

1	EXH	IIBIT 2 – RATE BASE
2		
3	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-18
4		
5	Ref:	Exhibit 2, Tab 1, Schedule 1 and Attachment 1, Appendix 2-BA
6		
7	Inte	rrogatory:
8		
9	a)	Please reconcile the net book value shown in Appendix2-BA with the rate base
10		calculations in E2/T1/S1, pp.2-5 and the RRWF for each year of the custom IR
11		years.
12	b)	Kingston Hydro noted that its custom IR is driven by capital needs over the next 5
13		years, with a significant infrastructure renewal component (i.e. overhead
14		infrastructure replacement). Please explain why Kingston Hydro has not shown
15		any disposals on its continuity schedule during the custom IR term 2016-2020.
16		
17	<u>Res</u>	ponse:
18		
19	a)	E2/T1/S1, pp.2-5 for 2011 through 2015 included Capital works in progress and
20		should not have. The remainder of the differences in 2016 through 2020 were
21		very minor and as a result of rounding differences. The following should replace
22		pages 2 through 5 of E2/T1/S1:

2011 - Board Approved		
Rate Base:		
Cost of power		64,216,293
Operating expenses		6,357,503
Total		70,573,796
Working capital allowance %		 15%
Total working capital allowance		\$ 10,586,069
Fixed Assets		
Opening balance - regulated fixed assets	\$	
(NBV)	29,993,083	
Closing balance - regulated fixed assets	<u>\$</u>	
(NBV)	33,414,368	
	\$	
Average regulated fixed assets	31,703,726	 31,703,726
Total rate base - 2011 - Board Approved		\$ 42,289,795

2011 Actual		
Rate Base:		
Cost of Power		\$ 62,084,765
Operating Expenses		\$ 6,519,438
Total		\$ 68,604,203
Working Capital Allowance %		 15%
Total Working Capital Allowance		\$ 10,290,630
Fixed Assets		
	\$	
Opening Balance	28,404,783	
	\$	
Closing Balance	30,208,147	
	\$	
Average	29,306,465	\$ 29,306,465
Total Rate Base - 2011		\$ 39,597,095

2012		
Rate Base:		
Cost of Power		\$ 65,548,409
Operating Expenses		\$ 6,291,523
Total		\$ 71,839,932
Working Capital Allowance %		15%
Total Working Capital Allowance		\$ 10,775,990
Fixed Assets		
	\$	
Opening Balance	30,208,147	
	\$	
Closing Balance	31,200,776	
	\$	
Average	30,704,462	\$ 30,704,462
Total Rate Base - 2012		\$ 41,480,451

2013		
Rate Base:		
Cost of power		\$ 72,678,286
Operating expenses		\$ 7,006,565
Total		\$ 79,684,851
Working capital allowance %		15%
Total working capital allowance		\$ 11,952,728
Fixed Assets		
Opening balance - regulated fixed assets		
(NBV)	\$ 31,200,776	
Closing balance - regulated fixed assets		
(NBV)	\$ 37,955,044	
Average regulated fixed assets	\$ 34,577,910	\$ 34,577,910
Total rate base - 2013		\$ 46,530,638

2014		
Rate Base:		
Cost of power		\$ 74,734,540
Operating expenses		6,468,160
Total		\$ 81,202,700
Working capital allowance %		15%
Total working capital allowance		\$ 12,180,405
Fixed Assets		
Opening balance - regulated fixed assets		
(NBV)	\$ 37,955,044	
Closing balance - regulated fixed assets		
(NBV)	\$ 39,898,913	
Average regulated fixed assets	\$ 38,926,979	\$ 38,926,979
Total rate base - 2014		\$ 51,107,384

2015 - Bridge Estimated		
Rate Base:		
Cost of power		\$ 83,213,877
Operating expenses		6,858,652
Total		\$ 90,072,529
Working capital allowance %		15%
Total working capital allowance		\$ 13,510,879
Fixed Assets		
Opening balance - regulated fixed assets		
(NBV)	\$ 39,898,913	
Closing balance - regulated fixed assets		
(NBV)	\$ 41,750,743	
Average regulated fixed assets	\$ 40,824,828	 \$ 40,824,828
Total rate base - 2015 Bridge Estimated		\$ 54,335,707

2016 - Test Estimated		
Rate Base:		
Cost of power		\$ 83,328,903
Operating expenses		7,130,810
Total		\$ 90,459,713
Working capital allowance %		13%
Total working capital allowance		\$ 11,759,763
Fixed Assets		
Opening balance - regulated fixed assets		
(NBV)	\$ 44,342,873	
Closing balance - regulated fixed assets		
(NBV)	\$ 47,893,668	
Average regulated fixed assets	\$ 46,118,271	 \$ 46,118,271
Total rate base - 2016 Test Estimated		\$ 57,878,033

2017 - Test Estimated		
Rate Base:		
Cost of power		\$ 82,386,451
Operating expenses		7,253,351
Total		\$ 89,639,802
Working capital allowance %		 13%
Total working capital allowance		\$ 11,653,174
Fixed Assets		
Opening balance - regulated fixed assets		
(NBV)	\$ 47,893,668	
Closing balance - regulated fixed assets		
(NBV)	\$ 48,826,319	
Average regulated fixed assets	\$ 48,359,994	 \$ 48,359,994
Total rate base - 2017 Test Estimated		\$ 60,013,168

2018 - Test Estimated		
Rate Base:		
Cost of power		\$ 80,979,625
Operating expenses		7,378,017
Total		\$ 88,357,642
Working capital allowance %		 13%
Total working capital allowance		\$ 11,486,494
Fixed Assets		
Opening balance - regulated fixed assets		
(NBV)	\$ 48,826,319	
Closing balance - regulated fixed assets		
(NBV)	\$ 51,015,061	
Average regulated fixed assets	\$ 49,920,690	\$ 49,920,690
Total rate base - 2018 Test Estimated		\$ 61,407,184

2019 - Test Estimated		
Rate Base:		
Cost of power		\$ 80,381,134
Operating expenses		7,504,848
Total		\$ 87,885,982
Working capital allowance %		13%
Total working capital allowance		\$ 11,425,178
Fixed Assets		
Opening balance - regulated fixed assets		
(NBV)	\$ 51,015,061	
Closing balance - regulated fixed assets		
(NBV)	\$ 52,970,534	
Average regulated fixed assets	\$ 51,992,798	 \$ 51,992,798
Total rate base - 2019 Test Estimated		\$ 63,417,975

2020 - Test Estimated		
Rate Base:		
Cost of power		\$ 79,324,426
Operating expenses		7,633,881
Total		\$ 86,958,307
Working capital allowance %		 13%
Total working capital allowance		\$ 11,304,580
Fixed Assets		
Opening balance - regulated fixed assets		
(NBV)	\$ 52,970,534	
Closing balance - regulated fixed assets		
(NBV)	\$ 55,132,845	
Average regulated fixed assets	\$ 54,051,690	 \$ 54,051,690
Total rate base - 2020 Test Estimated		\$ 65,356,269

24

25 b) The disposals on the continuity schedules are \$Nil due to the fact that the assets

being replaced are fully depreciated and would have a net book value of \$Nil and

27 therefore no effect on Rate Base or depreciation.

1	EXHIBIT 2 – RATE BASE
2	
3	Response to Ontario Energy Board Staff Interrogatory 2-Staff-19
4	
5	Ref: Exhibit 2, Tab 2, Schedule 1–DSP5.4.1 pp. 133-136, Table3-6
6	
7	Filing Requirements for Electricity Transmission and Distribution Applications,
8	Chapter 5: Consolidated Distribution System Plan, section 5.1.1
9	
10	Interrogatory:
11	
12	In Chapter 5 of the Filing Requirements, the OEB determined that a projector activity
13	involving two or more 'drivers' associated with different categories should be placed in
14	the category corresponding to the 'trigger' driver. OEB staff notes that Kingston Hydro
15	allocated a percentage of all projects to the different drivers rather than attribute the
16	total costs of a project to its 'trigger' driver.
17	
18	a) Please restate all affected tables and appendices to show total costs of its
19	projects under its 'trigger' driver for each of the 5 years of the Custom IR term.
20	
21	Response:
22	
23	a) The following tables are restated in the manner requested by Board Staff.

2-Staff-19 Page 2 of 8

24 Exhibit 2, Tab 2, Schedule 3 Attachment 1-OEB Appendix 2-AB

25

File Number:	EB-2015-0083
Exhibit:	2
Tab:	2
Schedule:	3
Page:	1
Date:	13-Apr-15

Appendix 2-AB Table 2 - Capital Expenditure Summary from Chapter 5 Consolidated Distribution System Plan Filing Requirements

First year of Forecast Period: 2015

		Historical Period (previous plan ¹ & actual)															Forecast Period (planned)							
CATEGORY		2010			2011		2012			2013				2014			2016	2017	2018	2019	2020			
CATEGORI	Plan	Actual	Var	Plan	Actual	Var	Plan	Actual	Var	Plan	Actual	Var	Plan	Actual	Var	2015	2010	2017	2010	2019	2020			
		\$ '000 %		.,	\$ '000	%		\$ '000'	%		\$ '000'	%	\$ '000 %				\$ '000							
System Access		1,271,327		173,183				743,923			743,556			573,960		\$ 405,000	\$ 520,000	\$ 436,000	\$ 580,000	\$ 400,000	\$ 392,000			
System Renewal		2,019,598	-		5,454,169			1,593,770			3,621,695			2,406,160		\$2,972,000	\$4,247,000	\$2,211,000	\$3,083,000	\$3,353,000	\$3,287,000			
System Service		43,677	:		247,485			496,839			70,645			248,162		\$ 50,000	\$ 20,000	\$ 80,000	\$ 200,000	\$ 20,000	\$ 200,000			
General Plant		518,530			295,016			1,129,516			207,879			384,562		\$ 173,000	\$ 863,000	\$ 322,000	\$ 406,000	\$ 427,000	\$ 321,000			
TOTAL EXPENDITURE		3,853,132	:		6,169,853		-	3,964,048	-		4,643,775			3,612,844		\$3,600,000	\$5,650,000	\$3,049,000	\$4,269,000	\$4,200,000	\$4,200,000			
System O&M		\$ 3,344,858			\$3,415,756			\$3,212,599			\$ 3,888,080			\$ 3 051 338		\$3,204,043	\$3,300,165	\$3,389,269	\$3,480,779	\$3,574,760	\$3,671,279			

