Daliana Coban Regulatory Counsel Toronto Hydro-Electric System Limited 14 Carlton Street Toronto, ON M5B 1K5

Telephone: 416.542.2627 Facsimile: 416.542.3024 <u>regulatoryaffairs@torontohydro.com</u> www.torontohydro.com

November 28, 2014

via RESS – signed original to follow by courier

Ms. Kirsten Walli Board Secretary Ontario Energy Board PO Box 2319 2300 Yonge Street, 27th floor Toronto, ON M4P 1E4

Dear Ms. Walli:

Re: Toronto Hydro-Electric System Limited ("Toronto Hydro") Custom Incentive Rate-setting Application for 2015-2019 Electricity Distribution Rates and Charges – Outstanding Undertaking Response OEB File No. EB-2014-0116

Toronto Hydro writes to the Ontario Energy Board ("OEB") in respect of the above-noted matter.

On November 24, 2014, Toronto Hydro filed its responses to all undertakings provided at the Technical Conference on November 17 and 18, 2014, with the exception of Undertaking TCQ J1.7. Enclosed is the response to this Undertaking.

Please do not hesitate to contact me if you have any questions.

Yours truly,

[original signed by]

Daliana Coban Regulatory Counsel Toronto Hydro-Electric System Limited regulatoryaffairs@torontohydro.com

:encl.

:DC\acc

cc: Charles Keizer and Crawford Smith Intervenors of Record for EB-2014-011

UNDERTAKING NO. J1.7 and Response to Member Quesnelle''s Question Posed 1 during the Evidence Presentation": 2 3 **Reference(s):** 4 5 6 To calculate the financial life of a portion of the assets and economic life of a portion of 7 the assets, on a best efforts basis and provide it if it is relevant; otherwise advise if it is 8 not relevant. 9 10 11 **RESPONSE:** 12 In the course of the Evidence Conference, Member Quesnelle asked Toronto Hydro to 13 comment on the relationship between the financial treatment of assets (i.e., Financial 14 Useful Life) and the optimal replacement strategy embodied in the steady state concept 15 (i.e., Economic End-of-Life). What follows in this response demonstrates that the 16 financial assumptions that are made for financial reporting purposes have a dynamic 17 relationship to good engineering, system care and economic decision-making. 18 19

The distribution system is in steady state when the backlog of assets operating beyond end-of-life and hence the aggregate operating (or lifecycle) cost is effectively minimized. Toronto Hydro uses a variety of measures to inform its judgment regarding the optimal replacement strategy, which balances system needs with value for ratepayers. (These concepts are explained in Exhibit 2B, Section D.)

25

As indicated in the evidence, the most compelling approach from an economic perspective is to immediately replace the backlog of assets operating beyond end-of-life so that the cost of ownership would be balanced sooner. However, Toronto Hydro has adopted a paced approach for the CIR application. The utility's capital needs currently exceed depreciation. Capital expenditures are expected to converge towards deprecation over time if the investments reflected in the application are made as and when required.

8 While capital costs and depreciation are expected to converge, this not the same as saying 9 that the Financial Useful Life of assets (i.e., depreciation periods) will converge with 10 their Economic End-of-Life values (i.e., optimal replacement time). These two measures 11 are fundamentally different. The financial lives are based on the range of expected 12 service lives of asset classes as derived from the 2009 "Useful Life of Assets" study.¹ In 13 contrast, the economic lives are determined on an individual basis for each asset based on 14 its particular age and condition (if information is available) and its risk cost.²

¹⁶ For these reasons, Economic End-of-Life could not be used to calculate the Financial

17 Useful Life and associated depreciation expense under MIFRS. The economic lives of

- individual assets within an asset class can vary substantially (for an example see
- ¹⁹ Undertaking J1.15) and can change based on changes in system configuration. Thus
- 20 economic lives do not offer a consistent and stable metric for recovery of capital cost."
- 21
- The intent of this undertaking and the other two undertakings that were provided with respect to the concept of "useful life" (namely J1.14 and J1.16) is to facilitate a

¹ Prepared by Kinectrics for Toronto Hydro and filed in EB-2010-0142 (Exhibit Q1, Tab 2)

² Risk cost is largely a product of the excess cost to replace an asset on an emergency basis and the interruption cost experienced by customers if it fails, which in turn is based on each individual asset's particular configuration within the distribution system.

