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1. INTRODUCTION AND SUMMARY 

1.1 Introduction 

Portland General Electric (“PGE” or “the Company”) is preparing to file for an 

increase in the base rates that recover the cost of its non-fuel inputs.  Benchmarking is useful 

in assessing the reasonableness of its request.  Managers use benchmarking today to gauge 

how well their companies are doing.  Benchmarking also plays a growing role in regulation.   

The personnel of Pacific Economics Group (“PEG”) Research LLC have extensive 

experience in utility performance research and incentive regulation, fields with a common 

foundation in economic statistics.  Testimony quality benchmarking studies are a company 

specialty.  We pioneered the use of scientific benchmarking methods in North American 

regulation.  Company president and senior author Mark Newton Lowry has testified on 

benchmarking in numerous proceedings.   

PGE has retained PEG Research to undertake an assessment of its recent operating 

performance.  Separate studies were requested of non fuel operation and maintenance 

(“O&M”) expenses for generation and for distribution, customer care, and administration 

(“DCA”).1  We have also been asked to benchmark the Company’s distribution reliability. 

Following a brief summary of the work below, Chapter 2 provides an introduction to 

benchmarking and discusses our research methodology.  Portland General Electric is 

described in Chapter 3.  Our empirical research on DCA expenses is discussed in Chapter 4 

and that for power generation expenses in Chapter 5.  Chapter 6 provides a discussion of our 

reliability research.  Some technical details of the research are presented in the Appendix. 

1.2 Summary of Research 

Guided by economic theory, we developed mathematical models of the impact that 

various quantifiable business conditions have on the DCA and non-fuel generation O&M 

expenses of electric utilities.  The parameters of the models, which measure cost impact, 

were estimated statistically using historical data on utility operations.  Models fitted with 

                                                 
1 Power transmission expenses were excluded from the study because it is difficult to capture in a  
benchmarking study the oversized role that the Bonneville Power Administration plays in providing PGE with 
transmission services.    
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econometric parameter estimates and the business conditions that PGE faces were used as 

benchmarks.  All estimates of the key model parameters were plausible and highly 

significant.  We believe that this is the best practice approach to utility performance 

benchmarking given the data that are available in the United States today.    

The econometric cost research was based on a sample of good quality data for 105 

U.S. power distribution and 54 power generation utilities.  The sample period was 1995 to 

2008 for DCA and 2001-2007 for generation.   The samples are large and varied enough to 

permit the development of highly credible cost models.  The data used in model estimation 

were drawn from the Federal Energy Regulatory Commissions (“FERC”) Form 1 and other 

respected public sources.  The DCA expenses of PGE were found to be about 11% below 

the benchmarks generated by the econometric model on average from 2006 to 2008.  The 

Company’s non-fuel generation expenses were found to be about 5% below the benchmarks 

on average over the same period.  

To benchmark the power reliability performance of PGE we used two metrics: the 

System Average Interruption Duration Index (“SAIDI”) and the System Average 

Interruption Frequency Index  (“SAIFI”).  We compared PGE’s reliability indices to 

benchmarks using econometric reliability models developed using standardized and publicly 

available data from 40 U.S utilities. These models quantified the impact of several business 

conditions on the reliability metrics.  PGE’s SAIDI and SAIFI were found to be 67% and 

48%, respectively below the benchmarks yielded by our econometric models on average 

from 2006 to 2008.  Statistical tests revealed that these were significantly superior reliability 

performances. 
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2.  AN INTRODUCTION TO BENCHMARKING 

In this section of the report we introduce some important benchmarking concepts.  

The econometric benchmarking method used in the study is explained.  More technical 

details of our methodology are discussed in the Appendix.   

2.1 What is Benchmarking? 

The word benchmark originally comes from the field of surveying.  The Oxford 

English Dictionary defines a benchmark as 

A surveyors mark, cut in some durable material, as a rock, wall, gate pillar, 

face of a building, etc. to indicate the starting, closing, ending or any suitable 

intermediate point in a line of levels for the determination of altitudes over 

the face of a country. 

The term has subsequently been used more generally to indicate something that can be used 

as a point of comparison in performance appraisals.   

A quantitative benchmarking exercise commonly involves one or more gauges of 

activity.  These are sometimes called key performance indicators (“KPIs”).  The value of 

each indicator achieved by an entity under scrutiny is compared to a benchmark value that 

reflects a performance standard.  Given data on the cost of PGE and a certain cost 

benchmark we might, for instance, measure its cost performance by taking the ratio of the 

two values:   

Cost Performance = CostPGE/CostBenchmark.    

Benchmarks are often developed using data on the operations of agents that are 

involved in the activity under study.   Statistical methods are useful in both the calculation of 

benchmarks and the comparison process.  An approach to benchmarking that prominently 

features statistical methods is called statistical benchmarking. 

Various performance standards can be used in benchmarking.  These often reflect 

statistical concepts.  One sensible standard is the average performance of the utilities in the 

sample.   
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2.2 External Business Conditions 

For costs and many other kinds of KPIs, it is widely recognized that differences in 

the values of the indicators that companies achieve depend partly on differences in 

performance and partly on differences in the business conditions that they face.  In cost 

research these conditions are sometimes called cost “drivers”.2  The performance of a 

company depends on the KPI value that it achieves given the business conditions that it 

faces.  Benchmarks must therefore reflect local business conditions if they are to embody a 

chosen performance standard faithfully.   

Economic theory is useful in identifying cost drivers and controlling for their 

influence in benchmarking.  We begin by positing that the actual cost incurred by a 

company is the product of the minimum achievable cost and an efficiency factor.3  The goal 

of cost benchmarking is then to accurately estimate the efficiency factor.   

Consider now that, under certain reasonable assumptions, cost functions exist that 

relate the minimum cost of an enterprise to business conditions in its service territory. When 

the focus of benchmarking is a subset of the entire series of inputs, cost theory shows that 

the minimum cost depends on the prices of the included inputs, output quantities, and on the 

amounts of other inputs that the company uses.  This means that a fair appraisal of the 

efficiency with which a utility uses O&M inputs depends on the quantities of capital inputs 

that it owns. 

 Cost theory allows for the existence of multiple output variables in a cost function.  

This is important because it is often impossible to accurately measure the workload of a 

utility using only one output variable.  The cost of power distribution may depend, for 

example, on the volume of power delivered as well as the number of customers served.  It is 

also noteworthy that theory allows for the possibility that numerous business conditions 

other than input prices and output quantities can affect the minimum cost of service.   