Notes to the Table: 1. Historical "previous plan" data is not required unless a plan has previously been filed 2. Indicate the mucher of months of "actual" data included in the last year of the Historical Period (normally a "bridge' year):

Explanatory Notes on Variances (complete only if applicable)	
Notes on shifts in forecast vs. historical budgets by category	
Notes on year over year Plan vs. Actual variances for Total Expenditures	
Notes on Plan vs. Actual variance trends for individual expenditure categories	

2-Staff-19 Page **3** of **8**

27 Exhibit 2, Tab 2, Schedule 3 Attachment 2–OEB Appendix 2-AA

28

File Numbe	EB-2015-0083
Exhibit:	2
Tab:	2
Schedule:	3
Page:	

Projects	2010	2011	2012	2013	2014	2015 Bridge
Reporting Basis	CGAAP	CGAAP	CGAAP	CGAAP	CGAAP	MIFRS
	em Access	<u> </u>				
Princess St. Reconstruction - Phase 1	757,094					
Barrie St. Reconstruction	169,158					
Meters	278,100		128,620	82,571	267,672	300,000
Pole Replacement - Pine & Division St		96,390	199,816			
Johnson- Victoria to Division 44kV Extension			286,345			
New Transformer Vault TV82 on Queen st				79,275	242,188	
RNI Upgrades				85,305		
King-Centre St 44kV Line Extension			71,573	55,622		
Williamsville-Transferring OH Secondary Service to UG				354,584		
44kV Services for 333 University Ave.						
Russell St. Reconstruction - Division to Montreal						
Miscellaneous	66,975	76,793	57,569	86,199	64,100	105,000
Sub-Total	1,271,327	173,183	743,923	743,556	573,960	405,000
Syste	em Renewa	al				
Transformer Vault 12 (TV12) & Circuit 103 Upgrade	345,797					
Transformer Vault 10 (TV10) Upgrade	199,018					
Annual Deteriorated Pole Replacement - Spot Replacement	891,045	924,723	842,295	971,540	807,602	
Pole Replacement - Wellington St	153,768					
Pole Replacement - Brock, Alfred & Palace	259,273	103,480				
Pole Replacement - Fairway Hill Cres	92,205					
Pole Replacement - Weller Ave	94,606					
Transformer Purchases	-132,408	510,556	189,241	162,541	167,771	
Substation No.11 Circuit Breaker Upgrade		1,644,010				
Secondary Underground Network Upgrade - Alfred Street		645,370				
Substation No.8 Transformer Upgrade	26,597	256,684				
Transformer Vault TV41 Upgrades		96,116	105,630			
Substation No.3 Circuit Breaker Upgrade		1,064,406				
Transformer Vault TV7 Upgrades		16,199	157,761	68,602		
Substation No.1 Rebuild			162,336	50,214	3,666	400,000
Substation No.11 44kV Riser Upgrade		53,083	80,249			
44kV Cable Replacement - Concession St at Princess				48,552	170,054	
Pole Replacement - Kingscourt Ave				101,798		
Pole Replacement - Portsmouth-Miles to Johnson				110,272		
Pole Replacement - Willingdon-Johnson to Hill				93,953		
Princess St Reconstruction - Phase 2				2,014,223		

Appendix 2-AA Capital Projects Table

2-Staff-19 Page **4** of **8**

Projects	2010	2011	2012	2013	2014	2015 Bridge
Reporting Basis	CGAAP	CGAAP	CGAAP	CGAAP	CGAAP	MIFRS
Pole Replacement - Portsmouth-Phillips to Fairvw	COAA				129,405	
Pole Replacement - Bagot-Catarqui					105,434	
Pole Replacement - Union St Rebuild					293,265	
Pole Replacement - Rideau St Rebuild					117,620	
Substation No.10 Riser Poles					68.690	
Reconstruction of 5kV Cables- Princess, King to Bagot					77,895	
5kV Faulted Cable Replacement - King St-Clarence to Johnson					129,163	
5kV Faulted Cable Replacement -TV15 to TV16 on Johnson St					158,709	
Princess St Condition Assessment					74.207	
Transformer Vault TV#8 Upgrade					74,207	385,000
Transformer Vault TV#9 Upgrade						470,000
Substation No. 10 44kV Riser PILC Cable Replacement						135,000
Deteriorated Overhead Infrastructure Replacement Program						847.000
Reactive 5kV Cable Replacement						70.000
5kV Cable Replacement on Seaforth						165,000
5kV 306 Circuit Fault PILC Cable Replacement						70,000
Princess St Reconstruction-Phase 3						330,000
Miscellaneous	89.697	139.542	56.258	0	102.679	100.000
Sub-Total	2,019,598	5.454.169	/	3.621.695	2,406,160	2,972,000
	em Service	- / - /	1,000,110	0,021,000	2,400,100	2,372,000
Hydro One Incremental Cost for Gardiner TS Expansion	-121,000					
Distribution System Modeling	82,100					
SCADA	82,328		249,578			
Substation No.12 Relay Upgrade	02,520	157,974	213,370			
Substation No.2 Relay Upgrade		137,371	126,218	13,420		
44kV Motor Operated Switch			72,712	2,822	10,050	
Substation No.6 Relay Upgrade			72,712	2,022	10,030	
Substation No.8 Relay Upgrade					115,988	
Miscellaneous	249	89,511	48,331	54,403	17.993	50,000
Sub-Total	43.677	247.485	496,839	70.645	248.162	50,000
	neral Plant	2-17,400	400,000	10,040	240,102	00,000
Tools & Equipment	214,381				206,133	
Vehicle Modifications/Upgrades	177.652	168,314	906,159	89,265	157.007	69.000
Substation No.11 and No.3 - Close-out Documentation	177,002	18,949	71,192	26,539	.01,001	00,000
Substation No.11 and No.3 - Critical Spare Breakers		20,5 15	66.298	_0,000		
Computer Hardware & Software			00,200			
Miscellaneous	126,497	107,753	85,867	92,075	21.422	104,000
Sub-Total	518.530	295.016	,	207.879	384.562	173.000
Total	3,853,132	6,169,853	3,964,048	4,643,775	3,612,844	3,600,000
Less Renewable Generation Facility Assets and Other Non	0,000,10 2	0,100,000	0,001,010	.,		2,220,000
Rate-Regulated Utility Assets (input as negative)						
Total	3,853,132	6,169.853	3,964,048	4,643,775	3,612,844	3,600,000

Notes:

1 Please provide a breakdown of the major components of each capital project undertaken in each year. Please ensure that all projects below the materiality threshold are included in the miscellaneous line. Add more projects as required.

2 The applicant should group projects appropriately and avoid presentations that result in classification of significant components of the capital budget in the miscellaneous category.

- 33 Exhibit 2, Tab 2, Schedule 1 Attachment 1 DSP5.2 Page 9, Table1 Annual
- 34 Expenditures and Annual Percentage Expenditure by Category
- 35

Investment Category						Fc	rec	ast (planned	(k				
investment Category		2015	2016		2017			2018		2019	2020		Average
System Access	\$	405,000	\$	520,000	\$	436,000	\$	580,000	\$	400,000	\$	392,000	\$ 455,500
System Renewal	\$	2,972,000	\$	4,247,000	\$	2,211,000	\$	3,083,000	\$	3,353,000	\$	3,287,000	\$ 3,192,167
System Service	\$	50,000	\$	20,000	\$	80,000	\$	200,000	\$	20,000	\$	200,000	\$ 95,000
General Plant	\$	173,000	\$	863,000	\$	322,000	\$	406,000	\$	427,000	\$	321,000	\$ 418,667
Total	\$	3,600,000	\$	5,650,000	\$	3,049,000	\$	4,269,000	\$	4,200,000	\$	4,200,000	\$ 4,161,333

36 37

			Fc	orecast (planned	(k		
Investment Category	2015	2016	2017	2018	2019	2020	Average
System Access	11.3%	9.2%	14.3%	13.6%	9.5%	9.3%	10.9%
System Renewal	82.6%	75.2%	72.5%	72.2%	79.8%	78.3%	76.7%
System Service	1.4%	0.4%	2.6%	4.7%	0.5%	4.8%	2.3%
General Plant	4.8%	15.3%	10.6%	9.5%	10.2%	7.6%	10.1%
Total	100%	100%	100%	100%	100%	100%	100%

38 39

- 40 Exhibit 2, Tab 2, Schedule 1 Attachment 1–DSP5.2.1Page 12, Table1 2015-2020
- 41 Total Budget Breakdown by Investment Category

42

Investment Category	Total	% Total of 2015-2020 Budget
System Access	\$ 2,733,000	10.9%
System Renewal	\$ 19,153,000	76.7%
System Service	\$ 570,000	2.3%
General Plant	\$ 2,512,000	10.1%
Total	\$ 24,968,000	100%