1	comparison of three useful life metrics that Toronto Hydro utilizes – Financial Useful							
2	Life, Useful Life, and Economic End-of-Life – and to explain the relationship between							
3	the metrics and how they relate to Toronto Hydro's capital needs.							
4								
5	In the response that follows, Toronto Hydro provides: (1) definitions of the three							
6	metrics; (2) an explanation of how these metrics are derived and applied in Toronto							
7	Hydro's financial and investment planning policies and processes; and (3) a table, filed as							
8	Appendix A, comparing the asset age values for each of the three concepts for various							
9	asset classes.							
10								
11	Metrics Definitions							
12								
13	The three metrics in question are defined as follows:							
14	 Financial Useful Life (also previously referred to as "depreciation life") is the 							
15	period over which an asset is depreciated, resulting in depreciation expense.							
16	 Useful Life (also referred to as "end-of-life" or previously referred to as 							
17	"engineering end-of-life") is the mean service life of the asset. This metric is							
18	used as part of the Current-State System Analysis to determine the percentage of							
19	assets at, approaching or beyond their useful lives, and is also used as one of							
20	several inputs in the failure probability calculation for assets within the Feeder							
21	Investment Model (FIM).							
22	 Economic End-of-Life (also known as "Optimal Intervention Time") is used to 							
23	determine the intervention time of an existing asset, based upon the optimal							
24	relationship between the minimum life cycle cost of the new asset to be installed							
25	and the existing asset's risk cost. See Exhibit 2B, Section D3, Figure 3, page 8,							
26	which is reproduced on page 6 of this response.							

-	
2	Generally, Toronto Hydro uses these metrics and models as tools and indicators to inform
3	decision-making processes. Planning engineers consider the Useful Life and Economic
4	End-of-Life metrics and use their outputs to inform their exercise of professional
5	judgment in the management of asset risk and system reliability. Financial Useful Life is
6	used to account for Toronto Hydro's rate base. Ultimately, decisions whether to replace
7	assets sooner or later than on the basis of one or more of these indicators are based on a
8	number of considerations that must be taken into account in prudent utility management
9	and investment. These include operating characteristics, execution considerations,
10	customer needs, and service obligations.
11	
12	The following subsections further explain how these metrics are applied in Toronto
13	Hydro's financial and investment planning policies and processes.
14	
15	Financial Useful Life
15 16	Financial Useful Life
15 16 17	Financial Useful Life Based upon the conclusions of the independent detailed review of useful lives conducted
15 16 17 18	Financial Useful Life Based upon the conclusions of the independent detailed review of useful lives conducted by Kinectrics (please refer to the 2009 Kinectrics "Useful Life of Assets" report filed in
15 16 17 18 19	Financial Useful Life Based upon the conclusions of the independent detailed review of useful lives conducted by Kinectrics (please refer to the 2009 Kinectrics "Useful Life of Assets" report filed in EB-2010-0142 at Exhibit Q1, Tab 2), Toronto Hydro implemented certain changes in
15 16 17 18 19 20	Financial Useful Life Based upon the conclusions of the independent detailed review of useful lives conducted by Kinectrics (please refer to the 2009 Kinectrics "Useful Life of Assets" report filed in EB-2010-0142 at Exhibit Q1, Tab 2), Toronto Hydro implemented certain changes in accounting estimates related to the manner in which it records and accounts for its
15 16 17 18 19 20 21	Financial Useful Life Based upon the conclusions of the independent detailed review of useful lives conducted by Kinectrics (please refer to the 2009 Kinectrics "Useful Life of Assets" report filed in EB-2010-0142 at Exhibit Q1, Tab 2), Toronto Hydro implemented certain changes in accounting estimates related to the manner in which it records and accounts for its property, plant and equipment in accordance with the OEB's reporting standards. The
 15 16 17 18 19 20 21 22 	Financial Useful Life Based upon the conclusions of the independent detailed review of useful lives conducted by Kinectrics (please refer to the 2009 Kinectrics "Useful Life of Assets" report filed in EB-2010-0142 at Exhibit Q1, Tab 2), Toronto Hydro implemented certain changes in accounting estimates related to the manner in which it records and accounts for its property, plant and equipment in accordance with the OEB's reporting standards. The changes in estimates of Financial Useful Lives of assets were reflected in the
 15 16 17 18 19 20 21 22 23 	Financial Useful Life Based upon the conclusions of the independent detailed review of useful lives conducted by Kinectrics (please refer to the 2009 Kinectrics "Useful Life of Assets" report filed in EB-2010-0142 at Exhibit Q1, Tab 2), Toronto Hydro implemented certain changes in accounting estimates related to the manner in which it records and accounts for its property, plant and equipment in accordance with the OEB's reporting standards. The changes in estimates of Financial Useful Lives of assets were reflected in the corresponding depreciation and amortization balances in Toronto Hydro's financial
 15 16 17 18 19 20 21 22 23 24 	Financial Useful Life Based upon the conclusions of the independent detailed review of useful lives conducted by Kinectrics (please refer to the 2009 Kinectrics "Useful Life of Assets" report filed in EB-2010-0142 at Exhibit Q1, Tab 2), Toronto Hydro implemented certain changes in accounting estimates related to the manner in which it records and accounts for its property, plant and equipment in accordance with the OEB's reporting standards. The changes in estimates of Financial Useful Lives of assets were reflected in the corresponding depreciation and amortization balances in Toronto Hydro's financial statements effective January 1, 2011, and in Toronto Hydro's last rebasing application
 15 16 17 18 19 20 21 22 23 24 25 	Financial Useful Life Based upon the conclusions of the independent detailed review of useful lives conducted by Kinectrics (please refer to the 2009 Kinectrics "Useful Life of Assets" report filed in EB-2010-0142 at Exhibit Q1, Tab 2), Toronto Hydro implemented certain changes in accounting estimates related to the manner in which it records and accounts for its property, plant and equipment in accordance with the OEB's reporting standards. The changes in estimates of Financial Useful Lives of assets were reflected in the corresponding depreciation and amortization balances in Toronto Hydro's financial statements effective January 1, 2011, and in Toronto Hydro's last rebasing application (EB-2010-0142). The Financial Useful Lives were within the ranges provided by

