	Animal or Bird Contact		6571	220	7668.4
		Lightning		683	14	3367.5
		Other Natural Cause		76	2	92.9
		Storm		4025	27	33314.5
		Tree Condition		24947	269	57232.7
		Wind or Snow Crossed Conduct	or	18	1	29.4
			Total	36320	533	101705.4
Augusta	SUPPLY	Station Outage		0	0	0.0
		Transmission		13815	3	11022.8
			Total	13815	3	11022.8
		Augusta District Total		99472	934	230445.9

11-00

Docket No. 2010-051 March 15, 2010 Attachment 24 Page 6 of 17

Central Maine Power

2009 Interruption Summary by Cause

(Exclusions Removed)

Bridgton EQUIPMENT Cutout Broken, Burned, etc. 1082 9 Insulator Broken or Defective 1243 14 Lightning Arrestor Failure 3934 8 Other Equipment Failure 15652 28 Recloser Failure 615 1 Terminator Failure 7 1 Tie Wire Failure 35 1 Transformer Failure 212 4 Total 22780 66 Bridgton GENERAL Fire 1196 3 Overload 1777 1 1 1 Planned 386 5 1 Overload 1777 1 1 Planned 386 5 1 Overload 1777 1 1 Planned 386 5 1 Orter Wernor 1911 1 1 Other Human Error 1 1 1 Road Cont. Error 1184 7 7	Defective 1243 14 1857.5 Failure 3934 8 6922.7 Failure 15652 28 39990.4 615 1 2501.0 7 1 35.9 35 1 239.7 e 212 4 457.2 Total 22780 66 53336.0 1196 3 1586.3 1777 1 473.9 386 5 160.1 12340 359 19636.0 Total 15699 368 21856.3 19533 27 33167.6 191 1 19.1 r 1 1 0.7 14 1 15.9 1184 7 1187.6 Total 20923 37 34390.9 tact 3572 191 5269.1 n Conductors 29 1 43.5 4898 28		CATEGORY	CAUSE	Customers Interrupted	Number of Interruptions	Custom Hours
Lightning Arrestor Failure39348Other Equipment Failure1565228Recloser Failure6151Terminator Failure71Tie Wire Failure351Transformer Failure2124Total22780BridgtonGENERALFire11963Overload177711Planned3865Unknown12340359Total15699368BridgtonHUMAN ERRORAuto Accident1953327CMP Crew Error1911Other Human Error11Road Cont. Error11847Total2092337BridgtonNATURALAnimal or Bird Contact3572BridgtonNATURALAnimal or Bird Contact3572191Ice or Snow Broken Conductors291Lightning489828Storm751272Tree Condition48418408Wind or Snow Crossed Conductor28312Total64712712BridgtonSUPPLYTransmission59281	Failure 3934 8 6922.7 railure 15652 28 39990.4 615 1 2501.0 7 1 35.9 35 1 239.7 e 212 4 457.2 Total 22780 66 53336.0 1196 3 1586.3 1777 1 473.9 386 5 160.1 12340 359 19636.0 Total 15699 368 21856.3 19533 27 33167.6 191 1 19.1 1 1 0.7 1 1 19.1 r 1 19.1 r 1 1 1 r	Bridgton	EQUIPMENT	Cutout Broken, Burned, etc.	1082	9	1331.5
Other Equipment Failure 15652 28 Recloser Failure 615 1 Terminator Failure 7 1 Tie Wire Failure 35 1 Transformer Failure 212 4 Total 22780 66 Bridgton GENERAL Fire 1196 3 Overload 1777 1 1 Planned 366 5 0 Unknown 12340 359 368 Bridgton HUMAN ERROR Auto Accident 19533 27 CMP Crew Error 191 1 1 Other Human Error 1 1 1 Road Cont. Error 1184 7 7 Total 20923 37 37 Bridgton NATURAL Animal or Bird Contact 3572 191 Ice or Snow Broken Conductors 29 1 1 1 Ightrning 4898 28 3 12 T	Failure 15652 28 39990.4 615 1 2501.0 7 1 35.9 35 1 239.7 e 212 4 457.2 Total 22780 66 53336.0 1196 3 1586.3 1777 1 473.9 386 5 160.1 12340 359 19636.0 Total 15699 368 21856.3 19533 27 33167.6 191 1 19.1 1 1 0.7 14 1 15.9 1184 7 1187.6 Total 20923 37 34390.9 ttact 3572 191 5269.1 n Conductors 29 1 43.5 4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 ssed Conductor 283 12 5008.6 Total 64712 <t< td=""><td>-</td><td></td><td>Insulator Broken or Defective</td><td>1243</td><td>14</td><td>1857.5</td></t<>	-		Insulator Broken or Defective	1243	14	1857.5
Recloser Failure 615 1 Terminator Failure 7 1 Tie Wire Failure 35 1 Transformer Failure 212 4 Total 22780 66 Bridgton GENERAL Fire 1196 3 Overload 1777 1 1 Planned 386 5 1 Unknown 12340 359 368 Bridgton HUMAN ERROR Auto Accident 19533 27 CMP Crew Error 191 1 1 Other Human Error 1 1 1 Road Cont. Error 1184 7 7 Total 20923 37 7 Stridgton NATURAL Animal or Bird Contact 3572 191 Lie or Snow Broken Conductors 29 1 1 Lightning 4898 28 3 Storm 7512 72 72 Tree Condition 48418 </td <td>615 1 2501.0 7 1 35.9 35 1 239.7 212 4 457.2 Total 22780 66 53336.0 1196 3 1586.3 1777 1 473.9 386 5 160.1 12340 359 19636.0 Total 15699 368 21856.3 19533 27 33167.6 191 1 19.1 r 1 10.7 14 1 15.9 1184 7 1187.6 Total 20923 37 34390.9 ttact 3572 191 5269.1 n Conductors 29 1 43.5 4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 ssed Conductor 283 12 5008.6 Total 6</td> <td></td> <td></td> <td>Lightning Arrestor Failure</td> <td>3934</td> <td>8</td> <td>6922.7</td>	615 1 2501.0 7 1 35.9 35 1 239.7 212 4 457.2 Total 22780 66 53336.0 1196 3 1586.3 1777 1 473.9 386 5 160.1 12340 359 19636.0 Total 15699 368 21856.3 19533 27 33167.6 191 1 19.1 r 1 10.7 14 1 15.9 1184 7 1187.6 Total 20923 37 34390.9 ttact 3572 191 5269.1 n Conductors 29 1 43.5 4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 ssed Conductor 283 12 5008.6 Total 6			Lightning Arrestor Failure	3934	8	6922.7
Terminator Failure71Tie Wire Failure351Transformer Failure2124Total2278066BridgtonGENERALFire11963Overload17771Planned3865Unknown12340359Total15699368BridgtonHUMAN ERRORAuto Accident1953327CMP Crew Error1911Other Human Error11Road Cont. Error11847Total2092337BridgtonNATURALAnimal or Bird Contact3572191Ice or Snow Broken Conductors291Lightning489828Storm751272Tree Condition48418408Wind or Snow Crossed Conductor28312Total59281	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Other Equipment Failure	15652	28	39990.4
Tie Wire Failure 35 1 Transformer Failure 212 4 Total 22780 66 Sridgton GENERAL. Fire 1196 3 Overload 17777 1 1 Planned 386 5 1 Unknown 12340 359 368 Bridgton HUMAN ERROR Auto Accident 19533 27 CMP Crew Error 191 1 1 Other Human Error 1 1 1 Road Cont. Error 1184 7 7 Total 20923 37 37 Bridgton NATURAL Animal or Bird Contact 3572 191 Ice or Snow Broken Conductors 29 1 1 Bridgton NATURAL Animal or Bird Contact 3572 191 Ice or Snow Broken Conductors 29 1 1 1 Lightning 4898 28 3 12 Trotal	e 212 4 239.7 Total 22780 66 53336.0 1196 3 1586.3 1777 1 473.9 386 5 160.1 12340 359 19636.0 Total 15699 368 21856.3 19533 27 33167.6 191 1 19.1 r 1 1 0.7 14 1 15.9 1184 7 1187.6 Total 20923 37 34390.9 ttact 3572 191 5269.1 n Conductors 29 1 43.5 4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 ssed Conductor 283 12 5008.6 Total 64712 712 229880.2			Recloser Failure	615	1	2501.0
Transformer Failure 212 4 Total 22780 66 Bridgton GENERAL Fire 1196 3 Overload 1777 1 1 Planned 386 5 1 Unknown 12340 359 368 Bridgton HUMAN ERROR Auto Accident 19533 27 CMP Crew Error 191 1 1 1 Road Cont. Error 1184 7 1 1 Road Cont. Error 1184 7 7 1 1 Bridgton NATURAL Animal or Bird Contact 3572 191 1 Ice or Snow Broken Conductors 29 1 1 1 1 Ice or Snow Broken Conductors 29 1 1 1 1 Ice or Snow Crossed Conductor 283 12 72 72 Tree Condition 48418 408 12 712 Total 40712 712 <td>e 212 4 457.2 Total 22780 66 53336.0 1196 3 1586.3 1777 1 473.9 386 5 160.1 12340 359 19636.0 Total 15699 368 21856.3 19533 27 33167.6 191 1 19.1 r 1 1 0.7 14 1 15.9 1184 7 1187.6 Total 20923 37 34390.9 ttact 3572 191 5269.1 n Conductors 29 1 43.5 4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 ssed Conductor 283 12 5008.6 Total 64712 712 229880.2</td> <td></td> <td></td> <td>Terminator Failure</td> <td>7</td> <td>1</td> <td>35.9</td>	e 212 4 457.2 Total 22780 66 53336.0 1196 3 1586.3 1777 1 473.9 386 5 160.1 12340 359 19636.0 Total 15699 368 21856.3 19533 27 33167.6 191 1 19.1 r 1 1 0.7 14 1 15.9 1184 7 1187.6 Total 20923 37 34390.9 ttact 3572 191 5269.1 n Conductors 29 1 43.5 4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 ssed Conductor 283 12 5008.6 Total 64712 712 229880.2			Terminator Failure	7	1	35.9
Total 22780 66 Bridgton GENERAL Fire 1196 3 Overload 1777 1 1 Planned 386 5 1 Unknown 12340 359 368 Bridgton HUMAN ERROR Auto Accident 19533 27 CMP Crew Error 191 1 1 Other Human Error 1 1 1 Road Cont. Error 1184 7 7 Total 20923 37 37 Bridgton NATURAL Animal or Bird Contact 3572 191 Ice or Snow Broken Conductors 29 1 1 Bridgton NATURAL Animal or Bird Contact 3572 191 Ice or Snow Broken Conductors 29 1 1 Lightning 4898 28 3 Storm 7512 72 72 Tree Condition 48418 408 408 Wind or Snow Crossed Conductor <td>Total 22780 66 53336.0 1196 3 1586.3 1777 1 473.9 386 5 160.1 12340 359 19636.0 Total 15699 368 21856.3 19533 27 33167.6 191 1 19.1 1 191 1 19.1 r 1 1 0.7 14 1 15.9 1184 7 1187.6 Total 20923 37 34390.9 34390.9 ttact 3572 191 5269.1 5269.1 n Conductors 29 1 43.5 4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 353 12 5008.6 5028 1 1580.8 5928 1 1580.8 5928 1 1580.8 5928 1 1580.8 5928 1 1580.8<!--</td--><td></td><td></td><td>Tie Wire Failure</td><td>35</td><td>1</td><td>239.7</td></td>	Total 22780 66 53336.0 1196 3 1586.3 1777 1 473.9 386 5 160.1 12340 359 19636.0 Total 15699 368 21856.3 19533 27 33167.6 191 1 19.1 1 191 1 19.1 r 1 1 0.7 14 1 15.9 1184 7 1187.6 Total 20923 37 34390.9 34390.9 ttact 3572 191 5269.1 5269.1 n Conductors 29 1 43.5 4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 353 12 5008.6 5028 1 1580.8 5928 1 1580.8 5928 1 1580.8 5928 1 1580.8 5928 1 1580.8 </td <td></td> <td></td> <td>Tie Wire Failure</td> <td>35</td> <td>1</td> <td>239.7</td>			Tie Wire Failure	35	1	239.7
BridgtonGENERALFire11963Overload17771Planned3865Unknown12340359Total15699368BridgtonHUMAN ERRORAuto Accident1953327CMP Crew Error1911Other Human Error11Road Cont. Error141Tree Cont. Error11847Total2092337BridgtonNATURALAnimal or Bird Contact3572Ightning489828Storm751272Tree Condition48418408Wind or Snow Crossed Conductor28312Total64712712BridgtonSUPPLYTransmission5928StridgtonSUPPLYTransmission59281	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Transformer Failure	212	4	457.2
Overload17771Planned3865Unknown12340359Total15699368BridgtonHUMAN ERRORAuto Accident1953327CMP Crew Error1911Other Human Error11Road Cont. Error141Tree Cont. Error11847Total2092337BridgtonNATURALAnimal or Bird Contact3572Animal or Bird Contact3572191Ice or Snow Broken Conductors291Lightning489828Storm751272Tree Condition48418408Wind or Snow Crossed Conductor28312Total59281	1777 1 473.9 386 5 160.1 12340 359 19636.0 Total 15699 368 21856.3 19533 27 33167.6 191 1 19.1 1 191 1 19.1 1 1 0.7 14 1 15.9 1184 7 1187.6 Total 20923 37 34390.9 1 43.5 Atact 3572 191 5269.1 n Conductors 29 1 43.5 4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 sseed Conductor 283 12 5008.6 Total 64712 712 229880.2 5928 1 1580.8			Total	22780	66	53336.0
Planned3865Unknown12340359Total15699368BridgtonHUMAN ERRORAuto Accident1953327CMP Crew Error1911Other Human Error11Road Cont. Error141Tree Cont. Error11847Total2092337BridgtonNATURALAnimal or Bird Contact3572191Ice or Snow Broken Conductors291Lightning489828Storm751272Tree Condition48418408Wind or Snow Crossed Conductor28312Total59281	386 5 160.1 12340 359 19636.0 Total 15699 368 21856.3 19533 27 33167.6 191 1 19.1 r 1 19.1 r 1 19.1 r 1 1 14 1 15.9 1184 7 1187.6 Total 20923 37 34390.9 ttact 3572 191 5269.1 n Conductors 29 1 43.5 4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 ssed Conductor 283 12 5008.6 Total 64712 712 229880.2 5928 1 1580.8 1580.8	Bridgton	GENERAL	Fire	1196	3	1586.3
Unknown12340 Total359BridgtonHUMAN ERRORAuto Accident1953327CMP Crew Error1911Other Human Error11Road Cont. Error141Tree Cont. Error11847Total2092337BridgtonNATURALAnimal or Bird Contact3572191Ice or Snow Broken Conductors291Lightning489828Storm751272Tree Condition48418408Wind or Snow Crossed Conductor28312Total64712712BridgtonSUPPLYTransmission59281	12340 359 19636.0 Total 15699 368 21856.3 19533 27 33167.6 191 1 19.1 1 191 1 19.1 r 1 1 0.7 14 1 15.9 1187.6 Total 20923 37 34390.9 ttact 3572 191 5269.1 n Conductors 29 1 43.5 4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 ssed Conductor 283 12 5008.6 Total 64712 712 22980.2 5928 1 1580.8 1580.8			Overload	1777	1	473.9
Total15699368BridgtonHUMAN ERRORAuto Accident1953327CMP Crew Error1911Other Human Error11Road Cont. Error141Tree Cont. Error11847Total2092337BridgtonNATURALAnimal or Bird Contact3572Lightning489828Storm751272Tree Condition48418408Wind or Snow Crossed Conductor28312Total59281	Total 15699 368 21856.3 19533 27 33167.6 191 1 19.1 r 1 191 1 1 1 19.1 r 1 1 0.7 14 1 15.9 1184 7 1187.6 Total 20923 37 34390.9 atact 3572 191 5269.1 n Conductors 29 1 43.5 4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 sseed Conductor 283 12 5008.6 Total 64712 712 229880.2 5928 1 1580.8			Planned	386	5	160.1
BridgtonHUMAN ERRORAuto Accident1953327CMP Crew Error1911Other Human Error11Road Cont. Error141Tree Cont. Error11847Total2092337BridgtonNATURALAnimal or Bird Contact3572Lightning489828Storm751272Tree Condition48418408Wind or Snow Crossed Conductor28312Total64712712TridgtonSUPPLYTransmission59281	19533 27 33167.6 191 1 19.1 1 1 0.7 14 1 15.9 1184 7 1187.6 Total 20923 37 34390.9 34390.9 ttact 3572 191 n Conductors 29 1 4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 ssed Conductor 283 12 5008.6 Total 64712 712 229880.2 5928 1 1580.8			Unknown	12340	359	19636.0
CMP Crew Error1911Other Human Error11Road Cont. Error141Tree Cont. Error11847Total2092337BridgtonNATURALAnimal or Bird Contact3572191Ice or Snow Broken Conductors291Lightning489828Storm751272Tree Condition48418408Wind or Snow Crossed Conductor28312Total64712712BridgtonSUPPLYTransmission59281	191 1 19.1 1 1 0.7 14 1 15.9 1184 7 1187.6 Total 20923 37 34390.9 ttact 3572 191 5269.1 n Conductors 29 1 43.5 4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 ssed Conductor 283 12 5008.6 Total 64712 712 229880.2 5928 1 1580.8			Total	15699	368	21856.3
Other Human Error11Road Cont. Error141Tree Cont. Error11847Total2092337BridgtonNATURALAnimal or Bird Contact3572191Ice or Snow Broken Conductors291Lightning489828Storm751272Tree Condition48418408Wind or Snow Crossed Conductor28312Total64712712BridgtonSUPPLYTransmission59281	r 1 1 1 0.7 14 1 15.9 1184 7 1187.6 Total 20923 37 34390.9 ttact 3572 191 5269.1 n Conductors 29 1 43.5 4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 ssed Conductor 283 12 5008.6 Total 64712 712 229880.2	Bridgton	HUMAN ERROR	Auto Accident	19533	27	33167.6
Road Cont. Error141Tree Cont. Error11847Total2092337AridgtonNATURALAnimal or Bird Contact3572191Ice or Snow Broken Conductors291Lightning489828Storm751272Tree Condition48418408Wind or Snow Crossed Conductor28312Total64712712AridgtonSUPPLYTransmission59281	14 1 15.9 1184 7 1187.6 Total 20923 37 34390.9 ttact 3572 191 5269.1 n Conductors 29 1 43.5 4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 ssed Conductor 283 12 5008.6 Total 64712 712 229880.2 5928 1 1580.8			CMP Crew Error	191	1	19.1
Tree Cont. Error11847Total2092337BridgtonNATURALAnimal or Bird Contact3572191Ice or Snow Broken Conductors291Lightning489828Storm751272Tree Condition48418408Wind or Snow Crossed Conductor28312Total64712712AridgtonSUPPLYTransmission59281	1184 7 1187.6 Total 20923 37 34390.9 ttact 3572 191 5269.1 n Conductors 29 1 43.5 4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 ssed Conductor 283 12 5008.6 Total 64712 712 229880.2 5928 1 1580.8			Other Human Error	1	1	0.7
Total2092337BridgtonNATURALAnimal or Bird Contact3572191Ice or Snow Broken Conductors291Lightning489828Storm751272Tree Condition48418408Wind or Snow Crossed Conductor28312Total64712712AridgtonSUPPLYTransmission59281	Total 20923 37 34390.9 itact 3572 191 5269.1 in Conductors 29 1 43.5 4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 ssed Conductor 283 12 5008.6 Total 64712 712 229880.2 5928 1 1580.8			Road Cont. Error	14	1	15.9
BridgtonNATURALAnimal or Bird Contact3572191Ice or Snow Broken Conductors291Lightning489828Storm751272Tree Condition48418408Wind or Snow Crossed Conductor28312Total64712712AridgtonSUPPLYTransmission59281	tact 3572 191 5269.1 n Conductors 29 1 43.5 4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 ssed Conductor 283 12 5008.6 Total 64712 712 229880.2			Tree Cont. Error	1184	7	1187.6
Ice or Snow Broken Conductors 29 1 Lightning 4898 28 Storm 7512 72 Tree Condition 48418 408 Wind or Snow Crossed Conductor 283 12 Total 64712 712 tridgton SUPPLY Transmission 5928 1	n Conductors 29 1 43.5 4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 ssed Conductor 283 12 5008.6 Total 64712 712 229880.2			Total	20923	37	34390.9
Lightning 4898 28 Storm 7512 72 Tree Condition 48418 408 Wind or Snow Crossed Conductor 283 12 Total 64712 712	4898 28 6466.7 7512 72 92765.4 48418 408 120326.9 ssed Conductor 283 12 5008.6 Total 64712 712 229880.2 5928 1 1580.8	ridgton	NATURAL	Animal or Bird Contact	3572	191	5269.1
Storm 7512 72 Tree Condition 48418 408 Wind or Snow Crossed Conductor 283 12 Total 64712 712 Bridgton SUPPLY Transmission 5928 1	7512 72 92765.4 48418 408 120326.9 ssed Conductor 283 12 5008.6 Total 64712 712 229880.2 5928 1 1580.8			Ice or Snow Broken Conductors	29	1	43.5
ridgton SUPPLY Transmission 5928 1	48418 408 120326.9 ssed Conductor 283 12 5008.6 Total 64712 712 229880.2 5928 1 1580.8			Lightning	4898	28	6466.7
Wind or Snow Crossed Conductor 283 12 Total 64712 712 ridgton SUPPLY Transmission 5928 1	ssed Conductor 283 12 5008.6 Total 64712 712 229880.2 5928 1 1580.8			Storm	7512	72	92765.4
Total 64712 712 Tridgton SUPPLY Transmission 5928 1	Total 64712 712 229880.2 5928 1 1580.8			Tree Condition	48418	408	120326.9
ridgton SUPPLY Transmission 5928 1	5928 1 1580.8			Wind or Snow Crossed Conductor	283	12	5008.6
				Total	64712	712	229880.2
Total 5928 1	Total 5928 1 1580.8	Bridgton	SUPPLY	Transmission	5928	1	1580.8
				Total	5928	1	1580.8

Bridgton District Total

130042 1184

341044.2

Docket No. 2010-051 March 15, 2010 Attachment 24 Page 7 of 17

Central Maine Power

2009 Interruption Summary by Cause

(Exclusions Removed)

	CATEGORY	CAUSE		Customers Interrupted	Number of Interruptions	Custome Hours
Brunswick	EQUIPMENT	Cable Failure		7252	10	7938.3
		Connector or Splice Failure		1362	3	892.2
		Crossarm Failure		1310	1	436.7
		Cutout Broken, Burned, etc.		1173	18	2196.6
		Hot Line Clamp-(Specify)		1	1	1.5
		Hot Line Clamp-Burned Conduc	to	76	2	195.9
		Insulator Broken or Defective		7791	18	12601.1
		Lightning Arrestor Failure		1415	14	2238.3
		Other Equipment Failure		4823	2	2624.8
		Pole Failure		372	8	1312.3
		Tie Wire Failure		936	1	1201.2
		Transformer Failure		4992	17	5819.9
			Total	31503	95	37459.0
Brunswick	GENERAL	Fire		7654	4	6655.0
		Overload		487	3	481.8
		Planned		4847	5	14640.7
		Unknown		38973	463	67400.1
			Totał	51961	475	89177.6
Brunswick	HUMAN ERROR	Auto Accident		16803	59	55852.8
		CMP Crew Error		2666	1	355.5
		Customer Error		187	2	284.4
		Snowplow Damage		884	1	1473.3
		Tree Cont. Error		3426	7	2697.3
			Total	23966	70	60663.3
Brunswick	NATURAL	Animal or Bird Contact		11461	382	15466.1
		Lightning		754	17	2282.6
		Storm		12504	57	53203.0
		Tree Condition		39433	290	54406.1
			Total	64152	746	125357.8
Brunswick	SUPPLY	Station Outage		1639	1	1311.2
		Transmission		5063	1	16639.7
			Total	6702	2	17950.9

Brunswick District Total

178284

Central Maine Power

Docket No. 2010-051 <u>March 15, 2010</u> Attachment 24 Page 8 of 17

2009 Interruption Summary by Cause

	CATEGORY	CAUSE		Customers Interrupted	Number of Interruptions	Customer Hours
Dover	EQUIPMENT	Connector or Splice Failure		11	1	35.2
		Cutout Broken, Burned, etc.		169	2	281.9
		Hot Line Clamp-(Specify)		137	2	249.2
		Insulator Broken or Defective		1728	7	3752.7
		Lightning Arrestor Failure		2491	12	1322.2
		Other Equipment Failure		134	1	129.5
		Recloser Failure		115	1	130.3
		Terminator Failure		31	1	141.0
		Transformer Failure		62	4	100.0
		Ti	otal	4878	31	6142.1
Dover	GENERAL	Fire		20	1	22.7
		Overload		232	1	726.9
		Planned		3489	7	4073.0
		Unknown		4195	83	6428.5
		Т	otal	7936	92	11251.1
Dover	HUMAN ERROR	Auto Accident		825	10	3236.0
		Snowplow Damage		409	2	741.8
		Tree Cont. Error		153	1	165.8
		та	otal	1387	13	4143.6
Dover	NATURAL	Animal or Bird Contact		4629	46	5116.2
		Lightning		3478	1	4753.3
		Other Natural Cause		23	1	30.3
		Tree Condition		37627	254	91900.8
		Wind or Snow Crossed Conductor		69	4	327.7
		Τα	otal	45826	306	102128.3
		Dover District Total		60027	442	123665.1

÷

,

Docket No. 2010-051 March 15, 2010 Attachment 24 Page 9 of 17 ----

.....

Central Maine Power

2009 Interruption Summary by Cause

	CATEGORY	CAUSE	Custom Interru		Customer Hours
Fairfield	EQUIPMENT	Cutout Broken, Burned, etc.	123	3	312.4
		Hot Line Clamp-Burned Conducto	149	1	37.3
		Insulator Broken or Defective	7046	3	10096.5
		Lightning Arrestor Failure	15	2	49.5
		Other Equipment Failure	6	1	14.0
		Transformer Failure	520	7	5141.7
		Tota	7859	17	15651.4
Fairfield	GENERAL	Planned	49	1	219.7
		Unknown	15580	130	21291.6
		Tota	15629	131	21511.3
Fairfield	HUMAN ERROR	Auto Accident	6477	22	9133.0
		Tree Cont. Error	1211	3	776.0
		Tota	7688	25	9909.1
Fairfield	NATURAL	Animal or Bird Contact	4838	131	5409.5
		Lightning	2	1	4.8
		Storm	219	8	459.8
		Tree Condition	18100	106	37744.5
		Tota	23159	246	43618.5
		Fairfield District Total	54335	419	90690.3

Docket No. 2010-051 March 15, 2010 Attachment 24 Page 10 of 17

Central Maine Power

2009 Interruption Summary by Cause

Connector or Splice Failure 5 1 9.9 Cutout Broken, Burned, etc. 32 4 554 Hot Line Clamp-Burned Conducto 673 1 68425 Insulator Broken or Defective 8241 16 82359 Lightning Arrestor Failure 142 5 282.2 Other Equipment Failure 2690 5 5651.0 Pole Failure 7484 3 18720.2 Recloser Failure 3554 1 12813.6 Tie Wire Failure 252 1 567.0 Transformer Failure 659 10 2415.3 Total 23763 51 49882.6 Planned 4035 3 6857.6 Unknown 20229 196 30957.5 Total 2546 203 40383.6 Farmington HUMAN ERROR Auto Accident 5767 19 13166.5 CMP Crew Error 1541 1 30827.5 160 24399.1 Customer Error		CATEGORY	CAUSE		Customers Interrupted	Number of Interruptions	Customer Hours
Connector or Splice Failure 5 1 9.9 Cutout Broken, Burned, etc. 32 4 694 Hot Line Clamp-Burned Conducto 673 1 6842 Insubidor Broken or Defective 8241 16 8235.9 Lightning Arrestor Failure 142 5 2822 Other Equipment Failure 142 5 2862 Other Equipment Failure 2690 5 5561.0 Pole Failure 3554 1 12813.6 Tie Wire Failure 252 1 5670.0 Transformer Failure 659 10 2415.3 Total 23763 51 49662.6 Planned 4035 3 6657.6 Unknown 20229 196 30957.5 Total 25846 203 40393.0 Farmington HUMAN ERROR Auto Accident 5767 19 13166.5 CMP Grew Error 1641 1 3092.2 162.9 0ther Human Error 3663	Farmington	EQUIPMENT	Cable Failure		31	4	223.8
Cutout Broken, Burned, etc. 32 4 594 Hot Line Clamp-Burned Conducto 673 1 684.2 Insulator Broken or Defective 8241 16 8235.9 Lightning Arrestor Failure 142 5 282.2 Other Equipment Failure 2690 5 5651.0 Pole Failure 7484 3 16720.2 Recloser Failure 3554 1 12813.6 Tie Wire Failure 252 1 6679 Transformer Failure 659 10 2415.3 Farmington GENERAL Fire 1139 2 2314.1 Overload 443 2 254.5 140662.6 Planned 4035 3 6697.6 0.0957.5 Total 20229 196 30957.5 13106.2 Farmington HUMAN ERROR Auto Accident 5767 19 13166.2 Farmington HUMAN ERROR Auto Accident 1128 26 16014.2 Farm	- citiling con		Connector or Splice Failure		5	1	9.9
Insulator Broken or Defective 8241 16 8235.9 Lightning Arrestor Failure 142 5 282.2 Other Equipment Failure 2690 5 5651.0 Pole Failure 7484 3 18720.2 Recloser Failure 3554 1 12813.6 Tie Wire Failure 252 1 567.0 Transformer Failure 659 10 2415.3 Farmington GENERAL Fire 1139 2 2314.1 Overload 4433 2 254.5 30957.5 Farmington HUMAN ERROR Auto Accident 5767 19 13166.5 CMP Crew Error 1541 1 3092.5 152.2 Crane Contact 3 1 3.1 1.1 Customer Error 140 2 152.9 166.5 Farmington NATURAL Animal or Bird Contact 1719 800 2204.3 Customer Error 140 2 32.9 366.9					32	4	59.4
Lightning Arrestor Failure 142 5 282.2 Other Equipment Failure 2690 5 5651.0 Pole Failure 7484 3 18720.2 Rectoser Failure 3554 1 12813.6 Tie Wire Failure 252 1 567.0 Transformer Failure 659 10 2214.1 Overload 443 2 22314.1 Overload 443 2 254.5 Planned 4035 3 6857.6 Unknown 20229 196 30957.5 Total 25846 203 40383.6 Farmington HUMAN ERROR Auto Accident 5767 19 13166.5 CMP Crew Error 1541 1 308.2 143.1 Customer Error 140 2 152.9 Other Human Error 3863 2 4379.7 Snowplow Damage 14 1 3.7 Total 11328 26 16014.2			Hot Line Clamp-Burned Conducto		673	1	684.2
Other Equipment Failure 2690 5 5651.0 Pole Failure 7484 3 18720.2 Recloser Failure 3554 1 12813.6 Tie Wire Failure 252 1 567.0 Transformer Failure 252 1 567.0 Total 23763 51 49682.6 Farmington GENERAL Fire 1139 2 2314.1 Overload 443 2 254.5 1 30957.5 Vinknown 20229 196 30957.5 1 30957.5 Total 25846 203 40383.6 1 3.1<			Insulator Broken or Defective		8241	16	8235.9
Pole Failure 7484 3 18720.2 Recloser Failure 3554 1 12813.6 Tie Wire Failure 252 1 567.0 Transformer Failure 659 10 2415.3 Farmington GENERAL. Fire 1139 2 2314.1 Overload 443 2 254.5 2000 3 6857.6 Planned 4035 3 6857.6 0 30957.5 30957.5 Farmington HUMAN ERROR Auto Accident 5767 19 13166.5 CMP Crew Error 1541 1 3082.6 203 40383.6 Farmington HUMAN ERROR Auto Accident 5767 19 13166.5 CMP Crew Error 1541 1 3082.7 31 31 31 Customer Error 140 2 152.9 3664.3 2 4379.7 Snowplow Damage 14 1 37.7 300 2204.3 166.14.2 16014.2 </td <td></td> <td></td> <td>Lightning Arrestor Failure</td> <td></td> <td>142</td> <td>5</td> <td>282.2</td>			Lightning Arrestor Failure		142	5	282.2
Recloser Failure 3554 1 12813.6 Tie Wire Failure 252 1 567.0 Transformer Failure 659 10 2415.3 Total 23763 51 49662.6 Farmington GENERAL Fire 1139 2 2314.1 Overload 4433 2 254.5 20229 196 30957.5 Value 20229 196 30957.5 Total 20229 196 30957.5 Farmington HUMAN ERROR Auto Accident 5767 19 13166.5 Caree Contact 3 1 3.1 3.1 3.1 Customer Error 140 2 152.9 Other Human Error 3863 2 4379.7 Snowplow Damage 14 1 3.7 7 19 8014.2 16014.2 Farmington NATURAL Animal or Bird Contact 1719 80 2204.3 1605.5 16014.2 365.9 0104.1 4320.1 <td< td=""><td></td><td></td><td>Other Equipment Failure</td><td></td><td>2690</td><td>5</td><td>5651.0</td></td<>			Other Equipment Failure		2690	5	5651.0
Tie Wire Failure 252 1 567.0 Transformer Failure 659 10 2415.3 Total 23763 51 49662.6 Farmington GENERAL Fire 1139 2 2314.1 Overload 443 2 254.5 214.1 20229 196 30957.5 Farmington HUMAN ERROR Auto Accident 5767 19 13166.5 CMP Crew Error 1541 1 3082.2 24379.3 Farmington HUMAN ERROR Auto Accident 5767 19 13166.5 CMP Crew Error 1541 1 3082.2 24379.7 Crane Contact 3 1 3.1 3.1 Customer Error 140 2 152.9 0 Other Human Error 3863 2 4379.7 Snowplow Damage 14 1 3.7 Farmington NATURAL Animal or Bird Contact 1719 80 2204.3 Ideo or Snow Br			Pole Failure		7484	3	18720.2
Farmington GENERAL Fire 1139 2 23763 51 49682.6 Farmington GENERAL Fire 1139 2 2314.1 Overload 443 2 2314.1 Overload 443 2 254.5 Planned 4035 3 66857.6 Unknown 20229 196 30957.5 7 19 13166.5 Farmington HUMAN ERROR Auto Accident 5767 19 13166.5 CMP Crew Error 1541 1 306.2 Crane Contact 3 1 3.1 Customer Error 140 2 152.9 Other Human Error 3663 2 4379.7 Snowplow Damage 14 1 3.7 7 180 2204.3 Farmington NATURAL Animal or Bird Contact 1719 80 2204.3 tce or Snow Broken Conductors 3014 1 4320.1 132.6 Lightning 7157 23 8365.9 0			Recloser Failure		3554	1	12813.6
Total 23763 51 49682.6 Farmington GENERAL Fire 1139 2 2314.1 Overload 443 2 254.5 Planned 4035 3 6857.6 Unknown 20229 196 30957.5 Total 25846 203 40383.6 Farmington HUMAN ERROR Auto Accident 5767 19 13166.5 CMP Crew Error 1541 1 308.2 Crane Contact 3 1 3.			Tie Wire Failure		252	1	567.0
Farmington GENERAL Fire 1139 2 2314.1 Overload 443 2 254.5 Planned 4035 3 6857.6 Unknown 20229 196 30957.5 Total 25846 203 40383.6 Farmington HUMAN ERROR Auto Accident 5767 19 13166.5 CMP Crew Error 1541 1 3082.2 Grane Contact 3 1 3.1 Customer Error 140 2 152.9 Other Human Error 3863 2 4379.7 Snowplow Damage 14 1 3.7 18014.2 18014.2 Farmington NATURAL Animal or Bird Contact 1719 80 2204.3 fce or Snow Broken Conductors 3014 1 4320.1 1321 Lightning 7157 23 8365.9 0 Other Natural Cause 71 1 33.1 4823.7 Tree Condition 31703 309 56917.0 5			Transformer Failure		659	10	2415.3
Overload 443 2 254.5 Planned 4035 3 6857.6 Unknown 20229 196 30957.5 Total 25846 203 40383.6 Farmington HUMAN ERROR Auto Accident 5767 19 13166.5 CMP Crew Error 1541 1 308.2 Crane Contact 3 1 3.1 Customer Error 140 2 152.9 Other Human Error 3863 2 4379.7 Snowplow Damage 14 1 3.7 3.7 3.01 3.1 Farmington NATURAL Animal or Bird Contact 1719 80 2204.3 Ice or Snow Broken Conductors 3014 1 4320.1 Lightning 7157 23 8365.9 Other Natural Cause 71 1 33.1 Storm 1059 13 4623.7 Tree Condition 31703 309 56917.0 Wind or Snow Crossed Conductor <td< td=""><td></td><td></td><td>Τα</td><td>otal</td><td>23763</td><td>51</td><td>49662.6</td></td<>			Τα	otal	23763	51	49662.6
Planned 4035 3 6857.6 Unknown 20229 196 30957.5 Total 25846 203 40383.6 Farmington HUMAN ERROR Auto Accident 5767 19 13166.5 CMP Crew Error 1541 1 3082.2 152.9 Other Human Error 3863 2 4379.7 Snowplow Damage 14 1 3.7 Total 11328 26 18014.2 Farmington NATURAL Animal or Bird Contact 1719 80 2204.3 ice or Snow Broken Conductors 3014 1 4320.1 11328 26 18014.2 Farmington NATURAL Animal or Bird Contact 1719 80 2204.3 ice or Snow Broken Conductors 3014 1 4320.1 Lightning 7157 23 8365.9 Other Natural Cause 71 1 33.1 Storm 1059 13 4823.7 Tree Condilti	Farmington	GENERAL	Fire		1139	2	2314.1
Unknown 20229 196 30957.5 Total Total 25846 203 40383.6 Farmington HUMAN ERROR Auto Accident 5767 19 13166.5 CMP Crew Error 1541 1 3082.2 3 1 3.1 Customer Error 140 2 152.9 0 14 1 3.7 Snowplow Damage 14 1 3.7 1328 26 18014.2 Farmington NATURAL Animal or Bird Contact 1719 80 2204.3 ice or Snow Broken Conductors 3014 1 4320.1 Lightning 7157 23 8365.9 Other Natural Cause 71 1 33.1 Storm 1059 13 4823.7 Tree Condition 31703 309 56917.0 Wind or Snow Crossed Conductor 1017 8 1782.8 Farmington SUPPLY Station Outage 4670 2 5324.8			Overload		443	2	254.5
Total Z5846 203 40383.6 Farmington HUMAN ERROR Auto Accident 5767 19 13166.5 CMP Crew Error 1541 1 308.2 Crane Contact 3 1 3.1 Customer Error 140 2 152.9 Other Human Error 3863 2 4379.7 Snowplow Damage 14 1 3.7 11328 26 18014.2 Farmington NATURAL Animal or Bird Contact 1719 80 2204.3 fce or Snow Broken Conductors 3014 1 4320.1 Lightning 7157 23 8365.9 Other Natural Cause 71 1 33.1 Storm 1059 13 4823.7 Tree Condition 31703 309 56917.0 Wind or Snow Crossed Conductor 1017 8 1782.8 Farmington SUPPLY Station Outage 4670 2 5324.8 Transmission 18668 4 2			Planned		4035	3	6857.6
Farmington HUMAN ERROR Auto Accident 5767 19 13166.5 CMP Crew Error 1541 1 308.2 Crane Contact 3 1 3.1 Customer Error 140 2 152.9 Other Human Error 3863 2 4379.7 Snowplow Damage 14 1 3.7 Total 11328 26 18014.2 Farmington NATURAL Animal or Bird Contact 1719 80 2204.3 ice or Snow Broken Conductors 3014 1 4320.1 Lightning 7157 23 8365.9 Other Natural Cause 71 1 33.1 Storm 1059 13 4823.7 Tree Condition 31703 309 56917.0 Wind or Snow Crossed Conductor 1017 8 1782.8 Farmington SUPPLY Station Outage 4670 2 5324.8 Transmission 18868 4 20079.5 500.5 </td <td></td> <td></td> <td>Unknown</td> <td></td> <td>20229</td> <td>196</td> <td>30957.5</td>			Unknown		20229	196	30957.5
CMP Crew Error 1541 1 308.2 Crane Contact 3 1 3.1 Customer Error 140 2 152.9 Other Human Error 3863 2 4379.7 Snowplow Damage 14 1 3.7 Total 11328 26 18014.2 Farmington NATURAL Animal or Bird Contact 1719 80 2204.3 ice or Snow Broken Conductors 3014 1 4320.1 Lightning 7157 23 8365.9 Other Natural Cause 71 1 33.1 Storm 1059 13 4823.7 Tree Condition 31703 309 56917.0 Wind or Snow Crossed Conductor 1017 8 1782.8 Farmington Station Outage 4670 2 5324.8 Transmission 18868 4 20079.5			Τα	otal	25846	203	40383.6
Crane Contact 3 1 3.1 Customer Error 140 2 152.9 Other Human Error 3863 2 4379.7 Snowplow Damage 14 1 3.7 Total 11328 26 18014.2 Farmington NATURAL Animal or Bird Contact 1719 80 2204.3 Ice or Snow Broken Conductors 3014 1 4320.1 Lightning 7157 23 8365.9 Other Natural Cause 71 1 33.1 Storm 1059 13 4823.7 Tree Condition 31703 309 56917.0 Wind or Snow Crossed Conductor 1017 8 1782.8 Farmington SUPPLY Station Outage 4670 2 5324.8 Transmission 18868 4 20079.5	Farmington	HUMAN ERROR	Auto Accident		5767	19	13166.5
Customer Error 140 2 152.9 Other Human Error 3863 2 4379.7 Snowplow Damage 14 1 3.7 Total 11328 26 18014.2 Farmington NATURAL Animal or Bird Contact 1719 80 2204.3 ice or Snow Broken Conductors 3014 1 4320.1 11328 26 18014.2 Lightning 7157 23 8365.9 0ther Natural Cause 71 1 33.1 Storm 1059 13 4823.7 17ee Condition 31703 309 56917.0 Wind or Snow Crossed Conductor 1017 8 1782.8 Farmington SUPPLY Station Outage 4670 2 5324.8 Transmission 18868 4 20079.5			CMP Crew Error		1541	1	308.2
Other Human Error 3863 2 4379.7 Snowplow Damage 14 1 3.7 Total Total 11328 26 18014.2 Farmington NATURAL Animal or Bird Contact 1719 80 2204.3 ice or Snow Broken Conductors 3014 1 4320.1 1 4320.1 Lightning 7157 23 8365.9 0 0 0 113 33.1 Storm 1059 13 4823.7 1 33.1 309 56917.0 Wind or Snow Crossed Conductor 1017 8 1782.8 1782.8 Farmington SUPPLY Station Outage 4670 2 5324.8 Transmission 18868 4 20079.5 18868 4			Crane Contact		3	1	3.1
Snowplow Damage 14 1 3.7 Total Total 11328 26 18014.2 Farmington NATURAL Animal or Bird Contact 1719 80 2204.3 ice or Snow Broken Conductors 3014 1 4320.1 14320.1 Lightning 7157 23 8365.9 Other Natural Cause 71 1 33.1 Storm 1059 13 4823.7 Tree Condition 31703 309 56917.0 Wind or Snow Crossed Conductor 1017 8 1782.8 Farmington SUPPLY Station Outage 4670 2 5324.8 Transmission 18868 4 20079.5			Customer Error		140	2	152.9
Total Total 11328 26 18014.2 Farmington NATURAL Animal or Bird Contact 1719 80 2204.3 ice or Snow Broken Conductors 3014 1 4320.1 Lightning 7157 23 8365.9 Other Natural Cause 71 1 33.1 Storm 1059 13 4823.7 Tree Condition 31703 309 56917.0 Wind or Snow Crossed Conductor 1017 8 1782.8 Farmington SUPPLY Station Outage 4670 2 5324.8 Transmission 18868 4 20079.5			Other Human Error		3863	2	4379.7
Farmington NATURAL Animal or Bird Contact 1719 80 2204.3 ice or Snow Broken Conductors 3014 1 4320.1 Lightning 7157 23 8365.9 Other Natural Cause 71 1 33.1 Storm 1059 13 4823.7 Tree Condition 31703 309 56917.0 Wind or Snow Crossed Conductor 1017 8 1782.8 Farmington SUPPLY Station Outage 4670 2 5324.8 Transmission 18868 4 20079.5			Snowplow Damage		14	1	3.7
ice or Snow Broken Conductors 3014 1 4320.1 Lightning 7157 23 8365.9 Other Natural Cause 71 1 33.1 Storm 1059 13 4823.7 Tree Condition 31703 309 56917.0 Wind or Snow Crossed Conductor 1017 8 1782.8 Farmington SUPPLY Station Outage 4670 2 5324.8 Transmission 18868 4 20079.5			Тс	otal	11328	26	18014.2
Lightning 7157 23 8365.9 Other Natural Cause 71 1 33.1 Storm 1059 13 4823.7 Tree Condition 31703 309 56917.0 Wind or Snow Crossed Conductor 1017 8 1782.8 Farmington SUPPLY Station Outage 4670 2 5324.8 Transmission 18868 4 20079.5	Farmington	NATURAL	Animal or Bird Contact		1719	80	2204.3
Other Natural Cause 71 1 33.1 Storm 1059 13 4823.7 Tree Condition 31703 309 56917.0 Wind or Snow Crossed Conductor 1017 8 1782.8 Total 45740 435 78446.9 Farmington SUPPLY Station Outage 4670 2 5324.8 Transmission 18868 4 20079.5			Ice or Snow Broken Conductors		3014	1	4320.1
Storm 1059 13 4823.7 Tree Condition 31703 309 56917.0 Wind or Snow Crossed Conductor 1017 8 1782.8 Total 45740 435 78446.9 Farmington SUPPLY Station Outage 4670 2 5324.8 Transmission 18868 4 20079.5			Lightning		7157	23	8365.9
Tree Condition 31703 309 56917.0 Wind or Snow Crossed Conductor 1017 8 1782.8 Total 45740 435 78446.9 Farmington SUPPLY Station Outage 4670 2 5324.8 Transmission 18868 4 20079.5			Other Natural Cause		71	1	33.1
Wind or Snow Crossed Conductor 1017 8 1782.8 Total 45740 435 78446.9 Farmington SUPPLY Station Outage 4670 2 5324.8 Transmission 18868 4 20079.5			Storm		1059	13	4823.7
Total 45740 435 78446.9 Farmington SUPPLY Station Outage 4670 2 5324.8 Transmission 18868 4 20079.5			Tree Condition		31703	309	56917.0
FarmingtonSUPPLYStation Outage467025324.8Transmission18868420079.5			Wind or Snow Crossed Conductor		1017	8	1782.8
Transmission 18868 4 20079.5			Το	otal	45740	435	78446.9
	Farmington	SUPPLY	Station Outage		4670	2	5324.8
Total 23538 6 25404.4			Transmission		18868	4	20079.5
			Το	otal	23538	6	25404.4