44 Exhibit 2, Tab 2, Schedule 1 Attachment 1 – DSP5.4.1Page 131, Table2 - Capital

45 Expenditures

46

		Annual Av	reage					
Investment Category	2015	2016	2017	2018	2019	2020	Amount	%
System Access	\$ 405,000	\$ 520,000	\$ 436,000	\$ 580,000	\$ 400,000	\$ 392,000	\$ 455,500	10.9%
System Renewal	\$ 2,972,000	\$ 4,247,000	\$ 2,211,000	\$ 3,083,000	\$ 3,353,000	\$ 3,287,000	\$ 3,192,167	76.7%
System Service	\$ 50,000	\$ 20,000	\$ 80,000	\$ 200,000	\$ 20,000	\$ 200,000	\$ 95,000	2.3%
General Plant	\$ 173,000	\$ 863,000	\$ 322,000	\$ 406,000	\$ 427,000	\$ 321,000	\$ 418,667	10.1%
Total	\$ 3,600,000	\$ 5,650,000	\$ 3,049,000	\$ 4,269,000	\$ 4,200,000	\$ 4,200,000	\$ 4,161,333	100%

47 48

- 49 Exhibit 2, Tab 2, Schedule 1 Attachment 1 DSP5.4.1Page 133, Table3 Annual
- 50 Investment for System Access

51

Project Description	2015			2016	2017	2018			2019	2020	Total	%
Meters	\$	300,000	\$	300,000	\$ 376,000	\$	440,000	\$	340,000	\$ 332,000	\$ 2,088,000	76.4%
44kV Services for 333 University Ave.			\$	160,000							\$ 160,000	5.9%
Russell St. Reconstruction - Division												
to Montreal						\$	80,000				\$ 80,000	2.9%
Miscellaneous	\$	105,000	\$	60,000	\$ 60,000	\$	60,000	\$	60,000	\$ 60,000	\$ 405,000	14.8%
Grand Total	\$	405,000	\$	520,000	\$ 436,000	\$	580,000	\$	400,000	\$ 392,000	\$ 2,733,000	100.0%

53 Exhibit 2, Tab 2, Schedule 1 Attachment 1 – DSP5.4.1Page 134, Table 4 - System

54 Renewal

55

Project Description		2015	2016		2017	2018	2019		2020		Total	%
Deteriorated Overhead												
Infrastructure Replacement	ł											
Program	\$	847,000	\$ 1,177,000	\$:	1,211,000	\$ 1,379,000	\$ 1,355,000	\$	1,378,000	\$	7,347,000	38.4%
Substation No.1 Rebuild	\$	400,000	\$ 150,000	\$	300,000	\$ 374,000	\$ 438,000	\$	1,529,000	\$	3,191,000	16.7%
Princess St Reconstruction-Phase 3	\$	330,000	\$ 2,820,000							\$	3,150,000	16.4%
Substation MS#4 Y2&Y3 Bus												
Switchgear Replacement	ł						\$ 1,100,000			\$	1,100,000	5.7%
Transformer Vault TV#38 Upgrade						\$ 570,000				\$	570,000	3.0%
Transformer Vault TV#9 Upgrade	\$	470,000								\$	470,000	2.5%
Substation MS#4 T1 Transformer												
Replacement						\$ 420,000				\$	420,000	2.2%
Transformer Vault TV#8 Upgrade	\$	385,000								\$	385,000	2.0%
Barrie St. Reconstruction - Union to	Ī											
King							\$ 260,000			\$	260,000	1.4%
Division St Reconstruction - Union												
to Princess				\$	250,000					\$	250,000	1.3%
Transformer Vault TV#3 Upgrade								\$	230,000	\$	230,000	1.2%
Transformer Vault TV#29 Upgrade				\$	210,000					\$	210,000	1.1%
5kV Cable Replacement on Seaforth	\$	165,000								\$	165,000	0.9%
Substation No. 10 44kV Riser PILC	Ι.											
Cable Replacement	\$	135,000								\$	135,000	0.7%
Johnson St. Reconstruction - S.J.A										•		0.50/
to MacDonnell	<u> </u>					\$ 100,000				\$	100,000	0.5%
44kV Riser PILC Cable Replacement	ł						\$ 100,000			\$	100.000	0.5%
5kV 108 Circuit Fault PILC Cable							\$ 100,000			φ	100,000	0.376
Replacement	ł			\$	90,000					\$	90.000	0.5%
Substation MS#17 T1 Transformer				τ	,0					Ť		
Replacement	ł					\$ 90,000				\$	90,000	0.5%
Reactive 5kV Cable Replacement	\$	70,000				· · · ·				\$	70,000	0.4%
5kV 306 Circuit Fault PILC Cable								ĺ				
Replacement	\$	70,000								\$	70,000	0.4%
Miscellaneous	\$	100,000	\$ 100,000	\$	150,000	\$ 150,000	\$ 100,000	\$	150,000	\$	750,000	3.9%
Grand Total	\$ 2	2,972,000	\$ 4,247,000	\$ 2	2,211,000	\$ 3,083,000	\$ 3,353,000	\$	3,287,000	\$	19,153,000	100.0%

56 57

58 Exhibit 2, Tab 2, Schedule 1 Attachment 1 – DSP5.4.1Page 135, Table5 - System

59 Service

60

	Project Description	2015		2016	2017		2018		2019		2020		Total		%
	44kV Motor Operated Switch						\$	180,000			\$	180,000	\$	360,000	63.2%
	Miscellaneous	\$ 50,000	\$	20,000	\$	80,000	\$	20,000	\$	20,000	\$	20,000	\$	210,000	36.8%
61	Grand Total	\$ 50,000	\$	20,000	\$	80,000	\$	200,000	\$	20,000	\$	200,000	\$	570,000	100.0%

- 63 Exhibit 2, Tab 2, Schedule 1 Attachment 1 DSP 5.4.4 Page 173, Table 1b 2015
- 64 Bridge Year & 2016-2020 Forecast Period (from App 2-AB)
- 65

	Forecast Period (planned)										
CATEGORY	2015	2016	2017	2018	2019	2020					
			\$ '(000							
System Access	\$ 405,000	\$ 520,000	\$ 436,000	\$ 580,000	\$ 400,000	\$ 392,000					
System Renewal	\$ 2,972,000	\$ 4,247,000	\$ 2,211,000	\$ 3,083,000	\$ 3,353,000	\$ 3,287,000					
System Service	\$ 50,000	\$ 20,000	\$ 80,000	\$ 200,000	\$ 20,000	\$ 200,000					
General Plant	\$ 173,000	\$ 863,000	\$ 322,000	\$ 406,000	\$ 427,000	\$ 321,000					
TOTAL EXPENDITURE	\$ 3,600,000	\$ 5,650,000	\$ 3,049,000	\$ 4,269,000	\$ 4,200,000	\$ 4,200,000					
System O&M	\$ 3,204,043	\$ 3,300,165	\$ 3,389,269	\$ 3,480,779	\$ 3,574,760	\$ 3,671,279					

66 67

- 68 Exhibit 2, Tab 2, Schedule 1 Attachment 1 DSP 5.4.4 Page 174, Table 2
- 69 Refer to Exhibit2, Tab 2, Schedule 3 Attachment 2 OEB Appendix 2-AA above.

70

- 71 Exhibit 2, Tab 2, Schedule 1 Attachment 1 DSP 5.4.5 Page 175, Table 2 Capital
- 72 Expenditure Summary Forecast Period
- 73

			Forecast	(pla	anned)			6 Forecast Year Average			
										Investment	
Investment Category	2015	2016	2017		2018	2019	2020	E>	penditures	Percentage	
System Access	\$ 405,000	\$ 520,000	\$ 436,000	\$	580,000	\$ 400,000	\$ 392,000	\$	455,500	10.9%	
System Renewal	\$ 2,972,000	\$ 4,247,000	\$ 2,211,000	\$	3,083,000	\$ 3,353,000	\$ 3,287,000	\$	3,192,167	76.7%	
System Service	\$ 50,000	\$ 20,000	\$ 80,000	\$	200,000	\$ 20,000	\$ 200,000	\$	95,000	2.3%	
General Plant	\$ 173,000	\$ 863,000	\$ 322,000	\$	406,000	\$ 427,000	\$ 321,000	\$	418,667	10.1%	
Total Expenditure	\$ 3,600,000	\$ 5,650,000	\$ 3,049,000	\$	4,269,000	\$ 4,200,000	\$ 4,200,000	\$	4,161,333	100%	

1	EXHIBIT 2 – RATE BASE
2	
3	Response to Ontario Energy Board Staff Interrogatory 2-Staff-20
4	
5	Ref: Exhibit 2, Tab 2, Schedule 1 – DSP 5.4.1 p. 133-136 and 174, Tables 3,
6	4, 5 and 6 and Appendix 2-AA
7	
8	Interrogatory:
9	
10	Please update Appendix 2-AA to show the actual year-to-date capital expenditures fo
11	the 2015 calendar year and the actual 2014 spending over the same time frame.
12	
13	Response:

2-Staff-20 Page **2** of **3**

File Numbe	EB-2015-0083
Exhibit:	2
Tab:	2
Schedule:	3
Page:	