                                                 
2 Business conditions that influence reliability indicators may, similarly, be called reliability drivers.  
3 Minimum achievable cost is a hypothetical notion and cannot be precisely calculated for specific utilities. 
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2.3 Econometric Benchmarking 

2.3.1 Basic Assumptions   

Relationships between the KPIs of utilities and the business conditions that they face 

can be estimated using statistics.  A branch of statistics called econometrics has developed 

procedures for estimating the parameters of economic models using historical data.4  The 

parameters of a cost function, for example, can be estimated using historical data on the 

costs incurred by a group of utilities and the business conditions that they faced.  The sample 

used in model estimation can be a time series consisting of data over several years for a 

single company, a cross section consisting of one observation for each of several companies, 

or a “panel” data set that pools time series data for several companies.   

Econometric research involves certain critical assumptions.  The most important 

assumption, perhaps, is that the values of some economic variables (called dependent or left-

hand side variables) are functions of certain other variables (called explanatory or right hand 

side variables) and error terms.  In a cost model, cost is the dependent variable and the cost 

drivers are the explanatory variables.  The explanatory variables are generally assumed to be 

independent in the sense that their values are not influenced by the values of dependent 

variables. 

The error term in an econometric model for a KPI is the difference between the 

actual value of the indicator and the value predicted by the model.  It reflects imperfections 

in the development of the model.  The imperfections may include the mismeasurement of  

external business conditions, the exclusion from the model of relevant business conditions, 

and the failure of the model to capture the true form of the underlying functional 

relationship.  Error terms are, in effect, a formal acknowledgement of the fact that the model 

is unlikely to provide a full explanation of the variation in the values of the KPIs for 

sampled utilities.   

It is customary to assume that error terms are random variables with probability 

distributions that are determined by additional parameters, such as mean and variance, that 

can be estimated.  This practice has several uses in econometric benchmarking.  For 

example, tests can be constructed for the hypothesis that the parameter for a business 
                                                 

4 The act of estimating model parameters is sometimes called regression analysis. 
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condition variable under consideration for inclusion in a KPI model equals zero.  A variable 

can be deemed a statistically significant cost driver if this hypothesis is rejected at a high 

level of confidence.  In a benchmarking study used in utility regulation it is sensible to 

exclude from the model candidate business condition variables that do not have statistically 

significant parameter estimates, as well as those with implausible parameter estimates. 

2.3.2 KPI Predictions and Performance Appraisals  

 A cost function fitted with econometric parameter estimates may be called an 

econometric cost model.  A function for a reliability indicator such as SAIDI fitted with 

econometric parameter estimates may be called an econometric reliability model.  We can 

use such models to predict a company’s KPI values given local values for the business 

condition variables.  These predictions are econometric benchmarks.  KPI performance is 

measured in year t by comparing a company’s KPI value in that year to the value projected 

for that year by the econometric model. 5   

2.3.3 Testing Efficiency Hypotheses 

In econometric benchmarking, as in other approaches to benchmarking, there is 

naturally uncertainty about the accuracy of the “best guess” benchmark.  One advantage of 

the econometric approach to benchmarking is that we can use econometric theory to identify 

a range of benchmark values, called a confidence interval, that encompasses the true 

benchmark value at a certain (e.g. 90%) confidence level.  Confidence intervals developed 

from econometric results do more than provide us with indications of the accuracy of a 

benchmarking exercise.  In particular, they permit us to test hypotheses regarding cost 

efficiency.  Suppose, for example, that we use a sample average efficiency standard and 

compute the confidence interval for the benchmark that corresponds to the 90% confidence 

                                                 
5 Suppose, for example, that we wish to benchmark the distribution expenses of a hypothetical electric utility 
called Western Power.  We might then predict the cost of Western in period t using the following model. 

.ˆˆˆˆ
,2,10, tWesterntWesterntWestern WaNaaC ⋅+⋅+=  

Here tWesternC ,
ˆ  denotes the predicted cost of the company, tWesternN ,  is the number of customers it serves, and 

tWesternW , measures its wage rate.  The 0â , 1â , and 2â  terms are parameter estimates.  Performance might 
then be measured using a formula such as 

.ˆ
,

,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
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level.  It is then possible to test the hypothesis that the company has attained the benchmark 

standard of efficiency.  If, for example, the company’s actual cost exceeds the best guess 

benchmark generated by the model but nonetheless lies within the confidence interval this 

hypothesis cannot be rejected.  In other words, the company is not a significantly inferior 

cost performer.  Suppose, alternatively, that the company’s cost is below the cost predicted 

by the model by enough to be outside the confidence interval.  We may then conclude that it 

is a significantly superior cost performer.   

An important advantage of efficiency hypothesis tests is that they take into account 

the accuracy of the benchmarking exercise.  As we have tried to emphasize, there is 

uncertainty involved in the prediction of benchmarks.  These uncertainties are properly 

reflected in the confidence interval that surrounds the point estimate (best single guess) of 

the benchmark value.  The confidence interval will be greater the greater is the uncertainty 

regarding the true benchmark value.  If uncertainty is great, our ability to draw conclusions 

about operating efficiency is hampered. 

2.3.4 Functional Form 

Econometric research requires the choice of a form for the functional relationship 

between a KPI and the business conditions that influence it.  It is generally desirable to 

permit some flexibility in the form that is specified since the true form of the relationship 

between a KPI and the corresponding business conditions is usually unknown.  We attempt 

to accomplish this by adding some quadratic terms (e.g labor price x labor price) and 

interaction terms (e.g. labor price x delivery volume) to our models.  The other terms in the 

model (i.e. those that are not quadratic or interaction terms) are called “first order” terms. 

2.3.5 Multiple Equation Cost Models 

Economic cost benchmarking is sometimes undertaken with multiple equation cost 

models.  For example, non-fuel O&M expenses might be benchmarked with a model that 

consists of an O&M cost function and a cost share equation for labor that addresses the 

share of the expenses that is spent on labor.   

A rigorous multiple equation approach to cost modeling that includes one or more 

share equations is generally preferable to the single equation approach.  The chief advantage 

results from the fact that economic theory suggests that the parameters of the cost function 
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and share equations are linked.  More data can thus be used in the estimation of cost model 

parameters.  This increases the prospects for developing a cost benchmarking model that 

accurately reflects the effects of external business conditions.  We have followed this 

approach in both cost studies described in this report.      
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3. AN INTRODUCTION TO PORTLAND GENERAL ELECTRIC 

PGE is a vertically integrated U.S. electric utility based in Portland, Oregon.  

Metropolitan Portland is the heart of its service territory.  Service is provided, additionally, 

to numerous smaller towns outside the metro area that are located in the northern Willamette 

Valley.  The company has about 800,000 retail customers.  Residential and commercial 

customers account for the great bulk of retail demand.   