Docket No. 2010-051 March 15, 2010 Attachment 24 Page 11 of 17

Central Maine Power

2009 Interruption Summary by Cause

CATEGORY	CAUSE	Customers Interrupted	Number of Interruptions	Customer Hours
	Farmington District Total	130215	721	211911.6

.

Docket No. 2010-051 March 15, 2010 Attachment 24 Page 12 of 17

Central Maine Power

2009 Interruption Summary by Cause

· · · · · · · · ·

	CATEGORY	CAUSE	Customers Interrupted	Number of Interruptions	Customer Hours
Lewiston	EQUIPMENT	Cable Failure	775	3	1184.2
		Connector or Splice Failure	302	4	601.6
		Crossarm Failure	156	1	332.8
		Cutout Broken, Burned, etc.	1224	21	1776.0
		Hot Line Clamp-Burned Conducto	2725	4	1591.9
		Insulator Broken or Defective	16315	18	34154.6
		Lightning Arrestor Failure	186	12	269.0
		Other Equipment Failure	2162	9	1530.6
		Pole Failure	46	1	114.2
		Recloser Failure	1137	1	1118.0
		Tie Wire Failure	1389	4	857.3
		Transformer Failure	1716	10	3800.8
		Total	28133	88	47331.1
Lewiston	GENERAL	Fire	505	5	1574.4
		Overload	406	1	521.0
		Planned	62	1	16.5
		Unknown	10056	223	11969.4
		Total	11029	230	14081.3
Lewiston	HUMAN ERROR	Auto Accident	3344	22	9 412.9
		Cable Dig In	68	1	182.5
		CMP Cont. Error	15	1	17.0
		Customer Error	33	2	21.9
		Road Cont. Error	1791	2	236.0
		Snowplow Damage	0	0	0.0
		Telephone Crew Error	97	1	111.5
		Tree Cont. Error	6	2	5.3
		Total	5354	31	9987.1
Lewiston	NATURAL	Animal or Bird Contact	6903	193	6820.6
		Lightning	1146	34	7008.6
		Storm	3284	7	28142.7
		Tree Condition	20628	172	33528.5
		Wind or Snow Crossed Conductor	213	5	532.8
		Total	32174	411	76033.1

٨.....

Docket No. 2010-051 March 15, 2010 Attachment 24 Page 13 of 17

Central Maine Power

2009 Interruption Summary by Cause

	CATEGORY	CAUSE_		Customers Interrupted	Number of Interruptions	Customer Hours
Lewiston	SUPPLY	Station Outage		3184	1	6474.1
		Transmission		5916	1	7690.8
			Total	9100	2	14164.9
		Lewiston District Total		85790	762	161597.6

1000

a nation of

Docket No. 2010-051 March 15, 2010 Attachment 24 Page 14 of 17

Central Maine Power

2009 Interruption Summary by Cause

(Exclusions Removed)

	CATEGORY	CAUSE		Customers Interrupted	Number of Interruptions	Customer Hours
Portland	EQUIPMENT	Cable Failure		1442	12	3393.6
		Connector or Splice Failure		4440	2	9682.9
		Crossarm Failure		113	2	160.9
		Cutout Broken, Burned, etc.		5259	21	8505.2
		Guy/Anchor Failure		33	1	23.1
		Hot Line Clamp-Burned Conducto		353	5	502.3
		Insulator Broken or Defective		4846	23	7523.7
		Lightning Arrestor Failure		4196	11	1539.0
		Other Equipment Failure		5093	10	4353.2
		Tie Wire Failure		72	1	108.0
		Transformer Failure		1629	16	2964.2
		Τα	otal	27476	104	38756.0
Portland	GENERAL	Fire		512	1	2449.1
		Overload		1429	5	1192.9
		Unknown		20701	213	21717.1
		Тс	otal	22642	219	25359.1
Portland	HUMAN ERROR	Auto Accident		18119	38	23300.5
		Cable Dig In		292	2	287.8
		CMP Tree Cont. Error		119	1	107.1
		Crane Contact		37	1	33.3
		Other Human Error		61	2	53.0
		Tree Cont. Error		84	2	84.9
		Τα	otal	18712	46	23866.7
Portland	NATURAL	Animal or Bird Contact		31059	314	32912.3
		Lightning		699	5	839.9
		Storm		11528	39	23136.2
		Tree Condition		24337	118	27255.6
		Тс	otal	67623	476	84143.9
Portland	SUPPLY	Transmission		1541	1	4164.4
		Τα	otal	1541	1	4164.4

Portland District Total

137994

176290.1

846

ئرد:

- بن**ي**ر

Docket No. 2010-051 March 15, 2010 Attachment 24 Page 15 of 17 -----

Central Maine Power

2009 Interruption Summary by Cause

(Exclusions Removed)

	CATEGORY	CAUSE	Customers Interrupted	Number of Interruptions	Custom Hour
Rockland	EQUIPMENT	Connector or Splice Failure	281	3	248.1
		Crossarm Failure	4395	2	7595.5
		Cutout Broken, Burned, etc.	367	9	621.8
		Hot Line Clamp-Burned Conducto	115	2	136.4
		Insulator Broken or Defective	2245	8	4353.1
		Lightning Arrestor Failure	603	8	1164.3
		Other Equipment Failure	1893	7	3195.
		Pole Failure	1548	4	5524.0
		Tie Wire Failure	6	1	13.1
		Transformer Failure	3653	15	4183.
		Total	15106	59	27035.
Rockland	GENERAL	Fire	154	1	46.
		Planned	925	4	418.
		Unknown	15970	227	19264.8
		Total	17049	232	19729.
Rockland	HUMAN ERROR	Auto Accident	23226	36	91642.1
		Customer Error	96	2	232.
		Road Cont. Error	84	1	141.4
		Snowplow Damage	36	1	22.
		Tree Cont. Error	800	10	1792.3
		Total	24242	50	93830.
Rockland	NATURAL	Animal or Bird Contact	4197	160	4902.
		Lightning	573	6	1800.
		Other Natural Cause	4	1	19.
		Storm	8518	103	30670.3
		Tree Condition	36331	266	58180.3
		Wind or Snow Crossed Conductor	138	6	341.9
		Total	49761	542	95915.2
Rockland	SUPPLY	Transmission	5116	2	23075.7
		Total	5116	2	23075.7
			81.111/1 /		
		Rockland District Total	111274	885	259586.9

1. 1.1.1.1.1

Central Maine Power

Docket No. 2010-051 March 15, 2010 Attachment 24 Page 16 of 17

2009 Interruption Summary by Cause

	CATEGORY	CAUSE		Customers Interrupted	Number of Interruptions	Custome Hours
Skowhega	EQUIPMENT	Connector or Splice Failure		421	2	513.3
		Cutout Broken, Burned, etc.		2272	5	944.2
		Insulator Broken or Defective		1541	7	3108.2
		Lightning Arrestor Failure		116	4	526.3
		Other Equipment Failure		65	2	143.2
		Pole Failure		50	2	477.8
		Tie Wire Failure		0	0	0.0
		Transformer Failure		980	1	98.0
		Το	tal	5445	23	5811.0
Skowhega	GENERAL	Fire		252	2	361.1
		Overload		34	1	40.2
		Planned		2093	2	2219.3
		Unknown		2853	39	5002.1
		То	tal	5232	44	7622.6
Skowhega	HUMAN ERROR	Auto Accident		5099	17	18574.0
		CMP Crew Error		2313	1	38.6
		Customer Error		12	1	13.4
		Other Human Error		4042	4	9854.9
		Το	tai	11466	23	28480.9
Skowhega	NATURAL	Animal or Bird Contact		1581	54	2614.8
		Lightning		563	5	1687.6
		Storm		5023	59	17305.2
		Tree Condition		22216	200	55086.7
		Wind or Snow Crossed Conductor		17	1	56.4
		То	tal	29400	319	76750.6
Skowhega	SUPPLY	Transmission		1360	1	226.7
		Το	tal	1360	1	
		Skowhegan District Total		52903	410	118891.8

·u

Central Maine Power

Docket No. 2010-051 March 15, 2010 Attachment 24 Page 17 of 17

2009 Interruption Summary by Cause

CATEGORY	CAUSE		Number of Interruptions	Customer Hours
	CompanyTotal	1232199	9538	2365200.1

Docket No. 2010-051 March 15, 2010 Attachment 25 Page 1 of 14

Central Maine Power Company Summary of Distribution Plant Ages 2009

Туре	Unit of Measure	Count/Length	Average Age
Poles	Each	643,406	29.1
Conductor	Feet	281,244,714	36.8
Transformers	Each	256,088	20.9
Regulators	Each	1,434	15.4
Capacitors	Each	502	20.1
Reclosers	Each	1,305	2.7

Docket No. 2010-051 March 15, 2010 Attachment 25 Page 2 of 14

Central Maine Power Company Number of Poles and Age 2009

··· · ··

1 -

	2009							
YEAR	COUNT	AGE	TOTAL AGE					
1900	13	109.5	1,423.5					
1901	4	108.5	434.0					
1902	3	107.5	322.5					
1903	3	106.5	319.5					
1905	3	104.5	313.5					
1907	1	102.5	102.5					
1908	4	101.5	406.0					
1909	1	100.5	100.5					
1910	1	99.5	99.5					
1911	12	98.5	1,182.0					
1912	1	97.5	97.5					
1914	3	95.5	286.5					
1915	2	94.5	189.0					
1917	7	92.5	647.5					
1918	4	91.5	366.0					
1919	12	90.5	1,086.0					
1920	37	89.5	3,311.5					
1921	12	88.5	1,062.0					
1922	18	87.5	1,575.0					
1923	15	86.5	1,297.5					
1924	19	85.5	1,624.5					
1925	49	84.5	4,140.5					
1926	81	83.5	6,763.5					
1927	121	82.5	9,982.5					
1928	172	81.5	14,018.0					
1929	271	80.5	21,815.5					
1930	481	79.5	38,239.5					
1931	389	78.5	30,536.5					
1932	144	77.5	11,160.0					
1933	169	76.5	12,928.5					
1934	188	75.5	14,194.0					
1935	317	74.5	23,616.5					
1936	301	73.5	22,123.5					
1937	506	72.5	36,685.0	┝━┉──╋━━╌──┥				
1938	562	71.5	40,183.0	┝━━━╋━╍━┓┥				
1939	630	70.5	44,415.0					
<u>1940</u> 1941	832	<u>69.5</u>	57,824.0	┟━━━━╋━━━━━┫				
	967	68.5	66,239.5	┟━━━━╋╋╋				
1942	413	67.5	27,877.5					
1943	411	66.5	27,331.5					
1944	374	65.5	24,497.0	┝━━━━┣╼━━━━┤				
1945	949	64.5	61,210.5	┝─────┣─────┤				
1946	1,509	63.5	95, 821.5					

Docket No. 2010-051 March 15, 2010 Attachment 25 Page 3 of 14

.

Central Maine Power Company Number of Poles and Age 2009

		200)9	
YEAR	COUNT	AGE	TOTAL AGE	
1947	3,967	62.5	247,937.5	
1948	4,590	61.5	282,285.0	
1949	3,398	60.5	205,579.0	
1950	4,198	59.5	249,781.0	
1951	5,426	58.5	317,421.0	
1952	6,891	57.5	396,232.5	
1953	7,458	56.5	421,377.0	
1954	8,444	55.5	468,642.0	
1955	8,996	54.5	490,282.0	
1956	9,876	53.5	528,366.0	
1957	8,251	52.5	433,177.5	
1958	8,631	51.5	444,496.5	
1959	7,933	50.5	400,616.5	
1960	6,788	49.5	336,006.0	
1961	8,023	48.5	389,115.5	
1962	8,054	47.5	382,565.0	
1963	8,877	46.5	412,780.5	
1964	9,321	45.5	424,105.5	
1965	9,403	44.5	418,433.5	
1966	8,301	43.5	361,093.5	
1967	6,773	42.5	287,852.5	
1968	7,273	41.5	301,829.5	
1969	7,274	40.5	294,597.0	
1970	8,431	39.5	333,024.5	
1971	9,938	38.5	382,613.0	
1972	10,440	37.5	391,500.0	
1973	11,657	36.5	425,480.5	
1974	12,719	35.5	451,524.5	
1975	10,009	34.5	345,310.5	
1976	10,794	33.5	361,599.0	
1977	10,204	32.5	331,630.0	
1978	12,7 4 4	31.5	401,436.0	
1979	12,561	30.5	383,110.5	
1980	12,332	29.5	363,794.0	
1981	10,170	28.5	289,845.0	
1982	9,439	27.5	259,572.5	
1983	11,036	26.5	292,454.0	
1984	11,378	25.5	290,139.0	
1985	12,590	24.5	308,455.0	
1986	13,923	23.5	327,190.5	
1987	18,853	22.5	424,192.5	
1988	19,477	21.5	418,755.5	
1989	17,653	20.5	361,886.5	
1990	16,693	19.5	325,513.5	

Docket No. 2010-051 March 15, 2010 Attachment 25 Page 4 of 14

Central Maine Power Company Number of Poles and Age 2009

. ..

ياري ويوسطونها وهادي

		200)9	
YEAR	COUNT	AGE	TOTAL AGE	
1991	13,870	18.5	256,595.0	
1992	13,411	17.5	234,692.5	
1993	11,856	16.5	195,624.0	
1994	10,137	15.5	157,123.5	
1995	10,650	14.5	154,425.0	
1996	11,043	13.5	149,080.5	
1997	11,284	12.5	141,050.0	
1998	13,866	11.5	159,459.0	
1999	12,513	10.5	131,386.5	
2000	11,034	9.5	104,823.0	
2001	9,901	8.5	84,158.5	
2002	10,437	7.5	78,277.5	
2003	12,838	6.5	83,447.0	
2004	8,214	5.5	45,177.0	
2005	6,614	4.5	29,763.0	
2006	9,757	3.5	34,149.5	
2007	8,434	2.5	21,085.0	
2008	8,554	1.5	12,831.0	
2009	7,795	0.5	3,897.5	
	643,406		18,748,493.0	
Average Age			29.1	
ļ ļ				
		·		
┝────┤				
L.,	1]		<u>l</u>

Docket No. 2010-051 March 15, 2010 Attachment 25 Page 5 of 14

Central Maine Power Company Conductor Footage and Age

		200)9	
YEAR	TOTAL	AGE	TOTAL AGE	
1901	230	108.5	24,955.0	
1902	3,436	107.5	369,370.0	
1904	1,268	105.5	133,774.0	
1905	8,330	104.5	870,485.0	
1906	348	103.5	36,018.0	
1907	218	102.5	22,345.0	
1908	5,543	101.5	562,614.5	
1909	1,269	100.5	127,534.5	
1910	119,023	99.5	11,842,788.5	,
1911	27,387	98.5	2,697,619.5	
1912	10,312	97.5	1,005,420.0	
1913	80,691	96.5	7,786,681.5	
1914	4,931	95.5	470,910.5	
1915	57,103	94.5	5,396,233.5	
1916	6,387	93.5	597,184.5	
1917	70,192	92.5	6,492,760.0	
1918	47,711	91.5	4,365,556.5	
1919	39,884	90.5	3,609,502.0	
1920	228,761	89.5	20,474,109.5	
1921	212,600	88.5	18,815,100.0	
1922	145,364	87.5	12,719,350.0	
1923	175,037	86.5	15,140,700.5	
1924	293,884	85.5	25,127,082.0	
1925	55 5,994	84.5	46,981,493.0	
1926	773,192	83.5	64,561,532.0	
1927	981,952	82.5	81,011,040.0	
1928	1,204,579	81.5	98,173,188.5	
1929	2,037,345	80.5	164,006,272.5	
1930	2,082,404	79.5	165,551,118.0	
1931	1,431,458	78.5	112,369,453.0	
1932	713,632	77.5	55,306,480.0	
1933	323,969	76.5	24,783,628.5	
1934	554,854	75.5	41,891,477.0	
1935	825,147	74.5	61,473,451.5	
1936	1,042,164	73.5	76,599,054.0	
1937		72.5	127,130,780.0	
1938		71.5	192,870,106.0	
1939		70.5	141,414,610.5	
1940	2,893,635	69.5	201,107,632.5	
1941	4,121,305	68.5	282,309,392.5	
1942	471,987	67.5	31,859,122.5	
1943	339,436	66.5	22,572,494.0	
1944	431,474	65.5	28,261,547.0	

Docket No. 2010-051 March 15, 2010 Attachment 25 Page 6 of 14

Central Maine Power Company Conductor Footage and Age 2009

2009				
YEAR	TOTAL	AGE	TOTAL AGE	
1945	1,217,382	64.5	78,521,139.0	
1946	3,449,696	63.5	219,055,696.0	
1947	7,473,341	62.5	467,083,812.5	
1948	7,265,903	61.5	446,853,034.5	
1949	4,623,265	60.5	279,707,532.5	
1950	3,641,897	59.5	216,692,871.5	
1951	3,070,177	58.5	179,605,354.5	
1952	2,995,813	57.5	172,259,247.5	
1953	2,912,680	56.5	164,566,420.0	
1954	3,511,231	55.5	194,873,320.5	
1955	4,012,310	54.5	218,670,895.0	
1956	4,003,509	53.5	214,187,731.5	
1957	3,228,688	52.5	169,506,120.0	
1958	3,648,583	51.5	187,902,024.5	
1959	3,323,490	50.5	167,836,245.0	
1960	2,790,970	49.5	138,153,015.0	
1961	2,924,162	48.5	141,821,857.0	
1962	2,823,726	47.5	134,126,985.0	
1963	3,384,440	46.5	157,376,460.0	
1964	4,027,258	45.5	183,240,239.0	
1965	3,279,954	44.5	145,957,953.0	
1966	<u>3,</u> 11 <u>9,481</u>	43.5	135,697,423.5	
1967	2,746,845	42.5	116,740,912.5	
1968	3,281,125	41.5	136,166,687.5	
1969	2,777,330	40.5	112,481,865.0	
1970	3,416,681	39.5	134,958,899.5	
1971	4,149,847	38.5	159,769,109.5	
1972	4,091,445	37.5	153,429,187.5	
1973	4,986,487	36.5	182,006,775.5	
1974	4,999,358	35.5	177,477,209.0	
1975	3,559,344	34.5	122,797,368.0	
1976	4,015,569	33.5	134,521,561.5	
1977	3,623,718	32.5	117,770,835.0	
1978	4,339,419	31.5	136,691,698.5	
1979	4,601,434	30.5	140,343,737.0	
1980	4,205,364	29.5	124,058,238.0	
1981	3,394,571	28.5	96,745,273.5	
1982	3,187,525	27.5	87,656,937.5	
1983	3,425,275	26.5	90,769,787.5	
1984	3,335,610	25.5	85,058,055.0	
1985	3,880,192	24.5	95,064,704.0	
1986	4,675,581	23.5	109,876,153.5	
1987	7,661,423	22.5	172,382,017.5	
1988	7,475,418	21.5	160,721,487.0	

Docket No. 2010-051 March 15, 2010 Attachment 25 Page 7 of 14

Central Maine Power Company Conductor Footage and Age

2009				
YEAR	TOTAL	AGE	TOTAL AGE	
1989	5,961,764	20.5	122,216,162.0	
1990	6,044,866	19.5	117,874,887.0	
1991	4,723,010	18.5	87,375,685.0	
1992	4,505,393	17.5	78,844,377.5	
1993	3,987,656	16.5	65,796,324.0	
1994	3,075,828	15.5	47,675,334.0	
1995	3,444,461	14.5	49,944,684.5	
1996	3,661,651	13.5	49,432,288.5	
1 997	3,729,627	12.5	46,620,337.5	
1998	3,793,246	11.5	43,622,329.0	
1999	4,036,197	10.5	42,380,068.5	
2000	3,690,647	9.5	35,061,146.5	
2001	3,502,444	8.5	29,770,774.0	
2002	3,622,375	7.5	27,167,812.5	
2003	4,949,973	6.5	32,174,824.5	
2004	2,398,036	5.5	13,189,198.0	
2005	2,693,766	4.5	12,121,947.0	
2006	3,763,198	3.5	13,171,193.0	
2007	3,018,458	2.5	7,546,145.0	
2008	2,928,262	1.5	4,392,393.0	
2009	2,375,010	0.5	1,187,505.0	
	281,244,714		10,347,671,260.0	
_				
ļļ				
Average Age			36.8	

Docket No. 2010-051 March 15, 2010 Attachment 25 Page 8 of 14

···· · · · · ·

Central Maine Power Company Number of Transformers and Age 2009

.

.

- -

190088109.59,636.01910499.5398.01911296.5197.01912397.5292.51913796.5 675.5 1914295.5191.01915894.5756.01916393.5280.51917692.5555.01918191.591.51920389.5268.519211088.5885.019221087.5875.019231586.51,297.51924985.5769.519251084.5845.019263183.52,588.519271082.5825.019301579.51,192.519311878.51,413.01932677.5465.019332276.51,683.019341075.5755.019394270.52,961.019394270.52,961.019341971.51,358.519394270.52,961.019341971.51,358.519394270.52,961.019394270.52,961.019419968.56,781.519421667.51,080.0	2009						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
1912 3 97.5 292.5 1913 7 96.5 675.5 1914 2 95.5 191.0 1915 8 94.5 756.0 1916 3 93.5 280.5 1917 6 92.5 555.0 1918 1 91.5 91.5 1919 7 90.5 633.5 1920 3 89.5 268.5 1921 10 88.5 385.0 1922 10 87.5 875.0 1923 15 86.5 1.297.5 1924 9 85.5 769.5 1925 10 84.5 845.0 1926 31 83.5 2,588.5 1927 10 82.5 825.0 1928 18 81.5 1,467.0 1929 50 80.5 4,025.0 1930 15 79.5 1,192.5 1931 18 78.5 1,413.0 1932 6 77.5							
1913796.5 675.5 1914295.5191.01915894.5756.01916393.5280.51917692.5555.01918191.591.51919790.5633.51920389.5268.519211088.5385.019221087.5875.019231586.51.297.51924985.5769.519251084.5845.019263183.52.588.519271082.5825.019281881.51.467.019301579.51.192.519311878.51.413.01932677.5465.019332276.51.683.019341075.5755.019351374.5968.519372472.51.740.019381971.51.358.519394270.52.961.019404869.53.336.019419968.56,781.5	_						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
1916393.5280.51917692.5555.01918191.591.51919790.5 633.5 1920389.5268.519211088.5885.019221087.5875.019231586.51.297.51924985.5769.519251084.5845.019263183.52.588.519271082.5825.019281881.51.467.019295080.54.025.019301579.51.192.519311878.51.413.01932677.5465.019332276.51.683.019341075.5755.019364773.53.454.519372472.51.740.019381971.51.358.519394270.52.961.019419968.56.781.5							
1917692.5 555.0 1918191.591.51919790.5 633.5 19203 89.5 268.5 192110 88.5 885.0 192210 87.5 875.0 192315 86.5 $1.297.5$ 19249 85.5 769.5 192510 84.5 845.0 192631 83.5 $2.588.5$ 192710 82.5 825.0 192818 81.5 $1.467.0$ 192950 80.5 $4.025.0$ 193015 79.5 $1.192.5$ 193118 78.5 $1.413.0$ 19326 77.5 465.0 193322 76.5 $1.683.0$ 193410 75.5 755.0 193513 74.5 968.5 193647 73.5 $3.454.5$ 193942 70.5 $2.961.0$ 193042 70.5 $2.961.0$							
1918191.591.51919790.5 633.5 19203 89.5 268.5 192110 87.5 875.0 192210 87.5 875.0 192315 86.5 $1,297.5$ 19249 85.5 769.5 192510 84.5 845.0 192631 83.5 $2,588.5$ 192710 82.5 825.0 192818 81.5 $1,467.0$ 192950 80.5 $4,025.0$ 193015 79.5 $1,192.5$ 193118 78.5 $1,413.0$ 19326 77.5 465.0 193410 75.5 755.0 193513 74.5 968.5 1936 47 73.5 $3,454.5$ 193724 72.5 $1,740.0$ 193819 71.5 $1,358.5$ 1939 42 70.5 $2,961.0$ 1940 48 69.5 $3,336.0$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
19203 89.5 268.5 1921 10 88.5 885.0 1922 10 87.5 875.0 1923 15 86.5 $1,297.5$ 1924 9 85.5 769.5 1925 10 84.5 845.0 1926 31 83.5 $2,588.5$ 1927 10 82.5 825.0 1928 18 81.5 $1,467.0$ 1929 50 80.5 $4,025.0$ 1930 15 79.5 $1,192.5$ 1931 18 78.5 $1,413.0$ 1932 6 77.5 465.0 1933 22 76.5 $1,683.0$ 1934 10 75.5 755.0 1936 47 73.5 $3,454.5$ 1937 24 72.5 $1,740.0$ 1938 19 71.5 $1,358.5$ 1939 42 70.5 $2,961.0$ 1940 48 69.5 $3,336.0$							
192110 88.5 885.0 1922 10 87.5 875.0 1923 15 86.5 $1,297.5$ 1924 9 85.5 769.5 1925 10 84.5 845.0 1926 31 83.5 $2,588.5$ 1927 10 82.5 825.0 1928 18 81.5 $1,467.0$ 1929 50 80.5 $4,025.0$ 1930 15 79.5 $1,192.5$ 1931 18 78.5 $1,413.0$ 1932 6 77.5 465.0 1933 22 76.5 $1,683.0$ 1934 10 75.5 755.0 1936 47 73.5 $3,454.5$ 1937 24 72.5 $1,740.0$ 1938 19 71.5 $1,358.5$ 1939 42 70.5 $2,961.0$ 1940 48 69.5 $3,336.0$							
192110 88.5 885.0 1922 10 87.5 875.0 1923 15 86.5 $1,297.5$ 1924 9 85.5 769.5 1925 10 84.5 845.0 1926 31 83.5 $2,588.5$ 1927 10 82.5 825.0 1928 18 81.5 $1,467.0$ 1929 50 80.5 $4,025.0$ 1930 15 79.5 $1,192.5$ 1931 18 78.5 $1,413.0$ 1932 6 77.5 465.0 1933 22 76.5 $1,683.0$ 1934 10 75.5 755.0 1936 47 73.5 $3,454.5$ 1937 24 72.5 $1,740.0$ 1938 19 71.5 $1,358.5$ 1939 42 70.5 $2,961.0$ 1940 48 69.5 $3,336.0$							
192210 87.5 875.0 1923 15 86.5 $1,297.5$ 1924 9 85.5 769.5 1925 10 84.5 845.0 1926 31 83.5 $2,588.5$ 1927 10 82.5 825.0 1928 18 81.5 $1,467.0$ 1929 50 80.5 $4,025.0$ 1930 15 79.5 $1,192.5$ 1931 18 78.5 $1,413.0$ 1932 6 77.5 465.0 1933 22 76.5 $1,683.0$ 1934 10 75.5 755.0 1936 477 73.5 $3,454.5$ 1938 19 71.5 $1,358.5$ 1939 42 70.5 $2,961.0$ 1940 48 69.5 $3,336.0$							
192315 86.5 $1,297.5$ 19249 85.5 769.5 192510 84.5 845.0 192631 83.5 $2,588.5$ 192710 82.5 825.0 192818 81.5 $1,467.0$ 192950 80.5 $4,025.0$ 193015 79.5 $1,192.5$ 193118 78.5 $1,413.0$ 19326 77.5 465.0 193322 76.5 $1,683.0$ 193410 75.5 755.0 193513 74.5 968.5 193819 71.5 $1,358.5$ 193942 70.5 $2,961.0$ 194048 69.5 $3,336.0$							
19249 85.5 769.5 1925 10 84.5 845.0 1926 31 83.5 $2,588.5$ 1927 10 82.5 825.0 1928 18 81.5 $1,467.0$ 1929 50 80.5 $4,025.0$ 1930 15 79.5 $1,192.5$ 1931 18 78.5 $1,413.0$ 1932 6 77.5 465.0 1933 22 76.5 $1,683.0$ 1934 10 75.5 755.0 1936 47 73.5 $3,454.5$ 1938 19 71.5 $1,358.5$ 1939 42 70.5 $2,961.0$ 1940 48 69.5 $3,336.0$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
192710 82.5 825.0 1928 18 81.5 $1,467.0$ 1929 50 80.5 $4,025.0$ 1930 15 79.5 $1,192.5$ 1931 18 78.5 $1,413.0$ 1932 6 77.5 465.0 1933 22 76.5 $1,683.0$ 1934 10 75.5 755.0 1936 47 73.5 $3,454.5$ 1938 19 71.5 $1,358.5$ 1939 42 70.5 $2,961.0$ 1940 48 69.5 $3,336.0$							
192818 81.5 $1,467.0$ 192950 80.5 $4,025.0$ 193015 79.5 $1,192.5$ 193118 78.5 $1,413.0$ 19326 77.5 465.0 193322 76.5 $1,683.0$ 193410 75.5 755.0 193513 74.5 968.5 1936 47 73.5 $3,454.5$ 193724 72.5 $1,740.0$ 193819 71.5 $1,358.5$ 1939 42 70.5 $2,961.0$ 1940 48 69.5 $3,336.0$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
1932 6 77.5 465.0 1933 22 76.5 1,683.0 1934 10 75.5 755.0 1935 13 74.5 968.5 1936 47 73.5 3,454.5 1937 24 72.5 1,740.0 1938 19 71.5 1,358.5 1939 42 70.5 2,961.0 1940 48 69.5 3,336.0 1941 99 68.5 6,781.5							
1933 22 76.5 1,683.0 1934 10 75.5 755.0 1935 13 74.5 968.5 1936 47 73.5 3,454.5 1937 24 72.5 1,740.0 1938 19 71.5 1,358.5 1939 42 70.5 2,961.0 1940 48 69.5 3,336.0 1941 99 68.5 6,781.5							
1934 10 75.5 755.0 1935 13 74.5 968.5 1936 47 73.5 3,454.5 1937 24 72.5 1,740.0 1938 19 71.5 1,358.5 1939 42 70.5 2,961.0 1940 48 69.5 3,336.0 1941 99 68.5 6,781.5							
1935 13 74.5 968.5 1936 47 73.5 3,454.5 1937 24 72.5 1,740.0 1938 19 71.5 1,358.5 1939 42 70.5 2,961.0 1940 48 69.5 3,336.0 1941 99 68.5 6,781.5							
1936 47 73.5 3,454.5 1937 24 72.5 1,740.0 1938 19 71.5 1,358.5 1939 42 70.5 2,961.0 1940 48 69.5 3,336.0 1941 99 68.5 6,781.5							
1937 24 72.5 1,740.0 1938 19 71.5 1,358.5 1939 42 70.5 2,961.0 1940 48 69.5 3,336.0 1941 99 68.5 6,781.5							
1938 19 71.5 1,358.5 1939 42 70.5 2,961.0 1940 48 69.5 3,336.0 1941 99 68.5 6,781.5							
1939 42 70.5 2,961.0 1940 48 69.5 3,336.0 1941 99 68.5 6,781.5							
1940 48 69.5 3,336.0 1941 99 68.5 6,781.5							
1942 16 67,5 1,080.0							
1943 8 66.5 532.0							
1944 17 65.5 1,113.5							
1945 77 64.5 4,966.5							
1946 75 63.5 4,762.5							
1947 208 62.5 13,000.0							
1948 367 61.5 22,570.5							
1949 114 60.5 6,897.0							
1950 296 59.5 17,612.0							
1951 594 58.5 34,749.0							