Appendix 2-AA Capital Projects Table

	0040	0011	0010	0010	0014	2014 Actual	2015	2015 Actual
Projects	2010	2011	2012	2013	2014	By June 30, 2014	Bridge	By June 30, 2015
Reporting Basis	CGAAP	CGAAP	CGAAP	CGAAP	CGAAP	CGAAP	MIFRS	MIFRS
		System A	ccess					
Princess St. Reconstruction - Phase 1	757,094							
Barrie St. Reconstruction	169,158							
Meters	278,100		128,620	82,571	267,672	98,034	300,000	66,389
Pole Replacement - Pine & Division St		96,390	199,816					
Johnson- Victoria to Division 44kV Extension			286,345					
New Transformer Vault TV82 on Queen st				79,275	242,188	159,560		
RNI Upgrades				85,305				
King-Centre St 44kV Line Extension			71,573	55,622				
Williamsville-Transferring OH Secondary Service to UG				354,584				
44kV Services for 333 University Ave.								
Russell St. Reconstruction - Division to Montreal								
Miscellaneous	66,975	76,793	57,569	86,199	64,100	27,111	105,000	35,807
Sub-Total	1,271,327	173,183	743,923	743,556	573,960	284,705	405,000	102,196
		System R	enewal					
Transformer Vault 12 (TV12) & Circuit 103 Upgrade	345,797							
Transformer Vault 10 (TV10) Upgrade	199,018							
Annual Deteriorated Pole Replacement - Spot Replacement	891,045	924,723	842,295	971,540	807,602	283,037		
Pole Replacement - Wellington St	153,768							
Pole Replacement - Brock, Alfred & Palace	259,273	103,480						
Pole Replacement - Fairway Hill Cres	92,205							
Pole Replacement - Weller Ave	94,606							
Transformer Purchases	-132,408	510,556	189,241	162,541	167,771	59,828		
Substation No.11 Circuit Breaker Upgrade		1,644,010						
Secondary Underground Network Upgrade - Alfred Street		645,370						
Substation No.8 Transformer Upgrade	26,597	256,684						
Transformer Vault TV41 Upgrades		96,116	105,630					
Substation No.3 Circuit Breaker Upgrade		1,064,406						
Transformer Vault TV7 Upgrades		16,199	157,761	68,602				
Substation No.1 Rebuild			162,336	50,214	3,666	147	400,000	166,793
Substation No.11 44kV Riser Upgrade		53,083	80,249					
44kV Cable Replacement - Concession St at Princess				48,552	170,054	159,627		
Pole Replacement - Kingscourt Ave				101,798				
Pole Replacement - Portsmouth-Miles to Johnson				110,272				
Pole Replacement - Willingdon-Johnson to Hill				93,953				
Princess St Reconstruction - Phase 2				2,014,223				

2-Staff-20 Page **3** of **3**

Projects	2010	2011	2012	2013	2014	2014 Actual By June 30, 2014	2015 Bridge	2015 Actual By June 30, 2015
Reporting Basis	CGAAP	CGAAP	CGAAP	CGAAP	CGAAP	CGAAP	MIFRS	MIFRS
Pole Replacement - Portsmouth-Phillips to Fairvw					129,405	92,290		
Pole Replacement - Bagot-Catarqui					105,434	92,437		
Pole Replacement - Union St Rebuild					293,265	102,495		
Pole Replacement - Rideau St Rebuild					117,620	32,124		
Substation No.10 Riser Poles					68,690	0		
Reconstruction of 5kV Cables- Princess, King to Bagot					77,895	42,809		
5kV Faulted Cable Replacement - King St-Clarence to Johnsor					129,163	114,313		
5kV Faulted Cable Replacement -TV15 to TV16 on Johnson St					158,709	0		
Princess St Condition Assessment					74,207	0		
Transformer Vault TV#8 Upgrade					,		385,000	24,420
Transformer Vault TV#9 Upgrade							470,000	26,039
Substation No. 10 44kV Riser PILC Cable Replacement							135,000	75,956
Deteriorated Overhead Infrastructure Replacement Program							847,000	342.108
Reactive 5kV Cable Replacement							70,000	34,077
5kV Cable Replacement on Seaforth							165,000	274
5kV 306 Circuit Fault PILC Cable Replacement							70,000	0
Princess St Reconstruction-Phase 3							330.000	68,869
Miscellaneous	89,697	139,542	56,258	0	102,679	8,787	100,000	62,819
Sub-Total	2.019.598	5.454.169	,	-	2.406.160		2.972.000	801,355
	2,013,330	System S	11 -	3,021,033	2,400,100	307,034	2,312,000	001,000
Hydro One Incremental Cost for Gardiner TS Expansion	-121,000	0,000.00						
Distribution System Modeling	82.100							
SCADA	82,328		249.578					
Substation No.12 Relay Upgrade	02,520	157,974	245,570					
Substation No.2 Relay Upgrade		137,374	126,218	13,420		0		
44kV Motor Operated Switch			72.712	2.822	10.050	0		
Substation No.6 Relay Upgrade			, 2,, 12	2,022	104.131	99.291		
Substation No.8 Relay Upgrade					115,988	51,379		
Miscellaneous	249	89,511	48,331	54,403	17,993	8,823	50,000	33,624
Sub-Total	43.677	247,485		70.645	248.162	159,493	50,000	33,624
	-5,077	General	,	70,045	240,102	100,490	50,000	55,024
Tools & Equipment	214,381	General	- iam		206.133	13.901		
Vehicle Modifications/Upgrades	177,652	168,314	906,159	89,265	157,007	15,501	69,000	18,479
Substation No.11 and No.3 - Close-out Documentation	177,002	18,949	71.192	26.539	107,007	0	05,000	10,475
Substation No.11 and No.3 - Critical Spare Breakers		10,545	66,298	20,333				
Computer Hardware & Software			00,298					
Miscellaneous	126,497	107,753	85,867	92,075	21,422		104,000	72,108
Sub-Total	518,530	295.016		207.879	384.562	13,901	173,000	90.587
Total	518,530 518.530	6,169,853	3,964,048	4,643,775	3,612,844	1,445,993	3.600.000	1.027.762
Less Renewable Generation Facility Assets and Other Non	310,330	0,109,000	3,304,040	4,045,775	3,012,044	1,445,995	3,000,000	1,021,702
Rate-Regulated Utility Assets (input as negative)								
Total	3,853,132	6,169,853	3,964,048	4,643,775	3,612,844	1,445,993	3,600,000	1,027,762
10(4)	3,033,132	3,103,000	3,307,040	-,0-0,11J	3,012,044	1,3,333	3,000,000	1,021,1

Notes:

1 Please provide a breakdown of the major components of each capital project undertaken in each year. Please ensure that all projects below the materiality threshold are included in the miscellaneous line. Add more projects as required.

2 The applicant should group projects appropriately and avoid presentations that result in classification of significant components of the capital budget in the miscellaneous category.

1 EXHIBIT 2 – RATE BASE

2

3 **Response to Ontario Energy Board Staff Interrogatory 2-Staff-21**

4

5 Ref: Exhibit 2, Tab 2, Schedule 1–DSP 5.4.4 p. 172-3, Tables 1a and 1b

6

7 Interrogatory:

8

9 In tables 1(a) and (b), Kingston Hydro provided the following capital expenditures.

10

Year	\$	VarianceY/Y
2011BA	\$ 5,433,500	
2011A	\$ 6,169,853	13.55%
2012A	\$ 3,964,048	-35.75%
2013A	\$ 4,643,775	17.15%
2014A	\$ 3,612,844	-22.20%
2015A	\$ 3,600,000	-0.36%
2016E	\$ 5,650,000	56.94%
2017E	\$ 3,049,000	-46.04%
2018E	\$ 4,269,000	40.01%
2019E	\$ 4,200,000	-1.62%
2020E	\$ 4,200,000	0.00%

11

12 a) Please explain the underspending of capital expenditures during the IRM

13 period.

14

15 b) Please explain how Kingston Hydro is expecting to complete the proposed

16 capital projects during the custom IR term with in its proposed OM&A budget.

- 17
- 18 **Response:**
- 19

2-Staff-21 Page **2** of **2**

- 20 The percentage variance between Year 2011A and 2012A is due to several a) 21 factors. First, the 2011 budget was increased due to a refunded capital 22 contribution that Kingston Hydro received from Hydro One for the Gardiner TS 23 expansion project. Second, capital expenditures in 2011 were higher than 24 average due to circuit breaker upgrades at Substation No. 3 and Substation 25 No.11. and much of this work was contracted. Third, the capital budget for 26 2012 was reduced due to the approved IRM amount of \$3,500,000. The 2012 27 budget had to be reduced to maintain acceptable Debt-to-Equity ratios. 28 Further details regarding Kingston Hydro's IRM application (EB2011-0178) 29 can be found in Exhibit 2, Tab 2, Schedule 8 of Kingston Hydro's 2016 Cost of 30 Service Application (EB-2015-0083). Generally speaking, the historic annual 31 average spending for 2010-2014 was approximately \$4.6 million and the 32 forecast annual average spending for 2015-2020 is approximately \$4.2 million. 33 34 b) Kingston Hydro developed the 2016-2020 capital budgets with knowledge and
- b) Kingston Hydro developed the 2016-2020 capital budgets with knowledge and
 consideration of its proposed OM&A budgets. Given the fact that the historical
 average of the capital expenditures noted in section 5.4.5 (page 175 of 184) of
 the DSP is \$4.4 million and the annual average for the 2016-2020 test years is
 \$4.3 million, Kingston Hydro believes that sufficient resources exist to
 complete the proposed capital projects.