The company has a remarkably diverse power supply mix.  In 2008, self-generation 

accounted for only 66% of retail sales.  Power is purchased from a diverse mix of vendors 

that consist primarily of publicly held hydro generators in the Pacific Northwest and a 

number of independent power producers.   

About 43% of self-generation capacity is coal-fired.  This includes the Boardman 

plant, a 1980 vintage facility located on the Columbia River near Umatilla, and the Colstrip 

plant, located in eastern Montana, which PGE co-owns with several other companies.  

About 41% of generated power is obtained from other fossil-fuel plants.  These consist 

chiefly of gas-fired combined cycle units.  The remaining 16% of PGE’s generation output 

is obtained from hydroelectric facilities, which are located to the south and east of Portland 

in the Cascade Mountains.  The largest of these is the Pelton-Round Butte facility near 

Madras on the eastern slope.   

            The Company owns and operates almost 1,600 miles of transmission line.  The need 

for such lines is reduced by several circumstances.  PGE has a compact service territory and 

most of the Company’s own power generation is located fairly close to Portland.  A 

substantial share of all purchased power, as well as power from the distant Colstrip plant, is 

delivered to the Company over transmission lines owned by the Bonneville Power 

Administration. 
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4. POWER DISTRIBUTION RESEARCH 

4.1 Data 

The primary sources of the cost and quantity data used in our empirical research for 

PGE were the Federal Energy Regulatory Commission (“FERC”) Form 1 and Form EIA 861 

(“Annual Electric Utility Report”).  Our data for both of these sources were gathered by 

SNL, a reputable commercial vendor.  Major investor-owned electric utilities in the United 

States are required by law to file both forms annually.  Data reported on the FERC Form 1 

must conform to the FERC’s Uniform System of Accounts.  Details of these accounts can be 

found in Title 18 of the Code of Federal Regulations. 

Data were considered for inclusion in the sample from all major U.S. investor-owned 

electric utilities that filed the FERC Form 1 in 2008 and had substantial involvement in 

power distribution and customer care.6  To be included in the study the data were required, 

additionally, to be plausible and not unduly burdensome to process.  Data from 105 

companies were used in the power distribution research.  These companies are listed in 

Table 1.  The sample period was 1995-2008.  The resultant data set has 1,446 observations.7  

This sample is large and varied enough to permit econometric identification of numerous 

O&M cost drivers and reasonably accurate estimation of their cost impact.       

Other sources of data were also accessed in the research.  Some of these sources are 

used to measure input prices, and included the Bureau of Labor Statistics (“BLS”) of the 

U.S. Department of Labor for labor prices and Global Insight for electric utility material and 

service (“M&S”) prices.  Data on weather related variables and the number of gas customers 

served were obtained from the National Climatic Data Center and gas distributor filings to 

state Commissions, respectively. 

4.2 Definition of Variables 

4.2.1 Cost 

Cost figures play a key role in our research for PGE.  The expenses used in the DCA 

benchmarking work are reported O&M expenses for distribution, customer accounts,  

                                                 
6 We excluded from the sample some utilities that were primarily engaged in power generation or transmission.  
7 Some observations for companies with data included in the sample were excluded due to data problems. 



Alabama Power Metropolitan Edison  
AmerenUE MidAmerican Energy  
Appalachian Power Minnesota Power
Arizona Public Service Monongahela Power  
Atlantic City Electric MDU Resources Group 
Avista Narragansett Electric  
Baltimore Gas and Electric Nevada Power  
Bangor Hydro-Electric Northern Indiana Public Service  
Black Hills Power Northern States Power - MN
Carolina Power & Light Northern States Power - WI
Central Hudson Gas & Electric Ohio Edison
Central Illinois Light Ohio Power  
Central Illinois Public Service Oklahoma Gas and Electric  
Central Maine Power Orange and Rockland Utilities 
Central Vermont Public Service Otter Tail  
Cleco Power Pacific Gas and Electric  
Cleveland Electric Illuminating PacifiCorp
Columbus Southern Power PECO Energy
Commonwealth Edison Pennsylvania Electric  
Connecticut Light and Power Pennsylvania Power  
Consolidated Edison Pennsylvania Power & Light
Consumers Energy Portland General Electric  
Dayton Power and Light Potomac Edison  
Delmarva Power & Light Potomac Electric Power  
Detroit Edison Public Service Company of Colorado
Duke Energy Carolinas Public Service Company of New Hampshire
Duke Energy Indiana Public Service Company of New Mexico
Duke Energy Ohio Public Service Company of Oklahoma
Edison Sault Electric Public Service Electric and Gas  
El Paso Electric  Puget Sound Energy 
Empire District Electric  Rochester Gas & Electric
Entergy Arkansas San Diego Gas & Electric  
Entergy Mississippi Sierra Pacific Power  
Fitchburg Gas and Electric Light  South Carolina Electric & Gas  
Florida Power & Light  Southern California Edison  
Florida Power  Southern Indiana Gas and Electric   
Georgia Power  Southwestern Electric Power  
Green Mountain Power  Southwestern Public Service  
Gulf Power  Superior Water, Light and Power  
Idaho Power  Tampa Electric  
Illinois Power  Toledo Edison  
Indiana Michigan Power  Tucson Electric Power
Indianapolis Power & Light  United Illuminating  
Kansas City Power & Light Upper Peninsula Power  
Kansas Gas and Electric  Virginia Electric Power
Kentucky Power  West Penn Power  
Kentucky Utilities  Western Massachusetts Electric  
Kingsport Power  Westar Energy
Lockhart Power Wheeling Power
Louisville Gas and Electric  Wisconsin Electric Power  
Madison Gas and Electric  Wisconsin Power & Light
Maine Public Service  Wisconsin Public Service
Massachusetts Electric  

105 sampled utilities

Table 1

SAMPLE OF UTILITIES IN THE DCA COST RESEARCH
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customer service and information, sales, and administration less franchise fees and expenses 

for pensions and benefits.  We routinely exclude pension and benefit expenses from our cost 

benchmarking work on the grounds that they are volatile, vary with accounting practices, 

and are to a considerable degree beyond the control of utility management.   

4.2.2 Output Measures 

Two output measures are used in the DCA cost model.  One is the annual average 

number of customers served.  The other is the megawatt hours of residential and commercial 

retail deliveries.8   

4.2.3 Input Prices 

Cost theory also suggests that the prices paid for production inputs are relevant 

business condition variables.  In this model, we have specified price indexes for labor and 

M&S inputs.9  We expect cost to be higher the higher are the values of both indexes.  