Docket No. 2010-051 March 15, 2010 Attachment 25 Page 9 of 14

Central Maine Power Company Number of Transformers and Age 2009

1952 451 57.5 $25,932.5$ 1953 441 56.5 $24,916.5$ 1954 478 55.5 $26,529.0$ 1955 832 54.5 $45,344.0$ 1956 875 53.5 $46,812.5$ 1957 394 52.5 $20,685.0$ 1958 912 51.5 $46,968.0$ 1959 842 50.5 $42,521.0$ 1960 675 49.5 $33,412.5$ 1961 941 48.5 $45,638.5$ 1962 966 47.5 $45,885.0$ 1963 $1,005$ 46.5 $46,732.5$ 1964 $1,557$ 45.5 $70,843.5$ 1965 $1,175$ 44.5 $52,287.5$ 1966 $1,428$ 43.5 $62,118.0$ 1967 867 42.5 $36,847.5$ 1968 $1,511$ 41.5 $62,706.5$ 1970 $2,945$ 39.5 $116,327.5$ 1971 $4,405$ 38.5 $169,592.5$ 1972 $4,919$ 37.5 $184,462.5$ 1974 $6,823$ 35.5 $242,216.5$ 1976 $5,133$ 33.5 $171,955.5$	2009						
195344156.5 $24,916.5$ 195447855.5 $26,529.0$ 195583254.5 $45,344.0$ 195687553.5 $46,812.5$ 1957394 52.5 $20,685.0$ 1958912 51.5 $46,968.0$ 1959842 50.5 $42,521.0$ 1960675 49.5 $33,412.5$ 196194148.5 $45,638.5$ 1962966 47.5 $45,885.0$ 19631,005 46.5 $46,732.5$ 19641,557 45.5 $70,843.5$ 19651,175 44.5 $52,287.5$ 19661,428 43.5 $62,118.0$ 1967 867 42.5 $36,847.5$ 19681,511 41.5 $62,706.5$ 1970 $2,945$ 39.5 $116,327.5$ 1971 $4,405$ 38.5 $169,592.5$ 1972 $4,919$ 37.5 $184,462.5$ 1974 $6,823$ 35.5 $242,216.5$ 1975 $3,958$ 34.5 $136,551.0$							
195447855.5 $26,529.0$ 195583254.5 $45,344.0$ 195687553.5 $46,812.5$ 195739452.520,685.0195891251.5 $46,968.0$ 195984250.5 $42,521.0$ 196067549.533,412.5196194148.5 $45,638.5$ 196296647.5 $45,885.0$ 19631,005 46.5 $46,732.5$ 19641,557 45.5 70,843.519651,175 44.5 $52,287.5$ 19661,428 43.5 $62,118.0$ 1967 867 42.5 $36,847.5$ 19681,511 41.5 $62,706.5$ 1970 $2,945$ 39.5 $116,327.5$ 1971 $4,405$ 38.5 $169,592.5$ 1972 $4,919$ 37.5 $184,462.5$ 1974 $6,823$ 35.5 $242,216.5$ 1975 $3,958$ 34.5 $136,551.0$							
1955 832 54.5 $45,344.0$ 1956 875 53.5 $46,812.5$ 1957 394 52.5 $20,685.0$ 1958 912 51.5 $46,968.0$ 1959 842 50.5 $42,521.0$ 1960 675 49.5 $33,412.5$ 1961 941 48.5 $45,638.5$ 1962 966 47.5 $45,885.0$ 1963 $1,005$ 46.5 $46,732.5$ 1964 $1,557$ 45.5 $70,843.5$ 1965 $1,175$ 44.5 $52,287.5$ 1966 $1,428$ 43.5 $62,118.0$ 1967 867 42.5 $36,847.5$ 1968 $1,511$ 41.5 $62,706.5$ 1970 $2,945$ 39.5 $116,327.5$ 1971 $4,405$ 38.5 $169,592.5$ 1973 $5,797$ 36.5 $211,590.5$ 1974 $6,823$ 35.5 $242,216.5$ 1975 $3,958$ 34.5 $136,551.0$							
1956 875 53.5 $46,812.5$ 1957 394 52.5 $20,685.0$ 1958 912 51.5 $46,968.0$ 1959 842 50.5 $42,521.0$ 1960 675 49.5 $33,412.5$ 1961 941 48.5 $45,638.5$ 1962 966 47.5 $45,885.0$ 1963 $1,005$ 46.5 $46,732.5$ 1964 $1,557$ 45.5 $70,843.5$ 1965 $1,175$ 44.5 $52,287.5$ 1966 $1,428$ 43.5 $62,118.0$ 1967 867 42.5 $36,847.5$ 1968 $1,511$ 41.5 $62,706.5$ 1970 $2,945$ 39.5 $116,327.5$ 1971 $4,405$ 38.5 $169,592.5$ 1973 $5,797$ 36.5 $211,590.5$ 1974 $6,823$ 35.5 $242,216.5$ 1975 $3,958$ 34.5 $136,551.0$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
1962 966 47.5 45,885.0 1963 1,005 46.5 46,732.5 1964 1,557 45.5 70,843.5 1965 1,175 44.5 52,287.5 1966 1,428 43.5 62,118.0 1967 867 42.5 36,847.5 1968 1,511 41.5 62,706.5 1969 2,107 40.5 85,333.5 1970 2,945 39.5 116,327.5 1971 4,405 38.5 169,592.5 1972 4,919 37.5 184,462.5 1974 6,823 35.5 242,216.5 1975 3,958 34.5 136,551.0							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
1964 1,557 45.5 70,843.5 1965 1,175 44.5 52,287.5 1966 1,428 43.5 62,118.0 1967 867 42.5 36,847.5 1968 1,511 41.5 62,706.5 1969 2,107 40.5 85,333.5 1970 2,945 39.5 116,327.5 1971 4,405 38.5 169,592.5 1972 4,919 37.5 184,462.5 1973 5,797 36.5 211,590.5 1974 6,823 35.5 242,216.5 1975 3,958 34.5 136,551.0							
1965 1,175 44.5 52,287.5 1966 1,428 43.5 62,118.0 1967 867 42.5 36,847.5 1968 1,511 41.5 62,706.5 1969 2,107 40.5 85,333.5 1970 2,945 39.5 116,327.5 1971 4,405 38.5 169,592.5 1972 4,919 37.5 184,462.5 1973 5,797 36.5 211,590.5 1974 6,823 35.5 242,216.5 1975 3,958 34.5 136,551.0							
1965 1,175 44.5 52,287.5 1966 1,428 43.5 62,118.0 1967 867 42.5 36,847.5 1968 1,511 41.5 62,706.5 1969 2,107 40.5 85,333.5 1970 2,945 39.5 116,327.5 1971 4,405 38.5 169,592.5 1972 4,919 37.5 184,462.5 1973 5,797 36.5 211,590.5 1974 6,823 35.5 242,216.5 1975 3,958 34.5 136,551.0							
1966 1,428 43.5 62,118.0 1967 867 42.5 36,847.5 1968 1,511 41.5 62,706.5 1969 2,107 40.5 85,333.5 1970 2,945 39.5 116,327.5 1971 4,405 38.5 169,592.5 1972 4,919 37.5 184,462.5 1973 5,797 36.5 211,590.5 1974 6,823 35.5 242,216.5 1975 3,958 34.5 136,551.0							
1967 867 42.5 36,847.5 1968 1,511 41.5 62,706.5 1969 2,107 40.5 85,333.5 1970 2,945 39.5 116,327.5 1971 4,405 38.5 169,592.5 1972 4,919 37.5 184,462.5 1974 6,823 35.5 242,216.5 1975 3,958 34.5 136,551.0							
1968 1,511 41.5 62,706.5 1969 2,107 40.5 85,333.5 1970 2,945 39.5 116,327.5 1971 4,405 38.5 169,592.5 1972 4,919 37.5 184,462.5 1973 5,797 36.5 211,590.5 1975 3,958 34.5 136,551.0							
1969 2,107 40.5 85,333.5 1970 2,945 39.5 116,327.5 1971 4,405 38.5 169,592.5 1972 4,919 37.5 184,462.5 1973 5,797 36.5 211,590.5 1975 3,958 34.5 136,551.0							
1970 2,945 39.5 116,327.5 1971 4,405 38.5 169,592.5 1972 4,919 37.5 184,462.5 1973 5,797 36.5 211,590.5 1974 6,823 35.5 242,216.5 1975 3,958 34.5 136,551.0							
1971 4,405 38.5 169,592.5 1972 4,919 37.5 184,462.5 1973 5,797 36.5 211,590.5 1974 6,823 35.5 242,216.5 1975 3,958 34.5 136,551.0							
1972 4,919 37.5 184,462.5 1973 5,797 36.5 211,590.5 1974 6,823 35.5 242,216.5 1975 3,958 34.5 136,551.0							
1973 5,797 36.5 211,590.5 1974 6,823 35.5 242,216.5 1975 3,958 34.5 136,551.0							
1974 6,823 35.5 242,216.5 1975 3,958 34.5 136,551.0							
1975 3,958 34.5 136,551.0							
1977 4,156 32.5 135,070.0							
1978 5,180 31.5 163,170.0							
1979 4,312 30.5 131,516.0							
1980 3,834 29.5 113,103.0							
1981 3,965 28.5 113,002.5							
1982 3,365 27.5 92,537.5							
1983 5,093 26.5 134,964.5							
1984 5,523 25.5 140,836.5							
1985 5,340 24.5 130,830.0							
1986 6,582 23.5 154,677.0							
1987 8,164 22.5 183,690.0							
1988 9,544 21.5 205,196.0							
1989 9,720 20.5 199,260.0							
1990 6,304 19.5 122,928.0							
1991 4,492 18.5 83,102.0							
1992 6,319 17.5 110,582.5							
1993 4,998 16.5 82,467.0							
1994 5,023 15.5 77,856.5							
1995 5,696 14.5 82,592.0							

Docket No. 2010-051 March 15, 2010 Attachment 25 Page 10 of 14

Central Maine Power Company Number of Transformers and Age 2009

• -

		2009		
	HEALT IN A C			
1996	5,832	13.5	78,732.0	
1997	5,971	12.5	74,637.5	
1998	7,674	11.5	88,251.0	
1999	7,183	10.5	75,421.5	
2000	7,344	9.5	69,768.0	
2001	7,804	8.5	66,334.0	
2002	7,451	7.5	55,882.5	
2003	7,332	6.5	47,658.0	
2004	7,315	5.5	40,232.5	
2005	7,813	4.5	35,158.5	
2006	7,043	3.5	24,650.5	
2007	6,749	2.5	16,872.5	
2008	5,285	1.5	7,927.5	
2009	3,813	0.5	1,906.5	
	256,088		5,355,967.0	
Average Age			20.9	

Docket No. 2010-051 March 15, 2010 Attachment 25 Page 11 of 14

Central Maine Power Company Number of Regulators and Age 2009

مر ا

2009						
YEAK (1997)	(call(n))		HOP IVEL 18			
1948	2	61.5	123.0			
<u>195</u> 6	4	53.5	214.0			
1960	1	49.5	49.5			
1962	1	47.5	47.5			
1963	1	46.5	46.5			
1964	8	45.5	364.0			
1965	2	44.5	89.0			
1966	5	43.5	217.5			
1967	8	42.5	340.0			
1968	6	41.5	249.0			
1969	14	40.5	567.0			
1970	7	39.5	276.5			
1971	5	38.5	192.5			
1972	7	37.5	262.5			
1973	12	36.5	438.0			
1974	7	35.5	248.5			
1975	14	34.5	483.0			
1976	6	33.5	201.0			
1977	15	32.5	487.5			
1978	33	31.5	1,039.5			
1979	32	30.5	976.0			
1980	8	29.5	236.0			
1981	3	28.5	85.5			
1982	14	27.5	385.0			
1983	15	26.5	397.5			
<u>198</u> 4	17	25.5	433.5			
1985	25	24.5	612.5			
1986	33	23.5	<u> </u>			
1987	40	22.5	900.0			
1988	35	21.5	752.5			
1989	65	20.5	1,332.5			
1990	111	19.5	2,164.5			
1991	6	18.5	111.0			
1992	25	17.5	437.5			
1993	45	16.5	742.5			
1994	38	15.5	589.0			
1995	54	14.5	783.0			
1996	9	13.5	121.5			
1997	11	12.5	137.5			
1998	35	11.5	402.5			
1999	29	10.5	304.5			
2000	31	9.5	294.5			
2001	126	8.5	1,071.0			

Docket No. 2010-051 March 15, 2010 Attachment 25 Page 12 of 14

Central Maine Power Company Number of Regulators and Age 2009

N				
2002	68	7.5	510.0	
2003	76	6.5	494.0	
2004	65	5.5	357.5	
2005	47	4.5	211.5	
2006	75	3.5	262.5	
2007	47	2.5	117.5	
2008	49	1.5	73.5	
2009	42	0.5	21.0	
	1,434		22,029.0	
			· · · · · · · · · · · · · · · · · · ·	
Average Age			15.4	

Docket No. 2010-051 March 15, 2010 Attachment 25 Page 13 of 14

Central Maine Power Company Number of Capacitors and Age 2009

		2	009	
YEAR	COUNT	AGE	TOTAL AGE	
1962	1	47.5	47.5	
1966	3	43.5	130.5	
1968	1	41.5	41.5	
1976	6	33.5	201.0	
1977	1	32.5	32.5	
1978	23	31.5	724.5	
1979	5	30.5	152.5	
1980	21	29.5	619.5	
1981	12	28.5	342.0	
1982	7	27.5	192.5	
1983	8	26.5	212.0	
1984	41	25.5	1,045.5	
1985	37	24.5	906.5	
1986	39	23.5	916.5	
1987	33	22.5	742.5	
1988	19	21.5	408.5	
1989	30	20.5	615.0	
1990	38	19.5	741.0	
1991	20	18.5	370.0	
1992	10	17.5	175.0	
1993	7	16.5	115.5	
1994	7	15.5	108.5	
1995	15	14.5	217.5	
1996	9	13.5	121.5	
1997	12	12.5	150.0	
1998	8	11.5	92.0	
1999	12	10.5	126.0	
2000	14	9.5	133.0	
2001	7	8.5	59.5	
2002	10	7.5	75.0	
2003	23	6.5	149.5	
2004	17	5.5	93.5	
2005	1	4.5	4.5	
2007	1	2.5	2.5	
2008	3	1.5	4.5	
2009	1	0.5	0.5	
<u></u>	502		10,070.0	
Average Age			20.1	

Docket No. 2010-051 March 15, 2010 Attachment 25 Page 14 of 14

. .

	Cen	tral Maine	Power Compa	any
	Nur	nber of Re	eclosers and A	lge
		2	2009	
YEAR	COUNT	AGE	TOTAL AGE	
1996	1	13.5	13.5	
1997	2	12.5	25.0	
1998	1	11.5	11.5	
1999	14	10.5	147.0	
2000	3	9.5	28.5	
2001	14	8.5	119.0	
2002	7	7.5	52.5	
2003	27	6.5	175.5	
2004	55	5.5	302.5	
2005	134	4.5	603.0	
2006	226	3.5	791.0	
2007	292	2.5	730.0	
2008	295	1.5	442.5	
2009	234	0.5	117.0	
	1,305		3,558.5	
Average Age			2.7	

Docket No. 2010-051 March 15, 2010 Attachment 26 Page 1 of 1

Central Maine Power Company

Answer Time Distribution

	Percentage of calls answered within specified
Seconds	seconds
<30	81%
30	82%
60	87%
90	91%
>90	100%

····* ·· ·

ę#

REDACTED

Central Maine Power Company Customer Relation Center Statistics For the Period Ending December 31, 2009

REDACTED Central Maine Power Company Total Answered and Abandoned Business Calls

REDACTED

Central Maine Power Company Customer Information Systems ("CIS") Investment per Customer For the Period Ended December 31, 2009

REDACTED

Central Maine Power Company Customers Served per Customer Information System Full Time Employees ("FTE") For the Period Ended December 31, 2009

Docket No. 2010-051 March 15, 2010 Attachment 31 Page 1 of 8

.....

Central Maine Power Company Reliability Improvement Program Trees in Contact

an c

-

Circuit	W/T	Lines in contact Spans	Total s Spans	Tota Cos					
** Service	** Service Center: 11								
200D2	T	3	5	3	317.76				
200D3	T	4		4	5 95.80				
207D1	т	1		1	834.12				
207D2	Т	. 8	İ	8	4,591.52				
208D2	Т	14	Ļ	14	983.15				
208D3	Т	13	1	13	2,653.96				
211D1	Т	14	ļ	14	912.49				
211D2	Т	8	}	8	8,709.02				
215D3	т	2		2	1,055.72				
215D5	Ť	1		1	-				
216D1	Т	26	5	26	4,272.96				
216D2	Т	11		11	1,458.04				
216D3	Т	1		1	-				
220D1	Т	170)	170	68,801.68				
226D2	T	5	1	5	982.42				
233D1	Т	1		1	343.08				
233D2	Т	91		91	29,319.42				
236D1	т	7		7	•				
237D1	Т	5		5	2,085.76				
240D1	Т	18		18	2,784.83				
242D1	Т	2		2	1,023.93				
244D1	Т	7	,	7	4,229.83				
255D1	Т	57	,	57	18,708.45				
255D2	Т	81		81	10,659.50				
256D1	Т	2		2	304.13				
256D2	Т	19		19	7,290.29				
256D3	Т	16		16	2,939.21				
262D1	т	29		29	7,704.61				
263D1	т	10		10	3,251.72				
272D4	Т	88		88	23,816.11				
11 Subtota		714		714	210,629.51				
	Center: 14								
204D6	т —	12		12	1,952.27				
206D1	T	10		10	1,581.41				
209D1	T T	11		11	1,510.16				
209D2	T T	3		3	228.02				
209D3	T T	4		4	583.68				
210D1	T T	37		37	13,257.99				
213D1	T T	39		39	7,567.08				
213D2	T T	5		5	788.90				
213D4	T T	1		1	114.01				
217D1	T	5		5	342.04				
217D2	T	3		3	570.06				
217D3	T	64		64	10,713.30				

-

موطوبا ومعاور ومراجع والمراجع

Docket No. 2010-051 March 15, 2010 Attachment 31 Page 2 of 8

.....

Central Maine Power Company Reliability Improvement Program Trees in Contact

218D1T121214,167.59219D1T774,407.15219D2T1212,2496.69223D1T99941.86225D2T555510,405.95225D3T737320,077.03225D4T992,434.86231D1T22114.01231D2T111484.06231D3T11114.01232D1T44263.13232D2T441,67.53238D1T888836,348.5424902T331,407.5224901T77548.14250D1T77548.14250D1T22-252D2T991,087.48250D1T12124,643.77250D1T3333-252D2T991,087.48250D1T12124,643.77250D1T141-250D1T12124,643.77273D4T49498,718.08273D5T12124,643.77273D4T1411440017223905T12123,63.4439001T16 <th>Circuit</th> <th>w/T</th> <th>Lines in contact Spans</th> <th>Totals Spans</th> <th>Totals Costs</th>	Circuit	w/T	Lines in contact Spans	Totals Spans	Totals Costs
21901 T 7 7 4.407.15 21902 T 12 12 2.496.69 22301 T 9 9 941.86 22502 T 55 55 10.405.95 22503 T 73 73 20.077.03 22504 T 9 9 2.434.86 231D1 T 2 2 114.01 231D2 T 1 1 14.01 232D1 T 4 4 263.13 232D1 T 4 4 263.13 232D1 T 88 88 36,348.54 241D1 T 102 102 48,733.00 246D2 T 3 3 1,409.86 24902 T 3 3 1,409.86 24902 T 2 2 - 250D1 T 12 12 30,727.84.14 2502 <	218D1	Ŧ	-	-	
219D2T12122.496.69223D1T99941.86225D2T555510.405.95225D3T737320.077.03225D4T992.434.86231D2T11684.06231D3T1114.01232D1T44263.13232D1T444.367.53238D1T888836.348.54241D1T10210248.793.00245D2T551.467.52249D1T33-250D1T77548.14250D2T22-250D1T12112130.727.88260D1T52525.718.32273D4T49498.718.08273D5T12124.264.25274D1T545442.643.77620D1T11-620D2T551.447.69817D3T12123.03.4823D1T221.067.43817D3T12123.53.03839D1T15156.169.21839D2T221.067.43842D1T221.067.4385D2T155585D1<					
223D1 T 9 9 941.86 225D2 T 55 55 10.405.95 225D3 T 73 73 20.077.03 225D4 T 9 9 2,434.86 231D1 T 2 2 114.01 231D3 T 1 1 144.01 232D2 T 4 4 263.13 232D2 T 4 4 263.13 232D2 T 4 4 403.13 232D2 T 4 4 403.75.3 23BD1 T 88 88 36.348.54 241D1 T 102 102 48.733.00 245D2 T 3 3 - 250D1 T 2 2 - 250D1 T 2 2 - 250D1 T 121 121 30.727.88 261D3 T					
225D2 T 55 55 10,405,95 225D3 T 73 73 20,077,03 225D4 T 9 9 2,434.86 231D1 T 2 114.01 231D2 T 1 1 684.06 231D3 T 1 1 114.01 232D1 T 4 4 263.13 232D2 T 4 4 1,367.53 238D1 T 88 88 36,348.54 241D1 T 102 102 48,793.00 245D2 T 5 5 1,467.52 24901 T 3 3 1,409.86 24902 T 2 2 - 252D1 T 2 2 - 252D1 T 2 2 - 252D1 T 5 5 1,467.52 263D1 T 22					
22503T737320,077.03225D4T992,434.86231D1T11231D2T11231D3T11232D1T44232D1T44238D1T888836348.54245D2T55246D2T5250D1T7755246D2T333-250D1T22250D2T22250D2T22250D2T22250D1T1211213333-263D1T52525.718.522490.47273D4T494949273D5T1212124,264.25274D1T55141450D2T2238D1T1021212263D1T111-666739555574448,773.082002T555141455155666673051					
225D4 T 9 9 2,434.86 231D1 T 1 1684.06 231D2 T 1 114.01 232D1 T 4 4 263.13 232D2 T 88 88 36,348.54 241D1 T 102 102 48,793.00 245D2 T 5 5 1,467.52 249D1 T 3 3 - 250D1 T 7 548.14 250D2 - 252D2 T 9 9 1,087.44 257D1 - 250D1 T 121 121 30,727.88 263D1 - 250D1 T 52 52 5,718.32 273D4 4,264.25 273D4 T 54 54					
231D1 T 2 2 114.01 231D2 T 1 1 684.06 231D3 T 1 1 114.01 232D1 T 4 4 263.13 232D2 T 4 4 263.13 232D2 T 4 4 1,367.53 238D1 T 88 88 36,348.54 241D1 T 102 102 48,793.00 245D2 T 5 5 1,467.52 249D1 T 3 3 1,409.86 249D2 T 3 3 - 250D1 T 2 2 - 252D2 T 9 9 1,087.44 257D1 T 6 6 - 258D1 T 121 121 30,727.88 261D3 T 33 33 - 261D3 T 52 5,718.32 273D5 273D5 T 12 12 4,26					
231D2 T 1 1 684.06 231D3 T 1 1 114.01 232D1 T 4 4 263.13 232D2 T 4 4 1,67.53 238D1 T 88 88 36,348.54 241D1 T 102 102 48,793.00 245D2 T 5 5 1,467.52 249D1 T 3 3 1,409.86 249D2 T 3 3 1,409.86 249D1 T 7 7 548.14 250D1 T 7 7 548.14 250D2 T 2 2 - 250D1 T 121 121 30,727.88 261D3 T 33 33 - 253D1 T 121 121 4,264.25 273D4 T 52 52 5,718.32 273D4 T 54 54 12,643.77 60D1 T 2 2					
232D1 T 4 4 263.13 232D2 T 4 4 1,367.53 28BD1 T 88 88 36,348.54 241D1 T 102 102 48,793.00 245D2 T 5 5 1,467.52 249D1 T 3 3 1,409.86 249D2 T 3 3 1,409.86 249D2 T 3 3 - 250D1 T 2 2 - 250D1 T 6 6 - 252D2 T 9 9 1,087.44 257D1 T 6 6 - 258D1 T 121 121 30,727.88 263D1 T 52 52 5,718.32 273D4 T 49 49 8,718.08 273D5 T 12 12 4,264.25 274D1 T 5 5 1,447.69 14 Subtotal 935 935					
232D1 T 4 4 263.13 232D2 T 4 4 1,367.53 238D1 T 88 88 36,348.54 241D1 T 102 102 48,793.00 245D2 T 5 5 1,467.52 249D1 T 3 3 1,409.86 249D2 T 3 3 - 250D1 T 2 2 - 252D2 T 9 9 1,087.44 257D1 T 6 6 - 258D1 T 121 121 30,727.88 261D3 T 33 33 - 258D1 T 122 2,264.25 5,718.32 273D4 T 49 49 8,718.08 273D5 T 12 12,264.25 23,857.28 ** Service Center: 21 8 8 2,202.22 810D1 T 8 8 2,202.22 101 T 2 2	231D3	Т	1	i 1	114.01
238D1 T 88 88 36,348,54 241D1 T 102 102 48,793.00 245D2 T 5 5 1,467,52 249D1 T 3 3 1,409,86 249D2 T 3 3 - 250D1 T 7 7 548,14 250D2 T 2 2 - 252D2 T 9 9 1,087,44 257D1 T 6 6 - 258D1 T 121 121 30,727,88 263D1 T 52 52 5,718,32 273D4 T 49 49 8,718.08 273D5 T 12 12 4,264.25 274D1 T 54 51 1,447.69 14 Subtotal 935 935 239,857.28 ** Service Center: 21 * 2 1,067,43 817D2	232D1		4	<u>ا</u> کا	263.13
241D1T10210248,793.00 $245D2$ T551,467.52 $249D1$ T331,409.86 $29D2$ T33- $250D1$ T77548.14 $250D2$ T22- $252D2$ T991,087.44 $257D1$ T66- $258D1$ T12112130,727.88 $263D1$ T52525,718.32 $273D4$ T49498,718.08 $273D5$ T12124,264.25 $274D1$ T545412,643.77 $620D2$ T551,447.6914Subtotal935935239.857.28** Service Center: 21882,202.22 $812D1$ T26266,655.23 $817D3$ T12123,503.44 $839D1$ T15156,169.21 $839D1$ T15155,1053.80 $842D1$ T221,047.15 $852D1$ T686817,521.75 $855D2$ T11302.06 $860D1$ T434312,312.33 $861D9$ T441,481.22	232D2	Т	4	4	1,367.53
245D2 T 5 5 1,467.52 249D1 T 3 3 1,409.86 249D2 T 3 3 - 250D1 T 7 7 548.14 250D2 T 2 2 - 252D2 T 9 9 1,087.44 257D1 T 6 6 - 258D1 T 121 121 30,727.88 261D3 T 33 33 - 263D1 T 52 52 5,718.32 273D4 T 49 49 8,718.08 273D5 T 12 12 4,264.25 274D1 T 5 5 1,447.69 14 Subtotal 935 935 239,857.28 ** Service Center: 21 2 1,087.43 810D1 T 2 2 1,087.43 817D2 T	238D1	Т	88	88 88	36,348.54
249D1 T 3 3 1,409.86 249D2 T 3 3 - 250D1 T 7 7 548.14 250D2 T 2 2 - 252D2 T 9 9 1,087.44 257D1 T 6 6 - 258D1 T 121 121 30,727.88 263D1 T 33 33 - 263D1 T 52 52 5,718.32 273D4 T 49 49 8,718.08 273D5 T 12 12 4,264.25 274D1 T 54 54 12,643.77 620D2 T 5 5 1,447.69 14 Subtotal 935 935 239,857.28 ** Service Center: 21 * 8 2,202.22 810D1 T 26 26 6,655.23 812D2 T 6 6 1,652.49 817D2 T 2 2	241D1	Т	102	2 102	48,793.00
249D2T33250D1T77548.14250D2T22252D2T991,087.44257D1T66258D1T12112130,727.88261D3T3333263D1T52525,718.32273D4T49498,718.08273D5T12124,264.25274D1T545412,643.77620D1T11-620D2T551,447.6914 Subtotal935935239,857.28** Service Center: 21882,202.22810D1T26266,655.23812D2T221,087.43817D3T12123,530.34839D1T15156,169.21839D2T551,053.80842D1T221,047.15855D2T11302.06860D1T434312,312.33861D9T441,481.22	245D2	т	5	i 5	1,467.52
250D1 T 7 7 548.14 250D2 T 2 2 252D2 T 9 9 1,087.44 257D1 T 6 6 258D1 T 121 121 30,727.88 261D3 T 33 33 - 261D3 T 33 33 - 261D3 T 52 52 5,718.32 273D4 T 49 49 8,718.08 273D5 T 12 12 4,264.25 274D1 T 54 54 12,643.77 620D1 T 1 1 - 620D2 T 5 5 1,447.69 14 Subtotal 935 935 239,857.28 ** Service Center: 21 8 8 2,202.22 812D1 T 26 26 6,655.23 812D2 T 2 1,087.43 839D1 12 13,530.34 839D1 T 15 <td< td=""><td>249D1</td><td>Т</td><td>3</td><td>3 3</td><td>1,409.86</td></td<>	249D1	Т	3	3 3	1,409.86
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	249D2	т			
252D2 T 9 9 9 1,087.44 257D1 T 6 6 - 258D1 T 121 121 30,727.88 261D3 T 33 33 - 263D1 T 52 52 5,718.32 273D4 T 49 49 8,718.08 273D5 T 12 12 4,264.25 274D1 T 54 54 12,643.77 620D1 T 1 1 - 620D2 T 5 5 1,447.69 14 Subtotal 935 935 239,857.28 ** Service Center: 21 8 8 2,202.22 812D1 T 26 26 6,655.23 812D2 T 6 6 1,652.49 817D2 T 2 2 1,087.43 817D3 T 12 12 3,530.34 839D1 T 15 15 6,169.21 839D2 T 5	250D1	Т			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	250D2	Т			
258D1 T 121 121 30,727.88 261D3 T 33 33 - 263D1 T 52 52 5,718.32 273D4 T 49 49 8,718.08 273D5 T 12 12 4,264.25 274D1 T 54 54 12,643.77 620D1 T 1 1 - 620D2 T 5 5 1,447.69 14 Subtotal 935 935 239,857.28 ** Service Center: 21 8 8 2,202.22 810D1 T 8 8 2,202.22 812D2 T 6 6 1,652.49 817D2 T 2 2 1,087.43 817D3 T 12 12 3,530.34 839D1 T 15 6,169.21 839.03 839D2 T 5 5 1,053.80 842D1 T 2 2 1,047.15 855D1 T 68	252D2				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
273D4T49498,718.08273D5T12124,264.25274D1T545412,643.77620D1T11-620D2T551,447.6914 Subtotal935935239,857.28** Service Center: 21****810D1T882,202.22812D1T26266,655.23812D2T661,652.49817D2T221,087.43817D3T12123,530.34839D1T15156,169.21839D2T551,053.80842D1T221,047.15855D1T15155,165.36855D1T686817,521.75855D2T11302.06860D1T434312,312.33861D9T441,481.22					
273D5T12124,264.25274D1T545412,643.77620D1T11-620D2T551,447.6914 Subtotal935935239,857.28** Service Center: 21**810D1T882,202.22812D1T26266,655.23812D2T661,652.49817D2T221,087.43817D3T12123,530.34839D1T15156,169.21839D2T551,053.80842D1T221,047.15855D1T15155,165.36855D1T686817,521.75855D2T11302.06860D1T434312,312.33861D9T441,481.22					
274D1T545412,643.77620D1T11-620D2T551,447.6914 Subtotal935935239,857.28** Service Center: 21****810D1T882,202.22812D1T26266,655.23812D2T661,652.49817D2T221,087.43817D3T12123,530.34839D1T15156,169.21839D2T551,053.80842D1T221,047.15855D1T686817,521.75855D2T11302.06860D1T434312,312.33861D9T441,481.22					
620D1T11-620D2T551,447.6914 Subtotal935935239,857.28** Service Center: 21935935239,857.28810D1T882,202.22812D1T26266,655.23812D2T661,652.49817D2T221,087.43817D3T12123,530.34839D1T15156,169.21839D2T551,053.80842D1T221,047.15852D1T15155,165.36855D1T686817,521.75855D2T11302.06860D1T434312,312.33861D9T441,481.22					
620D2T551,447.6914 Subtotal935935239,857.28** Service Center: 21810D1T882,202.22812D1T26266,655.23812D2T661,652.49817D2T221,087.43817D3T12123,530.34839D1T15156,169.21839D2T551,053.80842D1T221,047.15852D1T15155,165.36855D1T686817,521.75855D2T11302.06860D1T434312,312.33861D9T441,481.22					
14 Subtotal 935 935 935 239,857.28 ** Service Center: 21 8 8 2,202.22 810D1 T 8 8 2,202.22 812D1 T 26 26 6,655.23 812D2 T 6 6 1,652.49 817D2 T 2 2 1,087.43 817D3 T 12 12 3,530.34 839D1 T 15 6,169.21 839D2 T 5 5 1,053.80 842D1 T 2 2 1,047.15 852D1 T 15 15 5,165.36 855D1 T 68 68 17,521.75 855D2 T 1 1 302.06 860D1 T 43 43 12,312.33 861D9 T 4 4 1,481.22		-			
** Service Center: 21 810D1 T 8 8 2,202.22 812D1 T 26 26 6,655.23 812D2 T 6 6 1,652.49 817D2 T 2 2 1,087.43 817D3 T 12 12 3,530.34 839D1 T 15 6,169.21 839D2 T 5 5 1,053.80 842D1 T 2 2 1,047.15 852D1 T 15 5,165.36 855D1 T 68 68 17,521.75 855D2 T 1 1 302.06 860D1 T 43 43 12,312.33 861D9 T 4 4 1,481.22		-			
810D1 T 8 8 2,202.22 812D1 T 26 26 6,655.23 812D2 T 6 6 1,652.49 817D2 T 2 2 1,087.43 817D3 T 12 12 3,530.34 839D1 T 15 6,169.21 839D2 T 5 5 1,053.80 842D1 T 2 2 1,047.15 852D1 T 15 15 5,165.36 855D1 T 68 68 17,521.75 855D2 T 1 1 302.06 860D1 T 43 43 12,312.33 861D9 T 4 4 1,481.22			935	935	239,857.28
812D1 T 26 26 6,655.23 812D2 T 6 6 1,652.49 817D2 T 2 2 1,087.43 817D3 T 12 12 3,530.34 839D1 T 15 6,169.21 839D2 T 5 5 1,053.80 842D1 T 2 2 1,047.15 852D1 T 15 15 5,165.36 855D1 T 68 68 17,521.75 855D2 T 1 1 302.06 860D1 T 43 43 12,312.33 861D9 T 4 4 1,481.22			c		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
812D2 T 6 6 1,652.49 817D2 T 2 2 1,087.43 817D3 T 12 12 3,530.34 839D1 T 15 15 6,169.21 839D2 T 5 5 1,053.80 842D1 T 2 2 1,047.15 852D1 T 15 15 5,165.36 855D1 T 68 68 17,521.75 855D2 T 1 1 302.06 860D1 T 43 43 12,312.33 861D9 T 4 4 1,481.22					
817D2 T 2 2 1,087.43 817D3 T 12 12 3,530.34 839D1 T 15 15 6,169.21 839D2 T 5 5 1,053.80 842D1 T 2 2 1,047.15 852D1 T 15 15 5,165.36 855D1 T 68 68 17,521.75 855D2 T 1 1 302.06 860D1 T 43 43 12,312.33 861D9 T 4 4 1,481.22					
817D3 T 12 12 3,530.34 839D1 T 15 15 6,169.21 839D2 T 5 5 1,053.80 842D1 T 2 2 1,047.15 852D1 T 15 15 5,165.36 855D1 T 68 68 17,521.75 855D2 T 1 1 302.06 860D1 T 43 43 12,312.33 861D9 T 4 4 1,481.22					
839D1 T 15 15 6,169.21 839D2 T 5 5 1,053.80 842D1 T 2 2 1,047.15 852D1 T 15 15 5,165.36 855D1 T 68 68 17,521.75 855D2 T 1 1 302.06 860D1 T 43 43 12,312.33 861D9 T 4 4 1,481.22					
839D2T551,053.80842D1T221,047.15852D1T15155,165.36855D1T686817,521.75855D2T11302.06860D1T434312,312.33861D9T441,481.22					
842D1T221,047.15852D1T15155,165.36855D1T686817,521.75855D2T11302.06860D1T434312,312.33861D9T441,481.22					
852D1 T 15 15 5,165.36 855D1 T 68 68 17,521.75 855D2 T 1 1 302.06 860D1 T 43 43 12,312.33 861D9 T 4 4 1,481.22					
855D1 T 68 68 17,521.75 855D2 T 1 1 302.06 860D1 T 43 43 12,312.33 861D9 T 4 4 1,481.22					
855D2 T 1 1 302.06 860D1 T 43 43 12,312.33 861D9 T 4 4 1,481.22					
860D1T434312,312.33861D9T441,481.22					
861D9 T 4 1,481.22					
	865D1	Ť	39		

.- 11

.....