1	EXH	IBIT 2 – RATE BASE
2		
3	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-22
4		
5	Ref:	Exhibit 2, Tab 2, Schedule 1 – Distribution System Plan (DSP), p. 17 and
6		134
7		Exhibit 2, Tab 2, Schedule 1 – DSP 5.3.2 pp. 78, 80, 87-89 Annual
8		Deteriorated Overhead Infrastructure Replacement Program
9		
10	Inte	rrogatory:
11		
12	On p	 134 of the DSP, Kingston Hydro shows an overview of its system renewal plan,
13	whic	h represents 68% of its proposed capital expenditures for 2016-2020. The annual
14	dete	riorating overhead infrastructure replacement program constitutes 43.6% of
15	King	ston Hydro's system renewal budget for a total of \$7.3M over 5 years and an annual
16	aver	age of \$1.3M. Historically, Kingston Hydro spent \$880,700 annually on this
17	prog	ram.
18		
19	On p	bages 87-89 and p. 78 Kingston Hydro shows that 57.5% of Cedar Poles, 75% of
20	Pine	Poles and 26% of concrete poles are in very good health. On p.80 Kingston Hydro
21	shov	vs that 70% of pole top transformers are in very good health.
22		
23	a)	Please provide detailed explanation and a breakdown of Kingston Hydro's
24		proposed overhead infrastructure replacement program year-over-year.
25	b)	Please quantify the expected annual savings due to pole life maximization for the
26		2015-2020 budget period.
27	c)	Is Kingston Hydro maximizing the useful life of poles by running to failure, by active
28		intervention/treatment to extend pole lives, or by a combination of these

29		approaches?
30	d)	Provide the cost per unit and compare to historical costs.
31	e)	Please describe and quantify where possible the benefits that Kingston Hydro's
32		customers will realize from this investment. Please explain how the increase to this
33		program reflects customer preferences identified through customer engagement.
34	f)	Please describe the alternatives to capital investment that were assessed and
35		rejected in favour of the proposed capital investment.
36	g)	Please explain why a pole replacement program could not be managed under a
37		Price Cap IR approach.
38	h)	How does the Fibre-To-The-Home project impact the planning and pacing of the
39		pole replacement program (DSP p.17)?
40	i)	Does the selected approach represent a departure from past Kingston Hydro
41		practice?
42		
43	Res	sponse:
44		
45	a)	The Annual Deteriorated Overhead Infrastructure Replacement Program (we will
46		reference as the "Overhead Program" in this response) is a mix of small projects
47		(projects below the materiality threshold of \$65,000) and large projects (projects
48		above the materiality threshold of \$65,000). The small projects typically focus on
49		the most urgent pole replacement work involving the replacement of one or more
50		
51		poles in very poor condition within a city block. The large projects typically focus
•		poles in very poor condition within a city block. The large projects typically focus on multiple pole replacements spanning multiple city blocks involving poles in poor
52		
		on multiple pole replacements spanning multiple city blocks involving poles in poor
52		on multiple pole replacements spanning multiple city blocks involving poles in poor and/or very poor condition. On average the 2015-2020 program involves 7-8 large
52 53		on multiple pole replacements spanning multiple city blocks involving poles in poor and/or very poor condition. On average the 2015-2020 program involves 7-8 large projects per year. The following table contains a prioritized list of projects that

56 Condition assessment activity relating to overhead assets is an annual activity that

57	adds to our Asset Condition data. The table below provides Kingston Hydro's best
58	estimate over the 2015-2020 period for overhead infrastructure replacement
59	program. Kingston Hydro does however reserve the right to adjust this program
60	should asset condition data collected during this 2015-2020 period reveal assets
61	that have significantly deteriorated. In those cases assets after evaluation in
62	accordance with Kingston Hydro's Asset Management Planning Process and in
63	particular DSP Section 5.4.2 – Risk of Deferral and Project Value may be
64	prioritized ahead of those listed.

2-Staff-22 Page **4** of **12**

Year	Project	Notes
2015	Bagot - Barrack, Ordinance	
	Connaught St - Third to Concession	
2015	MacDonnell- Third to Concession	
2015	First Ave - MacDonnell to Neilson	
	MacDonnell - Concession to Princess St.	
	Hickson - Montreal - harvey	
	St Remy PL	
	Francis St at Churchill	
	King St W - West of Pembroke to Sir John A Macdonald	
	Cataraqui St	
	Division - Colborne to Hamilton	
	Portsmouth South of Princess to Miles Ave	
	MacDonnell -Johnson to Princess	
	Westdale St - Park and Bath	
	Drayton St	
	Barriefield Village - Regent St.	Heritage site issues
	Barriefield Village - Drummond St.	Heritage site issues
	Johnson St- South side - Richfield to Portsmouth	Backyard reconstruction
	Russell St -Patrick and Montreal	Poles in gutter
	Patrick St- Russell to Railway	
-	McMichael - McMahon to Stormont Ave.	Backyard reconstruction
	McMahon - Indian Rd to Sir JAM	Backyard reconstruction
	Durham St	
	Johnson St - North Side - Roden to Portsmouth	Backyard reconstruction
	124-209 Hawthorne	9 front yard poles + 12 backyard poles
	Gilmour - Bath Road to Phillips St.	
	Conacher at Sutherland	Backyard from 12 Conacher to 2 Conacher Dr
-	Queen's - Lower University Ave	
	Queen's Stuart St	
	Alamein	Backyard reconstruction
	Victoria - Princess to Mack	
	Victoria - Johnson to Union	
-	Dalton Ave MS#16-MS#17	
	Lundy's Lane 27-55	Backyard reconstruction
	Bath Rd - Grenville to Armstrong	
	HWY #2 - Niagara Park to Princess Mary	Merge lines on South Side
	Assoro Cres	Replace existing "dog houses". Convert UG to OH
	Johnson St - North side - Richfield to Portsmouth	Backyard reconstruction
	Portsmouth John Counter to Princess	
	Old Quarry-Champlain	Backyard reconstruction
	155 - 301 Phillips	
	Queenston Heights	Relocate Back Yard to Front Yard
	Railway St	
	Duff St	
	Sir John A MacDonald - Avenue Rd	Accessible backyard rebuild
	Regent St-Park to Princess	
	Albert- King St and Union St	
	King St E - Barrie to Earl	
2020	INITE JULI - Dattie to Lati	ļ

- 66 The concept of maximizing the life of an asset (or end of life) ensures that you b) 67 obtain the most value for the investment(s) made in the past. Conversely the early 68 replacement of an asset would not adhere to accepted principles of asset 69 management and at worst could be assumed to be a wasteful use of valuable 70 resources. Maximizing the life of an asset also ensures that you have depreciated 71 the asset fully and are therefore avoiding a financial loss. It is unclear as to what 72 "savings due to pole life maximization" is achieved as the concept simply ensures 73 that the investment being made is occurring at the appropriate time.
- 74

In order to quantify annual savings due to pole life maximization, Kingston Hydro
would have to compare its "maximized life" program to a non-maximized life
program. Kingston Hydro does not have a plan or budget for a non-maximized life
program for the reasons set out in the preceding paragraph. If Board Staff could
propose a methodology to respond to this interrogatory, Kingston Hydro would
appreciate it.

81

Kingston Hydro would refer to the evidence filed in its DSP and in particular 82 c) 83 Section 5.3 – Asset Management Process that describes how Kingston Hydro's 84 assets are analyzed (asset understanding) and the decision-making process 85 undertaken. Kingston Hydro does not currently use active intervention/treatment to 86 extend pole lives. However, Kingston Hydro continues its efforts to improve its 87 condition assessment data such as using Polux pole tester in an effort to quantify 88 the remaining strength of existing poles. Quantifying the remaining strength of a 89 pole assists in prioritizing pole replacement

90

91 d) It is difficult to estimate the cost per pole unit since installation cost varies
92 depending upon factors that include pole height, pole location (front vs. back yard),
93 soil conditions, number of phases/circuits, equipment, cable risers, etc.

94				
95		With that caveat, Kingston Hydro undertook a simple review of historic costs for		
96		2011-2014 which involved summing all annual costs recorded in the OEB USofA		
97		accounts for overhead capital programs and dividing by the total number of poles		
98		installed. The average installation cost was \$14,500 per pole. In Kingston Hydro's		
99		experience, this cost will fluctuate annually, depending upon the type of pole work		
100		undertaken due to the wide range of installation scenarios and small sample base.		
101				
102		Kingston Hydro expects to replace less than 100 poles per year over the 2015-		
103		2020 period which makes it difficult to establish meaningful unit costs due to the		
104		small sample base and potential year-to-year variations in the type of pole work		
105		undertaken.		
106				
107	e)	Kingston Hydro customers identified via the Customer Engagement Process		
108		(5.4.1(f)) support for the following:		
109				
110		1. Capital improvements that improve reliability		
111		2. Pacing the investment for rate stability		
112		3. Having rates set for a five year period		
113		4. The commitment to keep operating costs below the actual inflation rate		
114		5. Maintain levels of customer service, including the one bill for all utilities		
115		6. Enhanced in-person support and assistance with conservation initiatives		
116		7. Annual meeting to discuss utility issues		
117				
118		Kingston Hydro has identified in the DSP that its focus is on system renewal		
119		activities. Overhead infrastructure renewal activities are one of the most visible		
120		asset renewal activities that our customers see. Although underground assets		
121		renewal is important, the overhead work is often the area where rate payers can		

122	see their dollars at work in renewing the infrastructure. As a result this work
123	provides a credible demonstration of the value of their rates in renewing and
124	improving the assets that deliver electric power to their residence or business.
125	
126	The effect of the investment in overhead assets can be dramatic to a
127	neighbourhood – visually and aesthetically. The following photos show before and
128	after pictures of the changes in streetscapes. The effort Kingston Hydro
129	undertakes to address customer's issues such as pole placement, mitigation of
130	impact on street trees etc is appreciated by our customers in specific projects.
131	
132	In addition the removal of deteriorated poles from sidewalk panels and gutter
133	locations along streets improves safety conditions for vehicles and pedestrians a
134	further benefit to customers.

File Number: EB-2015-0083 Date Filed: September 11, 2015

> 2-Staff-22 Page **8** of **12**

135 Pine Street Pole Line

136

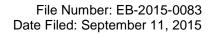
137 138

139

Pole line in the gutter

Pole in sidewalk

140 141


Existing OH Wiring

File Number: EB-2015-0083 Date Filed: September 11, 2015

> 2-Staff-22 Page **9** of **12**

2-Staff-22 Page 10 of 12

@UtilitiesKngstn @cityofkingston #thisshouldbenextonyourlist

5:09 PM - 28 Jul 2015 23

 \star

161 162

The fact that Kingston Hydro's proposed investment in overhead infrastructure 163 involves the replacement of poles such as the one noted above provides 164 assurances to our customers that there is a benefit realized from the investment 165 made to replace old rotted poles with new, safe and reliable ones.