1

Useful Life 2

3

Useful Life values are also derived from the 2009 Kinectrics "Useful Life of Assets" 4

report. As previously explained in the interrogatory response to OEB Board Staff 36 (b), 5

the Useful Life is calculated by identifying the mid-point between the "minimum useful 6

life" and the "maximum useful life" values as defined within the Kinectrics report. Many 7

of the hazard rate distribution functions used to determine the age-based failure 8

probability within the FIM for a given asset have been calibrated using these Useful Life 9

values. These values are also used as part of the Current-State System Analysis 10

(explained in Section D3.1.1.1 of Toronto Hydro's Distribution System Plan) in order to 11

determine the replacement value of assets prior to, approaching or exceeding their useful 12 lives.

13

14

Economic End-of-Life 15

16

The figure below provides a graphical representation of Economic End-of-Life. On the 17 left side of the figure, the life cycle cost of a new asset (illustrated by the blue curve) is 18 calculated by performing the simple sum of the annualized capital cost (illustrated by the 19 green curve) and the annualized risk cost (illustrated by the orange curve). 20

21

The annualized capital cost is derived from the cost of replacing the existing asset with 1 the new asset – this cost has been annualized as a yearly cost across the life-cycle of the 2 new asset. The minimum life-cycle cost - also referred to as the Equivalent Annualized 3 Cost (EAC) – will be cross-referenced against the existing asset's risk cost curve – 4 illustrated by the red curve on the right side of the figure – in order to determine the 5 optimal intervention time, also known as the Economic End-of-Life of the existing asset. 6 At this point, it becomes more cost-efficient to replace the existing asset than to continue 7 8 operating it.

9

10 Comparison of Metrics Values

11

12 To compare the three metrics, Toronto Hydro has included a table in Appendix A that

13 shows the Financial Useful Life for each of Toronto Hydro's distribution asset classes,

along with the Useful Life and Economic End-of-Life for each of these classes where

15 applicable and available. The Economic End-of-Life results are presented as a range of

values because these values vary from asset to asset. In contrast, Financial Useful Life

and Useful Life values are in each case the same for all assets within a given asset class.
 3

Please note that the Useful Life and Economic End-of-Life results in Appendix A have not been provided for all Financial Useful Life asset classes. Useful Life is given only for the subset of asset classes where this metric is applied within the AM Planning Process. Ranges of Economic End-of-Life values are currently unavailable for certain asset classes because they have not been modeled or there is insufficient data for the purposes of this exercise.