ب راب مسابقاتها

. ..

Docket No. 2010-051 March 15, 2010 Attachment 31 Page 3 of 8

محمد من مرجرة مد

Central Maine Power Company Reliability Improvement Program Trees in Contact

Circuit	W/T	Lines in contact Spans	Totais Spans	Totals Costs
865D2	т	12		2,440.54
865D5	Ť	5		3,610.41
870D1	Ť	1	1	-
873D1	Ť	21	21	11,282.12
873D2	Ť	1		-
21 Subtotal		286		85,421.44
** Service (100	
120D1	Т	8	8	1,101.68
808D1	Ť	2		
811D1	т	29		
813D1	T	78		7,153.41
813D3	Ť	99		
815D2	т	4		594.07
820D1	Т	37		7,100.30
821D1	Т	11	11	2,810.98
821D2	T	2		176.02
821D3	Т	3		429.27
834D2	Ť	1	- 1	161.37
22 Subtotal	-	274		41,454.55
** Service C				.,
400D1	Т	21	21	-
407D1	т	17		1,882.03
428D2	т	3		-
428D3	Т	2	2	972.66
429D1	Т	1	1	464.50
435D1	Т	1	1	-
447D1	т	6	6	156.87
447D2	Т	14		278.70
449D2	Т	21	21	582.30
453D1	т	132		15,413.60
816D1	Т	4	4	469. 86
818D1	T	249	249	51,087.63
835D1	Т	9	9	•
836D1	Т	2	2	227.23
841D1	Т	7	7	1,031.86
841D2	Τ·	23	23	5,519.81
844D1	Т	1	1	-
858-D4	Ţ	1	1	184.63
858D1A	T	4	4	1,510.70
858D1B	Т	3	3	1,347.72
858D3	Т	39	39	5,784.24
858D4	Т	401	401	62,156.61
875D1	т	1	1	358.60
877D1	т	19	19	2,578.17
882D2	т	1	1	-

فور با

١n

5. gar

Docket No. 2010-051 March 15, 2010 Attachment 31 Page 4 of 8

The Article Anti-Application and effort

Central Maine Power Company Reliability Improvement Program Trees in Contact

.

Circult	W/T	Lines in contact Span s	Totals Spans	Totals Costa						
885D1	т	13	•	7,253.50						
24 Subtotal		995	995	159,261.22						
	** Service Center: 25									
822D1	T	276	276	23,829.97						
823D2	Ť	58		20,876.09						
824D1	Ť	26	26	7,830.40						
824D2	Ť	1	1	244.48						
832d2	Ť	1	1	198.51						
853D1	Ť	152		10,005.27						
853D2	Ť	4		481.18						
854D1	Ť	2	-	254.19						
866D1	Ť	234	234	27,713.46						
866D2	Ť	1	1	240.68						
868D1	Ť	101	101	30,331.96						
25 Subtota	•	856		122,006.19						
** Service				,						
214D1	T	5	5	3,398.62						
214D2	Ť	20	20	2,878.32						
214D3	Ť	41	41	2,582.28						
214D4	Ť	47	47	15,173.41						
239D5	Ť	4		785.00						
239D6	Ť	12	12	8,348.88						
239D7	Ť	12	12	-						
239D9	Ť	2	2	401.25						
245d1	Ť	- 3		1,721.17						
246D1	Ť	47	47	8,639.79						
246D2	Ť	1	1	785.00						
251D1	Ť	12		-						
253D1	Ť	5	5	1,038.75						
800D	Ť	- 4		530.36						
800D1	T	5	5	1,897.19						
803D4	Т	1	1	-						
803D5	Т	1	1	-						
803D6	Т	6	6	2,380.93						
805D1	Т	31	31	8,799.11						
806D1	Т	184	184	45,981.91						
806D2	Т	160	160	35,485.93						
814D2	Т	4	4	-						
846D1	Т	5	5	2,977.89						
850D1	Т	64	64	35,575.34						
850D2	Т	24	24	4,920.93						
860D2	Т	151	151	51,377.56						
874D1	T	1	1	•						
31 Subtotal		852	852	235,679.62						
** Service (-, -						

....

Docket No. 2010-051 March 15, 2010 Attachment 31 Page 5 of 8

.....

Central Maine Power Company Reliability Improvement Program Trees in Contact

.

. . ..

Circuit	wл	Lines in contact Totals	Tota	
		Spans Spans	Cos	
218D1	Т	17	17	3,728.40
416D3	Т	1	1	-
607D2	Т	3	3	339.73
607D5	Ť	197	197	32,305.91
610D2	Т	7	7	2,492.18
	63 T	1	1	661.43
611D2	Ť	1	1	689.14
611D3	Т	3	3	689.19
613D1	Т	27	27	5,402.28
613D2	Т	8	8	3,545.72
613D3	Т	4	4	573.48
617D1	Т	2	2	631.30
617D2	Т	5	5	-
618D1	Т	1	1	186.35
618D2	Т	4	4	661.02
618D3	T	2	2	415.53
620D1	Т	9	9	3,729.23
620D4	T	93	93	14,943.84
622D2	T	23	23	8,461.16
623D4	Т	2	2	319.42
624D1	Т	1	1	277.08
624D2	Т	10	10	2,666.58
631D2	Т	3	3	228.03
631D3	Т	73	73	14,971.56
635D1	Т	18	18	4,917.69
635D2	Т	4	4	774.16
636D1	Т	1	1	273.82
639D1	Т	2	2	789.66
639D2	T	8	8	1,254.16
639D3	T	1	1	278.70
644D1	T	1	1	232.25
644D2	T	9	9	- 472.49
645D4	T T	3	3	804.88
646D1	T T	2 2	2 2	1,914.48
647D1	T T	2 1		185.80
647D2	T T	3	1 3	698.71
650D1	Ť	46	46	12,623.62
650D4		+0		486.90
653D2	T	1	1 1	486.90 324.60
653D3	T	7		2,234.96
659D13	T T	2	7	•
659D8	T		2	1,340.92
659D9	T	2	2	609.21
660D1	T	2	2	3,552.04
668D1	т	1	1	167.22

e,

Docket No. 2010-051 March 15, 2010 Attachment 31 Page 6 of 8

Central Maine Power Company Reliability Improvement Program Trees in Contact

Circuit	W/T	Lines in contact Spans	Totals Spans	Totais Costs
674D1	T		-	743.20
674D2	Ť	, 1		154.83
675D3	Ť	3		
678D1	Ť	6		
682D1	Ť	2		
682D2	T	2		
690D1	Ť	4		
690D2	Ť	2		
	T	66		
690D3				-
691D1	T T	2		
693D1	T	7		•
693D2	T	2		•
41 Subtota		712	712	154,561.95
** Service				
603D2	T	4		
605D1	T	114		
612D1	т	7		
612D2	Т	4		
617D2	T	69		15,803.96
621D1	т	5		
621D2	Т	2	2	-
626D5	т	1	1	84.72
629D1	Т	1	1	169.44
629D2	Т	9	9	598.90
629D3	Т	2		
632D1	L	1	1	222.30
632D1	т	2		
633D1	Т	3		
634D1	Ť	2		
634D2	Ť	- 18		353.98
638D1	Ť	11	11	1,524.91
640D1	Ť	144	144	47,398.90
640D2	Ť	3	3	423.60
640D3	Ť	38	38	10,487.70
641D1	Ť	1	1	10,407.70
641D3	Ť	3	3	671.06
641D4	Ť	1	1	0/1.00
656D2	Ť	5	5	1,089.25
657D3	Ť	1	1	-
661D2	T	62		169.44
663D1	Ť	81	62	4,335.06
670D1			81	1,245.92
	T T	1	1	221.58
671D1	T	71	71	12,079.85
671D2	T	13	13	1,462.89
676D2	Т	56	56	13,449.78

.

لد

......

.

Docket No. 2010-051 March 15, 2010 Attachment 31 Page 7 of 8

Central Maine Power Company Reliability Improvement Program Trees in Contact

......

Circuit	W/T	Lines in contact Spans	Totals Spans	Totals Costs
677D1	т	14 I	•	4 4,387.74
678D1	Ť	123		•
684D1	Ť	3		3 423.60
685D1	Ϋ́Τ	72		11,619.02
685D2	Ť	96		6 18,785.64
687D1	Ť	1		1 1,130.31
688D1	Ť	36		7,643.52
688D2	Ť	172		44,614.56
689D1	T	29		29 5,512.81
691D1	Т	70) 7	70 31,352.47
692D1	T	24	1 S	24 4,671.61
46 Subtotal		1375	5 137	75 300,142.08
** Service C				
411D1	Т	3	3	3 531.18
412.D3	T	1	l	1 296.19
412D1	T	5	5	5 340.63
412D2	T	1	l	1 -
412D3	T	12	2	12 5,090.42
412D4	Т	7		7 1,140.25
416D1	Т	21	2	5,805.28
416D2	Т	16		1,220.87
420D1	Т	33	3 3	33 8,665.43
420D2	Ť	ç		9 -
420D3	T	4	1	1 -
420D4	T	2	2	2 492.10
420D6	Т	2	2	2 247.73
420D7	Т	3	3	3 1,243.38
421D1	Т	1	ł	1 96.87
421D2	Τ́	84	t l	84 13,728.51
424D2	Т	1		1 -
424D4	Т	34	• :	34 5,851.70
424D5	Т	1	1	1 297.28
424D6	Т	1		1 278.70
426D6	Т	1		1 -
431D1	Т	1.		11 3,245.71
431D2	Т	(6 1,793.46
436D1	Т		2	2 ·
436D2	T			1 278.70
436D3	Т		1	1 306.30
436D6	Τ´		9	9 2,266.34
436D7	Т	1		1 -
450D1	Т	39		39 9,424.04
450D2	Т	21		6,325.26
454D1	Т	e		6 646.53
454D2	Т	91	1 9	91 11,691.54

Docket No. 2010-051 March 15, 2010 Attachment 31 Page 8 of 8

Central Maine Power Company Reliability Improvement Program Trees in Contact

.

......

Circult	W/T	Lines in contact	Totals Score	Totals Costs
	+	Span s	Spans	
456D1	T T	2		•
456D2	T T	113		
467D1	Т	21		•
51 Subtota		563	3 563	3 104,373.86
** Service (00045
405D1	Ţ	2		2 369.45
405D2	Ť	4		4 936.36
406D1	T	11		
406D2	T	92		-
406D3	T			1 277.08
413D1	T			3 3,223.96
413D2	T	2		1,208.14
415D1	Т	2		2 234.09
415D2	Т	2		2 529.05
415D3	Т	1		1 -
419D1	т	4		4 1,868.35
430D1	Т	5		5 2,028.16
435D1	Т	2		2.
435D2	Т	ŧ		
435D3	Ť	1		138.55
435D4	Т	30		•
437D1	т	1		•
437D2	Т	3		3 311.89
438D1	Т	31		-
439D1	Т	3		3 -
444D1	Т	17	7 1	7 2,526.61
444D2	Т	e	6 (5 2,491.96
444D3	Т	4	4 4	4 1,131.47
445D1	Т	25	5 25	5 4,731.40
445D2	т	e		3 2,6 98 .24
458D1	Т	7		7 964.09
458D2	т	3		3 796.97
463D1	Т	64		•
691D1	т	2		2 893.48
692D1	Т	2		2 994.53
54 Subtota	1	341		•
Subtotal		7903	3 790;	• •
Dollars / ol	d system			435,074.03
Total				2,169,956.42

Docket No. 2010-051 March 15, 2010 Attachment 32 Page 1 of 2

Central Maine Power Company Capital Budget Requests by Department \$000's

Deparment	Property Description	1 1 1 1 1	201	0 Budget	20	9 Budget	200	9 Actuals
Power Delivery	Distribution & Subst	ation Construction	\$	3,114	\$	958	\$	91
	Metering			1,731		1,236		1,103
	Large Power Transf			4,991		23,036		21,320
	Dist Regulator Purc			261		250		248
	Transmission Const			309,823		71,978		60,836
	Land Purchase & Sa							
	Major Betterment P			4 5 47		4 500		4 050
	General Equipment			1,547		1,500	_	1,252
	SI	ubtotal		321,467		98,958		84,851
Field Operations	Substation Construct	ction		984		1,065		891
	New Business Blan	kets		1,741		1,829		2,194
	Line Extensions			1,495		1,613		1,244
	Road Job Construct			2,612		2,303		2,302
	Major Betterment P			4,178		3,056		3,043
	Minor Betterment P	rojects		11,604		11,125		11,550
	Disposal Blanket			450		450		455
	Transmission Const	truction		1,350		1,070		965
	Misc. Projects			5,026		4,007		5,233
	General Property			350		100		53
	S	ubtotal		29,791		26,617		27,930
Information Technology	General Property			663		424		326
	S	ubtotal		663		424		326
Other	Distribution Line Tra	ansformers		12,106		12,248		8,995
	Transportation			5,151		735		568
	Miscellaneous			260		130		38
	S	ubtotal		17,517		13,113		9,601
Administrative Services	General Property			146				
	Facilities			3,253		1,900		1,449
	S	ubtotal		3,399		1,900		1,449
Corporate, including AMI	General Property			29,829		402		2,049

-

Docket No. 2010-051 March 15, 2010 Attachment 32 Page 2 of 2

Central Maine Power Company Capital Spending 2010 Budget to 2009 Budget Comparison

CMP's construction budget for 2010 totals \$402.6M, approximately \$261M higher than the 2009 Budget. Actual expenditures for 2009 were approximately \$126.2M. The increase in the 2010 budget relative to 2009 is due primarily to the Maine Power Reliability project (\$257M) and the Automated Meter Infrastructure project (\$29M).

2009 Budget to Actual Comparison

CMP's construction budget for 2009 totaled \$141.4M, while actual expenditures for 2009 were approximately \$126.2M. Actual spending included decreases over plan in transmission projects, mainly the Maine Power Reliability Project in Power Delivery and increases over plan in General Property from the Advanced Meter Infrastructure project included in Corporate.

AmerenUE 4 CSR 240-23.010 Electric Utility System Reliability Monitoring and Reporting Submission Requirements – <u>Annual Reliability Report</u>

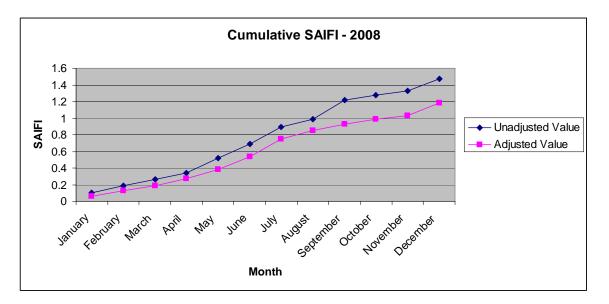
Introduction

This report details Union Electric Company dba AmerenUE's annual reliability metrics and worst performing circuits for calendar year 2008 as required by Missouri Public Service Commission Rule 4 CSR 240-23.010, <u>Electric Utility System Reliability</u> <u>Monitoring and Reporting Submission Requirements</u> (referred to in the remainder of this document as "the Rule"). This report is required by Sections (2) and (7) of the Rule which state, "*The information required by section (1) shall be filed annually by the last business day of April of the calendar year following the calendar year for which the information was accumulated.... The information developed in accordance with section (6) shall be reported as part of the annual report required by section (2)...." This report will provide the reliability measures requested by the Rule, the list of Worst Performing Circuits (WPCs), and the actions taken or planned to improve the performance of these circuits.*

Definitions

For the purposes of this report, the following definitions shall apply:

- 1. <u>System Average Interruption Frequency Index (SAIFI)</u> The average frequency of service interruptions in number of occurrences per customer (total number of customer interruptions divided by the total number of customers served).
- 2. <u>Customer Average Interruption Frequency Index (CAIFI)</u> The average number of interruptions per customer interrupted (total number of customer interruptions divided by the total number of customers affected).
- 3. <u>System Average Interruption Duration Index (SAIDI)</u> The average interruption in hours or minutes per customer served (sum of all customer interruption durations divided by the total number of customers served).
- 4. <u>Customer Average Interruption Duration Index (CAIDI)</u> The average interruption duration (sum of all customer interruption durations divided by the total number of customers interrupted).
- 5. <u>Worst Performing Circuit (WPC)</u> A distribution circuit whose SAIFI value, adjusted to exclude major storm events per IEEE Standard 1366-2003, when compared to the SAIFI values for the other circuits in the AmerenUE system places it among the 5% of circuits with the highest SAIFI values in the AmerenUE system.

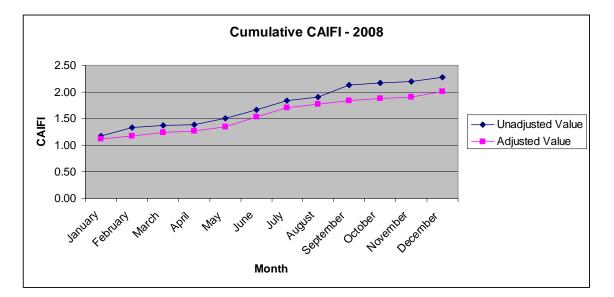


Reliability Metrics

The following tables and graphs show AmerenUE's unadjusted and adjusted¹ reliability metrics for calendar year 2008:

SAIFI:

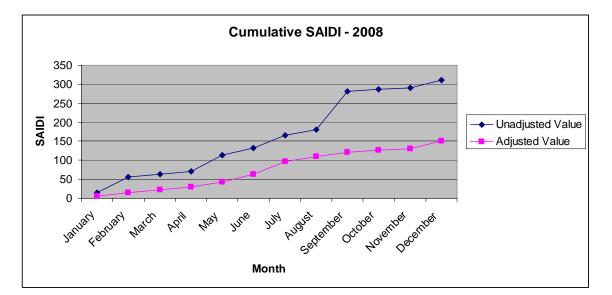
Month	Unadjusted Value	Adjusted Value
January	0.10	0.06
February	0.19	0.13
March	0.26	0.19
April	0.34	0.27
May	0.52	0.38
June	0.69	0.54
July	0.89	0.75
August	0.99	0.85
September	1.22	0.93
October	1.28	0.99
November	1.33	1.03
December	1.47	1.18


¹ Data has been adjusted in accordance with 4 CSR 240-23.010(5).

Exl	hil	oit	1

CAIFI:

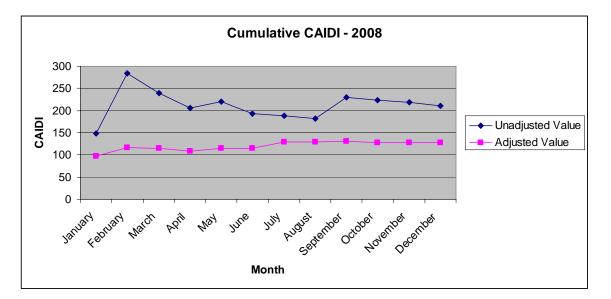
Month	Unadjusted Value	Adjusted Value
January	1.17	1.12
February	1.33	1.17
March	1.37	1.23
April	1.38	1.26
May	1.50	1.35
June	1.66	1.52
July	1.83	1.70
August	1.91	1.77
September	2.12	1.83
October	2.16	1.88
November	2.19	1.91
December	2.27	2.00



Ex	hi	bit	1

SAIDI:

Month	Unadjusted Value	Adjusted Value
January	14.85	5.71
February	55.01	14.85
March	62.62	22.46
April	70.03	29.87
May	113.95	43.48
June	133.01	62.54
July	166.53	96.06
August	181.00	110.54
September	280.90	121.67
October	286.13	126.89
November	290.47	131.24
December	310.13	150.89



Ex	hi	bit	1

C 1	IDI	Γ.
L.A	ллл	
~		•

Month	Unadjusted Value	Adjusted Value
January	149.03	97.22
February	283.68	116.33
March	239.97	115.36
April	205.78	109.00
May	219.66	115.43
June	193.86	114.96
July	187.68	128.90
August	182.29	129.91
September	230.19	131.37
October	222.79	128.16
November	218.72	126.93
December	210.61	128.05

Worst Performing Circuits

AmerenUE has performed SAIFI calculations on all of its distribution circuits in accordance with section (6) of the Rule. The circuits have been ranked in order of descending SAIFI value and the 5 percent of the circuits with the highest SAIFI values have been designated as Worst Performing Circuits (WPCs). The list of WPCs based on 2008 SAIFI values has been included in Appendix A.

AmerenUE has analyzed each of these WPCs and the reasons why the circuit qualifies as a WPC and the actions planned or taken to improve the WPC's performance have been included in Appendix B.

Conclusion

This report details AmerenUE's annual reliability metrics and provides a list of AmerenUE's worst performing circuits and the actions planned and/or taken to improve the reliability of these circuits. The report clearly demonstrates that AmerenUE is aware of those circuits considered "worst performers" and has either taken or planned aggressive actions to improve the reliability of these circuits in order to better serve our customers.

AmerenUE 4 CSR 240-23.010 Electric Utility System Reliability Monitoring and Reporting Submission Requirements – <u>Annual Reliability Report</u>

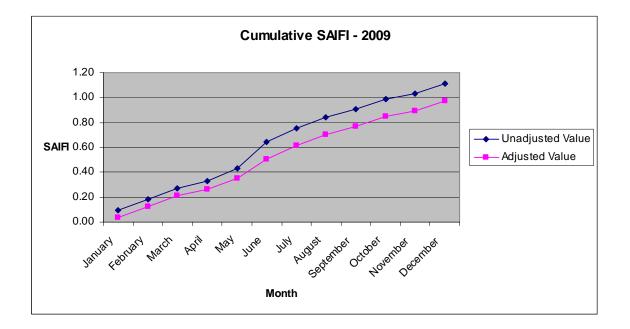
Introduction

This report details Union Electric (dba AmerenUE) Company's annual reliability metrics and worst performing circuits for calendar year 2009 as required by Missouri Public Service Commission Rule <u>4</u> CSR 240-23.010, Electric Utility System Reliability <u>Monitoring and Reporting Submission Requirements</u> (referred to in the remainder of this document as "the Rule"). This report is required by Sections (2) and (7) of the Rule which state, "*The information required by section (1) shall be filed annually by the last business day of April of the calendar year following the calendar year for which the information was accumulated.... The information developed in accordance with section (6) shall be reported as part of the annual report required by section (2)...." This report will provide the reliability measures requested by the Rule, the list of Worst Performing Circuits (WPCs), and the actions taken or planned to improve the performance of these circuits.*

Definitions

For the purposes of this report, the following definitions shall apply:

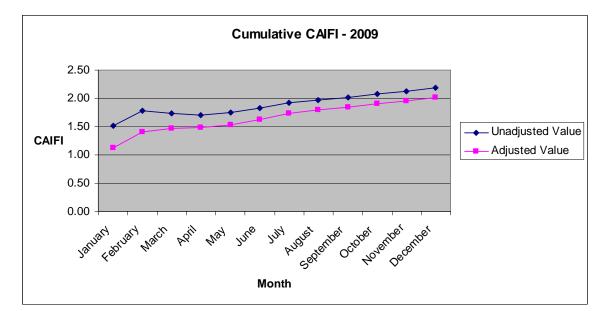
- 1. <u>System Average Interruption Frequency Index (SAIFI)</u> The average frequency of service interruptions in number of occurrences per customer (total number of customer interruptions divided by the total number of customers served).
- 2. <u>Customer Average Interruption Frequency Index (CAIFI)</u> The average number of interruptions per customer interrupted (total number of customer interruptions divided by the total number of customers affected).
- 3. <u>System Average Interruption Duration Index (SAIDI)</u> The average interruption in minutes per customer served (sum of all customer interruption durations divided by the total number of customers served).
- 4. <u>Customer Average Interruption Duration Index (CAIDI)</u> The average interruption duration (sum of all customer interruption durations divided by the total number of customers interrupted).
- 5. <u>Worst Performing Circuit (WPC)</u> A distribution circuit whose SAIFI value, adjusted to exclude major storm events per IEEE Standard 1366-2003, when compared to the SAIFI values for the other circuits in the AmerenUE system places it among the 5% of circuits with the highest SAIFI values in the AmerenUE system.



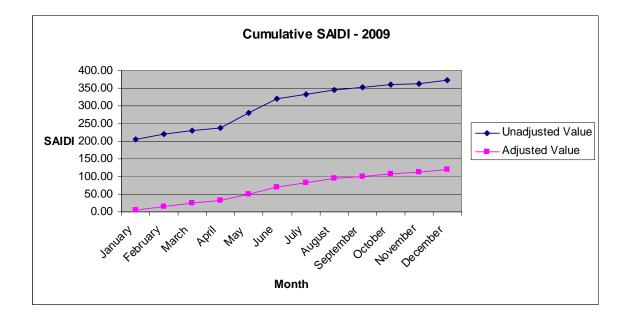
Reliability Metrics

The following tables and graphs show AmerenUE's unadjusted and adjusted reliability metrics for calendar year 2009:

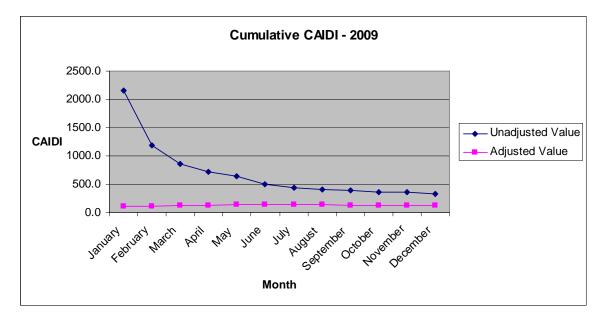
SAIFI:


Month	Unadjusted Value	Adjusted Value
January	0.10	0.04
February	0.19	0.12
March	0.27	0.21
April	0.33	0.27
May	0.43	0.35
June	0.64	0.51
July	0.75	0.61
August	0.84	0.71
September	0.91	0.77
October	0.98	0.85
November	1.03	0.89
December	1.11	0.98

CAIFI:


Month	Unadjusted Value	Adjusted Value
January	1.52	1.13
February	1.79	1.40
March	1.73	1.47
April	1.71	1.48
May	1.75	1.53
June	1.83	1.63
July	1.92	1.73
August	1.98	1.80
September	2.02	1.85
October	2.08	1.91
November	2.12	1.95
December	2.18	2.02

SAIDI:


Month	Unadjusted Value	Adjusted Value
January	205.62	4.4
February	219.62	14.2
March	231.21	25.8
April	237.13	31.7
May	280.05	49.4
June	320.92	70.0
July	332.71	81.8
August	345.25	94.3
September	351.77	100.8
October	358.96	108.0
November	362.90	112.0
December	372.09	121.1

CAIDI:

Month	Unadjusted Value	Adjusted Value
January	2157.4	113.8
February	1184.5	113.5
March	855.3	122.8
April	726.3	119.1
May	646.7	141.8
June	500.4	138.6
July	443.6	133.2
August	410.0	133.6
September	388.4	131.1
October	364.7	127.4
November	352.7	125.4
December	334.3	124.1

Worst Performing Circuits

AmerenUE has performed SAIFI calculations on all of its distribution circuits in accordance with section (6) of the Rule. The circuits have been ranked in order of descending SAIFI value and the 5 percent of the circuits with the highest SAIFI values have been designated as Worst Performing Circuits (WPCs). The list of WPCs based on 2009 SAIFI values has been included in Appendix A.

AmerenUE has analyzed each of these WPCs and the reasons why the circuit qualifies as a WPC and the actions planned or taken to improve the WPC's performance have been included in Appendix B.

Conclusion

This report details AmerenUE's annual reliability metrics as well as providing a list of AmerenUEs worst performing circuits and the actions planned and/or taken to improve the reliability of these circuits. The report clearly demonstrates that AmerenUE is aware of those circuits considered "worst performers" and has either taken or planned aggressive actions to improve the reliability of these circuits in order to better serve our customers.

Ameren Missouri 4 CSR 240-23.010 Electric Utility System Reliability Monitoring and Reporting Submission Requirements – <u>Annual Reliability Report</u>

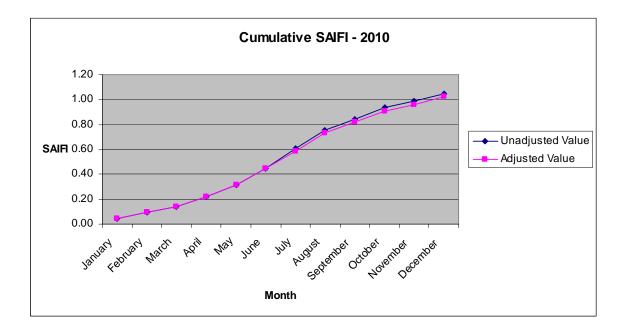
Introduction

This report details Union Electric (dba Ameren Missouri) Company's annual reliability metrics and worst performing circuits for calendar year 2010 as required by Missouri Public Service Commission Rule <u>4 CSR 240-23.010</u>, Electric Utility System Reliability Monitoring and Reporting Submission Requirements (referred to in the remainder of this document as "the Rule"). This report is required by Sections (2) and (7) of the Rule which state, "*The information required by section (1) shall be filed annually by the last business day of April of the calendar year following the calendar year for which the information was accumulated.... The information developed in accordance with section (6) shall be reported as part of the annual report required by section (2)...." This report will provide the reliability measures requested by the Rule, the list of Worst Performing Circuits (WPCs), and the actions taken or planned to improve the performance of these circuits.*

Definitions

For the purposes of this report, the following definitions shall apply:

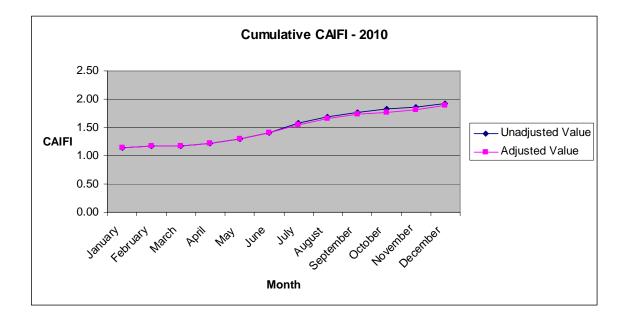
- 1. <u>System Average Interruption Frequency Index (SAIFI)</u> The average frequency of service interruptions in number of occurrences per customer (total number of customer interruptions divided by the total number of customers served).
- 2. <u>Customer Average Interruption Frequency Index (CAIFI)</u> The average number of interruptions per customer interrupted (total number of customer interruptions divided by the total number of customers affected).
- 3. <u>System Average Interruption Duration Index (SAIDI)</u> The average interruption in minutes per customer served (sum of all customer interruption durations divided by the total number of customers served).
- 4. <u>Customer Average Interruption Duration Index (CAIDI)</u> The average interruption duration (sum of all customer interruption durations divided by the total number of customers interrupted).
- 5. Worst Performing Circuit (WPC) A distribution circuit whose SAIFI value, adjusted to exclude major storm events per IEEE Standard 1366-2003, when compared to the SAIFI values for the other circuits in the Ameren Missouri system places it among the 5% of circuits with the highest SAIFI values in the Ameren Missouri system.



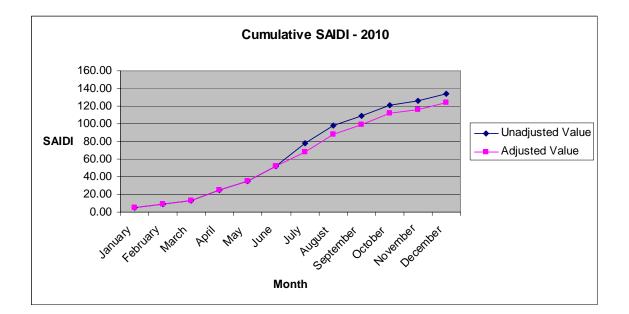
Reliability Metrics

The following tables and graphs show Ameren Missouri's unadjusted and adjusted reliability metrics for calendar year 2010:

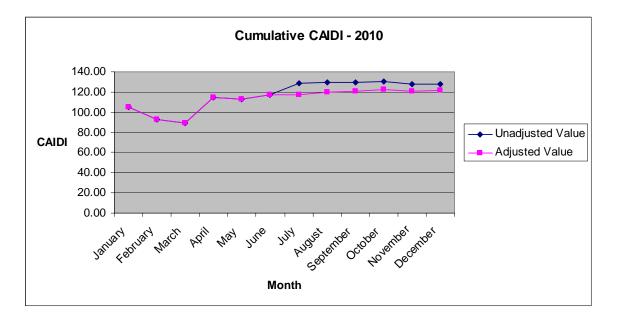
SAIFI:


Month	Unadjusted Value	Adjusted Value
January	0.05	0.05
February	0.09	0.09
March	0.14	0.14
April	0.22	0.22
May	0.31	0.31
June	0.44	0.44
July	0.61	0.58
August	0.76	0.73
September	0.85	0.82
October	0.93	0.91
November	0.99	0.96
December	1.05	1.02

CAIFI:


Month	Unadjusted Value	Adjusted Value
January	1.15	1.15
February	1.17	1.17
March	1.17	1.17
April	1.23	1.23
May	1.30	1.30
June	1.40	1.40
July	1.58	1.54
August	1.69	1.65
September	1.76	1.73
October	1.82	1.77
November	1.86	1.81
December	1.92	1.89

SAIDI:


Month	Unadjusted Value	Adjusted Value
January	4.85	4.85
February	8.65	8.65
March	12.60	12.60
April	25.12	25.12
May	35.34	35.34
June	52.11	52.11
July	78.25	68.40
August	97.62	87.78
September	109.19	99.34
October	121.50	111.65
November	126.25	116.41
December	134.12	124.27

CAIDI:

Month	Unadjusted Value	Adjusted Value
January	104.62	104.62
February	93.18	93.18
March	89.01	89.01
April	114.92	114.92
May	113.20	113.20
June	117.61	117.61
July	128.45	117.10
August	129.25	120.19
September	129.21	121.15
October	130.13	122.88
November	128.05	121.14
December	128.18	121.68

Worst Performing Circuits

Ameren Missouri has performed SAIFI calculations on all of its distribution circuits in accordance with section (6) of the Rule. The circuits have been ranked in order of descending SAIFI value and the 5 percent of the circuits with the highest SAIFI values have been designated as Worst Performing Circuits (WPCs). The list of WPCs based on 2010 SAIFI values has been included in Appendix A.