166

In recognition of an increasing amount of severe weather conditions impacting 167 168 Eastern Ontario there is increased awareness around the vulnerability of 169 infrastructure and in particular Kingston Hydro's overhead assets. Capital 170 improvements that improve reliability are one customer theme being addressed in 171 Kingston Hydro's application and in the investments proposed for overhead 172 assets. Building resiliency in our infrastructure by replacing poles that are 173 degraded and past their useful life is one way to reduce vulnerability to severe 174 weather. Kingston Hydro has also acknowledged operational considerations in 175 addressing this resiliency through its active tree trimming programs, recognizing 176 the need for coordinated approaches to asset management. It is expected that 177 over time reliability indices associated with these assets and the activity 178 undertaken to improve them will trend in a positive manner.

2-Staff-22 Page **11** of **12**

- 179 In recognition of the customer preference for pacing the investment for rate 180 stability a consistent level of spending is being proposed through the 2016-2020 181 period. Table 2-AA of Section 5.4.4 of the DSP illustrates historical spending. 182 This (Table 2-AA) reporting allocates the total Annual Deteriorated Overhead 183 Infrastructure Replacement actual spends into two categories - Pole Replacement 184 (line rebuilds) and Annual Deteriorated Pole Replacement – Spot Replacement. 185 As a result in combining both categories to identify historical spending the average 186 over five years (2010-2014 is \$1,218,456; not the \$880,700 identified. It is 187 Kingston Hydro submission that a historical spend of \$1.2 million annually on 188 average over the last 5 years compares favorably with Kingston Hydro proposed 189 spend of \$1.3 million annually on average over the next 5 years and appropriately 190 mitigates the impact on our customers.
- 191

192 One alternative evaluated as part of the proposed investment is the "do f) 193 nothing approach". Kingston Hydro acknowledges that given the inventory of 194 overhead assets and their condition, there are in fact decisions made that 195 adopt a deferral of work on those assets or a "do nothing" until post 2020 196 when those assets will be reviewed again. The proposed investments in 197 overhead assets that form part of this application represent our best 198 understanding of the priority of assets in need of replacement. Kingston Hydro 199 notes however that those assets in need of replacement were rejected for the 200 do nothing alternative as they represent unacceptable risk to the delivery of 201 safe and reliable electrical service to our customers.

202

g) The deteriorated pole replacement program represents a replacement of
assets that have exceeded their estimated useful lives. A significant amount
of work is needed to be done over the next 5 years and these capital
additions are recorded in accounts 1830 and 1835. Total additions for the

2-Staff-22 Page **12** of **12**

period in these accounts amount to approximately \$6.1 million. Over the
same period of time, depreciation expense is expected to be approximately
\$2.0 million. Given the fact that annual spending will be triple depreciation,
rate base will increase by \$4.0 million over the IRM period which will make it
difficult for Kingston Hydro to earn a fair Return on Equity under the Price
Cap IR approach.

213

214 h) Kingston Hydro in its planning for the 2015-2020 period recognized the impact 215 that the Bell Fibre-to-the-Home program would have on its resources and our 216 ability to perform "normal" capital activity. As such a deliberate reduction in 217 2015 to the Annual Deteriorated Overhead Pole Replacement Program 218 (\$847,000) was adopted. This recognized that staff typically involved in 219 Overhead planning, design and construction would not have the capacity to 220 undertake historical levels of activity (\$1,200,000). Kingston Hydro continues 221 to monitor the effects of the fibre to the home project on the allocation of 222 resources. Kingston Hydro will be initiating contingency planning to ensure the 223 proposed capital investments throughout 2016-2020 are undertaken as 224 planned, yet still meet our requirements to address third party service 225 requests.

226

i) Kingston Hydro's approach to the management of its overhead assets is
 similar to our previous approach, yet the current approach that utilizes the
 DSP approach and more robust asset management practices represent an
 improvement in the validity and credibility of the investment program to our
 customers, shareholder and the OEB. Kingston Hydro believes the current
 submission represents an improvement to the process that will continue to
 evolve and improve.

1	EXF	EXHIBIT 2 – RATE BASE					
2							
3	Res	Response to Ontario Energy Board Interrogatory 2-Staff-23					
4							
5	Ref	: Exhibi	t 2, Tab 2, Se	chedule 1 – D	SP 5.4.1. p. 13	4, Table 4	
6					4., p. 174 Tabl		2-AA, p. 179
7		Exhibi	t 3, Tab 1, So	chedule 1 – A	ppendix 2-IA N	leter	
8							
9	Inte	rrogatory:					
10	_		_				
11				•	•	•	or meters, which
12	repr	represents 57.2% of Kingston Hydro's system access budget over the next 5 years:				ext 5 years:	
13				_	-		
14		Meters					
	20 ⁻ \$3(<u>16</u> 00,000	2017 \$376,000	2018 440,000	2019 \$340,000	2020 \$332,000	Total \$2,088,000
15	Ψ0.		<i>4010</i> ,000	110,000		<i>\\</i>	<u>↓</u>
16	King	gston Hydro	has historic	ally spent an a	verage of \$176	,160 on its met	er assets over
17	the	2010-2015	years. Over t	hat period Kin	gston Hydro ex	perienced a loa	ad growth of 1%.
18	For	the 2016-2	020 period K	ingston Hydro	is forecasting a	load decrease	for the
19	resi	residential, GS>50 kW and Large Use rate classes.					
20							
21	a)	Please ex	plain the inci	eases in mete	r expenditures	given Kingston	Hydro's load
22		forecast.					
23	b)	Please de	etail the impa	ct of converting	g multi-unit buil	dings from bulk	meters to unit
24		meters.					
25							
26	<u>Res</u>	ponse:					
27							

2-Staff-23 Page **2** of **2**

- 28 a) During the 2010-2015 years, Kingston Hydro finished the smart meter 29 deployment. During this time period, there were meter expenditures that were 30 allocated to the smart meter capital project, and subsequently recovered in a 31 smart meter rate rider. Consequently, the budget for metering during these years 32 was reduced from what should be considered a typical budget as there weren't 33 the "normal" metering activities occurring. The proposed budgets are increased 34 over the 2010-2015 period as meter seal sample testing is scheduled to begin, meters required for the DSC MIST change are budgeted, and continued 35 36 conversion of bulk metered multi-unit residential buildings to unit metering is 37 expected.
- 38

b) Converting multi-unit residential buildings from bulk meters to unit meters results
in no net increase to the utility load. There is an increase in the number of meters
required as each unit is provisioned with a residential meter.

1	EXHIBIT 2 – RATE BASE
2	
3	Response to Ontario Energy Board Interrogatory 2-Staff-24
4	
5	Ref: Exhibit 2, Tab 2, Schedule 1 – DSP 5.4.1 p. 133, Table 3
6	Exhibit 2, Tab 2, Schedule 1 – DSP 5.4.5 p. 179
7	
8	Interrogatory:
9	
10	Road Reconstruction Projects
11	Please explain Kingston Hydro's process for prioritizing projects for road reconstruction
12	requested by the City of Kingston within the framework of its multi- service model.
13	
14	Response:
15	
16	Kingston Hydro has within the DSP provided information on how it manages its assets
17	(Section 5.3 and in particular the Capital Expenditure Decision Making Process) and
18	how decision are made, and identified the proposed capital infrastructure program for
19	2016-2020. Within that framework, decisions on asset replacement are undertaken
20	based on the need and priority of the asset in question. This process is applied to all
21	assets in question regardless of whether they involve a road reconstruction process.
22	Kingston Hydro does however acknowledge that we do at times receive customer
23	requests (City of Kingston) to relocate our electrical assets within the road right of way.
24	Those types of requests are managed like any other third party/customer request.
25	
26	With respect to the process for prioritizing projects for road reconstruction requested by
27	the City of Kingston within the framework of the Utilities Kingston multi-utility service
28	model, the process does not change from that described in the DSP. Any decision

2-Staff-24 Page **2** of **2**

29 made by Kingston Hydro to invest in its assets is based on the criteria noted (condition 30 of the asset, risk of failure, safety, etc.) in the DSP. While the opportunities for synergies 31 and cost reductions in undertaking electrical asset replacement work (sometimes in 32 conjunction with City work) is advantageous and is considered, fundamentally there 33 must be a valid need to undertake the work. The capital projects identified in the DSP 34 such as for Princess Street have electrical assets that in their own right have reached 35 the end of their useful life and have been prioritized for replacement in conjunction with 36 City of Kingston road reconstruction.

37

38 Kingston Hydro notes however that in the 2011-2013 periods, the City of Kingston 39 identified road work on Earl St. from Division St. to Collingwood St., and Division Street 40 from Quebec St. to Colborne St. Kingston Hydro reviewed its underground assets in the proposed construction zones and determined that the assets were in fair to good 41 42 condition based on the asset age, condition and inspection records. Kingston Hydro 43 also determined that there were no System Access or System Service issues driving 44 any investments in this case. Therefore Kingston Hydro declined to make any capital 45 investment in those assets on those streets as it was premature to do so.