The labor price index used in this study is constructed by PEG Research personnel 

using BLS data.  Occupational Employment Statistics (“OES”) data for 2008 are used to 

construct wage rate comparisons for each utility’s service territory.  An average wage 

comparison is calculated using cost share weights that correspond to the electric utility 

industry for the U.S. as a whole.  Values for other years are calculated by adjusting the index 

level in the focus year for changes in regionalized BLS indexes of employment cost trends 

in the utility sector. 

Prices for material and service (“M&S”) O&M inputs are assumed to have a 25% 

local labor content and therefore tend to be a little higher in regions with higher labor prices.  

They are escalated by a summary M&S input price index constructed by PEG Research 

from detailed Global Insight electric utility M&S indexes.   

4.2.4 Other Business Conditions 

Seven other business condition variables are included in the DCA cost model.  These 

variables measure conditions that affect the cost of providing DCA services.  One of these 

variables measures the extent of system overheading.  System overheading involves higher 
                                                 

8 Industrial and other retail deliveries are excluded because they tend to have considerably less cost impact per 
MWh.  
9 Cost is divided by the M&S input price so that this variable does not appear explicitly in the model. 
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O&M expenses over the years because lines are more exposed to the challenges posed by 

local weather (e.g. high winds and ice storms), flora, and fauna10.  The variable used to 

capture the extent of overheading is the share of overhead distribution plant in the total gross 

value of overhead and underground plant.  The FERC Form 1 is the source of the plant value 

data.    

A second additional business condition variable is a measure of the demand side 

management (“DSM”) work being done by each utility.  Due to a lack of explicit itemization 

of DSM expenses on the FERC Form 1, these expenses are difficult to remove from the 

costs subject to benchmarking.  A control variable is therefore needed and we use for this 

purpose the share of customer service and information (“CS&I”) expenses in the total 

distribution, customer account, and CS&I expenses on FERC Form 1.  This approach makes 

sense because DSM expenses are usually reported as a CS&I expense and loom large in 

these expenses when DSM programs are large.  Given this, we would expect that the higher 

the value of the variable the higher DCA cost would be.  We expect the corresponding 

parameter estimate to have a positive sign.  

The third added business condition variable is the number of customers for which a 

utility provides gas service.  Simultaneous provision of delivery and customer care services 

to gas and electric customers involves opportunities to share inputs that economists call 

economies of scope.  We therefore expect a utility’s reported electric O&M expenses to be 

lower the higher is the number of gas customers served.  The parameter estimate should 

have a negative sign. 

The average heating degree days in each utility’s service territory is the fourth 

additional business condition variable in the model. This variable captures the cost 

associated with operating under severe winter weather conditions.  We expect the 

corresponding parameter estimate to be positive. 

The company’s net generation volume is the fifth business condition variable. This 

variable was included to capture the extra administrative costs of running a generation 

operation.  We expect the parameter estimate for this variable to have a positive sign.  

A sixth added variable is the average precipitation in the service territory.  This 

serves as a proxy for forestation, which raises distributor O&M cost due to tree trimming 
                                                 

10 Maintenance of underground distribution facilities occurs less frequently but can be quite costly. 
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and maintenance activities.  Thus, we expect the parameter estimate corresponding to this 

variable to be positive. 

The econometric model also contains a trend variable.  This permits predicted cost to 

shift over time for reasons other than changes in the specified business conditions.  The 

trend variable captures the net effect on cost of diverse conditions, such as technological 

change, that are otherwise excluded from the model.  Parameters for such variables typically 

have a negative sign in statistical cost research. 

4.3 Parameter Estimates 

            Estimation results for the cost model are reported in Table 2.  In this and the other 

three tables that present econometric results, we shade results for first order terms for reader 

convenience.  These tables also report the values of the t-ratios that correspond to each 

parameter estimate.  A parameter estimate is deemed statistically significant if the 

hypothesis that the true parameter value equals zero is rejected.  This statistical test requires 

the selection of a critical value for the t ratio.  In this study, we employed a critical value that 

is appropriate for a 90% confidence level given a large sample.  The value of the t-ratio 

corresponding to this confidence level is about 1.6.  The t-ratios are used in model 

specification.  All first order terms were required to have statistically significant and 

sensibly-signed parameter estimates.       

Table 2 and the other tables of econometric results also report p values.  These are 

alternative indicators of the statistical significance of parameter estimates.  A parameter 

estimate that is significant at no more than a 90% confidence level has a p value of 0.10.  

Examining the results in Table 2, it can be seen that all of the parameter estimates for 

first order terms are statistically significant and plausible as to sign and magnitude.  At the 

sample mean, cost was found to be higher the higher were the values of the two scale-related 

variables.  A 1% increase in the number of customers served is estimated to raise O&M 

expenses by 0.82%.  A 1% hike in the residential and commercial delivered volume is 

estimated to raise cost by 0.13% in the long run.  Thus, the number of customers served is 

 

 

 



WL = Labor Price
N = Number of Customers

VRC = Residential & Commercial Delivery Volume
DSM = Share of CS&I in Distribution and Customer Care O&M
POH = Percent of Distribution Plant Overhead

NG = Number of Gas Customers
G = Net Generation

HDD = Average Heating Degree Days
P = Average Precipitation

Trend = Time Trend

COST DRIVER
PARAMETER 

ESTIMATE T-STATISTIC P-VALUE COST DRIVER
PARAMETER 

ESTIMATE T-STATISTIC P-VALUE

WL 0.360 108.99 0.000 DSM 0.028 6.742 0.000
WLWL 0.093 2.41 0.016
WLN -0.009 -0.69 0.489 POH 0.144 7.732 0.000
WLVRC -0.012 -1.03 0.305

NG -0.003 -2.609 0.009
N 0.817 31.06 0.000
NN 0.381 2.88 0.004 G 0.059 7.152 0.000
NVRC -0.387 -3.12 0.002

HDD 0.009 10.075 0.000
VRC 0.128 4.80 0.000
VRCVRC 0.377 3.17 0.002 P 0.019 1.848 0.065

Trend -0.015 -13.893 0.000

Constant 12.300 918.586 0.000

System Rbar-Squared 0.969

Sample Period 1995-2008

Number of Observatio 1446

Table 2

Econometric Model of Distribution, Customer Care, and 
Administrative O&M Expenses

VARIABLE KEY
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the chief output related driver of DCA expenses.  Cost was also higher the higher was the 

labor price. 

The parameter estimates for the additional business condition variables were also 

sensible.  DCA O&M expenses are 

• higher the higher is the apparent amount of DSM work undertaken;  

• higher the greater is the extent of distribution system overheading;   

• lower the larger is the number of gas customers served; 

• higher the greater is the winter weather severity; 

• higher the more generation work a utility undertakes; and 

• higher the greater is the amount of precipitation. 