Ameren Missouri has analyzed each of these WPCs and the reasons why the circuit qualifies as a WPC and the actions planned or taken to improve the WPC's performance have been included in Appendix B.

Conclusion

This report details Ameren Missouri's annual reliability metrics as well as providing a list of Ameren Missouri's worst performing circuits and the actions planned and/or taken to improve the reliability of these circuits. The report clearly demonstrates that Ameren Missouri is aware of those circuits considered "worst performers" and has either taken or planned aggressive actions to improve the reliability of these circuits in order to better serve our customers.

Ameren Missouri 4 CSR 240-23.010 Electric Utility System Reliability Monitoring and Reporting Submission Requirements – <u>Annual Reliability Report</u>

Introduction

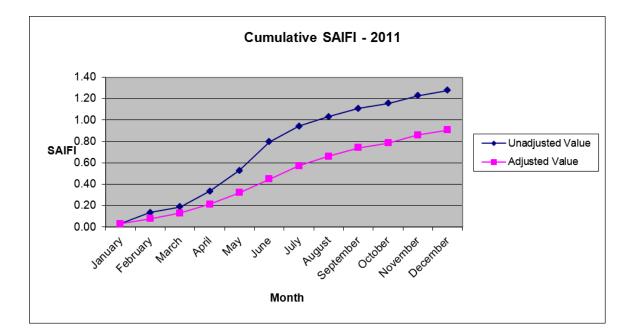
This report details Union Electric (dba Ameren Missouri) Company's annual reliability metrics and worst performing circuits for calendar year 2011 as required by Missouri Public Service Commission Rule 4 CSR 240-23.010, Electric Utility System Reliability Monitoring and Reporting Submission Requirements (referred to in the remainder of this document as "the Rule"). This report is required by Sections (2), (7), and (8) of the Rule which state, "The information required by section (1) shall be filed annually by the last business day of April of the calendar year following the calendar year for which the information was accumulated.... The information developed in accordance with section (6) shall be reported as part of the annual report required by section (2).... If on or after the time the annual report required by section (7) for calendar year 2011 is filled, a circuit has been on the worst performing circuit list for two (2) of the three (3) most recent consecutive calendar years the electrical corporation shall include detailed plans and schedules for improving the performance of that circuit in addition to the other information required by section (7)." This report will provide the reliability measures requested by the Rule, the list of Worst Performing Circuits (WPCs), including Multi-Year Worst Performing Circuits (MWPCs), and the actions taken or planned to improve the performance of these circuits.

Definitions

For the purposes of this report, the following definitions shall apply:

- 1. <u>System Average Interruption Frequency Index (SAIFI)</u> The average frequency of service interruptions in number of occurrences per customer (total number of customer interruptions divided by the total number of customers served).
- 2. <u>Customer Average Interruption Frequency Index (CAIFI)</u> The average number of interruptions per customer interrupted (total number of customer interruptions divided by the total number of customers affected).
- 3. <u>System Average Interruption Duration Index (SAIDI)</u> The average interruption in minutes per customer served (sum of all customer interruption durations divided by the total number of customers served).
- 4. <u>Customer Average Interruption Duration Index (CAIDI)</u> The average interruption duration (sum of all customer interruption durations divided by the total number of customers interrupted).

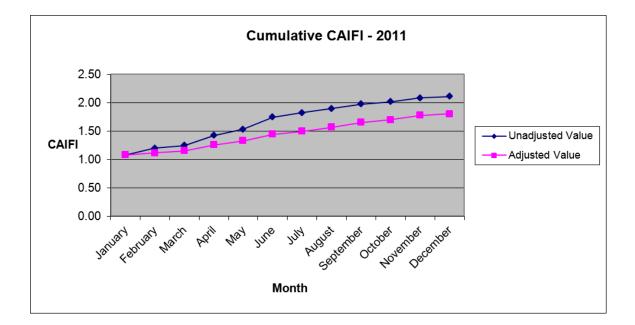
- 5. <u>Worst Performing Circuit (WPC)</u> A distribution circuit whose SAIFI value, adjusted to exclude major storm events per IEEE Standard 1366-2003, when compared to the SAIFI values for the other circuits in the Ameren Missouri system places it among the 5% of circuits with the highest SAIFI values in the Ameren Missouri system.
- 6. <u>Multi-Year Worst Performing Circuit (MWPC)</u> A distribution circuit whose SAIFI value has ranked it as a Worst Performing Circuit for any two (2) of the three (3) most recent consecutive calendar years.



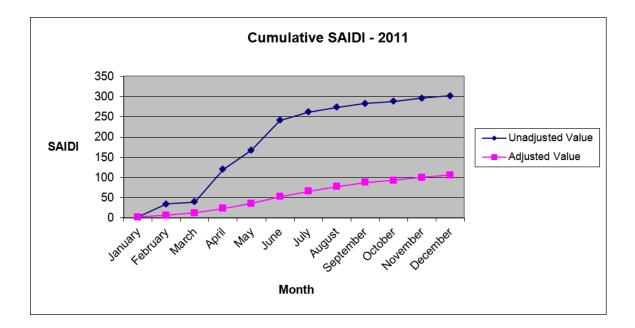
Reliability Metrics

4 CSR 240-23.010, section 3 states "The information required by section (1) shall be filed both unadjusted and adjusted to exclude major storm events per IEEE Standard 1366-2003, Guide for Electric Power Distribution Reliability Indices." The following tables and graphs show Ameren Missouri's unadjusted and adjusted reliability metrics for calendar year 2011:

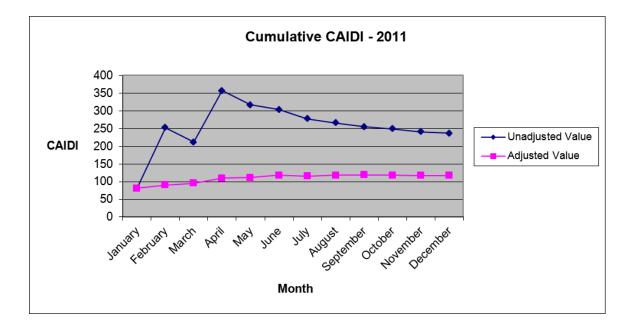
S A LEL	
SAILT.	


Month	Unadjusted Value	Adjusted Value
January	0.03	0.03
February	0.14	0.08
March	0.19	0.13
April	0.34	0.21
May	0.53	0.32
June	0.80	0.45
July	0.94	0.57
August	1.03	0.66
September	1.11	0.74
October	1.16	0.79
November	1.23	0.86
December	1.28	0.91

CAIFI:


Month	Unadjusted Value	Adjusted Value
January	1.08	1.08
February	1.20	1.11
March	1.25	1.15
April	1.43	1.26
May	1.53	1.33
June	1.75	1.44
July	1.83	1.50
August	1.90	1.57
September	1.98	1.65
October	2.02	1.70
November	2.09	1.78
December	2.11	1.80

SAIDI:


Month	Unadjusted Value	Adjusted Value
January	3	3
February	35	7
March	40	12
April	120	24
May	168	36
June	242	53
July	262	66
August	273	78
September	283	88
October	288	93
November	296	101
December	302	106

CAIDI:

Month	Unadjusted Value	Adjusted Value
January	81	81
February	252	90
March	212	96
April	357	110
May	317	111
June	304	118
July	278	116
August	265	118
September	255	119
October	249	118
November	241	117
December	236	117

Ameren Missouri 2011 Worst Performing Circuits

Ameren Missouri has performed SAIFI calculations on all of its distribution circuits in accordance with section (6) of the Rule. The circuits have been ranked in order of descending 2011 SAIFI and the 5 percent of the circuits with the highest SAIFI values have been designated as Worst Performing Circuits (WPCs). Multi-Year Worst Performing Circuits (MWPCs) have also been identified. The 2011 WPCs, including those designated as MWPCs are listed in Appendix A. The circuit numbers for the MWPCs have been highlighted in red.

Ameren Missouri has analyzed each of the WPCs for the reasons the circuit qualifies as a WPC and the actions planned or taken to improve the WPC's performance have been included in Appendix B. Each of the MWPCs in Appendix B is identified with the title "Multi-Year WPC Analysis and Remedial Action Report". The MWPC reports contain detailed information regarding work completed or planned to improve the performance of each of the MWPCs as required by the Rule.

Multi-year Worst Performing Circuits not on the 2011 WPC list

The MWPCs circuits not identified as WPCs in 2011 but which were WPCs in 2009 and 2010 are listed in Appendix C. Appendix D details the actions taken and/or planned to improve the performance of these circuits.

Conclusion

This report satisfies the reporting requirements of 4 CSR 240-23.010 for the calendar year 2011. The reported reliability metrics demonstrate continued improvement in the reliability of Ameren Missouri's electric distribution system. With an adjusted SAIFI value of .91, Ameren Missouri's customers now experience, on average, less than one extended outage per year. The reported analyses and corrective actions for the Worst Performing Circuits also demonstrate Ameren Missouri's high level of focus on improving reliability and our full commitment to satisfying both the intent and the requirements of this rule.

Appendix A Ameren Missouri 2011 Worst Performing Circuits

												Years
DIVISION	OPERATING AREA	CIRCUIT	VOLT	CUSTOMERS	CI	CMI	SAIDI	SAIFI	2009	2010	2011	WPC
SEMO GATEWAY	CAPE GIRARDEAU ST CHARLES	635007 564051	4 12	49 250	1,616 4,692	149,533 173,038	3052 692	32.98 18.77			WPC WPC	1 1
SEMO	DEXTER	879006	4	344	2,859	387,268	1126	8.31		WPC	WPC	2
BOONE TRAILS	WENTZVILLE	659051	12	295	1,978	152,130	516	6.71			WPC	1
SEMO	ST FRANCOIS	161054	12	407	2,460	329,892	811	6.04			WPC	1
BOONE TRAILS	MOBERLY BOONEVILLE	797008 708004	4 4	14 1	72 5	4,186 336	299 336	5.14 5.00			WPC WPC	1 1
BOONE TRAILS SEMO	CAPE GIRARDEAU	835002	4	138	659	117,475	851	4.78		WPC	WPC	2
BOONE TRAILS	WENTZVILLE	655058	12	1064	4,563	308,033	290	4.29			WPC	1
ARCHVIEW	GERALDINE	188008	4	176	714	171,099	972	4.06			WPC	1
ARCHVIEW	GERALDINE	083002	4	31	124	35,425	1143	4.00			WPC	1
SEMO	POTOSI	483052	12	874	3,461	306,765	351	3.96	WPC		WPC	2 1
SEMO SEMO	DEXTER CAPE GIRARDEAU	620055 828056	12 12	219 328	849 1,271	86,943 129,955	397 396	3.88 3.88			WPC WPC	1
SEMO	DEXTER	690057	12	619	2,350	346,776	560	3.80	WPC	WPC	WPC	3
SEMO	HAYTI	456057	12	134	507	82,624	617	3.78	WPC	WPC	WPC	3
GATEWAY	BERKELEY	281054	12	1302	4,777	316,383	243	3.67			WPC	1
SEMO SEMO	HAYTI HAYTI	456055	12 12	97 151	353 543	83,512 55,214	861 366	3.64 3.60		WPC	WPC WPC	1 2
CENTRAL OZARKS	CAPITAL	836051	12	295	1,013	133,241	452	3.43		VVPC	WPC	1
GATEWAY	BERKELEY	215053	12	1337	4,587	1,017,294		3.43		WPC	WPC	2
SEMO	HAYTI	455053	12	817	2,747	242,629	297	3.36	WPC	WPC	WPC	3
SEMO	HAYTI	454055	12	1103	3,664	379,062	344	3.32	WPC	WPC	WPC	3
SEMO MERAMEC VALLEY	POTOSI JEFFERSON	451054 546054	12 12	403 155	1,332 491	350,589 51,068	870 329	3.31 3.17		WPC	WPC WPC	1 2
GATEWAY	BERKELEY	134051	12	1374	4,308	296,403	216	3.17		VVPC	WPC	1
SEMO	HAYTI	452053	12	288	895	213,061	740	3.11	WPC	WPC	WPC	3
GATEWAY	DORSETT	203058	12	811	2,472	425,846	525	3.05			WPC	1
SEMO	DEXTER	824003	4	421	1,251	92,116	219	2.97			WPC	1
ARCHVIEW GATEWAY	GERALDINE BERKELEY	120003 134054	4 12	202 1858	575 5,284	398,116 989,496	1971 533	2.85 2.84			WPC WPC	1 1
UNDERGROUND	UNDERGROUND	082051	12	366	1,036	285,059	779	2.83		WPC	WPC	2
MERAMEC VALLEY		585052	12	280	790	191,888	685	2.82			WPC	1
SEMO	ST FRANCOIS	561053	12	765	2,155	355,812	465	2.82			WPC	1
BOONE TRAILS	MEXICO	800001	4	90	241	28,914	321	2.68			WPC	1
BOONE TRAILS GATEWAY	WENTZVILLE DORSETT	672053 209055	12 12	287 245	760 642	94,205 42,151	328 172	2.65 2.62	WPC		WPC WPC	2 1
GATEWAY	BERKELEY	131005	4	577	1,479	916,223	1588	2.56			WPC	1
GATEWAY	BERKELEY	167054	12	1598	4,090	705,641	442	2.56	WPC		WPC	2
SEMO	HAYTI	465055	12	989	2,492	257,101	260	2.52	WPC		WPC	2
GATEWAY	DORSETT	256054	12	1637	4,103	334,091	204	2.51			WPC	1
GATEWAY SEMO	BERKELEY CAPE GIRARDEAU	272053 871057	12 12	405 268	998 654	118,137 108,607	292 405	2.46 2.44			WPC WPC	1
MERAMEC VALLEY		503052	12	403	981	66,771	166	2.43			WPC	1
BOONE TRAILS	WENTZVILLE	674052	12	424	1,031	123,615	292	2.43		WPC	WPC	2
SEMO	DEXTER	688007	4	228	546	116,924	513	2.39			WPC	1
		854051	12 4	452	1,079	287,977	637	2.39			WPC WPC	1
ARCHVIEW MERAMEC VALLEY	GERALDINE FRANKLIN	128004 506051	4 12	89 716	210 1,687	18,158 168,082	204 235	2.36 2.36			WPC	1
SEMO	DEXTER	628053	12	601	1,412	145,268	242	2.35			WPC	1
BOONE TRAILS	WENTZVILLE	645052	12	59	138	13,729	233	2.34			WPC	1
MERAMEC VALLEY		169053	12	184	423	105,188	572	2.30			WPC	1
GATEWAY	BERKELEY	269004	4	819	1,879	106,539 169,496	130	2.29			WPC	1
GATEWAY GATEWAY	BERKELEY BERKELEY	265052 167056	12 12	803 722	1,832 1,640	654,479	211 906	2.28 2.27			WPC WPC	1
BOONE TRAILS	MOBERLY	939053	12	572	1,299	69,111	121	2.27			WPC	1
GATEWAY	BERKELEY	153006	4	736	1,669	109,782	149	2.27			WPC	1
SEMO	CAPE GIRARDEAU	607054	12	271	613	86,263	318	2.26	WPC		WPC	2
GATEWAY MERAMEC VALLEY	DORSETT JEFFERSON	203051 560053	12 12	1426 1469	3,221 3,309	641,569 540,329	450 368	2.26 2.25			WPC WPC	1
SEMO	CAPE GIRARDEAU	607055	12	272	612	111,306	409	2.25			WPC	1
CENTRAL OZARKS	EXCELSIOR SPRINGS		12	575	1,265	58,714	102	2.20			WPC	1
BOONE TRAILS	WENTZVILLE	629051	12	484	1,058	155,184	321	2.19		WPC	WPC	2
BOONE TRAILS	KIRKSVILLE	703001	4	588	1,278	90,411	154	2.17			WPC	1
ARCHVIEW CENTRAL OZARKS	GERALDINE CAPITAL	160001 847001	4 4	470 112	1,021 243	106,888 45,361	227 405	2.17 2.17			WPC WPC	1 1
BOONE TRAILS	MOBERLY	745053	4 12	226	243 490	45,361 44,431	405	2.17			WPC	1
GATEWAY	ST CHARLES	577051	12	1098	2,380	204,757	186	2.17			WPC	1
ARCHVIEW	MACKENZIE	271055	12	1687	3,646	355,530	211	2.16			WPC	1
GATEWAY	DORSETT	256059	12	1063	2,290	334,462	315	2.15	WPC		WPC	2
SEMO SEMO	DEXTER CAPE GIRARDEAU	622054 646052	12 12	389 949	837 2,038	78,434 483,236	202 509	2.15 2.15	WPC WPC		WPC WPC	2 2
GATEWAY	BERKELEY	096003	4	949 666	2,038 1,424	483,236	509 91	2.15	-wec		WPC	2
ARCHVIEW	GERALDINE	083006	4	71	151	10,482	148	2.13			WPC	1
ARCHVIEW	MACKENZIE	015011	4	357	759	61,554	172	2.13			WPC	1
ARCHVIEW	GERALDINE	255001	4	730	1,549	246,726	338	2.12			WPC	1
SEMO ARCHVIEW	POTOSI MACKENZIE	487051 020003	12 4	58 61	123 129	7,213 11,301	124 185	2.12 2.11			WPC WPC	1 1
		020000	4	01	123	11,001	100	4.11				

Appendix A Ameren Missouri 2011 Worst Performing Circuits

												Years
DIVISION	OPERATING AREA	CIRCUIT	VOLT	CUSTOMERS	CI	CMI	SAIDI	SAIFI	2009	2010	2011	WPC
GATEWAY	BERKELEY	181003	4	693	1,457	702,091	1013	2.10			WPC	1
MERAMEC VALLEY	ELLISVILLE	295052	12	854	1,794	270,368	317	2.10			WPC	1
MERAMEC VALLEY	JEFFERSON	185053	12	644	1,350	262,948	408	2.10			WPC	1
ARCHVIEW	MACKENZIE	245051	12	1318	2,752	174,086	132	2.09			WPC	1
GATEWAY	BERKELEY	260053	12	407	845	93,989	231	2.08			WPC	1
ARCHVIEW	GERALDINE	044006	4	165	342	40,548	246	2.07			WPC	1
ARCHVIEW	MACKENZIE	105005	4	674	1,397	225,715	335	2.07			WPC	1
UNDERGROUND	UNDERGROUND	285054	12	318	658	200,609	631	2.07			WPC	1
GATEWAY	ST CHARLES	583051	12	992	2,049	60,529	61	2.07			WPC	1
GATEWAY	BERKELEY	210051	12	1289	2,647	193,468	150	2.05			WPC	1
SEMO	CAPE GIRARDEAU	803053	12	58	118	21,027	363	2.03			WPC	1
SEMO	DEXTER	623003	4	284	577	82,445	290	2.03			WPC	1
CENTRAL OZARKS	EXCELSIOR SPRINGS	717051	12	1116	2,267	179,775	161	2.03			WPC	1
ARCHVIEW	MACKENZIE	194052	12	1199	2,433	405,902	339	2.03			WPC	1
BOONE TRAILS	KIRKSVILLE	705001	4	330	664	34,728	105	2.01			WPC	1
GATEWAY	DORSETT	266052	12	92	185	40,512	440	2.01			WPC	1
BOONE TRAILS	KIRKSVILLE	858052	12	1	2	99	99	2.00			WPC	1
UNDERGROUND	UNDERGROUND	082052	12	172	343	91,415	531	1.99	WPC		WPC	2
BOONE TRAILS	WENTZVILLE	647052	12	308	613	118,770	386	1.99			WPC	1
GATEWAY	ST CHARLES	544055	12	868	1,720	229,612	265	1.98	WPC		WPC	2
GATEWAY	BERKELEY	163003	4	507	1,003	74,166	146	1.98			WPC	1
GATEWAY	BERKELEY	039004	4	386	757	88,401	229	1.96			WPC	1
ARCHVIEW	GERALDINE	083008	4	41	80	2,280	56	1.95			WPC	1
GATEWAY	BERKELEY	259054	12	2031	3,920	276,332	136	1.93			WPC	1
GATEWAY	DORSETT	264060	12	854	1,618	133,538	156	1.89			WPC	1
ARCHVIEW	MACKENZIE	253052	12	1563	2,955	245,717	157	1.89			WPC	1
SEMO	POTOSI	473053	12	625	1,175	408,646	654	1.88			WPC	1
BOONE TRAILS	WENTZVILLE	627051	12	589	1,100	59,066	100	1.87	WPC		WPC	2
MERAMEC VALLEY	ELLISVILLE	279054	12	1123	2,096	162,798	145	1.87			WPC	1
SEMO	ST FRANCOIS	161051	12	997	1,839	244,259	245	1.84			WPC	1
ARCHVIEW	GERALDINE	104008	4	748	1,374	506,530	677	1.84			WPC	1

WPC Analysis and Remedial Action Report

Circuit Number – 635007 Division – SEMO Area Served – Cape Girardeau, MO SAIFI Value – 32.98

Analysis Results:

The high SAIFI value for this circuit is misleading due to a change in customer count from 800 to 49 at the end of the year, and also due to two large outages that were incorrectly recorded in 2011. In reviewing the first outage it was discovered that a reporting error improperly attributed this event as an outage when the customers were actually in service. In reviewing the second outage it was discovered that customers had been transferred to the Midtown 621003 circuit and no actual customer interruptions had occurred. When the CI associated with these reported outages are removed, the overall SAIFI calculation for this circuit would have been 0.88. Therefore, no corrective actions are necessary for this circuit.

Corrective Actions:

No work is planned on this circuit in 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 564051 Division – Gateway Area Served – St. Charles, MO SAIFI Value – 18.77

Analysis Results:

This circuit serves 250 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by underground cable faults and a tree failure resulting in 4,639 of the total 4,692 CI. Circuit 564051 experienced three significant outages in 2011 which resulted in 99% of the CI experienced on this circuit. Two of the outages occurred when the direct buried primary cable on the circuit backbone failed. The other outage occurred when a tree branch broke and contacted the overhead lines.

Corrective Actions:

Tree trimming was performed on this circuit in 2011.

Both primary cable failures were repaired. The existing sections of direct buried primary cable were replaced with new primary cable installed in conduit under DOJM Work Request number 25SC051861. This work was completed in March 2012.

The circuit will be patrolled in 2012 to determine if any additional spot tree trimming is required.

An overhead visual inspection will be performed on this circuit in 2012. The repair work identified as a result of this inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 879006 Division – SEMO Area Served – Lilbourn, MO SAIFI Value – 8.31

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2010 and 2011. The SAIFI values for this circuit in the last two years were: 3.18 in 2010 and 8.31 in 2011. This circuit serves 344 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather, heat loading, overloads, and overhead equipment failures. Circuit 879006 experienced ten significant outages in 2011. Two outages occurred when the substation breaker tripped due to lightning. Two outages occurred when reclosers tripped due to excessive heat loading on the circuit. Three outages occurred as a result of the primary phases contacting each other during heavy wind. Two outages occurred as a result of the substation breaker tripping due to an overload from the new Pioneer Plant. Lastly, one outage occurred as a result of a lightning arrester failure.

Corrective Actions:

Previous reliability work performed on this circuit:

The Vegetation Management Department performed mid-cycle maintenance tree trimming in 2010.

A project to re-conductor and add lightning arrestors to a portion of the circuit running towards Ristine was performed under DOJM Work Request numbers 2TSE095450 and 2TSE095451. This work was completed in August 2011 and November 2011 respectively.

An overhead visual inspection was performed on this circuit in 2011. The repair work identified as a result of this inspection was performed under DOJM Work Request numbers 2TSE097308, 2TSE097708, and 2TSE098621 which were completed in July 2011, October 2011, and November 2011 respectively.

Wire spacers were added to the circuit near the substation to prevent the primary phases from contacting each other. In addition, the substation breaker was upgraded to eliminate overload conditions. This work was performed in 2011.

Planned MWPC reliability improvement work:

A new substation is being built with a capacity of 7MVA, SCADA switchgear, and a third circuit which will serve the new Pioneer Plant load. The feeder exits will be undergrounded which will eliminate the primary phase contact problem. This project is expected to be completed in June 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 659051 **Division** – Boone Trails **Area Served** – Wentzville, MO **SAIFI Value** – 6.71

Analysis Results:

This circuit serves 295 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather and overhead equipment failures. Circuit 659051 experienced three significant outages in 2011. The first outage occurred when an insulator failed. The second outage occurred when a cross arm twisted in the wind. The third outage occurred when an insulator failed and caused the primary to fall.

Corrective Actions:

Both insulators and the cross arm were replaced.

Several transformers on the circuit backbone and several taps were fused in 2011.

Several old insulators on the circuit backbone were replaced in 2011.

Division engineering personnel will review the circuit in 2012 to determine where lightning arrestors should be installed to limit outages caused by lightning strikes.

WPC Analysis and Remedial Action Report

Circuit Number – 161054 **Division** – SEMO **Area Served** – Farmington, MO **SAIFI Value** – 6.04

Analysis Results:

This circuit originally served 1,073 customers. However, in November of 2011 666 of these customers were transferred to new circuit 161056, reducing the customer count on circuit 161054 to 407. This reduced number of customers was used to calculate the SAIFI value which placed this circuit on the WPC list. If the original customer count were included, the overall SAIFI calculation for this circuit would have been 2.29.

The customer interruptions (CI) experienced on this circuit in 2011 were caused by storms and equipment failures. Circuit 161054 experienced four circuit outages in 2011. Two outages were caused by storms, which caused wire failures and tree damage. A third outage was caused by faulty insulators on the circuit backbone. The fourth outage was caused by a capacitor bank failure.

Corrective Actions:

Circuit 161054 was modified in 2011. A new feeder exit project, the Farmington 161056 circuit, moved nine miles of circuit 161054 to new circuit 161056. This reduced the three phase exposure on circuit 161054 to five miles, which will greatly improve its reliability. This project was performed under DOJM Work Request numbers 28SF034583 and 28SF034295, which were completed in November 2011 and January 2012 respectively.

Tree trimming will be performed on this circuit in 2012.

Circuit protection projects, including additional fuses and insulators, will be performed under DOJM Work Request numbers 28SF035489 and 28SF035919 in 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 797008 Division – Boone Trails Area Served – Moberly, MO SAIFI Value – 5.14

Analysis Results:

This circuit serves 14 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by overhead equipment malfunctions and weather. Circuit 797008 experienced several significant outages in 2011. The outages occurred when fuses blew during adverse weather conditions. This circuit is being reconfigured to 12kV.

Corrective Actions:

This circuit's load was transferred to circuit 914055 in 2011. Circuit 797008 will be removed and the substation retired.

No work is planned on this circuit in 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 708004 **Division** – Boone Trails **Area Served** – Boonville, MO **SAIFI Value** – 5.00

Analysis Results:

This circuit serves 1 customer. The customer interruptions (CI) experienced on this circuit in 2011 were caused by hardware failures. Circuit 708004 experienced five significant outages in 2011. These five outages occurred due to hardware failures on the circuit. This circuit is being reconfigured to 12kV.

Corrective Actions:

This circuit will be retired this year and the load will be transferred to an adjacent 12kV circuit with greater capacity.

No work is planned on this circuit in 2012.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 835002 Division – SEMO Area Served – Chaffee, MO SAIFI Value – 4.78

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2010 and 2011. The SAIFI values for this circuit in the last two years were: 2.58 in 2010 and 4.78 in 2011. This circuit serves 138 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by public vehicle accidents and a primary wire failure. Circuit 835002 experienced three significant outages in 2011. Two of these outages were caused by public vehicle accidents. The other outage occurred when a primary wire failed due to excessive heat loading and caused the substation breaker to trip.

Corrective Actions:

Previous reliability work performed on this circuit:

The Vegetation Management Department performed a mid-cycle patrol of this circuit in 2011.

A major substation project to replace the existing substation and switchgear was completed in 2011.

New 34kV and 3-4160V feeder exits were installed on this circuit along with regaining the third feeder position lost in 2007 when the existing switchgear failed. This work was performed under DOJM Work Request numbers 2TSE095580, 2TSE095461, 2TSE095460, and 2TSE095456, which were completed in September and October 2011.

A special visual inspection was performed on this circuit in 2011 which inspected for animal guarding, tap fusing, and maintenance issues. Repairs were performed under DOJM Work Request number 2TSE097993 which was completed in September 2011.

Planned MWPC reliability improvement work:

Normally scheduled tree trimming will be performed on this circuit in 2012. No further reliability work is needed.

WPC Analysis and Remedial Action Report

Circuit Number – 655058 **Division** – Boone Trails **Area Served** – Saint Peters, MO **SAIFI Value** – 4.29

Analysis Results:

This circuit serves 1,064 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather and cable failures. Circuit 655058 experienced four significant outages in 2011. The first outage occurred when a tree broke and fell onto the primary during a thunderstorm. The second outage occurred when a tree limb fell onto the primary during a thunderstorm. The last two outages occurred when the direct buried feeder exit cable failed.

Corrective Actions:

Tree trimming will be performed on this circuit in 2012.

The direct buried feeder exit cable that failed is being replaced with cable in conduit. This work will be performed in 2012 under DOJM Work Request number 2WWZ146467.

Division engineering personnel will patrol the circuit in 2012 to verify that all backbone transformers are fused and to determine if any additional opportunities for circuit sectionalizing exist.

Division engineering personnel will perform an Infrared (IR) inspection of the circuit. Repair work identified as a result of this inspection will be completed in 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 188008 Division – Archview Area Served – University City, MO SAIFI Value – 4.06

Analysis Results:

This circuit originally served 516 customers. However, in 2011 this circuit was reconfigured to eliminate overload concerns, which reduced the customer count to 176. This reduced number of customers was used to calculate the SAIFI value which placed this circuit on the WPC list. If the original customer count were to be included, the overall SAIFI calculation for this circuit would have been 1.38.

The customer interruptions (CI) experienced on this circuit in 2011 were caused by an underground cable failure and a wire fault. Circuit 188008 experienced two significant outages in 2011. The first outage occurred due to an underground cable fault. The second outage occurred when a 34kV circuit sagged into circuit 188008 and caused it to trip.

Corrective Actions:

The underground cable that failed was replaced in 2011.

Circuit 188008 was lowered to prevent future clearance problems with the 34kV circuit. This work was performed in 2011.

An overhead visual and ground line inspection will be performed on this circuit in 2012. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

WPC Analysis and Remedial Action Report

Circuit Number – 083002 **Division** – Archview **Area Served** – North City of St. Louis, MO **SAIFI Value** – 4.00

Analysis Results:

This circuit serves approximately 31 primarily commercial/industrial customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by a public vehicle accident and overhead equipment failures resulting in 124 CI. Circuit 083002 experienced two significant outages in 2011 which resulted in 99% of the CI experienced on this circuit. The first outage occurred when a vehicle hit a pole on private property, which resulted in a circuit outage to make repairs. The second outage occurred when the jumpers on a tie switch failed during abnormal switching.

Corrective Actions:

Tree trimming was last performed on this circuit in 2009.

A portion of the circuit was rebuilt in 2011 to accommodate the facility expansion at ADM Company. This work also improved and re-configured the secondary portion of the circuit where the wires were shorting together.

No further work is planned on this circuit in 2012.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 483052 Division – SEMO Area Served – Ironton, MO SAIFI Value – 3.96

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009 and 2011. The SAIFI values for this circuit in the last three years were: 2.27 in 2009, 0.18 in 2010, and 3.96 in 2011. This circuit serves 874 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by tree contacts, switching errors, faulty overhead equipment, weather, and animal intrusions. Circuit 483052 experienced multiple outages in 2011. Outages were caused by a tree contact on a three phase circuit, a switching error inside a substation, and a faulty lightning arrester on the circuit backbone. Device level outages were also caused by wire failures during thunderstorms and animal intrusions in equipment.

Corrective Actions:

Previous reliability work performed on this circuit:

Seven miles of this circuit were rebuilt and re-conductored which eliminated most aging hardware and voltage problem concerns. This work was performed under DOJM Work Request numbers 28IR031993, 28IR031994, and 28IR031995, completed in September and December of 2009, and February of 2010.

Line reclosers and fuses were installed on the radial section of this circuit. This work was performed under DOJM Work Request numbers 28IR030744 and 28IR033264, completed in June and April of 2010

Animal guards and line spinners were installed on substation line components to reduce future substation outages caused by animal intrusions under DOJM Work Request number 28IR034555 which was completed in December 2010.

In 2011, the 6 year cycle tree trimming was completed for this circuit. This action should reduce the amount of tree caused outages in 2012.

Planned MWPC reliability improvement work:

Additional protection was installed on unprotected backbone devices under DOJM Work Request number 28IR036154, which was completed in February 2012.

Additional switch labels were installed at the Pilot Knob substation to ensure correct switch identification, thereby eliminating future switching errors. This work was performed under OAS Order Number 120243636 in January 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 620055 Division – SEMO Area Served – Parma, MO SAIFI Value – 3.88

Analysis Results:

This circuit serves 219 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather. Circuit 620055 experienced four significant outages in 2011. Two outages occurred when the substation breaker tripped as a result of high winds and snow. Two other outages occurred when the substation breaker tripped following primary conductor failures during storms

Corrective Actions:

A visual inspection of this circuit will be performed by division personnel in 2012. This inspection will identify needed animal guarding, tap fusing, and other maintenance items. Repairs will be performed under DOJM Work Request number 2TSE099725.

An overhead visual and ground line inspection will be performed on this circuit in 2012. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

WPC Analysis and Remedial Action Report

Circuit Number – 828056 **Division** – SEMO **Area Served** – Blodgett, MO **SAIFI Value** – 3.88

Analysis Results:

This circuit serves 328 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by overhead equipment failures and weather. Circuit 828056 experienced seven significant outages in 2011. Two outages occurred when the primary failed during a thunderstorm. Two outages occurred when lightning arresters failed. Lastly, three outages occurred when the primary conductor failed due to load which caused the reclosers to trip.

Corrective Actions:

An overhead visual and ground line inspection will be performed on this circuit in 2012. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 690057 **Division** – SEMO **Area Served** – Richland, MO **SAIFI Value** – 3.80

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009, 2010, and 2011. The SAIFI values for this circuit in the last three years were: 3.92 in 2009, 5.11 in 2010, and 3.80 in 2011. This circuit serves 619 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather and underground cable failures. Circuit 690057 experienced seven significant outages in 2011. Two outages occurred when the 34kV subtransmission primary failed during storms. Another outage occurred when the substation high side fuses blew during a thunderstorm. Two more outages occurred when the primary failed during storms. Lastly, two outages occurred when the substation feeder exit cable failed.

Corrective Actions:

Previous reliability work performed on this circuit:

The Vegetation Management Department performed mid-cycle maintenance tree trimming in 2008.

A special overhead visual inspection was performed on this circuit in 2010. The inspection identified needed animal guarding, tap-fusing, and other maintenance items. Tap fusing was performed under DOJM Work Request number 2TSE092583 which was completed in December 2010. The remaining circuit inspection work was performed under DOJM Work Request number 2TSE093548 which was completed in November 2010.

Three sets of reclosers were installed to sectionalize the circuit. This work was performed under DOJM Work Request number 2TSE092584 and was completed in December 2010.

The substation underground feeder exit cable was replaced under DOJM Work Request number 2TSE097309 in August 2011.

An overhead visual inspection was performed on this circuit in 2011. The repair work identified as a result of this inspection was completed in accordance with Ameren Missouri's infrastructure inspection policy. This work was performed under DOJM Work Request numbers 2TSE097992 and 2TSE097095 which were completed in October 2011 and December 2011 respectively.

Planned MWPC reliability improvement work:

A normally scheduled underground detailed inspection will be performed on this circuit in 2012. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 456057 Division – SEMO Area Served – Deering, MO SAIFI Value – 3.78

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009, 2010, and 2011. The SAIFI values for this circuit in the last three years were: 2.37 in 2009, 3.17 in 2010, and 3.78 in 2011. This circuit serves 134 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather and overhead equipment failures. Circuit 456057 experienced six significant outages in 2011. One outage occurred when the 34kV subtransmission primary failed during a storm. A second outage occurred when a recloser tripped during a thunderstorm. A third outage occurred when a transformer failed which resulted in a fused switch failure. The remaining three outages occurred when the primary on this circuit failed during inclement weather.