1	EXF	IIBIT 2 – RATE BASE	
2			
3	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-25	
4			
5	Ref	: Exhibit 2, Tab 2, Schedule 1 – DSP 5.4.1 p. 134, Table 4	
6		Exhibit 2, Tab 2, Schedule 1 – DSP 5.4.5 p. 180	
7			
8	Inte	rrogatory:	
9			
10	Sub	estation No. 1 Rebuild	
11	On	p. 180 Kingston Hydro notes that capital expenditures on the Substation No.1	
12	Reb	ouild will be paced over the first 5 years (2015-2019) and will focus on design and	
13	remediation work. In 2020 the east bus will be decommissioned and removed and the		
14	pure	chase of new transformers will occur in anticipation of installation in 2021.	
15			
16	a)	Please describe the design and remediation work in more detail to justify average	
17		annual spending of \$265,920.	
18			
19	b)	Please explain why the OEB should approve a capital addition of \$1,223,200 to	
20		rate base for the 2020 rate year for an asset that won't come into service until 2021	
21		and therefore not be used or useful during the Custom IR plan term.	
22			
23	c)	Please state if any of the cost for the remediation and design work will be allocated	
24		to the city of Kingston? If none of the cost have been allocated to the city, please	
25		explain why not.	
26			
27	d)	Please explain if Kingston Hydro has considered green field investment to replace	
28		this substation and why this option was not chosen.	

29	Res	ponse:
30		
31	a)	The average annual spending figure of \$265,920 quoted in this IR question is
32		based on total expenditures of \$1,329,600 over the 2015-2019 period for
33		Substation No. 1 as filed in Section 5.4.1 Table 4 of the DSP. Kingston Hydro
34		wishes to clarify that this response is based on the revised Section 5.4.1 Table 4
35		submitted in response to IR 2-Staff-19 resulting in an average annual spending
36		figure of \$332,400 based on total expenditures of \$1,662,000 over the 2015-2019
37		period for Substation No. 1. Please refer to the response to IR 2-Staff-19 for
38		further details.
39		
40		The design and construction upgrade work planned for 2015-2019 includes:
41		
42		Protection and SCADA upgrades
43		Electrical preparatory work
44		Architectural, structural and mechanical preparatory work
45		Engineering studies and design work
46		
47		The protection and SCADA upgrades represent approximately \$440,000 of the
48		costs for 2015-2019. These upgrades will enhance the protection and monitoring
49		of the existing distribution equipment in the short term and future distribution
50		equipment in the long term. The 44kV protection upgrades are a priority as they
51		will help to mitigate potential risks and hazards during construction.
52		
53		Electrical preparatory work represents approximately \$490,000 of the total
54		expenditures for 2015-2019 and includes upgrades to the station service, DC
55		control wiring and 5kV cable racking. The station service and DC control wiring
56		upgrades are a priority as they will eliminate identified hazards inside Substation

- 57 No. 1, namely the oil-filled transformers in the basement that have live 5kV 58 terminations as well as old instrumentation and control wiring that is brittle and 59 susceptible to failure. 60 61 Architectural, mechanical and structural preparatory work represents 62 approximately \$375,000 of the total expenditures for 2015-2019. This work 63 includes repointing of the North and East exterior brick walls which is required to maintain the structural integrity of Substation No. 1. 64 65 66 Finally, the engineering studies and design work represent approximately 67 \$350,000 of the total expenditures for 2015-2019. This work will be paced and 68 relates to electrical protection, high voltage layout, mechanical ventilation and 69 structural designs. 70 71 b) The capital addition figure of \$1,223,200 guoted in this IR guestion is based on 72 2020 expenditures for Substation No. 1 as filed in Section 5.4.1 Table 4 of the 73 DSP. Kingston Hydro wishes to clarify that this response is based on the revised 74 Section 5.4.1 Table 4 submitted in response to IR 2-Staff-19 which now indicates a 75 capital addition of \$1,529,000 in 2020 for Substation No. 1. Please refer to the 76 response to IR 2-Staff-19 for further details. 77 78 Approximately \$500,000 of the total expenditure of \$1,529,000 proposed in 2020 79 is related to the purchase of two new power transformers. As per OEB accounting 80 practices, power transformers are capitalized as soon as they are purchased. The 81 budget for Substation No. 1 was prepared with consideration of this OEB
- 82 accounting practice and recognition that this large capital expenditure needed to
- be coordinated with the annual expenditures over the 2015-2020 planning period.
- 84

2-Staff-25 Page **4** of **4**

85		The remainder of the expenditures proposed in 2020 for Substation No.1 are
86		related to Structural, Architectural, and Mechanical upgrades. The benefits of
87		these upgrades will be realized as soon as this work is completed and will
88		therefore be capitalized in the 2020 budget period.
89		
90	c)	None of the design and construction work for Substation No. 1 will be allocated to
91		the City of Kingston because this work represents upgrades to Kingston Hydro
92		assets and the work has been initiated by Kingston Hydro.
93		
94	d)	There are several reasons why green field investment was not chosen. First, the
95		magnitude of the investment to rebuild Substation No. 1 relative to the total annual
96		capital budget is significant and rebuilding on the existing site is clearly the best
97		way to pace investments. Second, the purchase of land for a new substation
98		would have escalated the cost of the substation upgrade further. Third, the lands
99		surrounding Substation No. 1 are considered to be brown fields therefore,
100		constructing a new structure on adjacent lands would have increased
101		environmental costs and risks associated with excavations for footings and duct
102		structures. Finally, the added upfront cost to extend/replace the existing 44kV and
103		5kV underground cables would have further escalated the cost of the substation
104		upgrade.

1	EXH	IIBIT 2 – RATE BASE
2		
3	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-26
4		
5	Ref	Exhibit 2, Tab 2, Schedule 1 – DSP 5.4.1 p. 133-134, Table 3&4
6		Exhibit 2, Tab 2, Schedule 1 – DSP 5.4.5 p. 182
7		
8	Inte	errogatory:
9		
10	Prir	ncess St. Reconstruction
11	a)	Please confirm that the total cost for the Princess St. Reconstruction is
12		\$2,820,000 in the 2016 year.
13	b)	What costs will be borne by the City of Kingston as part of their infrastructure
14		renewal plans?
15		
16	Res	ponse:
17		
18	a)	Yes
19		
20	b)	The \$2,820,000 represents Kingston Hydro's budget to undertake the work and
21		does not include the costs associated with customer requests to move plant. The
22		City of Kingston has requested Kingston Hydro to lower specified ducts and to bury
23		overhead secondary services within the project area at a total financial contribution
24		by the City of Kingston of \$170,000. Kingston Hydro does not have access to the
25		City's costs, budget or expenditures associated with this project.

1	EXF	IIBIT 2 – RATE BASE
2		
3	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-27
4		
5	Ref	Exhibit 2, Tab 2, Schedule 1 – DSP 5.4.5 p. 182
6		
7	Inte	rrogatory:
8		
9	5kV	Oil Switch Replacement
10	On J	o. 182, Kingston Hydro states that replacing oil switches with new gas switches will
11	grea	atly improve system reliability, efficient operations and worker safety, and reduce
12	0&1	A cost.
13		
14	a)	Please quantify the OM&A savings.
15		
16	b)	Please state if and how these OM&A savings have been reflected in
17		Kingston Hydro's OM&A budget for the 2016 rate year.
18		
19	c)	If no, please explain why not.
20		
21	Res	ponse:
22		
23	a)	Deteriorated mechanical contacts in this type of oil switch move slowly and are
24		prone to arcing when operated under load. Current safe work practice requires
25		Kingston Hydro staff to de-energize and ground this type of switch by opening
26		feeder breakers at substations before operating the switch, resulting in
27		complicated switching operation procedures and an extra O&M cost of \$1,240 per
28		event to perform these additional switching operations.

29	The additional work includes:
30	
31	 Preparation of "order to operate". An operator prepares the switching order,
32	and another operator reviews it.
33	 Execution of switching operations to isolate and de-energize the switch involve:
34	 Two crews are required to open circuit breakers at substations to de-
35	energize the entire feeder, isolate and ground the oil switch at the first riser
36	poles for each ways of a typical 4 way oil switch.
37	 Then crews close the circuit breakers at the substations to restore the
38	feeder.
39	 Execution of switching operations to re-energize the switch involves:
40	• Crews open circuit breakers at substations to de-energize the entire feeder,
41	remove the groundings and close the switch at the first riser poles for each
42	ways of the oil switch, and close circuit breakers at the substations to
43	restore the feeder and the switch.
44	
45	These operations are typically performed after hours to minimize the outage
46	impacts on customers in downtown Kingston and the Princess Street Corridor as
47	the majority of the oil switches feed these areas.
48	
49	In the last five historic years (2010 to 2014), an average of seven planned outages
50	per year occurred for operating oil switches. Kingston Hydro expects the frequency
51	will decrease to approximate five events per year in the next five years as more oil
52	switches are being replaced, resulting in an O&M saving of \$6,200 per year.
53	
54	Replacement of the oil switch with the new switchgear will reduce O&M costs, but
55	the most important outcome of the project are to reduce customer interruption
56	occurrences and duration and to meet customers' expectation of continuous

57		reliable electrical supply.
58		
59	b)	Yes. These O&M savings are taken into consideration in OEB account
60		5020.
61		
62	c)	N/A

1	EXF	IIBIT 2 – RATE BASE
2		
3	Res	ponse to Ontario Energy Board Interrogatory 2-Staff-28
4		
5	Ref	Exhibit 2, Tab 2, Schedule 1 – DSP5.4.5 p. 183
6		
7	Inte	rrogatory:
8		
9	Cus	stomer Information System (CIS)
10	On j	p.183 Kingston Hydro states that the capital cost for the new CIS system is
11	spre	ead across all utilities and that it shares the Enterprise Resource Management
12	Syst	tem and Customer Relationship Management System.
13		
14	a)	Please state what percentage of the total cost has been allocated to
15		Kingston Hydro for each of these systems and describe the allocation
16		methodology used.
17	b)	Please state if any OM&A savings can be achieved through these system
18		upgrades.
19	c)	If so, explain how these savings will impact Kingston Hydro's 2016 OM&A
20		budget over the next 5 years.
21		
22	<u>Res</u>	ponse:
23		
24	a)	The total estimated cost to convert to a new CIS system is \$800,000 with an in
25		service date of 2017. The capital cost is spread across all the utilities that are
26		billed by Utilities Kingston. Approximately 40% is allocated to electricity billing
27		based on the significantly more complex requirements of this utility.