The estimate of the trend variable parameter suggests a 1.5% annual downward shift in cost 

for reasons other than the trends in the included business condition variables.   

The table also reports the system-R2 statistic for the model.  This is a widely used 

measure of the ability of the model to explain variation in the sampled costs of distributors.  

Its value is about 0.97, suggesting that the explanatory power of the model was high.   

4.4 Business Conditions of PGE 

Table 3 compares the average values of the business conditions that PGE faced over 

the 2006-2008 period to the average values for the full DCA cost sample.  It can be seen that 

the company’s DCA O&M expenses were only 0.91 times the sample mean.  The number of 

customers served was, meanwhile, 0.96 times the mean, while residential and commercial 

deliveries were 0.95 times the mean and the net generation volume was 0.67 times the mean.  

Regarding input prices, the table shows that the labor prices faced by PGE were about 1.12 

times the sample mean and the M&S price index was 1.03 times the mean.   

     As for the other business condition variables, DSM programs are administered by an 

independent agency in Oregon, so the share of CS&I was only 0.59 times the mean.  The 

percentage of plant that is overhead was 0.89 times the mean. This is a reflection of the 

company’s substantially urbanized service territory.  There are no gas customers to provide 

opportunities for scope economies. Average precipitation was 0.98 times the mean, whereas 

the average heating degree days was 0.84 times the mean.  

 



Table 3

Comparison of PGE's Distribution, Customer Care and A&G
 Business Conditions To Full Sample Norms

Business Condition Units PGE Full Sample

Distribution, Customer Care and Administrative O&M Cost Dollars ('000) 210,311 230,404 0.91

Retail Customers Count 800,324 837,134 0.96

Residential and Commercial Retail Deliveries MWh 15,200,311 15,987,694 0.95

Net Generation MWh 9,757,415 14,636,447 0.67

Labor Price Index Number 0.938 0.840 1.12

Other O&M Input Price Index Number 1.239 1.205 1.03

Percent Customer Service and Information Expenses Percent 0.071 0.120 0.59

Percent of Distribution Plant that is Overhead Percent 0.564 0.632 0.89

Gas Customers Count 0 183,721 0.00

Average Precipitation Inches 35.889 36.704 0.98

Heating Degree Days Degree Days 4,239 5,036 0.84

Mean Values 2006-2008 PGE 
Mean/Sample 

Mean
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4.5 Benchmarking Results   

         Table 4 presents the results of our econometric appraisal of PGE’s average DCA O&M 

expenses for the 2006-2008 period.  The company’s cost was about 11% below the model’s 

prediction on average.  However, we cannot reject the hypothesis, at the 90% confidence 

level, that the company was an average DCA cost performer over this period.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Year Difference (%)

2006 -15.7%
2007 -10.9%
2008 -7.2%

2006-2008 Average -11.2%

Table 4

Comparison of Actual and 
Predicted DCA Expenses for 

PGE
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5.  POWER GENERATION RESEARCH 

5.1 Data 

The primary source of the cost and output data used in our research on power 

generation cost is the FERC Form 1.  Other sources of data were also accessed in the power 

generation research.  Data on generation capacity originated in Form EIA – 860 (“Annual 

Electric Generator Report”) and a predecessor data source, Form EIA – 767 (“Annual Steam 

Electric Plant Operation and Design Report”).  We once again rely on SNL compilations.  

The input price data were obtained from the same sources mentioned in the power 

distribution section.   

Data from 54 companies were used in the power generation research.  The sample is 

smaller than that used in the DCA cost research because many U.S. utilities that provide 

distribution services have restructured and no longer provide generation services.  The 

companies included in the sample are listed in Table 5.  The sample period for model 

estimation was 2001-2007.11  The resultant data set has 374 observations.12  This sample is 

large and varied enough to permit econometric identification of several generation cost 

drivers and reasonably accurate estimation of their likely cost impact.       

5.2 Definition of Variables 

5.2.1 Cost and Output Measures 

The generation cost addressed in our study is total power production O&M expenses 

less fuel and purchased power expenses.  In addition to Purchased Power expenses as 

reported on the FERC Form 1, we also exclude the Other Expenses category of Other Power 

Supply Expenses.  We believe that large and volatile costs that are often commodity-related 

are sometimes reported in this category.   One output measure is used in the generation 

O&M cost model: the total annual megawatt hours of net generation.   

 

 
                                                 

11 We have less confidence in some of the SNL capacity data before 2001.  The requisite capacity data for 2008 
are not yet available for all sampled companies. 
12 Some observations for companies in the sample were excluded due to data problems. 



Alabama Power  MidAmerican Energy  
AmerenUE Minnesota Power
Appalachian Power  Mississippi Power  
Arizona Public Service  Montana Dakota Utilities
Avista Nevada Power  
Black Hills Power Northern Indiana Public Service
Carolina Power & Light  Northern States Power - MN
Cleco Power Ohio Power  
Columbus Southern Power  Oklahoma Gas and Electric  
Consumers Energy  Otter Tail Corporation
Dayton Power and Light  PacifiCorp
Detroit Edison  Portland General Electric  
Duke Energy Carolinas Public Service Company of Colorado
Empire District Electric  Public Service Company of New Hampshire
Entergy Mississippi Public Service Company of New Mexico
Florida Power & Light  Public Service Company of Oklahoma
Florida Power Corporation Puget Sound Energy
Georgia Power  Sierra Pacific Power  
Gulf Power  South Carolina Electric & Gas
Idaho Power Southern Indiana Gas and Electric
Indiana Michigan Power  Southwestern Electric Power  
Indianapolis Power & Light  Southwestern Public Service  
Kansas City Power & Light  Tampa Electric  
Kentucky Power  Virginia Electric and Power  
Kentucky Utilities  Westar Energy (KPL)
Louisville Gas and Electric  Wisconsin Power and Light  
Madison Gas and Electric  Wisconsin Public Service

54 sampled utilities

Table 5

SAMPLE OF UTILITIES IN GENERATION COST RESEARCH
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5.2.2 Input Prices 

As discussed in Chapter 4, cost theory suggests that the prices paid for production 

inputs are relevant business condition variables.  We include price indexes for two kinds of 

inputs in the model.  The labor price index is the same as that discussed in Chapter 4.  The 

M&S input price index was calculated using data on prices of generation M&S inputs from 

Global Insight.13  Like its DCA counterpart, we assume a 25% local labor content for this 

index so that its value is a little higher in areas of higher salaries and wages. 

5.2.3 Other Business Conditions 

Five other business condition variables are included in the generation cost model.  