Corrective Actions:

Previous reliability work performed on this circuit:

The Vegetation Management Department performed mid-cycle maintenance tree trimming in 2010.

An overhead visual inspection was done on this circuit in 2010. The repair work identified as a result of this inspection was completed in accordance with Ameren Missouri's infrastructure inspection policy. This work was performed under DOJM Work Request number 2TSE093555 which was completed in October 2010.

A special overhead visual inspection was performed on this circuit in 2011 which inspected for animal guarding, tap fusing, maintenance issues, and performed an infrared scan of the circuit. Repairs were performed under DOJM Work Request numbers 2TSE097298, 2TSE097705, and 2TSE097099 which were completed in July 2011, August 2011, and September 2011 respectively.

A 34kV Viper recloser was installed at the Hayti West substation to replace the old OCB. This 34kV substation serves the 12kV Deering substation. This work was performed under DOJM Work Request number 2TSE093963 which was completed in October 2011.

Planned MWPC reliability improvement work:

The previously completed reliability work is expected to improve the performance of this circuit to an acceptable level. No work is planned on this circuit in 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 281054 **Division** – Gateway **Area Served** – Berkeley, MO **SAIFI Value** – 3.67

Analysis Results:

This circuit serves 1,302 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by trees and underground equipment failures. Circuit 281054 experienced three significant outages in 2011 which resulted in 71% of the total CI experienced on this circuit. The first two outages occurred when high winds caused tree damage on the circuit. The third outage occurred when an underground cable failed.

Corrective Actions:

Tree trimming was performed on this circuit in 2011.

Division engineering personnel performed an inspection of the circuit and several improvement opportunities were identified. These include fusing the transformers on the circuit backbone. This work was performed under DOJM Work Request number 21MT546198 which was completed in March 2012. In addition, two overhead transformers and a pole will be replaced under DOJM Work Request number 21MT546241.

An overhead visual inspection will be performed on this circuit in 2012. The repair work identified as a result of this inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

WPC Analysis and Remedial Action Report

Circuit Number – 456055 Division – SEMO Area Served – Deering, MO SAIFI Value – 3.64

Analysis Results:

This circuit serves 97 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather and an overhead equipment failure. Circuit 456055 experienced four significant outages in 2011. The first outage occurred when trees fell into the primary during a thunderstorm. Two other outages occurred when the substation breaker tripped when trees contacted the primary during storms. The last outage occurred when a 34kV jumper failed.

Corrective Actions:

A 34kV Viper recloser was installed at the Hayti West substation to replace the old OCB. This 34kV substation serves the 12kV Deering substation. This work was performed under DOJM Work Request number 2TSE093963 which was completed in October 2011.

A visual inspection of this circuit will be performed by division personnel in 2012. This inspection will identify needed animal guarding, tap fusing, and other maintenance items. Repairs will be performed under DOJM Work Request number 2TSE099736.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 466055 Division – SEMO Area Served – Wardell, MO SAIFI Value – 3.60

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2010 and 2011. The SAIFI values for this circuit in the last two years were 2.48 in 2010 and 3.60 in 2011. This circuit serves 151 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather and overhead equipment failures. Circuit 466055 experienced four significant outages in 2011. The first outage occurred when a fuse blew during calm weather. The second outage occurred when a fuse blew during a thunderstorm. The two other outages occurred when the substation breaker tripped as a result of lightning strikes during thunderstorms.

Corrective Actions:

Previous reliability work performed on this circuit:

The Vegetation Management Department performed mid-cycle maintenance tree trimming in 2010.

A special overhead visual inspection was performed on this circuit in 2011. The inspection identified needed animal guarding, tap-fusing, and other maintenance items. Repairs were performed under DOJM Work Request number 2TSE097100 which was completed in August 2011. Additional work to install reclosers, replace poles, and replace cross arms was performed under DOJM Work Request number 2TSE097706 which was completed in August 2011.

Planned MWPC reliability improvement work:

The previously completed reliability work is expected to improve the performance of this circuit to an acceptable level. No work is planned on this circuit in 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 836051 Division – Central Ozark Area Served – Marys Home, Eugene, Henley, MO SAIFI Value – 3.43

Analysis Results:

This circuit serves 295 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by a transmission line failure and tree failures. Circuit 836051 experienced three significant outages in 2011. One outage occurred when the 138kV transmission line which supplies this circuit's substation failed, causing the circuit to fail. Two other outages occurred when tree limbs fell into the lines during two different storms.

Corrective Actions:

Tree trimming will be performed on this circuit in 2012. This work is expected to resolve the only recurring reliability problem on this circuit.

There are no other repetitive causes of the outages experienced on this circuit. Therefore, no other work is planned for this circuit in 2012.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 215053 Division – Gateway Area Served – Black Jack, MO SAIFI Value – 3.43

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2010 and 2011. The SAIFI values for this circuit in the last two years were: 2.09 in 2010 and 3.43 in 2011. This circuit serves 1,339 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather which resulted in 3,966 CI. Circuit 215053 experienced four significant outages in 2011 which resulted in 83% of the CI experienced on this circuit. The first outage occurred in May 2011 when a pole broke during a thunderstorm and required the circuit to be de-energized while repairs were made. The outage resulted in 893 CI. The second outage occurred in June 2011 when a tree branch broke and fell into the primary during a thunderstorm. The third outage occurred in September 2011 when a tree branch broke and fell in 2,052 CI. The fourth outage occurred in September 2011 when a cross arm broke during a thunderstorm and resulted in 1,019 CI.

Corrective Actions:

Previous reliability work performed on this circuit:

Tree trimming was last performed on this circuit in 2009.

Engineering personnel patrolled the circuit in 2010. This patrol identified the need for fusing and animal guarding. This work was performed under DOJM Work Request number 21MT523706 which was completed in April 2011.

Planned MWPC reliability improvement work:

An overhead visual inspection was performed on this circuit in 2011. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

Division engineering personnel performed an overhead inspection of the circuit and several improvement opportunities were identified. These included replacement of insulators, lightening arrestors, and deteriorated poles, as well as the installation of animal guards and the coordination and relocation of fuses. The need for additional tree trimming was identified and coordinated with the Vegetation Management Department. The repair work identified as a result of this inspection will be performed under DOJM Work Request number 21MT546755 which will be completed in December 2012.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 455053 **Division** – SEMO **Area Served** – Caruthersville, MO **SAIFI Value** – 3.36

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009, 2010, and 2011. The SAIFI values for this circuit in the last three years were: 3.56 in 2009, 2.21 in 2010, and 3.36 in 2011. This circuit serves 817 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather, overhead equipment malfunctions, substation failures, and public vehicle accidents. Circuit 455053 experienced seven significant outages in 2011. The first outage occurred when the Hayti 71 34kV circuit tripped the Hayti Bulk substation during a lightning storm. The second outage occurred when a switch burned during a thunderstorm. The third outage occurred when a jumper burned as a result of a failed connection. Two other outages occurred due to substation faults. The last two outages occurred as a result of public vehicle accidents.

Corrective Actions:

Previous reliability work performed on this circuit:

A major rebuild and re-conductor project was performed on this circuit in 2010. This work was performed under DOJM Work Request numbers 2TSE090495, 2TSE090496, and 2TSE090784 which were completed in November 2010, December 2010, and December 2010 respectively.

A project to build a new 34kV loop to serve the previously radial fed Caruthersville West substation was performed under DOJM Work Request numbers 2TSE090497 and 2TSE091155. This work was completed in August 2010 and September 2010 respectively.

The Vegetation Management Department performed mid-cycle maintenance tree trimming in 2011.

The following upgrades were made to the substation in 2011: Animal spinners were added to the overhead line and a Viper recloser was installed.

An overhead visual inspection was performed on this circuit in 2011. The repair work identified as a result of this inspection was completed in accordance with Ameren Missouri's infrastructure inspection policy. This work was performed under DOJM Work Request number 2TSE097988 which was completed in September 2011.

Planned MWPC reliability improvement work:

An Intellirupter recloser will be installed on this circuit in 2012 to establish a tie with the Caruthersville West (455055) circuit. This work will be performed under DOJM Work Request number 2TSE100085 which will be completed in December 2012.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 454055 **Division** – SEMO **Area Served** – Caruthersville, MO **SAIFI Value** – 3.32

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009, 2010, and 2011. The SAIFI values for this circuit in the past three years were: 5.55 in 2009, 3.41 in 2010, and 3.32 in 2011. This circuit serves 1,103 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather and overhead equipment failures. Circuit 454055 experienced five significant outages in 2011. The first outage occurred when the Hayti 71 34kV circuit tripped the Hayti Bulk substation during a lightning storm. A second outage occurred when the substation breaker tripped as a result of a failed connection. The remaining two outages occurred when trees contacted the line during storms and caused the substation breaker to trip.

Corrective Actions:

Previous reliability work performed on this circuit:

A major rebuild and re-conductor project was performed on this circuit in 2010. This work was performed under DOJM Work Request numbers 2TSE090495, 2TSE090496, and 2TSE090784 which were completed in November 2010, December 2010, and December 2010 respectively.

Tree trimming was performed on this circuit in 2011.

A special overhead visual inspection was performed on this circuit in 2011 which inspected for animal guarding, tap fusing, and maintenance issues. Repairs were performed under DOJM Work Request number 2TSE097702 which was completed in December 2011.

Planned MWPC reliability improvement work:

An Intellirupter recloser will be installed on this circuit in 2012 to establish a tie with the Caruthersville West (455053) circuit. This work will be performed under DOJM Work Request number 2TSE100086 which will be completed in December 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 451054 Division – SEMO Area Served – Viburnum, MO SAIFI Value – 3.31

Analysis Results:

This circuit serves 403 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by trees, pole hardware failures, and wire failures. Circuit 451054 did not experience significant outages in 2011, but did experience a number of smaller device outages that together resulted in enough CI to place this circuit on the WPC list. The majority of these outages occurred on three different reclosers which tripped on multiple occasions. These failures were caused by tree contacts, overhead equipment failures, and primary failures.

Corrective Actions:

Tree trimming was last performed on this circuit in 2009 in accordance with the 6 year rural schedule.

Additional reclosers, fuses, and switches were installed on various sections of this circuit to improve reliability and increase fault isolation during outages. This work was performed under DOJM Work Request numbers 28IR034384 and 28IR034193 in December 2010 and January 2011, respectively.

An overhead visual inspection and a ground line inspection were performed on this circuit in 2011. These inspections identified approximately 150 pole replacements and various other hardware repairs. The repair work identified as a result of the inspection is in progress and will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

The Vegetation Management Department will perform a mid-cycle patrol of this circuit in 2012 to identify and remove tree hazards.

Automated switch installations on single phase circuit taps will be performed under DOJM Work Request number 28IR036322 in 2012.

The substation 451054 circuit breaker will be replaced with a new SCADA controlled Viper circuit breaker with single phase trip capability in 2012.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 546054 Division – Meramec Valley Area Served – House Springs, MO SAIFI Value – 3.17

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2010 and 2011. The SAIFI values for this circuit in the last two years were: 2.80 in 2010 and 3.17 in 2011. This circuit serves 155 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by equipment malfunctions and public vehicle accidents, resulting in 335 CI. Circuit 546054 experienced three significant outages in 2011. Two outages were caused by underground feeder exit cable failures near the circuit substation. The third outage occurred as a result of a public vehicle hitting a pole.

Corrective Actions:

Previous reliability work performed on this circuit:

A recloser which caused an outage due to a cold load pickup failure was replaced under DOJM Work Request number 26JF110855. This job was completed in February 2010.

The Vegetation Management Department performed spot tree trimming on the circuit in 2011.

Planned MWPC reliability improvement work:

An overhead visual inspection was performed on this circuit in 2011. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

Two jobs were created to address problems identified in 2011. Animal guards will be installed on the circuit under DOJM Work Request number 26JF119050 and fuses will be installed on unfused taps along the circuit backbone under DOJM Work Request number 26JF119359. These jobs will be completed in 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 134051 **Division** – Gateway **Area Served** – Florissant, MO **SAIFI Value** – 3.14

Analysis Results:

This circuit serves 1,377 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by an operator error and weather. Circuit 134051 experienced five significant outages in 2011. The first outage occurred when a pole broke during a storm. The second outage occurred due to a lightning strike during a thunderstorm. The third outage occurred when a thunderstorm caused a tree branch to fall into the line. The fourth outage also occurred when a thunderstorm caused a tree branch to fall into the line. The last outage occurred when an operator made a switching error on the circuit.

Corrective Actions:

Tree trimming was performed on this circuit in 2011.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 452053 **Division** – SEMO **Area Served** – Braggadocio, MO **SAIFI Value** – 3.11

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009, 2010, and 2011. The SAIFI values for this circuit in the last three years were: 3.04 in 2009, 2.32 in 2010, and 3.11 in 2011. This circuit serves 288 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather. Circuit 452053 experienced five significant outages in 2011. The first outage occurred when the Hayti 72 34kV circuit tripped the Hayti Bulk substation during a lightning storm. Two other outages occurred when the primary failed during storms. The remaining two outages occurred when trees contacted the line during storms and caused the substation breaker to trip.

Corrective Actions:

Previous reliability work performed on this circuit:

The Vegetation Management Department performed mid-cycle maintenance tree trimming in 2010.

A project to coordinate and add fuses to this circuit was performed in 2010. The work was performed under DOJM Work Request number 2TSE092735 which was completed in October 2010.

An overhead visual inspection was performed on this circuit in 2011 which inspected for animal guarding, tap fusing, and maintenance issues. Repairs were performed under DOJM Work Request numbers 2TSE096750 and 2TSE097700 which were completed in June 2011 and October 2011 respectively.

Planned MWPC reliability improvement work:

The previously completed reliability work is expected to improve the performance of this circuit. No work is planned on this circuit in 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 203058 **Division** – Gateway **Area Served** – Bridgeton, MO **SAIFI Value** – 3.05

Analysis Result

This circuit serves 811 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather, an underground cable fault, and unknown causes. Circuit 203058 experienced three significant outages in 2011. The first outage occurred for unknown reasons as no cause was found at the time. The second outage occurred when a tornado caused a tree contact. The third outage occurred when an underground cable faulted.

Corrective Actions:

The faulted cable was repaired under DOJM Work Request number 21MT532814 which was completed in July 2011.

Tree trimming will be performed on this circuit in 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 824003 Division – SEMO Area Served – Bernie, MO SAIFI Value – 2.97

Analysis Results:

This circuit serves 421 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather. Circuit 824003 experienced three significant outages in 2011. Two of these outages occurred when the substation breaker tripped during high winds and storms. The other outage occurred when a tree made contact with the primary during a storm which caused the substation breaker to trip.

Corrective Actions:

Tree trimming was performed on this circuit in 2011.

A visual inspection of this circuit will be performed by division personnel in 2012. This inspection will identify needed animal guarding, tap fusing, and other maintenance items. Repairs will be performed under DOJM Work Request number 2TSE099753.

WPC Analysis and Remedial Action Report

Circuit Number – 120003 Division – Archview Area Served – Pine Lawn, North St. Louis County, MO SAIFI Value – 2.85

Analysis Results:

The customer interruptions (CI) experienced on this circuit in 2011 were caused by a tree failure. Circuit 120003 experienced a significant outage during a storm when a large limb fell on the overhead primary and broke a pole and the wire. The outage was partially restored and following the partial restoration the number of customers affected was miscounted. Instead of 374 customers, only 38 customers remained out of service following the partial restoration. This would have resulted in an overall circuit SAIFI value of 1.43. Therefore, no corrective actions are necessary for this circuit.

Corrective Actions:

No work is planned on this circuit in 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 134054 **Division** – Gateway **Area Served** – Florissant, MO **SAIFI Value** – 2.84

Analysis Results:

This circuit serves 1,857 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather, animal intrusions, operator errors, overhead equipment failures, and unknown causes. Circuit 134054 experienced five significant outages in 2011. The first outage occurred when a lightning arrestor failed. The second outage occurred for an unknown reason, but did occur on a day with high winds and thunderstorms. The third outage occurred due to a lightning strike on the circuit. The fourth outage occurred due to the improper calibration of the substation relays. The fifth outage occurred when an animal intrusion into the substation caused the substation to trip.

Corrective Actions:

Tree trimming was performed on this circuit in 2011.

The relay settings at the substation where the outage occurred have been re-calibrated.

Line guards will be installed on the overhead lines into the Shackelford substation to prevent animal intrusions. This work will be performed under DOJM Work Request number 21MT548008.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 082051 **Division** – Underground **Area Served** – Saint Louis, MO **SAIFI Value** – 2.83

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2010 and 2011. The SAIFI values for this circuit in the past two years were: 2.99 in 2010 and 2.83 in 2011. This circuit serves 371 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by an underground cable failure, customer equipment failures, and a substation equipment failure. Circuit 082051 experienced four significant outages in 2011. The first outage occurred in April when a water main break flooded the Sigma-Aldrich primary switchgear. The resulting fault tripped the entire Cole 51 circuit. The second outage occurred in October when a cable splice in the manhole at 15th and Washington failed. The third outage occurred in November when a fault in the CPI Building primary switchgear tripped the entire Cole 51 circuit. The fault at the CPI Building appeared to have been caused by a lightning arrester failure. Due to the Cole 51 damage at the CPI Building, the Cole 51 load was switched to the Cole 52 circuit until Cole 51 repairs could be made. The fourth outage occurred when a Traveling Substation Operator performing an inspection on the Cole Substation opened the bus tie cabinet door to record breaker operation counts and substation equipment malfunctioned causing the Cole 52 circuit to trip. Cole 51 customers switched to Cole 52 experienced this additional outage.

The Cole circuit has unique features that do not exist at other locations, including high fault currents that cause coordination problems. The underground Cole 51 circuit has no sectionalizing devices because they cannot coordinate with the instantaneous trip settings on the Cole 51 circuit. The instantaneous trip setting is set at 4500 Amperes to limit the amount of fault current, and resulting damage, to the circuit. The Cole Substation has no reactors so the low instantaneous trip setting cannot be raised. In addition, the System Relay Department has indicated that there are no known devices that can coordinate with the required instantaneous settings at the Cole substation.

A second issue with the Cole 51 circuit is the circuit exposure length. There are essentially two sections of the circuit: the area east of Jefferson Ave. and the area west of Jefferson Ave. In addition, there are no available feeder spaces at the Cole substation. Between the inability to sectionalize the circuit, and the large amount of exposure on the circuit, there are challenges with the reliability of the Cole circuit.

Corrective Actions:

Previous reliability work performed on this circuit:

An automated switchgear tie between Cole 51 and Cole 52 was installed at switch pad 18414 in 2011. This equipment will transfer customers to alternative circuits following feeder lockout. It will not prevent circuit outages but it will reduce customer minutes out.

Planned MWPC reliability improvement work:

Distribution automation equipment will be installed at Beaumont and Market Streets in 2012.

The Cole substation will be eliminated and circuits will transfer to the new Martin Luther King (MLK) switching station in 2014. The customers will ultimately be fed from new Ashley circuits via the new MLK switching station. Much of the cable for the area will be replaced as customers transition to the new feed. Route diversity for the supplies has been incorporated into the designs. These system improvements should help the overall reliability of this circuit.

WPC Analysis and Remedial Action Report

Circuit Number – 585052 Division – Meramec Valley Area Served – Franklin District, MO SAIFI Value – 2.82

Analysis Results:

This circuit serves 280 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by animal intrusions, trees, and a substation malfunction, resulting in 790 CI. Circuit 585052 experienced two significant outages in 2011 which resulted in 65% of the CI experienced on this circuit. The first outage occurred when a tree contacted the line and a substation breaker failed. The tree was cleared and the substation breaker auxiliary switch was replaced. A second outage was caused by a tree falling onto the circuit during a major storm. In addition to these outages, smaller outages on this circuit were caused by animal intrusions. Animal intrusions caused 30% of the CI experienced on this circuit.

Corrective Actions:

Animal guards were added to three transformers in 2011. This work was performed under DOJM Work Request numbers 21MT524424, 21MT529542, and 21MT538804 which were completed March 2011, June 2011, and October 2011 respectively.

Division engineering personnel performed an inspection of the circuit in 2012 and several improvement opportunities were identified. Animal guards will be added to six transformers on the circuit under DOJM Work Request number 21MT546972.

The taps off of this circuit serve wooded residential areas and many of the trees are much taller than the poles and wires. Several of these locations were provided to the Vegetation Management Department for detailed review.

WPC Analysis and Remedial Action Report

Circuit Number – 561053 Division – SEMO Area Served – Terre Du Lac, MO SAIFI Value – 2.82

Analysis Results:

This circuit serves 765 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by sub-transmission outages, wire problems, and faulty pole hardware. Circuit 561053 experienced significant outages in 2011 due to outages on sub-transmission circuit ESTR-74, which is the single supply to the Terre Du Lac substation, caused by trees and an unknown outage (possibly ground wire theft). Other circuit outages were caused by excess slack in the phase wires and faulty pole hardware.

Corrective Actions:

Tree trimming was last performed on this circuit and sub-transmission circuit ESTR-74 in 2010.

Additional tap fusing was performed on this circuit to protect the 3 phase backbone. This work was performed under DOJM Work Request number 28SF033326 which was completed in March of 2010.

Additional Lightning protection and grounding were installed on sub-transmission circuit ESTR-74. This work was performed under DOJM Work Request number 28SF034579 which was completed in February of 2011.

Substation relay settings were adjusted on circuit 561053 in 2011 to reduce momentary outages.

Line voltage regulators were installed on B & C phases of the circuit to eliminate low voltage complaints. This work was performed under DOJM Work Request numbers 28SF034748 and 28SF035853, which were completed in May 2011 and January 2012 respectively.

An overhead visual inspection and a ground line inspection will be performed on subtransmission circuit ESTR-74 in 2012. The repair work identified as a result of these inspections will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

A project to install fuses on long single phase taps under DOJM Work Request number 28SF035921 will be performed in 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 800001 Division – Boone Trails Area Served – Benton City, Audrain County, MO SAIFI Value – 2.68

Analysis Results:

This circuit serves 90 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather and unknown causes resulting in 241 CI. Circuit 800001 experienced three significant outages in 2011. The first outage occurred when a tree fell into the lines during a thunderstorm. The second outage occurred when a fuse blew at the substation two hours after the first outage was restored. No cause was found for this outage. The third outage occurred when the subtransmission conductor failed during a thunderstorm.

Corrective Actions:

Tree trimming is not scheduled for this circuit until 2014. However, several tree issues were identified and reported to the Vegetation Management Department for spot tree trimming.

Division engineering personnel performed an Infrared (IR) inspection on the Benton City Substation and significant components on the circuit backbone. No thermal problems were found.

Division engineering personnel performed an inspection of the circuit and several improvement opportunities were identified. These included replacement of cracked or distorted cross arms, insulators, lightening arrestors, un-fused transformers, and deteriorated poles. This work will be performed under DOJM Work Request number 2DLD075107 and will be completed in June 2012.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 672053 **Division** – Boone Trails **Area Served** – Wentzville, MO **SAIFI Value** – 2.65

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009 and 2011. The SAIFI values for this circuit in the last three years were: 2.66 in 2009, 0.69 in 2010, and 2.65 in 2011. This circuit serves 287 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by vegetation, trees, and weather. Circuit 672053 experienced three significant outages in 2011. Two of the outages occurred due to a vine which caused the circuit neutral and primary to contact each other during a storm. The third outage occurred when a tree limb fell on the primary.

Corrective Actions:

Previous reliability work performed on this circuit:

Tree trimming was last performed on this circuit in 2009.

The tap on Highway UU experienced multiple outages in 2009. Fuses and reclosers were added to the circuit under DOJM Work Request number 2WWZ133177, which was completed in September 2009. In addition, a third phase was extended to balance the load and allow better coordination between fuses and reclosers. This work was performed under DOJM Work Request number 2WWZ134219 which was completed in July 2010.

Almost a mile of this circuit along Highway NN and Pike Rd 269 was rebuilt. This work was performed under DOJM Work Request numbers 2WWZ138595 and 2WWZ141786 which were completed in November 2010.

The vine which caused the circuit neutral and primary to contact each other in 2011 has been removed. In addition, the wire spacing in this area has been improved.

Planned MWPC reliability improvement work:

The rest of this circuit will be moved to Highway D and Pike Rd 251 under DOJM Work Request number 2WWZ136674.

WPC Analysis and Remedial Action Report

Circuit Number – 209055 **Division** – Gateway **Area Served** – Bridgeton, MO **SAIFI Value** – 2.62

Analysis Results:

This circuit serves 245 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by trees and overhead malfunctions resulting in 642 CI. Circuit 209055 experienced two significant outages in 2011. The first outage occurred when a tree contacted the lines. The second outage occurred due to an overhead malfunction.

Corrective Actions:

An underground visual inspection was performed on this circuit in 2011. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

Tree trimming will be performed on this circuit in 2012.

An overhead visual inspection will be performed on this circuit in 2012. The repair work identified as a result of this inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

WPC Analysis and Remedial Action Report

Circuit Number – 131005 Division – Gateway Area Served – Ferguson, MO SAIFI Value – 2.56

Analysis Results:

This circuit serves 581 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by severe weather. Circuit 131005 experienced four significant outages in 2011. Three of these outages occurred over a three day period in April 2011 when this circuit experienced a tornado and severe winds. The fourth outage occurred when a tree branch fell into the primary during a thunderstorm.

Corrective Actions:

Tree trimming will be performed on this circuit in 2012.

Division engineering personnel performed an analysis of circuit protection coordination. Three fuses were identified as not coordinating properly and were corrected.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 167054 Division – Gateway Area Served – Northern Bellefontaine Neighbors, MO SAIFI Value – 2.56

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009 and 2011. The SAIFI values for this circuit in the past three years were: 2.12 in 2009, 0.27 in 2010, and 2.56 in 2011. This circuit serves 1,601 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather. Circuit 167054 experienced four significant outages in 2011, all occurring during adverse weather conditions and resulting in 80% of the total CI experienced on this circuit. All four of these outages occurred when the primary failed during bad weather.

Corrective Actions:

Previous reliability work performed on this circuit:

A project to install animal guards, fuses, replace damaged hardware, and relocate transformers was performed in 2009.

Tree trimming was last performed on this circuit in 2009.

Planned MWPC reliability improvement work:

An overhead visual inspection was performed on this circuit in 2011. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

Division engineering personnel performed an overhead inspection of the circuit and several improvement opportunities were identified. These included replacement of cracked or distorted cross arms, insulators, lightening arrestors, and deteriorated poles, as well as the installation of animal guards and the coordination and relocation of fuses. The need for additional tree trimming was identified and coordinated with the Vegetation Management Department. The repair work identified as a result of this inspection will be performed under DOJM Work Request number 21MT547212 which will be completed in August 2012.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 465055 Division – SEMO Area Served – Steele, MO SAIFI Value – 2.52

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009 and 2011. The SAIFI values for this circuit in the past three years were: 7.05 in 2009, 0.48 in 2010, and 2.52 in 2011. This circuit serves 989 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather. Circuit 465055 experienced four significant outages in 2011. Two outages occurred when the primary failed during storms. The remaining two outages occurred when the Hayti 72 34kV subtransmission circuit tripped due to lightning and storms.

Corrective Actions:

Previous reliability work performed on this circuit:

A project to re-conductor 8.6 miles of this circuit was performed under DOJM Work Request numbers 2TSE086706, 2TSE086705, and 2TSE086295 which were completed in October 2009, November 2009, and December 2009 respectively.

The Vegetation Management Department performed mid-cycle maintenance tree trimming on this circuit in 2010.

Tap fuses were added to un-fused taps on this circuit under DOJM Work Request number 2TSE090755 which was completed in January 2010.

A special overhead visual inspection was performed on this circuit in 2010. The inspection identified needed animal guarding, tap-fusing, and other maintenance items. Repairs were performed under DOJM Work Request number 2TSE093496 which was completed in October 2010.

Planned MWPC reliability improvement work:

An overhead visual inspection was performed on this circuit in 2011 which inspected for animal guarding, tap fusing, and other maintenance issues. Repairs will be performed under DOJM Work Request number 2TSE099556 which will be completed in 2012.

An overhead visual and ground line inspection will be performed on this circuit in 2012. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

WPC Analysis and Remedial Action Report

Circuit Number – 256054 Division – Gateway Area Served – Maryland Heights, MO SAIFI Value – 2.51

Analysis Results:

This circuit serves 1,639 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by trees and overhead equipment malfunctions. Circuit 256054 experienced three smaller outages in 2011. The first outage occurred when the phases contacted each other during windy conditions. The second outage occurred due to a tree contact. The third outage occurred when the primary failed. All of these outages occurred on a portion of the circuit downstream of automatic switch R1081.

Corrective Actions:

Tree trimming was performed on this circuit in 2011.

The primary failure was replaced under DOJM Work Request number 21MT527755, which was completed in April 2011.

Two overhead connectors which overheated were repaired under DOJM Work Request numbers 21MT534111 and 21MT534113, both of which were completed in August 2011.

Fiberglass spacers were installed on the circuit to prevent momentary outages or recloser trips. This work was performed under DOJM Work Request number 21MT544819 which was completed in February 2012.

Decayed poles located on private property were replaced under DOJM Work Request numbers 21MT537058, 21MT537174, 21MT537176, 21MT537175, 21MT537172, 21MT537173, 21MT537177, and 21MT537171 which were completed in October 2011, December 2011, January 2012, January 2012, February 2012, February 2012, February 2012, and March 2012 respectively.

WPC Analysis and Remedial Action Report

Circuit Number – 272053 Division – Gateway Area Served – Spanish Lake, MO SAIFI Value – 2.46

Analysis Results:

This circuit serves 409 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather. Circuit 272053 experienced two significant outages in 2011 which resulted in over 80% of the total CI experienced on this circuit. The first outage occurred when a pole broke during a thunderstorm. The second outage occurred when a tree limb fell into the primary during inclement weather.

Corrective Actions:

Tree trimming was last performed on this circuit in 2010.

Division engineering personnel performed an inspection of the circuit and several improvement opportunities were identified. These included replacement of failed lightening arrestors, fusing of transformers, installation of animal guards, and coordination and relocation of fuses. This work will be performed under DOJM Work Request number 21MT548400 and will be completed in 2012.

An overhead visual inspection will be performed on this circuit in 2012. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

WPC Analysis and Remedial Action Report

Circuit Number – 871057 **Division** – SEMO **Area Served** – Scott City, MO **SAIFI Value** – 2.44

Analysis Results:

This circuit serves 268 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by tree failures and weather. Circuit 871057 experienced two significant outages in 2011. The first outage occurred due to tree contact on the lines during high winds. The second outage occurred when the substation breaker tripped following a lightning strike.

Corrective Actions:

The Vegetation Management Department performed a mid-cycle patrol of this circuit in 2011.

A visual inspection of this circuit will be performed by division personnel in 2012. This inspection will identify needed animal guarding, tap fusing, and other maintenance items. Repairs will be performed under DOJM Work Request number 2TSE099754.

WPC Analysis and Remedial Action Report

Circuit Number – 503052 Division – Meramec Valley Area Served – Franklin District, MO SAIFI Value – 2.43

Analysis Results:

This circuit serves 403 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by a substation malfunction and an operating error, resulting in 981 CI. Circuit 503052 experienced two significant outages in 2011 which resulted in 82% of the CI experienced on this circuit. The first outage occurred when a circuit relay at the substation failed. The second outage was caused by an operating error on the circuit.

Corrective Actions:

Tree trimming was performed on this circuit in 2011.

A project to extend a 34.5kV circuit and replace one mile of existing 3/0ACSR conductor on this 12kV circuit with 556AAA conductor was completed in 2011. In addition, the existing transformers on this section of the circuit had fused switches and animal guards installed. This work was performed under DOJM Work Request number DOJM 23FR049411 and completed in September 2011.

Division engineering personnel performed an inspection of the circuit in 2012 and several improvement opportunities were identified. Animal guards will be added to one transformer and fused switches will be added to nine transformers on the circuit backbone under DOJM Work Request number 23FR051911.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 674052 **Division** – Boone Trails **Area Served** – Wentzville, MO **SAIFI Value** – 2.43

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2010 and 2011. The SAIFI values for this circuit in the last two years were: 3.53 in 2010 and 2.43 in 2011. This circuit serves 424 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by public vehicle accidents, trees, and overhead equipment failures. Circuit 674052 experienced three significant outages in 2011. The first outage occurred when a public vehicle accident broke a pole and caused the primary to fail. The second outage occurred when an overhead jumper burned. The third outage occurred when a tree limb fell on the primary and broke it.

Corrective Actions:

Previous reliability work performed on this circuit:

Fuses and animal guards were added to the circuit under DOJM Work Request number 2WWZ137084. This work was completed in March 2010.

The overhead circuits on Highway BB, Mackville Road, and Paris Branch Road were improved under DOJM Work Request number 2WWZ134867 which was completed in August 2010.

A circuit tie was built along Hwy K to tie circuit 674052 with circuit 691052. This work was performed under DOJM Work Request numbers 2WWZ137265 and 2WWZ141067 which were completed in July 2011 and October 2011 respectively.

A special overhead visual inspection was performed on this circuit in 2011. Defective cross arms, insulators, and broken down guys were repaired or replaced. Animal guards and fuses were installed and some poles were replaced. This work was performed under DOJM Work Request numbers 2WWZ143423, 2WWZ145477, and 2WWZ146226 which were completed in May 2011, August 2011, and November 2011 respectively.

A section of 2400V was converted to 7200V and a step down transformer was eliminated under DOJM Work Request number 2WWZ146227 which was completed in September 2011.

Planned MWPC reliability improvement work:

Tree trimming will be performed on this circuit in 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 688007 Division – SEMO Area Served – Morehouse, MO SAIFI Value – 2.39

Analysis Results:

This circuit serves 228 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather and flooding. Circuit 688007 experienced two significant outages in 2011. The first outage occurred as a result of unusual spring flooding in the substation. The second outage occurred when the substation breaker tripped following a lightning strike.

Corrective Actions:

An overhead visual and ground line inspection will be performed on this circuit in 2012. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

WPC Analysis and Remedial Action Report

Circuit Number – 854051 Division – Central Ozark Area Served – Port Hudson, MO SAIFI Value – 2.39

Analysis Results:

This circuit serves 452 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by overhead equipment failures. Circuit 854051 experienced two significant outages in 2011 which resulted in 83% of the CI experienced on this circuit. Both of the circuit outages occurred on the same day and were caused by the separate failure of two 34kV insulators. After the first insulator failure, customers were restored by switching the looped 34kV circuit to the backup supply. When the insulator failed on the backup supply, the second customer outage resulted. The outage was restored when the insulators were replaced. The 34kV insulators are thought to have failed because of lightning damage from a severe storm which occurred a week earlier.

Corrective Actions:

Tree trimming was last performed on this circuit in 2009.

The 34kV insulators responsible for the circuit outage were replaced as part of the outage restoration. The circuit was also patrolled to identify any other damaged insulators.

One set of 12kV reclosers located outside the circuit substation are operating near their rated load. These reclosers will be replaced in 2012 with a new radio controlled Viper recloser. This new recloser will provide greater capacity, enhanced circuit protection, and quicker restoration capability in the event of an outage.

WPC Analysis and Remedial Action Report

Circuit Number – 128004 **Division** – Archview **Area Served** – North City of St. Louis, MO **SAIFI Value** – 2.36

Analysis Results:

This circuit serves 89 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by an underground cable failure, public damage, unknown causes, and trees, resulting in 210 CI. Circuit 128004 experienced two major outages in 2011 which resulted in 95% of the CI experienced on this circuit. The first outage occurred when an underground feeder exit cable failed. The second outage occurred when a contractor broke the primary while demolishing a building, requiring a circuit outage to facilitate repairs. In addition to these two major outages, smaller outages were caused by tree contact and unknown causes.

Corrective Actions:

Tree trimming was performed on this circuit in 2011.

The feeder exit cable that failed was replaced under DOJM Work Request number 21MT537316 in September 2011.

No work is planned on this circuit in 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 506051 Division – Meramec Valley Area Served – Franklin District, MO SAIFI Value – 2.36

Analysis Results:

This circuit serves 716 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by overhead equipment malfunctions, an underground cable failure, and animal intrusions, resulting in 1,687 CI. Circuit 506051 experienced two significant outages in 2011 which resulted in 84% of the CI experienced on this circuit. The first outage occurred when an underground feeder exit cable failed. The second outage occurred when a transformer on the circuit backbone failed. In addition to the two outages, approximately 11% of the CI experienced on this circuit was caused by animal intrusions.

Corrective Actions:

Animal guards were installed on three transformers on this circuit under DOJM Work Request number 23FR050653. This work was completed in December 2011.

Tree trimming will be performed on this circuit in 2012. In addition, several locations were provided to the Vegetation Management Department for detailed review.

Division engineering personnel performed an inspection of the circuit in 2012 and several improvement opportunities were identified. Animal guards will be added to five transformers and two fused switches will be installed on single-phase taps off the circuit backbone under DOJM Work Request numbers 23FR051854 and 23FR051855.