10

11 Conclusion

12

Toronto Hydro's capital needs for the five-year CIR period are demonstrated by the 13 number of assets operating beyond Useful Life and the rate at which existing assets 14 continue to reach the end of Useful Life (i.e., the 26% and 7% figures shown on Slide 8 15 of Exhibit EC1). The backlog of assets requiring renewal in the 2015-2019 period are 16 already operating well beyond their Economic End-of-Life. As a consequence, within 17 this period, the FIM is a tool to establish the relative priority of program expenditures. 18 As detailed in slide 24 of the Evidence Conference (Exhibit EC1), Toronto Hydro uses a 19 number of decision-support systems to plan investments. The capital plan that Toronto 20 21 Hydro has proposed is a consequence of engineering judgment based on rigorous asset management processes and tools, assumptions and data points, all of which are informed 22 by, but not solely based on, the metrics and indicators of useful life discussed in this 23 response. 24

Toronto Hydro-Electric System Limited EB-2014-0116 Technical Conference Schedule J1.7 Appendix A Filed: 2014 Nov 28 Page 1 of 2

	Asset	USoA Account Number	USoA Account Description	Depreciation	Useful Life		Economic End of Life 1		
				Oserui Lite			Min	Mid	Max
	Poles	1830	Poles, Towers and Fixtures	40 - 50	Poles - Wood, Concrete, Steel	45	3	61	100*
	OH Switch		Overhead Conductors and Devices	30	OH Switch - Load Break	40	2	27	100*
		1835			OH Switch - Disconnect	45	1	32	83
					OH Switch - SCADAMATE	40	2	11	100*
	O/H SMD - 20 Switches	1835	Overhead Conductors and Devices	45	NA		NA	NA	NA
	OH Primary Conductors	1835	Overhead Conductors and Devices	50	OH Primary Conductor	64	NA	NA	NA
	OH Secondary Conductors	1855	Services	50	OH Secondary Conductor	64	NA	NA	NA
	OH Transformers	1850	Line Transformers	30	OH TX	35	1	39	114*
	Power Transformers	1815	Transformer Station Equipment - Normally Primary Above 50 kV	32	Stations - Power TX	44	NA	NA	NA
		1820	Distribution Station Equipment - Normally Primary Below 50 kV	32			NA	NA	NA
	AC Station Service Equip (TS)	1815	Transformer Station Equipment - Normally Primary Above 50 kV	32	NA		NA	NA	NA
	AC Station Service Equip (MS)	1820	Distribution Station Equipment - Normally Primary Below 50 kV	32	NA		NA	NA	NA
	Stations Grounding Transformer	1820	Distribution Station Equipment - Normally Primary Below 50 kV	25 - 30	NA		NA	NA	NA
	Stations - DC Batteries	1820	Distribution Station Equipment - Normally Primary Below 50 kV	10	Stations - DC Batteries	10	NA	NA	NA
	Storage Battery Equipment	1825	Storage Battery Equipment	15	NA		NA	NA	NA
	DC Station Service Battery Charger	1820	Distribution Station Equipment - Normally Primary Below 50 kV	20	NA		NA	NA	NA
Stations	Stations Switchgear	1820	Distribution Station Equipment - Normally Primary Below 50 kV	40	Stations - Switchgear Enclosures	50	NA	NA	NA
	Substation Equipment - Outdoor Breaker	ion Equipment - 1820 rr Breaker 1820	Distribution Station Equipment - Normally Primary Below 50 kV	30	CB - Air Blast	40	NA	NA	NA
					CB - Magnetic Air	43	NA	NA	NA
					CB - SF6	45	NA	NA	NA
					CB - Vacuum	45	NA	NA	NA
					CB - Oil	45	NA	NA	NA
	Transformer Station Equip - Disconnect Switch	1815	Transformer Station Equipment - Normally Primary Above 50 kV	30	NA		NA	NA	NA
	Substation Equipment - Disconnect Switch	1820	Distribution Station Equipment - Normally Primary Below 50 kV	30	NA		NA	NA	NA
	Digital & Numeric Relays	1980	System Supervisory Equipment	20	NA		NA	NA	NA
	Transformer Station Equip - Steel Structure & OH Bus	1815	Transformer Station Equipment - Normally Primary Above 50 kV	35	NA		NA	NA	NA
	Transformer Station Equip - Steel Structure & OH Bus	1820	Distribution Station Equipment - Normally Primary Below 50 kV	35	NA		NA	NA	NA
	UG Primary Cable - PILC	1845	Underground Conductors and Devices	60	UG Primary Cable - PILC	75	31	100	100*
	UG Primary (Direct Buried)	rimary (Direct Buried) 1845	Underground Conductors and Devices	20	UG Primary Cable - DB Jacketed	40	23	49	100
					UG Primary Cable - DB Unjacketed	23	8	36	66
					UG Primary Cable - Conduit, Jacketed	50	21	62	100*