One is the total generation capacity. Capacity is an important supplemental cost driver 

because the non-fuel O&M expenses associated with it can be substantial even when it is 

idle.  Data on capacity are processed from EIA 860 data on individual power plants.  Our 

research team aggregated the nameplate capacity of each sampled utility’s power plants to 

arrive at a total capacity figure.  We expect that O&M expenses will be higher the higher is 

the amount of generation capacity.  The parameter estimate should therefore have a positive 

sign.   

Two other business condition variables included in the model are the shares of 

generating capacity owned by each company that are coal-fired and nuclear-fueled.  These 

variables are designed to capture any tendency for O&M expenses to vary with the kind of 

generating plant that companies own.  We expect the parameter estimates corresponding to 

both variables to have positive signs.   

The fourth business condition variable in the model is the percentage of capacity that 

is scrubbed for sulfur.  Cost should be higher the higher is this share.  We therefore expect 

the corresponding parameter estimate to be positive.  The econometric model also contains a 

trend variable.  We have noted that the parameters for such variables typically have a 

negative sign in statistical cost research.   

                                                 
13 Cost is divided by the generation M&S price so that it does not appear as a right hand side variable in the 
model. 
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5.3 Parameter Estimates 

Estimation results for the cost model are reported in Table 6.  Examining the results, 

it can be seen that all of the model parameter estimates for first order terms are statistically 

significant and plausible as to sign and magnitude.   At sample mean values of the business 

condition variables, a 1% hike in the generation volume was estimated to raise cost 0.36%.  

A 1% increase in generation capacity was estimated to raise cost 0.48%.  Here are the results 

for the other business condition variables.   

• Cost was higher the greater was the labor price. 

• Cost was higher the greater were the percentages of capacity that were coal-

fired or nuclear. 

• Cost was also higher the greater was the percentage of capacity that was 

scrubbed for SO2. 

• The estimate of the trend variable parameter suggests a 1.1% annual increase 

in cost over time for reasons other than the trends in the business condition 

variables.   

The table also reports the system R2 statistic for the model.  This is a widely used measure of 

the ability of the model to explain variation in the sampled costs of distributors.  Its value 

was about 0.95, suggesting that the explanatory power of the model was high. 

5.4 Business Conditions of PGE 

Table 7 compares the average values of the generation business conditions that PGE 

faced from 2005 to 2007 to the average values for the sample.  It can be seen that the 

company’s generation O&M expenses were only 0.31 times the sample mean.  The net 

generation volume was 0.34 times the mean, while the generation capacity was 0.40 times 

the mean.  The table also shows that the labor price faced by PGE was about 1.15 times the 

sample mean.14   

Turning to the additional business conditions, PGE had no nuclear capacity.  The 

share of its generation capacity that was coal-fired capacity was only 0.61 times the mean.  

The share of capacity that was scrubbed for sulfur was only 0.71 times the mean.    

                                                 
14 This comparison differs from that in the DCA sample because that sample includes a number of utilities in 
California and the northeast and north central U.S.  



WL = Labor Price
YG = Net Generation Volume
KG = Total Generation Capacity

PCN = % of Capacity Nuclear
PCC = % of Capacity Coal
PCS = % of Capacity that is Scrubbed

Trend = Time Trend

COST DRIVER
PARAMETER 

ESTIMATE T-STATISTIC P-VALUE COST DRIVER
PARAMETER 

ESTIMATE T-STATISTIC P-VALUE

WL 0.370 76.73 0.000 PCN 0.187 24.35 0.000
WLWL 0.091 1.54 0.125
WLYG -0.014 -0.86 0.389 PCC 0.197 8.44 0.000
WLKG 0.044 2.63 0.009

PCS 0.019 2.14 0.033
YG 0.360 7.50 0.000
YGYG -0.253 -1.72 0.086 Trend 0.011 3.77 0.000
YGKG 0.262 1.69 0.092

Constant 11.053 267.39 0.000
KG 0.477 9.68 0.000
KGKG -0.241 -1.40 0.162

System Rbar-Squared 0.946

Sample Period 2001-2007

Number of Observations 374

Table 6

Econometric Model of Non-Fuel Generation O&M Expenses
VARIABLE KEY



Table 7

Comparison of PGE's Generation Business Conditions 
To Full Sample Norms

Business Condition Units PGE Full Sample

Generation O&M Cost Dollars ('000) 56,114 178,362 0.31

Net Generation MWh 8,477,820 24,634,374 0.34

Total Capacity MW 2,247 5,551 0.40

Labor Price Index 0.908 0.790 1.15

Other O&M Input Price Index 1.495 1.441 1.04

Percent Capacity Nuclear Percent 0 0.058 0.00

Percent Capacity Coal Percent 0.325 0.533 0.61

Percent of Total Capacity that is Scrubbed Percent 0.141 0.200 0.71

Mean Values 2005-2007 PGE Mean/Sample 
Mean
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5.5 Benchmarking Results  

Table 8 presents the results of our econometric appraisal of PGE’s generation O&M 

expenses for the 2006-2008 period.  The Company’s expenses were found to be about 5% 

below the model’s projection on average.  We cannot, at a 90% confidence level, reject the 

hypothesis that the company was an average cost performer.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Year Difference (%)

2006 0.7%
2007 -10.0%
2008 -5.9%

2006-2008 Average -5.1%

Comparison of Actual and 
Predicted Generation 

Expenses for PGE

Table 8
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6.  RELIABILITY RESEARCH 

We discuss our benchmarking study of the reliability of power distribution service in 

this section.  We start by looking at the measures of distribution reliability followed by the 

data used in the study.  We then present our benchmarking models used to assess PGE’s 

performance. 

6.1 Definitions 

There are many dimensions of service quality in power distribution.  Our focus here 

is on reliability of power delivery to electric end-users as measured by service continuity 

and, in case of disruption, rapid restoration of service.  Continuous access to electric power 

is essential to the functioning of modern homes and businesses.  The essential nature of 

power demand makes interruptions in power delivery costly to customers.  Power 

distribution utilities are therefore expected to design and operate distribution networks to 

assure reliable deliveries.  Even well-run delivery systems are, however, subject to 

disruption from accidents and weather conditions.  When disruptions occur, distribution 

companies are expected to restore service promptly.  