WPC Analysis and Remedial Action Report

Circuit Number – 628053 Division – SEMO Area Served – Dexter, MO SAIFI Value – 2.35

Analysis Results:

This circuit serves 601 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather. Circuit 628053 experienced three significant outages in 2011. One outage occurred when trees fell into the primary during a storm. The other two outages occurred when trees fell into the lines during high winds.

Corrective Actions:

Tree trimming will be performed on this circuit in 2012.

A visual inspection of this circuit will be performed by division personnel in 2012. This inspection will identify needed animal guarding, tap fusing, and other maintenance items. Repairs will be performed under DOJM Work Request number 2TSE099756.

An underground visual inspection will be performed on this circuit in 2012. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

WPC Analysis and Remedial Action Report

Circuit Number – 645052 **Division** – Boone Trails **Area Served** – Saint Charles, MO **SAIFI Value** – 2.34

Analysis Results:

This circuit serves 54 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by animal intrusions, weather, and overhead equipment failures. Circuit 645052 experienced five significant outages in 2011. The first outage occurred when an animal contacted the overhead circuit. The second outage occurred when a tree fell into the primary during a thunderstorm. The third outage occurred when a substation transformer bushing failed. The fourth outage occurred when a lightning strike cause a fuse to fail. The fifth outage occurred when a pole near the substation failed during a thunderstorm.

Corrective Actions:

Tree trimming was performed on this circuit in 2011.

Division engineering personnel will perform an Infrared (IR) inspection of the circuit. Any repair work identified as a result of this inspection will be completed in 2012.

Division engineering personnel will patrol the circuit in 2012 to verify that all backbone transformers are properly fused and to determine if any additional opportunities for circuit sectionalizing exist.

A circuit extension project which will improve reliability in the area as well as increase the number of customers served by the circuit will be completed in 2012. This work will be performed under DOJM Work Request number 2WWZ148513.

WPC Analysis and Remedial Action Report

Circuit Number – 169053 **Division** – Meramec Valley **Area Served** – Ellisville, MO **SAIFI Value** – 2.30

Analysis Results:

This circuit serves 184 customers. The area served by this circuit is rural and runs predominately along MO highway 100, Wild Horse Creek Road, and Ossenfort Road within the right-of-way. Wild Horse Creek and Ossenfort Roads are narrow, winding, two lane roads with large trees lining both sides of the road in most areas.

The customer interruptions (CI) experienced on the circuit in 2011 were caused by trees, overhead and underground malfunctions, and unknown causes which resulted in 423 CI. Circuit 169053 experienced one major outage in 2011 which was caused by a broken tree which fell across the lines and broke a pole. This event accounted for approximately 76% of the total CI experience by this circuit. Other tree issues and contacts resulted in an additional 8% of the CI. Another 6% of the CI was the result of overhead malfunctions, underground malfunctions, or unknown causes.

Corrective Actions:

Tree trimming was last performed on this circuit in 2009.

An underground visual inspection was performed on the circuit in 2011. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

An overhead visual inspection will be performed on this circuit in 2012. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

The Vegetation Management Department will perform a mid-cycle patrol along Wild Horse Creek and Ossenfort Roads in 2012 to identify and remove tree hazards.

WPC Analysis and Remedial Action Report

Circuit Number – 269004 **Division** – Gateway **Area Served** – Berkeley, MO **SAIFI Value** – 2.29

Analysis Results:

This circuit serves 819 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by operator error, overhead equipment failures, and trees. Circuit 269004 experienced three significant outages in 2011 which resulted in 73% of the CI experienced on this circuit. The first outage occurred due to tree failures. The second outage occurred due to an operator error. The third outage occurred when a pole broke.

Corrective Actions:

Tree trimming was performed on this circuit in 2011.

Division engineering personnel performed an inspection of the circuit and several improvement opportunities were identified. These include fusing the transformers on the circuit backbone. This work will be performed under DOJM Work Request number 21MT549238.

WPC Analysis and Remedial Action Report

Circuit Number – 265052 Division – Gateway Area Served – Eastern Florissant, MO SAIFI Value – 2.28

Analysis Results:

This circuit serves 803 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by public damage and overhead equipment malfunctions. Circuit 265052 experienced two significant outages in 2011 which resulted in over 85% of the CI experienced on this circuit. The first outage occurred when balloons became entangled in the phases. The second outage occurred when a lightning arrestor failed and burned.

Corrective Actions:

Tree trimming will be performed on this circuit in 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 167056 Division – Gateway Area Served – Bellefontaine Neighbors, MO SAIFI Value – 2.27

Analysis Results:

This circuit serves 723 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by trees and a switchgear fault. Circuit 167056 experienced two significant outages in 2011 which resulted in over 85% of the CI experienced on this circuit. The first outage occurred when a tree branch failed and fell into the primary. The second outage occurred due to a switchgear fault.

Corrective Actions:

The Vegetation Management Department performed out of cycle tree trimming on the circuit backbone in 2011 to address the tree caused outage.

An overhead visual inspection was performed on this circuit in 2011. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

Division engineering personnel performed a circuit protection coordination analysis and corrected protection schemes as needed.

Division engineering personnel patrolled two circuit taps which had experienced multiple device interruptions. These patrols identified deficiencies such as excessive brush, unused primary, bad poles, missing animal guards, bad lightning arrestors, un-fused transformers, transformers needing re-sizing, and non-standard clearances. This work will be performed under DOJM Work Request number 21MT528503 and will be completed in December 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 939053 **Division** – Boone Trails West **Area Served** – Moberly, MO **SAIFI Value** – 2.27

Analysis Results:

This circuit serves 577 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by overhead equipment failures, trees, and a public vehicle accident resulting in 1,303 CI. Circuit 939053 experienced one significant outage in 2011, and the 577 CI incurred on this outage resulted in 45% of the total CI experienced on this circuit. Smaller outages were caused by overhead transformer failures and fuse operations, as well as tree obstructions.

Corrective Actions:

Tree trimming was performed on this circuit in 2012.

Division engineering personnel performed an inspection of the circuit and several improvement opportunities were identified. These included replacement of cracked or distorted cross arms, insulators, lightening arrestors, and deteriorated poles.

An overhead visual inspection was performed on this circuit in 2012. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

WPC Analysis and Remedial Action Report

Circuit Number – 153006 Division – Gateway Area Served – Castle Point, MO SAIFI Value – 2.27

Analysis Results:

This circuit serves 741 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by wire failures and underground cable faults. Circuit 153006 experienced two significant outages in 2011 which resulted in over 85% of the total CI experienced on this circuit. The first outage occurred when the primary failed. The second outage occurred when one of the phases of the substation feeder exit cable faulted.

Corrective Actions:

Tree trimming was last performed on this circuit in 2011.

Division engineering personnel performed a circuit protection coordination analysis and corrected protection schemes as needed.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 607054 Division – SEMO Area Served – Benton, MO SAIFI Value – 2.26

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009 and 2011. The SAIFI values on this circuit in the last three years were: 9.53 in 2009, 1.81 in 2010, and 2.26 in 2011. This circuit serves 271 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather and animal intrusions. Circuit 607054 experienced five significant outages in 2011. Four of these outages occurred when storms caused the recloser west of I55 to trip. The other outage occurred due to an animal intrusion.

Corrective Actions:

Previous reliability work performed on this circuit:

Tree trimming was last performed on this circuit in 2010.

Reclosers and spacers were installed on this circuit to prevent substation breaker outages. This work was performed under DOJM Work Request number 2TSE086476 which was completed in August 2009.

A special overhead visual inspection was performed on this circuit in 2010 which inspected for animal guarding, tap-fusing, and maintenance issues. Repairs were performed under DOJM Work Request number 2TSE093454 which was completed in August 2010.

Planned MWPC reliability improvement work:

An overhead visual inspection was performed on this circuit in 2011 which inspected for animal guarding, tap fusing, and other maintenance issues. Repairs will be performed under DOJM Work Request number 2TSE099528. This work will be completed in December 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 203051 **Division** – Gateway **Area Served** – Bridgeton, MO **SAIFI Value** – 2.26

Analysis Results:

This circuit serves 1,434 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather and relay problems. Circuit 203051 experienced three significant outages in 2011. The first outage occurred when the circuit was struck by a tornado in April 2011. The second outage occurred when the circuit was struck by a wind storm. The third outage occurred as a result of a relay problem.

Corrective Actions:

All damage caused by the tornado was repaired at the time. The majority of the damage was caused by broken trees and poles. These have since been repaired.

The relaying issue has been resolved.

Tree trimming will be performed on this circuit in 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 560053 Division – Meramec Valley Area Served – High Ridge and Fenton, MO SAIFI Value – 2.25

Analysis Results:

This circuit serves 1,469 customers. The largest customer interruptions (CI) experienced on this circuit in 2011 were caused by weather and unknown causes, resulting in 2,936 CI (89%) of the total 3,309 CI experienced on the circuit. Circuit 560053 experienced two significant outages in 2011. The first outage occurred when lightning caused a switch malfunction. The second outage occurred due to unknown causes.

Corrective Actions:

Installation of a backbone recloser is being pursued by the Division based on the nature of the reported outages. District personnel are working with the System Protection Department and other departments to identify a suitable location for the recloser. This work will be tracked under DOJM Work Request number 26JF119753.

WPC Analysis and Remedial Action Report

Circuit Number – 607055 Division – SEMO Area Served – Benton, MO SAIFI Value – 2.25

Analysis Results:

This circuit serves 278 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by animal intrusions and weather. Circuit 607055 experienced three significant outages in 2011. The first outage occurred as a result of an animal intrusion into the substation. The other two outages occurred as a result of trees falling and breaking the primary during storms.

Corrective Actions:

An overhead visual inspection will be performed on this circuit by division personnel in 2012. This inspection will identify needed animal guarding, tap fusing, and other maintenance issues. Repairs will be performed under DOJM Work Request number 2TSE099757.

WPC Analysis and Remedial Action Report

Circuit Number – 917051 Division – Central Ozark Area Served – Excelsior Springs, MO SAIFI Value – 2.20

Analysis Results:

This circuit serves 575 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by a tree failure and public damage. Circuit 917051 experienced two significant outages in 2011 which resulted in 84% of the CI experienced on this circuit. The first outage occurred when a contractor dug into the substation underground exit cable. The second outage occurred when a broken tree limb fell across the wires during a storm.

Corrective Actions:

Tree trimming was performed on this circuit in 2010.

The outages experienced on this circuit were not due to a common cause. Therefore, no work is planned for this circuit in 2012.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 629051 **Division** – Boone Trails **Area Served** – Clarksville, MO **SAIFI Value** – 2.19

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2010 and 2011. The SAIFI values for this circuit in the last two years were: 2.92 in 2010 and 2.19 in 2011. This circuit serves 484 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather and an overhead equipment failure resulting in 968 CI. Circuit 629051 experienced two significant outages in 2011 resulting in 91% of the total CI experienced on this circuit. The first outage occurred when a tornado/straight line winds hit the town of Clarksville causing extensive damage to the circuit. The second outage occurred when a recloser on a circuit tap failed.

Corrective Actions:

Previous reliability work performed on this circuit:

A special overhead visual inspection was performed on this circuit in 2011. Defective cross arms, insulators, and broken down guys were repaired or replaced. Animal guards and fuses were installed and some poles replaced. This work was performed under DOJM Work Request numbers 2WWZ146067 and 2WWZ147718 which were completed in November 2011.

Planned MWPC reliability improvement work:

Division engineering personnel will perform an inspection of the circuit in 2012. This inspection will identify un-fused backbone transformers and deteriorated guy wires.

WPC Analysis and Remedial Action Report

Circuit Number – 703001 **Division** – Boone Trails West **Area Served** – Brookfield, MO **SAIFI Value** – 2.17

Analysis Results:

This circuit serves 1,183 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by overhead equipment failures and trees, resulting in 1,595 CI. Circuit 703001 experienced several significant outages in 2011. 37% of the CI were caused by trees contacting the lines. Another 43% of the CI were cause by overhead equipment malfunctions. The overhead equipment malfunctions consisted of transformer failures and switch failures. Other overhead equipment malfunctions or failures constituted less than 20% of the CI and resulted from animal intrusions and fuses blowing in adverse weather conditions.

Corrective Actions:

Tree trimming was performed on this circuit in 2011.

The Vegetation Management Department will perform a mid-cycle patrol of this circuit in 2012 to identify and remove tree hazards.

Division engineering personnel performed an inspection of the circuit and several improvement opportunities were identified. These included replacement of cracked or distorted cross arms, insulators, lightening arrestors, and deteriorated poles.

An overhead visual inspection will be performed on this circuit in 2012. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

WPC Analysis and Remedial Action Report

Circuit Number – 160001 Division – Archview Area Served – North City of St. Louis, MO SAIFI Value – 2.17

Analysis Results:

This circuit serves 470 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by overhead equipment malfunctions, circuit overloads, a public vehicle accident, and trees, resulting in 1,021 CI. Circuit 160001 experienced one significant outage and several smaller outages in 2011 which resulted in 97% of the CI experienced on this circuit. The significant outage was caused by a public vehicle accident. The smaller outages were caused by broken cross arms, failed transformers, overloaded transformers, broken tree limbs, and a failed switch.

Corrective Actions:

Tree trimming was last performed on this circuit in 2010.

Division personnel repaired the failed equipment at the time of the outage.

In 2011 portions of this circuit were reconfigured and placed underground as a result of the construction of the new Mississippi River Bridge by MODOT. These new facilities should enhance future circuit reliability.

Additional engineering evaluations and field inspections will be performed in 2012 to check circuit loading and equipment conditions. Corrective measures to address overloads and deteriorated equipment and facilities will be performed as required.

WPC Analysis and Remedial Action Report

Circuit Number – 847001 Division – Central Ozark Area Served – Morrison, MO SAIFI Value – 2.17

Analysis Results:

This circuit serves 112 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by tree failures. Circuit 847001 experienced several significant outages in 2011 which resulted in 97% of the CI experienced on this circuit. The outages were caused by trees being blown into the wires during storms which occurred during one particularly windy week of the year.

Corrective Actions:

Tree trimming will be performed on this circuit in 2012.

A portion of this circuit will be re-conductored in 2012 to provide better voltage support and increase system capacity. New conductor and several new poles will be installed as a part of this project under DOJM Work Request number 2JCP082697.

WPC Analysis and Remedial Action Report

Circuit Number – 745053 Division – Boone Trails Area Served – Moberly, MO SAIFI Value – 2.17

Analysis Results:

This circuit serves 226 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by animal intrusions and overhead equipment failures resulting in 490 CI. Circuit 745053 experienced several significant outages in 2011 which were broken down as follows: 24% of the CI occurred during adverse weather conditions, 47% of the CI were caused by animal intrusions, and 43% of the CI were caused by overhead equipment malfunctions or failures.

Corrective Actions:

Tree trimming was performed on this circuit in 2011. The circuit is currently being spot tree trimmed.

Division engineering personnel performed an inspection of the circuit and several improvement opportunities were identified. These included replacement of cracked or distorted cross arms, insulators, lightening arrestors, and deteriorated poles.

An overhead visual inspection was performed on this circuit in 2011. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

WPC Analysis and Remedial Action Report

Circuit Number – 577051 Division – Gateway Area Served – St. Peters, MO SAIFI Value – 2.17

Analysis Results:

This circuit serves 1,098 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by underground cable faults resulting in 2,181 of the total 2,378 CI. Circuit 577051 experienced two significant outages in 2011 which resulted in 92% of the CI experienced on this circuit. Both circuit outages occurred when the direct buried primary backbone cable faulted.

Corrective Actions:

Both primary cable failures were repaired. Fuses were installed to isolate the section of the circuit where the underground cable failed from the rest of the circuit. This work was performed under DOJM Work Request number 25SC051497 which was completed in June 2011.

A project to replace the existing sections of direct buried primary cable with new primary cable installed in conduit will be performed under DOJM Work Request number 25SC052105. This work will be completed in 2012.

An overhead visual inspection and ground line inspection was performed on this circuit in 2011. The repair work identified as a result of these inspections will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

WPC Analysis and Remedial Action Report

Circuit Number – 271055 Division – Archview Area Served – Fenton, MO SAIFI Value – 2.16

Analysis Results:

This circuit serves 1,687 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by a public vehicle accident and an outage of unknown cause resulting in 3,268 CI (90%) of the total 3,646 CI experienced on the circuit. The first outage was caused by a public truck hitting and breaking a pole which did not immediately cause an outage, however, work to repair the pole required that all but 317 customers on the circuit be taken out of service while repairs were made. The second outage was caused by a fault on the circuit resulting in the breaker incorrectly locking out after only one trip instead of going through its full reclosing sequence. Since no physical circuit problem was found and the breaker held upon manual reclose, it is likely that a temporary condition caused the trip. Had the reclose sequence operated correctly it is likely that this event would have been only a momentary outage. The outages on this circuit were not due to a common cause.

Corrective Actions:

An overhead visual inspection was performed on the circuit in 2010. The repair work identified as a result of the inspection was completed in accordance with Ameren Missouri's infrastructure inspection policy.

The public vehicle accident was not realistically avoidable and further action to mitigate this problem was not identified.

The circuit outage resulting from the breaker lockout was reviewed and it was determined that the outage would likely have been a momentary outage had the breaker functioned properly. However, it was determined that the vacuum breaker MOC switch bounced during the reclose sequence causing the relay to lock out too quickly. The Substation Maintenance Department completed a job to eliminate this bounce issue shortly after the incident. This work should limit future problems with the reclose sequence.

The Vegetation Management Department performed a mid-cycle patrol of this circuit in 2011 to identify any spot trim locations requiring attention prior to the four year cycle trim scheduled for 2013.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 256059 Division – Gateway Area Served – Maryland Heights, MO SAIFI Value – 2.15

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009 and 2011. The SAIFI values for this circuit in the past three years were: 3.08 in 2009, 0.18 in 2010, and 2.15 in 2011. This circuit serves 1,063 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by tree failures, overhead equipment failures, and weather. Circuit 256059 experienced four significant outages in 2011. The first outage occurred when a tree failure caused an outage on circuit 283056 while this circuit and circuit 256059 were abnormally switched. The second outage occurred when the primary broke during windy conditions. The third outage occurred when an overhead jumper burned. The fourth outage occurred when the primary broke during windy conditions.

Corrective Actions:

Previous reliability work performed on this circuit:

Tree trimming was last performed on this circuit in 2010.

The burned jumper was replaced under DOJM Work Request number 21MT532352 which was completed in July 2011.

Planned MWPC reliability improvement work:

An overhead visual inspection was performed on this circuit in 2011. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 622054 **Division** – SEMO **Area Served** – Charleston, MO **SAIFI Value** – 2.15

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009 and 2011. The SAIFI values for this circuit in the past three years were: 4.71 in 2009, 0.08 in 2010, and 2.15 in 2011. This circuit serves 389 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather. Circuit 622054 experienced two significant outages in 2011. These two outages were caused by tree contacts with the primary during storms which resulted in the substation breaker tripping.

Corrective Actions:

Previous reliability work performed on this circuit:

The Vegetation Management Department performed mid-cycle maintenance tree trimming in 2009.

Un-fused taps were corrected and fuse coordination verified on this circuit in 2010 to minimize future outages. This work was performed under DOJM Work Request number 2TSE092582 which was completed in December 2010.

A special overhead visual inspection was performed on this circuit in 2010. This inspection focused on animal guarding, tap-fusing, and maintenance items. Repairs were performed under DOJM Work Request number 2TSE093546 which was completed in December 2010.

Planned MWPC reliability improvement work:

An overhead visual inspection will be performed on this circuit in 2012. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 646052 Division – SEMO Area Served – Cape Girardeau, MO SAIFI Value – 2.15

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit based on its performance in 2009 and 2011. The SAIFI values for this circuit in the last three years were: 2.51 in 2009, 0.86 in 2010, and 2.15 in 2011. This circuit serves 949 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather. Circuit 646052 experienced six significant outages in 2011. Three outages occurred due to the substation tripping as a result of tree contacts during storms. Another outage occurred when the primary failed during a storm. Lastly, two outages occurred when the primary failed during high winds.

Corrective Actions:

Previous reliability work performed on this circuit:

Tree trimming was last performed on this circuit in 2009.

Five miles of this circuit were re-conductored under DOJM Work Request numbers 2TSE090516, 2TSE090515, and 2TSE090514, which were completed in November 2010.

A special overhead visual inspection was performed on this circuit in 2010. This inspection focused on animal guards, tap-fusing, and maintenance items. Repairs were performed under DOJM Work Request number 2TSE093453 which was completed in August 2010.

Planned MWPC reliability improvement work:

An overhead visual inspection was performed on this circuit in 2010. This inspection identified needed animal guarding, tap fusing, and other maintenance items. Repairs will be performed under DOJM Work Request number 2TSE099527.

An overhead visual inspection will be performed on this circuit in 2012. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

An underground visual inspection will be performed on this circuit in 2012. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

WPC Analysis and Remedial Action Report

Circuit Number – 096003 **Division** – Gateway **Area Served** – Berkeley, MO **SAIFI Value** – 2.14

Analysis Results:

This circuit serves 666 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by underground equipment failures. Circuit 096003 experienced two significant outages in 2011 which resulted in 84% of the total CI experienced on this circuit. Both of the outages occurred when underground cables failed.

Corrective Actions:

Tree trimming was performed on this circuit in 2011.

Division engineering personnel performed an inspection of the circuit and several improvement opportunities were identified. These include fusing the transformers on the circuit backbone. This work will be performed under DOJM Work Request number 21MT549022.

WPC Analysis and Remedial Action Report

Circuit Number – 083006 **Division** – Archview **Area Served** – North City of St. Louis, MO **SAIFI Value** – 2.13

Analysis Results:

This circuit serves 71 predominantly light industrial and commercial customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by trees, overhead equipment failures, and unknown causes resulting in 151 CI. Circuit 083006 experienced two significant outages in 2011 which resulted in 96% of the CI experienced on this circuit. The first outage occurred when a tree failure caused a circuit outage. The second outage occurred as a result of unknown causes. In addition, other smaller outages were caused by jumper and connection failures, public vehicle accidents, and localized flooding.

Corrective Actions:

Tree trimming was last performed on this circuit in 2009.

The Vegetation Management Department performed a mid-cycle patrol of this circuit in 2011 and appropriate additional trimming was completed.

A circuit inspection was performed on this circuit in 2011, and repairs initiated on appropriate facilities.

Developers are reconfiguring the landscape of part of the area served by this circuit. As a result, there is a major relocation of part of this circuit's backbone in progress. This new construction on part of the circuit backbone should improve circuit reliability.

WPC Analysis and Remedial Action Report

Circuit Number – 015011 **Division** – Archview **Area Served** – South St. Louis City, MO **SAIFI Value** – 2.13

Analysis Results:

This circuit serves 357 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by a tree failure and an underground cable failure resulting in 729 CI (96%) of the total 759 CI experienced on the circuit. Circuit 015011 experienced two circuit outages in 2011. The first circuit outage occurred when a tree broke and fell on the wire. The second circuit outage occurred when the underground primary cable failed at Dip GRAV-8.

Corrective Actions:

Tree trimming was performed on this circuit in 2011.

The cable failure was corrected at the time of the outage. There are no repetitive outage causes on this circuit so no further work is planned for 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 255001 Division – Archview Area Served – North City of St. Louis, MO SAIFI Value – 2.12

Analysis Results:

This circuit serves 730 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by trees, overhead equipment failures, and unknown causes resulting in 1,549 CI. Circuit 255001 experienced two significant outages in 2011 which resulted in 97% of the CI experienced on this circuit. The first outage occurred as a result of tree failures. The second outage occurred as a result of primary failures during high winds.

Corrective Actions:

Tree trimming was performed on this circuit in 2011.

Repairs to malfunctioning equipment were performed at the time of the outage.

There are no repetitive outage causes on this circuit so no further work is planned for 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 487051 **Division** – SEMO **Area Served** – Richwoods, MO **SAIFI Value** – 2.12

Analysis Results:

This circuit serves 123 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by a number of single phase circuit tap outages. This long single phase tap comprises approximately 33% of the total circuit load and experienced seven device outages in 2011. Patrols of this tap never found any definitive causes for the fuse failures experienced on this tap.

Corrective Actions:

Tree trimming was performed on sub-transmission circuit ESTR-73, which supplies this circuit, in 2009.

An overhead visual inspection was performed on this circuit in 2010. The repair work identified as a result of the inspection was completed in accordance with Ameren Missouri's infrastructure inspection policy.

Tree trimming was last performed on this circuit in 2010.

A project to address multiple device outages on the Kingston Rd. circuit tap and address circuit balancing will be performed in 2012 under DOJM Work Request number 28IR035900. This work request includes recloser installation for Kingston Rd. tap protection, and animal guarding.

WPC Analysis and Remedial Action Report

Circuit Number – 020003 **Division** – Archview **Area Served** – South St. Louis City, MO **SAIFI Value** – 2.11

Analysis Results:

This circuit serves 61 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by an overhead equipment failure and an outage of unknown cause resulting in 126 CI (98%) of the total 129 CI experienced on the circuit. Circuit 020003 experienced two circuit outages in 2011. The first circuit outage occurred during an ice storm when ice loading caused a pin insulator to fail which resulted in two conductors contacting each other. The second circuit outage occurred when the substation breaker tripped four times and then locked out. The substation exit cable was inspected and no faults were found. The circuit was also patrolled and no problems were found. The circuit was then manually reclosed and the substation breaker held.

Corrective Actions:

Tree trimming was last performed on this circuit in 2010.

An underground visual inspection was performed on this circuit in 2011. The repair work identified as a result of this inspection was completed in accordance with Ameren Missouri's infrastructure inspection policy.

Circuit 020003 was patrolled in 2011. As a result of this patrol, a missing cross arm brace was installed under DOJM Work Request number 21MT532873. This work was completed in July 2011.

An overhead visual inspection will be performed on this circuit in 2012. The repair work identified as a result of this inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

WPC Analysis and Remedial Action Report

Circuit Number – 181003 Division – Gateway Area Served – Dellwood, MO SAIFI Value – 2.10

Analysis Results:

This circuit serves 696 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather. Circuit 181003 experienced three significant outages in 2011 which resulted in over 83% of the CI experienced on this circuit. The three outages were related and occurred on the same day. The outages occurred when a tree branch contacted the line during a thunderstorm.

Corrective Actions:

Tree trimming will be performed on this circuit in 2012.

Division engineering personnel performed a circuit protection coordination analysis and corrected protection schemes as needed.

A project which will enlarge a tie and provide improved access to switching will be performed under DOJM Work Request number 21MT482935.

WPC Analysis and Remedial Action Report

Circuit Number – 295052 **Division** – Meramec Valley **Area Served** – Ellisville, MO **SAIFI Value** – 2.10

Analysis Results:

This circuit serves 854 customers. The area serviced by this circuit is rural with several tract lot subdivisions. The subdivisions in the area are predominately serviced by single phase underground laterals. The terrain is rocky, heavily wooded, with rolling hills, and the roadways (outside of MO 109 and the improved tract lot subdivisions) are narrow two lane winding roadways. The circuit predominantly runs cross country and along narrow rural roadways to provide service to individual customers and customers in the tract developments.

The customer interruptions (CI) experienced on this circuit in 2011 were caused by overhead equipment failures, trees, and public vehicle accidents resulting in 1,794 CI. The circuit experienced two major outages resulting from public vehicle accidents which accounted for approximately 45% of the CI. A recloser just outside the substation failed and prior to the failure it opened due to an unknown cause. These two outages resulted in 41% of the CI. Tree limbs on the line and tree contacts resulted in 9% of the CI. Other causes, including animal intrusions or unknown causes accounted for approximately 1.5% of the total CI in 2011.

Corrective Actions:

The recloser outside the substation was replaced in late 2011.

Tree trimming will be performed on this circuit in 2012. This work should address the tree contacts.

An underground detailed inspection will be performed on this circuit in 2012. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

WPC Analysis and Remedial Action Report

Circuit Number – 185053 Division – Meramec Valley Area Served – Imperial, MO SAIFI Value – 2.10

Analysis Results:

This circuit serves 644 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by an overhead equipment failure. Circuit 185053 experienced two significant outages in 2011 which occurred on the same day and resulted in 95% of the CI experienced on this circuit. The first outage occurred when a primary phase failed on the three phase tap and tripped the circuit. When the fault cleared itself the circuit was placed back in service. Later that day, the fault re-occurred and tripped the circuit a second time. The circuit was patrolled and the failed primary phase was discovered and repaired.

Corrective Actions:

Fuses will be installed on two taps on this circuit in 2012 under DOJM Work Request number 26JF119638.

WPC Analysis and Remedial Action Report

Circuit Number – 245051 Division – Archview Area Served – Affton, MO SAIFI Value – 2.09

Analysis Results:

This circuit serves 1,318 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by a public vehicle accident and an Ameren crew error resulting in 2,643 CI (96%) of the total 2,752 CI experienced on the circuit. Circuit 245051 experienced two circuit outages in 2011. The first outage occurred when Ameren crews inadvertently contacted a new energized conductor with the neutral while performing relocation work. The second circuit outage occurred when a public vehicle ran into a pole and broke it.

The outages experienced on this circuit were not the result of a common cause. The first circuit outage was due to an error by Ameren crews performing work and would not occur under typical circumstances. The second outage, due to a public vehicle accident, has not been a typical occurrence on this circuit and further action to mitigate this problem was not identified.

Corrective Actions:

An overhead visual inspection was performed on this circuit in 2010. The repair work identified as a result of the inspection was completed in accordance with Ameren Missouri's infrastructure inspection policy.

The Vegetation Management Department performed a mid-cycle patrol of this circuit in 2011 to identify any spot trim locations requiring attention prior to the four year cycle trim scheduled for 2013.

An underground detailed inspection was performed on this circuit in 2011. The repair work identified as a result of the inspection was completed in accordance with Ameren Missouri's infrastructure inspection policy.

WPC Analysis and Remedial Action Report

Circuit Number – 260053 **Division** – Gateway **Area Served** – Florissant, MO **SAIFI Value** – 2.08

Analysis Results:

This circuit serves 404 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather. Circuit 260053 experienced two significant outages in 2011 which resulted in over 95% of the total CI experienced on this circuit. The first outage occurred when a lightning strike caused the primary to fail. The second outage occurred when vines on the primary caused a recloser lock out during a thunderstorm.

Corrective Actions:

Tree trimming will be performed on this circuit in 2012.

Division engineering personnel performed an inspection of the circuit and several improvement opportunities were identified. These included replacing cracked or distorted insulators, lightening arrestors, and deteriorated poles, installation of animal guards, and coordination and relocation of fuses. This work will be performed under DOJM Work Request number 21MT535388 and will be completed by December 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 044006 Division – Archview Area Served – Ladue, MO SAIFI Value – 2.07

Analysis Results:

This circuit serves 165 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by a tree failure and a storm. Circuit 044006 experienced two significant outages in 2011 which resulted in 99% of the CI experienced on this circuit. The first outage occurred when a tree fell into the overhead wire resulting in an outage. The second outage occurred during a storm when the primary wire failed, causing an outage.

Corrective Actions:

Tree trimming will be performed on this circuit in 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 105005 Division – Archview Area Served – Affton, MO SAIFI Value – 2.07

Analysis Results:

This circuit serves 674 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by a tree failure and an overhead equipment failure resulting in 1,344 CI (96%) of the total 1,397 CI experienced on the circuit. Circuit 105005 experienced two circuit outages in 2011. The first outage was caused by a tree, 30 feet from the circuit, breaking and falling into a second tree as well as into the overhead lines. The second outage occurred when an overhead line broke at an existing splice, causing the line to fall. The outages on this circuit were not due to a common cause.

Corrective Actions:

An overhead visual inspection, an overhead ground line inspection, and an underground detailed inspection were performed on this circuit in 2010. The repair work identified as a result of these inspections was completed in accordance with Ameren Missouri's infrastructure inspection policy.

The tree which broke, and along with a second tree, caused a circuit failure was located outside of the normally trimmed easement. Both of these trees were removed.

Tree trimming will be performed on this circuit in 2012.

The line failure due to the failed splice was repaired at the time of the incident. The circuit has experienced very few other hardware problems.

In January 2012 the Division Engineer inspected the first 2,000 feet of this circuit's backbone. This line runs along private property rear lots and includes the areas associated with the two circuit outages which occurred in 2011. No obvious hardware issues were found.

WPC Analysis and Remedial Action Report

Circuit Number – 285054 **Division** – Underground **Area Served** – St. Louis, MO **SAIFI Value** – 2.07

Analysis Results:

This circuit serves 318 customers. This circuit experienced 658 customer interruptions (CI) in 2011. The CI experienced on this circuit in 2011 were caused by animal intrusions and cable faults. Circuit 285054 experienced two significant outages in 2011. The first outage occurred on April 11, when an animal entered switchpad 26363 in the Cupples Station and caused a failure of the entire circuit. The second outage occurred on June 26, when a fault occurred between manholes 63 and 64 in the Blue Cross-Blue Shield parking lot. This outage also affected the entire circuit. A third outage occurred at the building at 2020 Washington on September 27. This building, The Sporting Goods Lofts, is a condominium complex with 106 customers. When Ameren personnel arrived at the building to make repairs, they discovered that the outage was due to building maintenance arranged by building management. The outage was therefore the result of a customer equipment outage and not due to Ameren equipment. The actual CI for this circuit should have been 552 CI which would have resulted in an overall SAIFI value of 1.74. Therefore no corrective actions are necessary for this circuit.

Corrective Actions:

No work is planned on this circuit in 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 583051 Division – Gateway Area Served – St. Charles, MO SAIFI Value – 2.07

Analysis Results:

This circuit serves 992 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by a public vehicle accident and a tree failure resulting in 2,005 of the total 2,049 CI. Circuit 583051 experienced two significant outages in 2011 which resulted in 98% of the CI experienced on this circuit. The first outage occurred when a car hit a pole and broke it. The second outage occurred when a tree branch broke and contacted the lines.

Corrective Actions:

The circuit will be patrolled in 2012 to determine if any additional spot tree trimming is required.

An overhead visual inspection, an overhead ground line inspection, and an underground visual inspection were performed on this circuit in 2011. The repair work identified as a result of these inspections will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

This circuit will be patrolled in 2012 to determine if any additional protection devices must be installed.

WPC Analysis and Remedial Action Report

Circuit Number – 210051 **Division** – Gateway **Area Served** – Berkeley, MO **SAIFI Value** – 2.05

Analysis Results:

This circuit serves 1,289 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by overhead equipment failures. Circuit 210051 experienced two significant outages in 2011 which resulted in 97% of the CI experienced on this circuit. The first outage occurred when overhead primary conductors touched during windy conditions. The second outage occurred due to a damaged solid blade switch.

Corrective Actions:

Tree trimming was performed on this circuit in 2011.

Division engineering personnel performed an inspection of the circuit and several improvement opportunities were identified. These include fusing the transformers on the circuit backbone and installing animal protection. This work will be performed under DOJM Work Request number 21MT548360. In addition, a damaged transformer and pole will be replaced under DOJM Work Request number 21MT548368.

WPC Analysis and Remedial Action Report

Circuit Number – 803053 Division – SEMO Area Served – Nash Road, MO SAIFI Value – 2.03

Analysis Results:

This circuit serves 58 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by overhead equipment failures and weather. Circuit 803053 experienced two significant outages in 2011. The first outage occurred when the primary fell following a splice failure. The second outage occurred when the primary failed during a thunderstorm.

Corrective Actions:

An overhead visual inspection will be performed on this circuit in 2012. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

WPC Analysis and Remedial Action Report

Circuit Number – 623003 Division – SEMO Area Served – Charleston, MO SAIFI Value – 2.03

Analysis Results:

This circuit serves 284 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather. Circuit 623003 experienced two significant outages in 2011. The first outage occurred when high winds broke a pole. The second outage occurred when a tree fell on the primary during a thunderstorm and caused the substation breaker to trip.

Corrective Actions:

The Vegetation Management Department performed mid-cycle maintenance tree trimming in 2011.

A visual inspection of this circuit will be performed by division personnel in 2012. This inspection will identify needed animal guarding, tap fusing, and other maintenance items. Repairs will be performed under DOJM Work Request number 2TSE099768.

WPC Analysis and Remedial Action Report

Circuit Number – 717051 Division – Central Ozark Area Served – Wood Heights, Excelsior Springs, MO SAIFI Value – 2.03

Analysis Results:

This circuit serves 1,116 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by a tree failure and an overhead equipment failure. Circuit 717051 experienced two significant outages in 2011 which resulted in 99% of the CI experienced on this circuit. The first outage occurred when a tree broke and fell into the circuit backbone. The second outage occurred when a circuit phase sagged into a loose guy wire during a wind/ice storm.

Corrective Actions:

The loose guy which caused an outage has been repaired. There are no other repetitive causes of the outages experienced on this circuit.

Tree trimming will be performed on this circuit in 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 194052 Division – Archview Area Served – South St. Louis County, MO SAIFI Value – 2.03

Analysis Results:

This circuit serves 1,199 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by tree failures and equipment failures in bad weather, resulting in 2,351 CI (97%) of the total 2,433 CI experienced on the circuit. Circuit 194052 experienced three circuit outages in 2011. The first circuit outage occurred when a tree fell across all three phases of primary wire. The second outage occurred when a storm knocked down several trees which broke the primary and secondary wires. In addition, several fuses blew and transformers tripped. The third outage occurred when high winds caused a deadend to fail at a pole which caused primary to fall on Kock Road.