Toronto Hydro-Electric System Limited EB-2014-0116 Technical Conference Schedule J1.7 Appendix A Filed: 2014 Nov 28 Page 2 of 2

	Asset	USoA Account Number	USoA Account Description	Depreciation	Useful Life		Economic End of Life 1		
				Usetul Lite				Mid	Max
	U/G Dist Lines And Feeders -	1845	Underground Conductors and Devices	40	UG Primary Cable - Conduit, Unjacketed	50	17	52	100*
	Frinary Cable in Duct				UG Primary Cable - Concrete, Unjacketed	50	20	63	100*
					UG Primary Cable - Concrete, Jacketed	50	21	62	100*
	UG Secondary Cable Direct Buried	1845	Underground Conductors and Devices	20	UG Secondary Cable - DB	23	NA	NA	NA
	UG Secondary Services - Direct Buried	1855	Services	20		20	NA	NA	NA
це	UG Secondary Cable - In Duct	1845	Underground Conductors and Devices	40	UG Secondary Cable - Conduit	50	NA	NA	NA
00	UG Secondary Services - In Duct	1855	Services	40			NA	NA	NA
					UG Network Units - Fibertop	30	12	47	67
	UG Network Transformers	1850	Line Transformers	20	UG Network Units - Semi-Dust-Type	30	3	44	100*
					UG Network Units - Submersible	30	2	100	100*
	LIG Transformore	1950	Line Transformers	20	UG TX - Pad-Mounted	35	3	21	90
	UG Transformers	1850		50	UG TX - Submersible	33	3	21	100*
	Vaulta	1940	Underground Conduit	40	Civil - Network Vaults	60	5	70	100*
	Vuuts	1040		40	Civil - UG Submersible Tx Vault	60	NA	NA	NA
	Vault Roofs	1840	Underground Conduit	20	Civil - Network Vaults Roofs	25	NA	NA	NA
	Vault Switches	1845	Underground Conductors and Devices	30	UG Switch - Minirupter	40	3	32	100*
	UG Switches - Padmount 1845 Switchgear 1845	1845	Underground Conductors and Devices	20	UG Switch - PMH	30	7	100	100*
		1045			UG Switch - SF6	40	8	26	100*
					UG Switch - SF6 PAD SCADA	35	10	100	100*
	Civil - Duct Structures	1840	Underground Conduit	30	NA		NA	NA	NA
	Cable Chambers	1840	Underground Conduit	50	Civil - Cable Chambers	65	NA	NA	NA
	Cable Chambers - Roof	1840	Underground Conduit	20	Civil - Cable Chambers Roof	25	NA	NA	NA
	System Supervisory	1835	System Supervisory Equipment	30	NA		NA	NA	NA
	Equipment	1980	System Supervisory Equipment	15 - 30	NA		NA	NA	NA
	Residential Energy Meters	1860	Meters	25	Residential Energy Meters	18	NA	NA	NA
	Industrial/Commercial Energy Meters	1860	Meters	25	Industrial/Commercial Energy Meters	18	NA	NA	NA
	Wholesale Energy Meters	1860	Meters	25	Wholesale Energy Meters	18	NA	NA	NA
Meters	Current & Potential Transformer (CT & PT)	1860	Meters	25 - 40	Current & Potential Transformer (CT & PT)	18	NA	NA	NA
		1860	Meters	15		18	NA	NA	NA
	Smart Meters	1970	Load Management Controls - Customer Premises	10	Smart Meters	18	NA	NA	NA

Note 1: In some cases, the Economic End-of-Life results at the minimum range will indicate assets at a very young age that require replacement – this may be due to the manner in which these assets are connected, as a significant amount of customers may experience an outage should those assets fail. In these instances, the FIM could be indicating that it is worthwhile to reconfigure the existing state of assets such that a reduced amount of customers are exposed to an impact of failure. On the maximum end of the range, there are certain assets that have received Economic End-of-Life results of 100 or 114 years of age (marked with asterisks in this table) – in actuality, these Economic End-of-Life results represent the limits of the time domain that is being evaluated within the FIM, and the actual Economic End-of-Life results in these instances may be a higher age beyond these time intervals.