The specific indicators that utilities use to gauge reliability vary somewhat from 

company to company, but there are broad similarities among the types of performance 

indicators used for this purpose.  These metrics gauge mostly the frequency and duration of 

power interruptions.  The two most typical measures used in utility regulation are: 

• SAIDI, the number of minutes of sustained power interruptions that is 

experienced annually by an average customer on the system 

• SAIFI, the number of sustained interruptions that is experienced annually by 

an average customer on the system 

Public utility commissions in some jurisdictions mandate reliability standards based on these 

indices.  The definition of “sustained” outages and events that can be excluded from index 

calculations, called major event days (“MEDs”), vary.  In order to ensure comparability of 

SAIDI and SAIFI definitions used in our study, we collected and used only indices that 

reflect standards set up by the Institute of Electrical and Electronic Engineers (“IEEE”).  In 

its “Guide for Electric Distribution Reliability Indices,” standard number P1366, the IEEE 
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sets up definitions of sustained outages and MEDs.  Sustained outages are those that last at 

least five minutes and MEDs are based on what it calls the beta method. This method sets up 

threshold values, only above which outages are recorded, based on log averages and 

standard deviations of daily outage data for the past five years for each utility. Essentially, 

an MED is based on the experience of each utility standardized in the same way, and permits 

the smoothing of reliability data that can be affected by extraordinary and severe weather 

conditions. 

6.2 Data 

There are two primary sources for the IEEE standard based reliability indices used in 

this study.  The first is public utility commissions that monitor reliability as part of their 

regulatory activities and make information available either on their website or upon request.  

The second main source of these data is utilities that for other reasons collect reliability 

information and calculate indices using the IEEE definitions.  We were able to collect data 

from 40 major electric utilities.  The list of these utilities is given in Table 9.  The sample is 

large and varied enough to permit the identification of several reliability drivers.  These 

utilities had IEEE based reliability data for differing years, the most comprehensive being 

the years 1998-2008 while the most typical was the years 2003-2008.  Ultimately, the 

dataset used to benchmark reliability performance had 248 observations.  The sources for 

the other data used in our reliability benchmarking research are the same ones detailed in the 

DCA cost benchmarking section. 

6.3 Reliability Benchmarking Models 

We developed reliability benchmarking models for both SAIDI and SAIFI. The 

SAIDI model explains system average outage duration using customer density (as measured 

by the number of customers per distribution line mile), percent plant overhead, forestation, 

precipitation, heating degree days, and a trend variable. The SAIFI model includes all of the 

above variables, except plant overhead, and uses cooling degree days instead of heating  

 

 

 

 



Avista Northern States Power - Minnesota
Baltimore Gas & Electric  Ohio Edison  
Bangor Hydro-Electric  Ohio Power  
Central Maine Power  Oklahoma Gas and Electric  
Cincinnati Gas & Electric  Otter Tail Power  
Cleveland Electric Illuminating  Pacific Gas and Electric  
Columbus Southern Power  Pennsylvania Electric  
Commonwealth Edison  Pennsylvania Power  
Dayton Power & Light  Portland General Electric  
Duquesne Light  Potomac Electric Power  
Georgia Power  PSI Energy Inc
Indianapolis Power & Light  Public Service Company of Colorado
Kansas City Power & Light  Public Service Company of New Mexico 
Kentucky Power  Public Service Company of Oklahoma
Kentucky Utilities  Puget Sound Energy
Louisville Gas and Electric  Southern California Edison  
Maine Public Service  Southern Indiana Gas and Electric  
Metropolitan Edison  Toledo Edison  
Minnesota Power Union Light Heat & Power  
Northern Indiana Public Service  West Penn Power   

40 sampled utilities

SAMPLE OF UTILITIES USED IN RELIABILITY RESEARCH

Table 9
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degree days as explanatory variables.  In addition, a quadratic (i.e. “squared”) term of the 

number of customers is featured in both models.15 

The econometric results for the SAIDI model are presented in Table 10 and those for 

the SAIFI in Table 11.  Inspecting the results in Table 10, it can be seen that the higher the 

density the shorter was the SAIDI, while overhead plant, forestation, and precipitation 

increased outage duration. We also note a 0.2% annual increase in SAIDI over the sample 

period for reasons other than trends in the included business condition variables. We can 

observe similar estimates in the SAIFI model.  Inspecting the results in Table 11 we find that 

SAIFI was lower with greater customer density, but higher with more forestation, 

precipitation, and cooling degree days, which is a proxy for the severity of summer heat.  

The parameter estimate of the trend term in this model indicates a 1.0% annual decline in 

outage frequency.  In both models, the parameter estimates for most of the quadratic terms 

are significant, suggesting the desirability of flexible functional forms for reliability 

modeling. 

Table 12 presents a comparison of the average values of SAIDI, SAIFI and all right 

hand side variables used in the models for the 2006 – 2008 period.  The SAIDI and SAIFI 

values experienced by PGE were 49% and 58%, respectively, of the sample means.  In 

addition, compared to the sample average over the same period PGE  

• had 19% more customer density; 

• had 10% less overhead plant; 

• had 57% more forestation; 

• had 58% less cooling degree days; 

• had 4% less precipitation; and 

• served 14% fewer customers. 

6.4 Benchmarking Results 

Tables 13 and 14 present the results of our econometric appraisal of PGE’s SAIDI 

and SAIFI, respectively, for the 2006-2008 period.  PGE’s SAIDI value was 67% below its 

 

                                                 
15 Recall that the SAIDI and SAIFI metrics already include the number of customers served in the 
denominator.  



NMD Customers per Distribution Line Mile
POH % Distribution Plant Overhead

PF % of Forestation
P Average Precipitation
N Number of Customers

RELIABILITY 
DRIVER

PARAMETER 
ESTIMATE T-STATISTIC P-VALUE

RELIABILITY 
DRIVER PARAMETER ESTIMATE T-STATISTIC P-VALUE

NMD -0.255 -5.003 0.000 PF 0.222 7.388 0.000
NMDNMD -0.368 -3.057 0.002 PFPF 0.037 1.679 0.094

P 0.192 3.969 0.000
POH 0.485 6.362 0.000 PP -0.108 -2.039 0.043
POHPOH 1.019 7.034 0.000 NN -0.031 -3.569 0.000

Trend 0.002 0.337 0.737

Constant 4.866 88.989 0.000

Sample Period Varies, typically 2003-2008 Rbar-Squared 0.352

Number of Observations 248

Table 10

Econometric Model of SAIDI
VARIABLE KEY



NMD Customers per Distribution Line Mile
PF % of Forestation
CDD Cooling Degree Days
P Average Precipitation
N Number of Customers