Corrective Actions:

Tree trimming was performed in select locations on this circuit following the first outage. This work was initially performed by a Troubleman to re-energize the circuit. Additional spot trimming was then performed on this circuit by the Vegetation Management Department.

Overhead and underground visual inspections were performed on this circuit in 2011. The repair work identified as a result of the inspections was completed in accordance with Ameren Missouri's infrastructure inspection policy.

The circuit was patrolled and an animal guard installed at 4345 Bordeaux Dr. under DOJM Work Request number 21MT536636. This work was completed in September 2011.

WPC Analysis and Remedial Action Report

Circuit Number – 705001 Division – Boone Trails Area Served – Kirksville, MO SAIFI Value – 2.01

Analysis Results:

This circuit serves 330 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by feeder exit cable failures and overhead equipment failures resulting in 664 CI. Circuit 705001 experienced two significant outages in 2011, resulting in 98% of the total CI experienced on the circuit. The two outages occurred when the feeder exit cables failed. Additional smaller outages occurred due to overhead equipment failures and resulted in less than 2% of the total CI experienced on this circuit.

Corrective Actions:

Tree trimming will be performed on this circuit in 2012.

Division engineering personnel performed an inspection of the circuit and several improvement opportunities were identified. These included replacement of cracked or distorted cross arms, insulators, lightening arrestors, and deteriorated poles.

An overhead visual and thermal inspection will be performed on this circuit in 2012 by Division engineering personnel. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

WPC Analysis and Remedial Action Report

Circuit Number – 266052 **Division** – Gateway **Area Served** – Earth City, MO **SAIFI Value** – 2.01

Analysis Results:

This circuit serves 92 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by underground cable faults and a tree failure, resulting in 185 total CI. Circuit 266052 experienced two significant outages in 2011. The first outage occurred when a cable failed. The second outage occurred when a tree failed.

Corrective Actions:

The cable fault was repaired under DOJM Work Request number 21MT534828 which was completed in September 2011.

Tree trimming was performed on this circuit in 2011.

WPC Analysis and Remedial Action Report

Circuit Number – 858052 Division – Boone Trails Area Served – Canton, MO SAIFI Value – 2.00

Analysis Results:

This circuit serves 1 customer, Culver Stockton College. The customer interruptions (CI) experienced on this circuit in 2011 were caused by customer equipment problems downstream of their primary meter. Circuit 858052 experienced two significant outages in 2011. Both outages occurred due to customer equipment problems.

Corrective Actions:

Tree trimming was last performed on this circuit in 2010.

Significant animal guarding work was completed at the Canton Substation in 2011. This animal guarding included installation of Zapshield Wildlife Guards, Critter Line Guards for overhead feeder exit lines, metal flashing around poles and an electric fence inside the substation fence. There were no animal caused circuit outages at the Canton Substation after this work was completed in 2011.

Division engineering personnel are scheduled to perform an infrared (IR) inspection of the circuit backbone and the Canton Substation in 2012. The general condition of the overhead equipment and tree conditions will also be inspected. Any thermal, general maintenance or tree trimming issues found as a result of this inspection will be addressed.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 082052 Division – Underground Area Served – Saint Louis, MO SAIFI Value – 1.99

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009 and 2011. The SAIFI values for this circuit in the past three years were: 2.38 in 2009, 0.02 in 2010 and 1.99 in 2011. This circuit serves 170 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by an underground cable failure, customer equipment failures, and a substation equipment failure. Circuit 082052 experienced four significant outages in 2011. The first outage occurred in April when a water main break flooded the Sigma-Aldrich primary switchgear. The resulting fault tripped the entire Cole 52 circuit. The second outage occurred in June when a cable splice in the manhole at 20th and Martin Luther King failed. The third outage to the Cole 52 circuit occurred in November as a result of damage to the Cole 51 circuit at the CPI Building. When Cole 51 repairs were made at the CPI Building a pin hole in the cable was missed by the Underground crew. When the Cole 51 circuit was reenergized it faulted at the CPI Building, tripping both the Cole 51 and Cole 52 circuits. The fourth outage occurred when a Traveling Substation Operator performing an inspection on the Cole Substation equipment malfunctioned, causing the Cole 52 circuit to trip.

The Cole circuit has unique features that do not exist at other locations, including high fault currents that cause coordination problems. The underground Cole 52 circuit has no sectionalizing devices because they cannot coordinate with the instantaneous trip settings on the Cole 52 circuit. The instantaneous trip setting is set at 4500 Amperes to limit the amount of fault current, and resulting damage, to the circuit. The Cole Substation has no reactors so the low instantaneous trip setting cannot be raised. In addition, the System Relay Department has indicated that there are no known devices that can coordinate with the required instantaneous settings at the Cole substation.

A second issue with the Cole 52 circuit is the circuit exposure length. There are essentially two sections of the circuit: the area east of Jefferson Ave. and the area west of Jefferson Ave. In addition, there are no available feeder spaces at the Cole substation. Between the inability to sectionalize the circuit, and the large amount of exposure on the circuit, there are challenges with the reliability of the Cole circuit.

Corrective Actions:

Previous reliability work performed on this circuit:

An automated switchgear tie between Cole 51 and Cole 52 was installed at switch pad 18414 in 2011. This equipment will transfer customers to alternative circuits following feeder lockout. It will not prevent circuit outages but it will reduce customer minutes out.

Planned MWPC reliability improvement work:

Distribution automation equipment will be installed at Beaumont and Market Streets in 2012.

The Cole substation will be eliminated and circuits will transfer to the new Martin Luther King (MLK) switching station in 2014. The customers will ultimately be fed from new Ashley circuits via the new MLK switching station. Much of the cable for the area will be replaced as customers transition to the new feed. Route diversity for the supplies has been incorporated into the designs. These system improvements should help the overall reliability of this circuit.

WPC Analysis and Remedial Action Report

Circuit Number – 647052 **Division** – Boone Trails **Area Served** – Defiance, MO **SAIFI Value** – 1.99

Analysis Results:

This circuit serves 308 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather. Circuit 647052 experienced two significant outages in 2011. The first outage occurred when a thunderstorm caused a large tree limb to fall into the primary, damaging it in multiple locations. The second outage occurred when a tree uprooted by a thunderstorm tore down a span of primary.

Corrective Actions:

Tree trimming was performed on this circuit in 2011. Since the completion of this trimming cycle, no major outages have occurred on this circuit.

Division engineering personnel will patrol the circuit in 2012 to verify that all backbone transformers are properly fused and to determine if any additional opportunities for circuit sectionalizing exist.

An overhead visual inspection will be performed on this circuit in 2012. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 544055 **Division** – Gateway **Area Served** – St. Charles, MO **SAIFI Value** – 1.98

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009 and 2011. The SAIFI values for this circuit in the last three years were: 2.19 in 2009, 0.26 in 2010 and 1.98 in 2011. This circuit serves 869 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by tree failures and overhead equipment failures which resulted in 865 CI. Circuit 544055 experienced one significant outage in 2011 which resulted in 50% of the CI experienced on this circuit. The outage occurred when a tree limp broke and contacted the line. Other minor outages occurred due to overhead equipment malfunctions and tree contacts. A large portion of this circuit is of overhead construction which runs through heavily wooded areas and behind private homes.

Corrective Actions:

Previous reliability work performed on this circuit:

Spot tree trimming was performed near Briarcliff Dr. and Principia Ave. where tree contacts occurred in 2009. This circuit was also patrolled in 2010 to identify any additional areas requiring trimming. All spot tree trimming work performed in 2010 was completed under DOJM Work Request number 25SC048559 in December 2010.

Intellirupter reclosers were installed on this circuit to isolate some of the circuit while still maintaining circuit capacity. This work was performed under DOJM Work Request number 25SC049357 which was completed in September 2010.

An overhead visual inspection and an underground detailed inspection were performed on this circuit in 2010. The repair work identified as a result of these inspections was completed in 2011.

Tree trimming was performed on this circuit in 2011.

Planned MWPC reliability improvement work:

This circuit will be patrolled in May 2012 to determine whether any additional spot tree trimming is required.

This circuit will be patrolled by division personnel in May 2012. Any repair work identified as a result of this inspection will be addressed. Other small device outages due to equipment malfunctions and tree contacts will be reviewed to determine whether any further action is required.

WPC Analysis and Remedial Action Report

Circuit Number – 163003 Division – Gateway Area Served – Dellwood, MO SAIFI Value – 1.98

Analysis Results:

This circuit serves 522 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather, operator errors, and unknown causes. Circuit 163003 experienced five significant outages in 2011. The first outage occurred when an operator error caused a subtransmission outage. The second outage occurred when tree limbs contacted the primary during a storm. The third outage occurred due to an unknown cause. The remaining two outages occurred when tree limbs contacted the primary during storms.

Corrective Actions:

Tree trimming was last performed on this circuit in 2010.

The Vegetation Management Department performed an additional patrol of the entire circuit in May 2011 and removed any hazards.

Division engineering personnel performed an inspection of the circuit and several improvement opportunities were identified. These included replacing transformers, insulators, lightening arrestors, and deteriorated poles, installation of animal guards, and coordination and relocation of fuses. This work will be performed under DOJM Work Request number 21MT548932 and will be completed by December 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 039004 **Division** – Gateway **Area Served** – Berkeley, MO **SAIFI Value** – 1.96

Analysis Results:

This circuit serves 386 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by overhead equipment failures and trees, resulting in 437 CI. Circuit 039004 experienced one major outage and numerous smaller outages in 2011 which resulted in 96% of the total CI experienced on this circuit. The major outage occurred when a tree failed. The smaller outages occurred when overhead equipment malfunctioned.

Corrective Actions:

Tree trimming was performed on this circuit in 2011.

Division engineering personnel performed an inspection of the circuit and several improvement opportunities were identified. These included fusing the transformers on the circuit backbone. This work will be performed under DOJM Work Request number 21MT548793.

WPC Analysis and Remedial Action Report

Circuit Number – 083008 **Division** – Archview **Area Served** – North City of St. Louis, MO **SAIFI Value** – 1.95

Analysis Results:

This circuit serves 40 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by overhead equipment failures resulting in 80 CI. Circuit 083008 experienced two significant outages in 2011 which resulted in 100% of the CI experienced on this circuit. The two outages occurred within an hour of each other and were caused by loose primary connections that caused the unbalanced circuit to trip.

Corrective Actions:

Tree trimming was last performed on this circuit in 2009.

An overhead visual inspection was performed on the circuit in 2011. The repair work identified as a result of the inspection was completed in accordance with Ameren Missouri's infrastructure inspection policy.

No further work is planned for this circuit in 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 259054 **Division** – Gateway **Area Served** – Florissant, MO **SAIFI Value** – 1.93

Analysis Results:

This circuit serves 2,030 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by a wire failure. Circuit 259054 experienced two significant outages in 2011 which resulted in 94% of the CI experienced on this circuit. The first outage occurred when the primary failed. The second outage occurred when the circuit tripped a second time following restoration of the first outage.

Corrective Actions:

Tree trimming was performed on this circuit in 2011.

There are no repetitive outage causes on this circuit so no further work is planned for 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 264060 Division – Gateway Area Served – Creve Coeur, MO SAIFI Value – 1.89

Analysis Results:

This circuit serves 854 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by a circuit overload, trees, overhead equipment failures, and animal intrusions. Circuit 264060 experienced two major outages and a number of smaller outages in 2011. The first major outage occurred when this circuit was overloaded while it was abnormally switched to supply another circuit while the other circuit was repaired. The second major outage occurred when a switch burned. Other smaller outages occurred due to tree contacts and animal intrusions along a section of the three phase overhead primary which is heavily wooded and located on private property.

Corrective Actions:

All three phases of the burned switch were replaced in September 2011.

An overhead visual inspection and an underground detailed inspection were performed on this circuit in 2011. The repair work identified as a result of these inspections will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

Animal guards will be installed at two transformers under DOJM Work Request numbers 21MT526442 and 21MT541710.

Tree trimming will be performed on this circuit in 2012.

WPC Analysis and Remedial Action Report

Circuit Number – 253052 Division – Archview Area Served – South St. Louis County, MO SAIFI Value – 1.89

Analysis Results:

This circuit serves 1,563 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by a tree failure and an overhead equipment failure resulting in 2,656 CI (90%) of the total 2,955 CI experienced on the circuit. Circuit 253052 experienced two significant outages in 2011. The first outage occurred during a thunderstorm when a tree limb broke and broke the primary. The second outage occurred when an A phase jumper on the backbone near the circuit terminal pole burned due to a bad connection.

Corrective Actions:

Tree trimming was last performed on this circuit in 2010.

Circuit 253052 was patrolled in 2011. As a result of this patrol, a lightning arrestor was replaced at 5147 Harth Lodge Dr. under DOJM Work Request number 21MT531089. This work was completed in July 2011.

Overhead and underground visual inspections will be performed on this circuit in 2012. The repair work identified as a result of these inspections will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

WPC Analysis and Remedial Action Report

Circuit Number – 473053 Division – SEMO Area Served – Bismarck, MO SAIFI Value – 1.88

Analysis Results:

This circuit serves 625 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by two long duration outages, equipment failures, trees, animals, and overhead hardware. The two largest outages were caused by regulator failures from lightning, and tree limb caused damage during a storm. Other outages were caused by multiple device failures which occurred on a section of three phase circuit downstream from a recloser at Bismarck Ridge Rd and Highway 32. In addition, smaller outages were caused by trees, animals, and faulty overhead pole hardware.

Corrective Actions:

An automated SCADA controlled 34.5 kV Viper recloser was installed in the circuit substation to allow for faster transfer to a contingent 34.5 kV supply during an outage on the circuit. This work was performed under DOJM Work Request number 28IR033316 which was completed in July of 2010.

A new tie was established between circuits 473053 and 475052 which will enable switching operations and improve reliability for the southern half of circuit 473053. This work was performed under DOJM Work Request number 28IR035635 which was completed in November of 2011.

The Vegetation Management Department will perform a mid-cycle patrol of this circuit in 2012 to identify and remove tree hazards.

An overhead visual and ground line inspection will be performed on this circuit in 2012. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

Reliability projects at Bismarck Ridge Rd. and Highway 32 will be performed under DOJM Work Request numbers 28IR035949 and 28IR036217 in 2012. These projects will replace poles, add animal guards, and add fuses in this area.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 627051 Division – Boone Trails Area Served – St. Peters, MO SAIFI Value – 1.87

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009 and 2011. The SAIFI values for this circuit in the last three years were: 6.02 in 2009, 0.49 in 2010, and 1.87 in 2011. This circuit serves 589 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather, animal intrusions, and trees. Circuit 627051 experienced six significant outages in 2011. The first outage occurred due to an unknown cause during a thunderstorm. The second outage occurred when a fuse on a three phase tap blew. The third outage occurred when a 140T fuse blew due to a lightning strike during a thunderstorm. The fourth outage occurred when a tree contacted a single phase tap during a thunderstorm. The sixth outage occurred when an animal contacted the line at a single phase terminal pole. The sixth outage occurred when a tree contacted a single phased tap.

Corrective Actions:

Previous reliability work performed on this circuit:

Tree trimming was last performed on this circuit in 2010.

Planned MWPC reliability improvement work:

Division engineering personnel will patrol this circuit in 2012 to determine whether mid-cycle tree trimming is required, to verify that all backbone transformers are properly fused, and to determine if any additional opportunities for circuit sectionalizing exist.

An overhead visual inspection of this circuit will be performed in 2012. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

WPC Analysis and Remedial Action Report

Circuit Number – 279054 **Division** – Meramec Valley **Area Served** – Ellisville, MO **SAIFI Value** – 1.87

Analysis Results:

This circuit serves 1,123 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused primarily by overhead malfunctions, primary wire failures, and underground malfunctions which caused two major outages and resulted in 2,096 CI. The first major outage resulted from a primary fault on a three phase 750 Al cable which accounted for 53% of the CI. The second major outage was the result of an overhead malfunction which was caused by a 600 amp switch failing and causing the primary wire to fail, which resulted in 40% of the CI. These two major outages resulted in 93% of the CI experienced on this circuit. The remaining CI were the result of underground malfunctions (5%), and other causes (less than 1%).

Corrective Actions:

Tree trimming was performed on this circuit in 2011.

The 600 amp switch was replaced and the primary wire repaired following the circuit outage in 2011.

The 3-750 Al cable which failed was located in a conduit system. A new section of cable was pulled in to the conduit to replace the failed section. In addition, two smaller manholes on this Dip were replaced to provide better access for future maintenance of the cable. This work was completed in 2011.

WPC Analysis and Remedial Action Report

Circuit Number – 161051 Division – SEMO Area Served – Farmington, MO SAIFI Value – 1.84

Analysis Results:

This circuit serves 997 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by storms, device outages, and animal intrusions. Circuit 161051 experienced one circuit outage and two large device outages due to storm damage, and multiple device outages on fused taps 2070 and 1635 due to animals.

Corrective Actions:

A new feeder exit and re-conductor project was completed along Highway H and Highway AA which relieved heavy loading on circuit 161051 and transferred five miles of circuit 161051 to circuit 161055. This project greatly reduced exposure on circuit 161051 and was performed under DOJM Work Request numbers 28SF033814, 28SF033813, 28SF034575, and 28SF034574, which were completed in October 2010, November 2010, and January 2011, respectively.

Tree trimming was last performed on this circuit in 2010.

WPC Analysis and Remedial Action Report

Circuit Number – 104008 Division – Archview Area Served – North City of St. Louis, MO SAIFI Value – 1.84

Analysis Results:

This circuit serves 748 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by trees, public vehicle accidents, and equipment malfunctions resulting in 1,374 CI. Circuit 104008 experienced several outages in 2011 which resulted in 98% of the CI experienced on this circuit. The majority of the CI experienced on this circuit were caused by tree contacts and broken limbs. The second largest cause of outages experienced on this circuit was public vehicle accidents. The third largest cause of outages experienced on this circuit was equipment malfunctions.

Corrective Actions:

Tree trimming was last performed on this circuit in 2010.

The Vegetation Management Department will perform a mid-cycle patrol of this circuit in 2012 to identify and remove tree hazards.

No further work is planned on this circuit in 2012.

Appendix A Ameren Missouri 2011 Worst Performing Circuits

DIVISION	OPERATING AREA	CIRCUIT	VOLT	CUSTOMERS	CI	СМІ	SAIDI	SAIFI	2009	2010	2011	Years WPC
ARCHVIEW	GERALDINE	159003	4	63	89	17,487	278	1.41	WPC	WPC		2
GATEWAY	ST CHARLES	193051	12	396	484	127,044	321	1.22	WPC	WPC		2
BOONE TRAILS	WENTZVILLE	638052	12	2	1	11	6	0.50	WPC	WPC		2
SEMO	POTOSI	475052	12	239	105	19,997	84	0.44	WPC	WPC		2
GATEWAY	DORSETT	147057	12	961	308	54,684	57	0.32	WPC	WPC		2
SEMO	POTOSI	488052	12	444	116	19,051	43	0.26	WPC	WPC		2
BOONE TRAILS	WENTZVILLE	795051	12	140	7	1,496	11	0.05	WPC	WPC		2

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 159003 Division – Archview Area Served – North City of St. Louis, MO SAIFI Value – 1.41

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009 and 2010. This circuit was not a WPC in 2011. The SAIFI values for this circuit in the most recent three year period were: 2.33 in 2009, 3.25 in 2010, and 1.41 in 2011. This shows that reliability has greatly improved in 2011. This circuit now serves 63 customers. A major portion of the customers on this circuit were transferred to the new Gimblin Substation (317007) in 2010. The customer interruptions (CI) experienced on this circuit in 2011 were caused by trees, and lightning strikes resulting in 89 CI. Circuit 159003 experienced several weather related outages in 2011 which resulted in 93% of the CI experienced on this circuit. The majority of the outages were caused by lightning strikes. The second largest cause of outages on this circuit was tree contacts.

Corrective Actions:

Tree trimming was last performed on this circuit in 2009.

A failed underground cable which resulted in a circuit outage in 2009 was replaced under DOJM Work Request number 21MT480720, which was completed in June, 2009.

Portions of this circuit were re-conductored in 2010 to facilitate load relief for the Humboldt Substation. Several new poles, switches, conductors, and other equipment were installed, replacing deteriorated facilities. In addition, a portion of circuit 159003 was transferred to a new circuit 317007 in late 2010 as part of the installation of an additional unit at the Gimblin Substation.

Tree trimming for individual outages was performed as part of the outage restoration. Although tree related outages were a large portion of the CI in 2011, these multiple small occurrences constituted only 37 CI.

An overhead visual inspection was performed on this circuit in 2011. The repair work identified as a result of the inspection will be completed under DOJM Work Request number 21MT525759 in July 2012.

Division engineering personnel will perform reviews of circuit 159003 in 2012. These will include reviews of potential additional tap fusing, increased lightning protection, grounding reviews, increased sectionalizing, fuse coordination, phase balancing, and adverse equipment loading.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 193051 Division – Gateway Area Served – St. Charles, MO SAIFI Value – 1.22

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009 and 2010. This circuit was not a WPC in 2011. The SAIFI values for this circuit in the most recent three year period were: 2.31 in 2009, 2.06 in 2010, and 1.22 in 2011. This shows that reliability has greatly improved in 2011. This improvement is a result of the corrective actions taken in 2009 and 2010. This circuit serves 396 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by a public vehicle accident resulting in 396 CI. Circuit 193051 experienced one significant outage in 2011 which resulted in 82% of the CI experienced on this circuit. This outage occurred when a car struck a pole and broke it. There were some smaller outages in 2011 which were the result of overhead equipment malfunctions and underground cable failures, which resulted in the remaining CI incurred on this circuit.

Corrective Actions:

A single phase underground primary cable failure was repaired under DOJM Work Request number 25SC047487 which was completed in December 2009.

Device outages due to equipment malfunctions in 2009 and 2010 were inspected at the time and no further action was required.

Tree trimming was last performed on this circuit in 2010. However, this circuit was recently reclassified from a rural circuit to an urban circuit. As a result, tree trimming will be performed on this circuit on a 4 year cycle instead of a 6 year cycle. As a result, this circuit is now scheduled for tree trimming in 2014.

Underground cable failures were repaired under DOJM Work Request numbers 25SC051754 and 25SC052894 which were completed in July 2011 and December 2011 respectively.

An overhead visual inspection and an underground visual inspection will be performed on this circuit in 2012. The repair work identified as a result of these inspections will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 638052 **Division** – Boone Trails **Area Served** – Wentzville, MO **SAIFI Value** – 0.50

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009 and 2010. This circuit was not a WPC in 2011. The SAIFI values for this circuit in the most recent three year period were: 136.0 in 2009, 19.0 in 2010, and 0.50 in 2011. However these SAIFI values were misleading as described in the following paragraphs.

This circuit was on the WPC list in 2009. However, the majority of the customers associated with this circuit were moved to a new Legion Trails substation, which was energized in December 2009. The customer count on this circuit was 712 when the outages recorded on this circuit occurred. At the end of 2009 only 1 customer remained on this circuit. If the original customer count were included, the overall SAIFI calculation for this circuit would have been 0.19.

At the beginning of 2010, 325 customers were moved to this circuit. However, at the end of 2010 this circuit was reconfigured, which reduced the customer count from 325 to 1. This reduced number of customers was used to calculate the SAIFI value which placed this circuit on the 2010 WPC list. If the original customer count were to be included, the overall SAIFI calculation for this circuit would have been 0.06. Therefore, no corrective actions are necessary for this circuit.

Corrective Actions:

No work is planned on this circuit in 2012.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 475052 **Division** – SEMO **Area Served** – Graniteville, MO **SAIFI Value** – 0.44

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009 and 2010. This circuit was not a WPC in 2011. The SAIFI values for this circuit in the most recent three year period were: 4.55 in 2009, 4.52 in 2010, and 0.44 in 2011. This shows that reliability has greatly improved in 2011. In 2011 there was one 14 minute circuit outage which was caused by a tree contact on the sub-transmission circuit. After a review of this circuit, no further action is required in 2012.

Corrective Actions:

An overhead visual and ground line inspection was performed on this circuit in 2009. This inspection identified poles which needed repair or replacement. These poles have been repaired or replaced in accordance with Ameren Missouri's infrastructure inspection policy.

Six miles of circuit 475052 were re-conductored in 2010, replacing aging pole hardware and conductors. Tap fusing was completed on the circuit under DOJM Work Request numbers 28IR033579, 28IR034453, and 28IR033581, all of which were completed in October and November of 2010.

A special overhead visual and infrared inspection was performed in 2010 which identified work that was repaired in 2010.

An overhead visual inspection was performed on this circuit in 2011. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

A new circuit tie was also established between the Graniteville 475052 and the Bismarck 473053 circuit allowing for switching operations during outages. This will reduce outage duration for some customers on this circuit. This work was performed under DOJM Work Request number 28IR035635 and completed in November 2011.

No additional reliability actions will be required for this circuit in 2012.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 147057 **Division** – Gateway **Area Served** – Creve Coeur, MO **SAIFI Value** – 0.32

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009 and 2010. This circuit was not a WPC in 2011. The SAIFI values for this circuit in the most recent three year period were: 3.53 in 2009, 2.92 in 2010, and 0.32 in 2011. This shows that reliability has greatly improved in 2011. This improvement is a result of the corrective actions taken in 2009 and 2010. This circuit serves 960 customers. The customer interruptions (CI) experienced on this circuit in 2011 were caused by weather. Circuit 147057 experienced one significant outage in 2011. This outage occurred when a tree broke during a wind storm which occurred on a day classified as a major event day.

Corrective Actions:

Tree trimming was performed on this circuit in 2011.

Risers, down guys, and overhead guys were replaced under DOJM Work Request number 21MT535589 which was completed in February 2012.

Overheated connectors were replaced under DOJM Work Request number 21MT531571 which was completed in March 2012.

An overhead visual inspection was performed on the circuit in 2011. The repair work identified as a result of the inspection will be performed in 2012 under DOJM Work Request numbers 21MT535583, 21MT535584, 21MT535585, 21MT535586, 21MT535587, 21MT535588, 21MT531572, 21MT531573, and 21MT543050.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 488052 Division – SEMO Area Served – Sunnen, MO SAIFI Value – 0.26

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009 and 2010. This circuit was not a WPC in 2011. The SAIFI values for this circuit in the most recent three year period were: 2.41 in 2009, 2.98 in 2010, and 0.26 in 2011. This shows that reliability has greatly improved in 2011.

Corrective Actions:

Reclosers were installed in 2009 at two locations on the circuit identified by the Multiple Device Interruption (MDI) program.

Tree trimming was last performed on this circuit in 2010.

Fuses were installed along the three phase backbone of the circuit in 2010. In addition, animal guards and reclosers were installed on various circuit taps in 2010.

An overhead visual inspection was performed on the circuit in 2011. The repair work identified as a result of the inspection was completed in accordance with Ameren Missouri's infrastructure inspection policy.

A new circuit tie was established between the Sunnen 488052 and the Potosi 484052 circuits allowing for switching operations during outages. This will reduce outage duration for some customers on this circuit. This work was performed under DOJM Work Request number 28IR034957 which was completed in September 2011.

A new SCADA controlled Viper recloser was installed in the circuit substation to replace the old 3 phase breaker in 2010. This improvement will eliminate 3 phase outages during single phase fault conditions.

An overhead visual inspection will be performed on this circuit in 2012. The repair work identified as a result of the inspection will be completed in accordance with Ameren Missouri's infrastructure inspection policy.

Multi-Year WPC Analysis and Remedial Action Report

Circuit Number – 795051 **Division** – Boone Trails **Area Served** – Wentzville, MO **SAIFI Value** – 0.05

Analysis Results:

This circuit is a Multi-Year Worst Performing Circuit (MWPC) based on its performance in 2009 and 2010. This circuit was not a WPC in 2011. The SAIFI values for this circuit in the most recent three year period were: 4.71 in 2009, 3.72 in 2010, and 0.05 in 2011. This shows that reliability has greatly improved in 2011. This improvement is a result of the corrective actions taken in 2009 and 2010. These are described below.

Corrective Actions:

An Intellirupter recloser was installed midway on this radial circuit in September 2009.

Tree trimming was performed on this circuit in 2010, which greatly reduced the number of outages caused by tree related problems.

17,000 feet of the distribution circuit was re-conductored and the associated poles replaced as part of a circuit reliability improvement project. This project was completed in September 2010.

The seven mile 34kV subtransmission line which serves Saverton was rebuilt over the last three years. The last section of this line was completed in 2011.

A project to replace poles and re-conductor the last 12,000 feet of the distribution circuit to eliminate splices in the #4 and #6 copperweld wire will be completed in 2012 under DOJM Work Request number 2WWZ144303.

Ameren Missouri 4 CSR 240-23.010 Electric Utility System Reliability Monitoring and Reporting Submission Requirements – <u>Annual Reliability Report</u>

Introduction

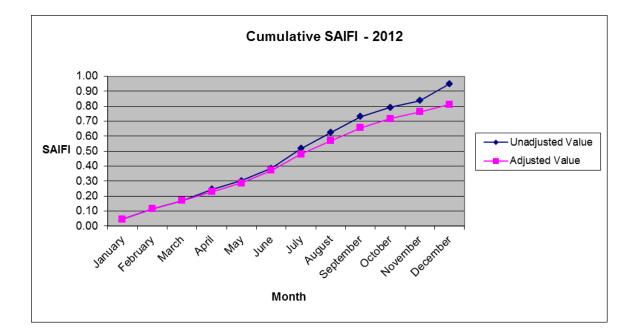
This report details Union Electric (dba Ameren Missouri) Company's annual reliability metrics and worst performing circuits for calendar year 2012 as required by Missouri Public Service Commission Rule 4 CSR 240-23.010, Electric Utility System Reliability Monitoring and Reporting Submission Requirements (referred to in the remainder of this document as "the Rule"). This report is required by Sections (2), (7), and (8) of the Rule which state, "The information required by section (1) shall be filed annually by the last business day of April of the calendar year following the calendar year for which the information was accumulated.... The information developed in accordance with section (6) shall be reported as part of the annual report required by section (2).... If on or after the time the annual report required by section (7) for calendar year 2011 is filled, a circuit has been on the worst performing circuit list for two (2) of the three (3) most recent consecutive calendar years the electrical corporation shall include detailed plans and schedules for improving the performance of that circuit in addition to the other information required by section (7)." This report will provide the reliability measures requested by the Rule, the list of Worst Performing Circuits (WPCs), including Multi-Year Worst Performing Circuits (MWPCs), and the actions taken or planned to improve the performance of these circuits.

Definitions

For the purposes of this report, the following definitions shall apply:

- 1. <u>System Average Interruption Frequency Index (SAIFI)</u> The average frequency of service interruptions in number of occurrences per customer (total number of customer interruptions divided by the total number of customers served).
- 2. <u>Customer Average Interruption Frequency Index (CAIFI)</u> The average number of interruptions per customer interrupted (total number of customer interruptions divided by the total number of customers affected).
- 3. <u>System Average Interruption Duration Index (SAIDI)</u> The average interruption in minutes per customer served (sum of all customer interruption durations divided by the total number of customers served).
- 4. <u>Customer Average Interruption Duration Index (CAIDI)</u> The average interruption duration (sum of all customer interruption durations divided by the total number of customers interrupted).

- 5. <u>Worst Performing Circuit (WPC)</u> A distribution circuit whose SAIFI value, adjusted to exclude major storm events per IEEE Standard 1366-2003, when compared to the SAIFI values for the other circuits in the Ameren Missouri system places it among the 5% of circuits with the highest SAIFI values in the Ameren Missouri system.
- 6. <u>Multi-Year Worst Performing Circuit (MWPC)</u> A distribution circuit whose SAIFI value has ranked it as a Worst Performing Circuit for any two (2) of the three (3) most recent consecutive calendar years.

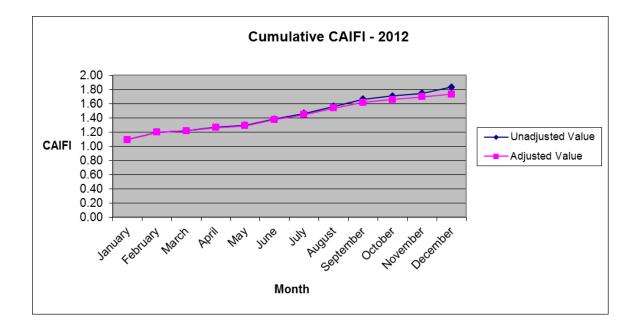


Reliability Metrics

4 CSR 240-23.010, section 3 states "The information required by section (1) shall be filed both unadjusted and adjusted to exclude major storm events per IEEE Standard 1366-2003, Guide for Electric Power Distribution Reliability Indices." The following tables and graphs show Ameren Missouri's unadjusted and adjusted reliability metrics for calendar year 2012:

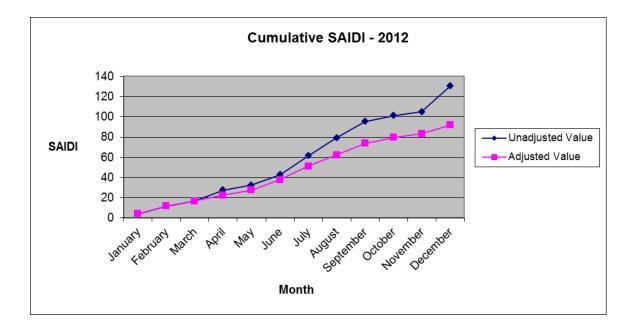
a .		
N A	A LEC	•
N	711.1	ι.

Month	Unadjusted Value	Adjusted Value
January	0.05	0.05
February	0.11	0.11
March	0.17	0.17
April	0.24	0.23
May	0.30	0.29
June	0.39	0.37
July	0.52	0.48
August	0.62	0.57
September	0.73	0.66
October	0.79	0.72
November	0.84	0.76
December	0.95	0.81

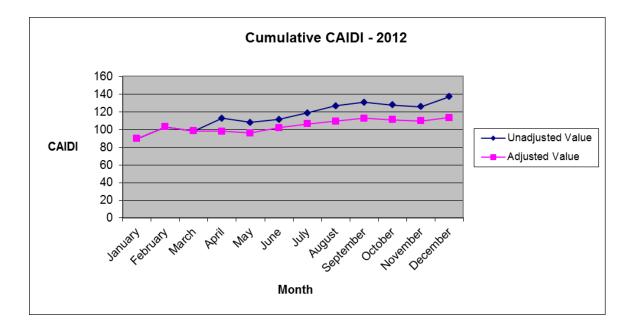


Page 3 of 7

CAIFI:


Month	Unadjusted Value	Adjusted Value
January	1.09	1.09
February	1.20	1.20
March	1.22	1.22
April	1.27	1.26
May	1.30	1.29
June	1.38	1.38
July	1.46	1.45
August	1.57	1.54
September	1.66	1.62
October	1.71	1.66
November	1.75	1.70
December	1.84	1.74

SAIDI:


Month	Unadjusted Value	Adjusted Value
January	4	4
February	12	12
March	17	17
April	28	23
May	33	28
June	43	38
July	61	51
August	79	62
September	95	74
October	101	79
November	105	83
December	130	92

CAIDI:

Month	Unadjusted Value	Adjusted Value
January	89	89
February	103	103
March	98	98
April	113	98
May	108	96
June	111	102
July	119	106
August	127	109
September	131	113
October	128	111
November	126	110
December	137	113

Ameren Missouri 2012 Worst Performing Circuits

Ameren Missouri has performed SAIFI calculations on all of its distribution circuits in accordance with section (6) of the Rule. The circuits have been ranked in order of descending 2012 SAIFI and the 5 percent of the circuits with the highest SAIFI values have been designated as Worst Performing Circuits (WPCs). Multi-Year Worst Performing Circuits (MWPCs) have also been identified. The 2012 WPCs, including those designated as MWPCs are listed in Appendix A. The circuit numbers for the MWPCs have been highlighted in red.

Ameren Missouri has analyzed each of the WPCs for the reasons the circuit qualifies as a WPC and the actions planned or taken to improve the WPC's performance have been included in Appendix B. Each of the MWPCs in Appendix B is identified with the title "Multi-Year WPC Analysis and Remedial Action Report". The MWPC reports contain detailed information regarding work completed or planned to improve the performance of each of the MWPCs as required by the Rule.

Multi-year Worst Performing Circuits not on the 2012 WPC list

The MWPCs circuits not identified as WPCs in 2012 but which were WPCs in 2010 and 2011 are listed in Appendix C. Appendix D details the actions taken and/or planned to improve the performance of these circuits.

Conclusion

This report satisfies the reporting requirements of 4 CSR 240-23.010 for the calendar year 2012. The reported reliability metrics demonstrate continued improvement in the reliability of Ameren Missouri's electric distribution system. With an adjusted SAIFI value of .81, Ameren Missouri's customers now experience, on average, less than one extended outage per year. The reported analyses and corrective actions for the Worst Performing Circuits also demonstrate Ameren Missouri's high level of focus on improving reliability and our full commitment to satisfying both the intent and the requirements of this rule.