COST DRIVER
PARAMETER 

ESTIMATE T-STATISTIC P-VALUE COST DRIVER
PARAMETER 

ESTIMATE T-STATISTIC P-VALUE

NMD -0.152 -3.975 0.000 CDD 0.097 3.525 0.001
NMDNMD -0.067 -0.709 0.479 CDDCDD -0.033 -1.805 0.072

PF 0.255 8.932 0.000 P 0.232 5.015 0.000
PFPF 0.104 5.280 0.000 PP 0.081 2.029 0.044

NN 0.034 4.286 0.000

Trend -0.010 -2.079 0.039

Sample Period Varies, typically 2003-2008 Constant 0.217 4.732 0.000

Number of Observations 248 Rbar-Squared 0.394

Table 11

Econometric Model of SAIFI

VARIABLE KEY



Table 12

Comparison of PGE's Reliability Variables  
To Full Sample Norms

Business Condition Units PGE Full Sample

SAIDI Minutes 71.835 147.448 0.49

SAIFI Count 0.727 1.264 0.58

Customers per Distribution Line Mile Ratio 45.228 37.956 1.19

Percent Distribution Plant Overhead Percent 0.56 0.63 0.90

Percent of Service Teritory that is Forested Percent 0.63 0.40 1.57

Cooling Degree Days Degree Days 465 1103 0.42

Precipitation Inches 37.37 38.75 0.96

Number of Customers Count 800,324 925,436 0.86

Mean Values 2006-2008 PGE Mean/Sample 
Mean



Year Difference (%)

2006 -68.8%
2007 -72.1%
2008 -61.1%

2006-2008 Average -67.4%

Table 13

Comparison of Actual and 
Predicted SAIDI for PGE



Year Difference (%)

2006 -46.7%
2007 -53.0%
2008 -43.0%

2006-2008 Average -47.6%

Table 14

Comparison of Actual and 
Predicted SAIFI for PGE
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benchmark on average over the last three years of the sample, 2006-2008, while its average 

SAIFI value was about 48% below its benchmark over the same time period.  We rejected, 

at a 90% confidence level, the hypotheses that PGE was an average SAIDI and SAIFI 

performer during these years.  We conclude instead that PGE was a significantly superior 

reliability performer. 
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APPENDIX 

This section provides additional and more technical details of our empirical research.  

Form of the Model 

Specific forms must be chosen for functions used in econometric research.  Forms 

commonly employed by scholars include the linear, the double log and the translog.  Here is 

a simple example of a linear cost model.  For each company h in year t, 

ththth WaNaaC ,,, ⋅+⋅+= 210
16  [A1] 

 Here is an analogous cost model of double log form. 

ththth WaNaaC ,,, lnlnln 210 ⋅+⋅+=         [A2] 

The expression “ln” here indicates a natural logarithm.  In a double log model the values of 

the dependent variable and both business condition variables are logged.  This specification 

has the effect of making the parameter corresponding to each business condition variable the 

elasticity of cost with respect to the variable.  For example, the 1a  parameter indicates the % 

change in cost resulting from 1% growth in the number of customers.  Elasticity estimates 

are informative and make it easier to assess the reasonableness of model results.  It is also 

noteworthy that, in a double log model, the elasticities are constant in the sense that they are 

the same for every value that the KPI and the corresponding business condition variables 

might assume.17  This is restrictive, and may be inconsistent with the true form of the 

relationship that we are trying to model.    

Here is an analogous cost model of translog form     

thththth

thththth

NWaWWa

NNaWaNaaC
th

,,,,

,,,, ,

lnlnlnln

lnlnlnlnln

54

3210

⋅⋅+⋅⋅+

⋅⋅+⋅+⋅+=
 [A3] 

This form differs from the double log form in the addition of quadratic and interaction 

terms.  Quadratic terms such as thth NN ,, lnln ⋅  permit the elasticity of cost with respect to 

each business condition variable to differ at different values of the variable.  The elasticity 

of cost with respect to the output variable may, for example, be lower for a small utility than 

                                                 
16 The terms in this model were defined in the footnote on page 8.  
17 Cost elasticities are not constant in the linear model that is exemplified by equation [A1].   
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for a large utility that has exhausted its opportunities to realize incremental scale economies.  

Interaction terms like thth NW ,, lnln ⋅  permit the elasticity of cost with respect to one business 

condition variable to depend on the value of another such variable.  For example, the 

elasticity of cost with respect to growth in the number of customers served may depend on 

the price of labor in the service territory.   

The translog form is an example of “flexible” functional form.  Flexible forms can 

accommodate a greater variety of possible relationships between KPIs and the business 

condition variables.  A disadvantage of the translog form is that it involves many more 

variables than simpler forms such as the double log.  As the number of variables subject to 

the translog treatment increases, the precision of a model’s parameter estimates falls.  It is 

therefore common to limit the number of variables in a cost model that are translogged.   

In this study, we have tried to strike a balance between the flexibility of the 

functional forms and the desire for statistically significant parameter estimates.  We do this 

by limiting the translog treatment to variables that are predicted to be cost drivers in 

economic theory.  Most other variables are simply logged.18   

Estimation Procedure 

A variety of estimation procedures are used in econometric research.  The 

appropriateness of each procedure depends on the assumptions that are made about the 

distribution of the error terms.  The estimation procedure that is most widely known, 

ordinary least squares (“OLS”), is readily available in over the counter econometric 

software.    Another class of procedures, called generalized least squares (“GLS”), is 

appropriate under assumptions of more complicated error specifications.  For example, GLS 

estimation procedures can permit the variance of the error terms of cost models to be 

heteroskedastic in the sense that they vary across companies.  Variances can, for example, 

be larger for companies with large operating scale.      

Estimation procedures that address several of the error term issues that are routinely 

encountered in utility benchmarking are not readily available in commercial econometric 

software packages such as Gauss and Stata.  They require, instead, the development of 

customized estimation programs.  While the cost of developing sophisticated estimation 
                                                 

18  We have elected not to log a few of the variables that assume a value of zero. 
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procedures that are tailored for benchmarking applications is sizable, the incremental cost of 

applying them to different utilities is typically small once they have been developed. 

In order to achieve a more efficient estimator, we used a GLS estimation procedure 

that corrected for autocorrelation and heteroskedasticity in the error terms.  These are 

common phenomena in statistical cost research.  The estimation procedure was developed 

by PEG Research using the GAUSS statistical software program.  Since we estimated these 

unknown disturbance matrices consistently, the estimators we eventually computed are 

equivalent to Maximum Likelihood Estimators (MLE).19  Our estimates thus possess all the 

highly desirable properties of MLEs.  Note also that cost and cost share equations were 

estimated simultaneously, and our regression procedure allows for correlation between the 

error terms of these equations. 

Note, finally, that the model specification was determined using the data for all 

sampled companies, including PGE.  However, computation of model parameters and 

standard errors for the prediction required that the utility of interest be dropped from the 

sample when we estimated the coefficients in the predicting equation.  This implies that the 

estimates used in developing a model will vary slightly from those in the model used for 

benchmarking. 

                                                 
19 See Dhrymes (1971), Oberhofer and Kmenta (1974), Magnus (1978). 
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