2-Staff-28 Page **2** of **2**

00		The estimated total each of the ODM eventure is an environmental (\$4.00 \cdot)
28		The estimated total cost of the CRM system is approximately \$1.62 million with an
29		in service date of 2018. The utilities portion is approximately 25% or \$406,000.
30		Kingston Hydro's portion of this would be 34% or approximately \$138,000. The
31		municipally owned gas, water and sewer utilities would be paying the remaining
32		66%. Kingston Hydro would be paying more given the number of calls that relate
33		to electric customers and questions related to billing complexities.
34		
35		The estimated implementation cost of the ERM system is \$4 million with an in
36		service date of 2016 and an estimate of 25% of this cost to be funded by the five
37		utilities. The amount required to be funded by Kingston Hydro is 23% based on the
38		five way utility split with the 4 large utilities paying 23% each and the smaller fibre
39		optic utility paying 8%.
40		
41	b)	During the implementation phase of each of the ERM and the CIS projects
42		operating and process efficiencies are expected and will assist Kingston Hydro
43		with meeting its productivity targets. The CRM is being implemented to enhance
44		the customer service experience by allowing the Customer Service Reps to access
45		more information and provide customers with quicker response times.
46		
47	c)	As noted in b) above, it is expected that during the IRM period, efficiencies will be

48 achieved through process improvements.

1	EXHIBIT 2 – RATE BASE
2	
3	Response to Ontario Energy Board Staff Interrogatory 2-Staff-29
4	
5	Ref: Exhibit 2, Tab 2, Schedule 1 – DSP 5.4.5 p. 184
6	
7	Interrogatory:
8	
9	Vehicle Replacement Policy
10	Please provide Kingston Hydro's vehicle replacement policy, and provide details and
11	further justification for Kingston Hydro's proposed capital expenditures on its fleet over
12	the next 5 years.
13	
14	Response:
15	
16	The Kingston Hydro vehicle capital replacement process is triggered using, as a base
17	line, minimums for the vehicle age and vehicle usage (measured in kilometers or hours).
18	
19	Industry standard guidelines use:
20	 7-8 years or 140,000-160,000 kilometers for light-duty vehicles such as cars,
21	minivans and light trucks (pickups)
22	 10 years or 6,000 hours for heavy-duty vehicles such as large work vans, dump
23	trucks, bucket trucks and radial boom derrick trucks
24	
25	Kingston Hydro extends beyond those typical guidelines by using:
26	 12 years or 200,000 kilometers for light-duty vehicles such as cars, minivans and
27	light trucks (pickups)
28	 15 years or 8,000 hours for heavy-duty vehicles such as large work vans, dump

- 29 trucks, bucket trucks and radial boom derrick trucks
- 30
- 31 This flagging of a vehicle then prompts the operational user groups, fleet mechanical
- 32 group, and management to further evaluate whether the replacement should proceed
- 33 or not with due consideration to a number of factors such as:
- 34 mechanical condition
- 35 cost of servicing
- 36 parts availability
- 37 usage
- 38 repurposing
- 39 cost effectiveness of remedial work to extend vehicle life
- 40 safety
- 41 residual (expected sale) value
- 42 capital impact
- 43
- In addition to the justifications noted in Attachment 2.2.1.1.1 Appendix 9, the Applicant
- 45 submits the following.
- 46
- 47 2016 Fleet Replacements and Additions
- 48 \$375,000 Replacement of 1998 Double Bucket Line Truck
- 49 This truck will have been extended 3 years beyond its normal planned replacement
- 50 year, and with an expected 12,800 hours, more than 60% past its baseline trigger of
- 51 8,000 hours. Mechanics have indicated that the cost and frequency of servicing this
- 52 vehicle necessitates it replacement.
- 53 \$14,000 Addition of Van for SCADA
- 54 Required, as noted in submission, for a new SCADA technician being added.
- 55 \$14,000 is the portion attributed to electric.
- 56

57	2017 Fleet Replacements and Additions
58	 \$44,000 Replacement of 2001 Ford Van
59	This van will already have been extended 4 years beyond its normal planned
60	replacement year. The planned replacement for this van will be a 4-wheel drive
61	truck that would provide greater usage and versatility in inclement winter conditions.
62	 \$14,000 Addition of Van for Metershop
63	Required, as noted in submission, for new metering staff being added. \$14,000 is
64	the portion attributed to electric.
65	
66	2018 Fleet Replacements and Additions
67	 \$280,000 Replacement of 1997 Radial Boom Derrick Truck
68	This truck will be 21 years old and will have been extended 6 years beyond its
69	normal planned replacement year. It will have an expected 11,800 hours on it,
70	almost 50% past its baseline trigger of 8,000 hours. Mechanics do not consider that
71	it will be suitable for use beyond that year due to its condition (hydraulics,
72	mechanical).
73	 \$20,000 Addition of Van for Locators
74	Required, as noted in submission, for a new Locator being added. \$20,000 is the
75	portion attributed to electric.
76	
77	2019 Fleet Replacements and Additions
78	\$390,000 Replacement of 2003 Bucket Line Truck
79	This truck has been extended beyond its trigger replacement date based on it having
80	10,800 hours already, however operational and mechanical staff have assessed that
81	replacement can be postponed until 2019 based on its current good condition. At
82	replacement, it is anticipated that it will have been operational 75% beyond its normal

- 83 planned usage.
- 84

- 85 2020 Fleet Replacements and Additions
- 86 \$284,000 Replacement of two 2001 Work Step Vans
- 87 These large work vans used for Substation staff will be 19 years old and will have been
- 88 extended 4 years beyond their normal planned replacement based on age, and 6 years
- based on usage. They are expected to have 11,900 hours and 13,400 hours on them
- 90 respectively, well past the baseline trigger of 8,000 hours. At that point, the mechanical
- 91 condition of the units are not expected to be conducive to further extension.

1	EX⊦	IIBIT 2 – RATE BASE
2		
3	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-30
4		
5	Ref:	Exhibit 2, Tab 2, Schedule 1 – DSP 5.2.1 (b) p. 15
6		
7	Inte	rrogatory:
8	_	
9		rces of Cost Savings - Substation Power Transformers
10	King	ston Hydro is showing \$900,000 in cost savings, which are attributed to deferring
11	the	replacement of the six 3 MVA transformers at Substation No. 1 and reusing
12	tran	sformer T2 from Substation No. 4 at Substation No. 17 to pace investments.
13		
14	a)	Please show how the \$900,000 in savings was calculated.
15		
16	b)	What portion of the \$900,000 is related to deferring replacement of the
17		Substation No. 1 transformers?
18		
19	c)	Are these annual savings or are they savings spread over the 5 year
20		forecast period?
21		
22	Res	ponse:
23		
24	a)	The pro-active replacement strategy for substation transformers outlined in the
25		Kinectrics ACA report identified 7 transformers in poor condition (Flagged-For-
26		Action) that should potentially be replaced immediately.
27		
28		The savings were calculated using an estimated average installed cost of

29		\$300,000 per power transformer times the three units that were deferred for the
30		entire 2015-2020 planning period; one each at Substation MS8, MS5 and MS17.
31		The estimated average installed costs were derived from Kingston Hydro's past
32		experience with similar type work.
33		
34	b)	None.
35		

36 c) These savings are spread over the 5 year forecast period.

1	EXH	IIBIT 2 – RATE BASE	
2			
3	Res	ponse to Ontario Energy Board Interrogatory 2-Staff-31	
4			
5	Ref:	Exhibit 2, Tab 2, Schedule 1 – DSP 5.2.1 (b) p. 15	
6		Exhibit 2, Tab 2, Schedule 1, PDF pp. 797 – 799 Appendix 9 - Capital	
7		Project Write-ups	
8			
9	Inte	rrogatory:	
10			
11	Sources of Cost Savings - Substation #1 Comparison of Upgrade Options		
12	King	ston Hydro states that the J.L. Richards & Associates report identified cost savings	
13	of \$1.65M for upgrade Option A2 relative to Option A due to reduced costs related to		
14	"con	structability, scheduling, reliability, phasing, health and safety".	
15			
16	a)	Please provide details of the specific cost savings attributable to each of	
17		these categories, and how the attribution was calculated.	
18	b)	Please explain why similar costs savings could not be achieved under	
19		development Option A.	
20	c)	Will Kingston Hydro engineering or electrical staff be underutilized if Option A2	
21		is not pursued?	
22			
23	<u>Res</u>	ponse:	
24			
25	a)	J.L. Richards estimated the soft costs as a lump sum in the Options Report	
26		and did not provide a breakdown. That information is therefore not available.	
27		This Opinion of Probable cost is intended to capture project execution	
28		challenges related to constructability, scheduling, reliability, phasing, health	

29		and safety.
30		
31		The following statements in the Options Report related to Soft Costs provide
32		some insight into what is captured in the estimated soft costs in the J.L.
33		Richards Options Report:
34		
35		Excerpt from Section 16.11 Capital Costs:
36		In this section the Options are re-evaluated in the context of Kingston Hydro doing
37		the electrical work, and with the possibility of reducing the station capacity by half
38		for 6 months to 1 year. This has influence in two major areas. First, there will be
39		no contractor mark-up on equipment. Second, the soft costs related to the
40		contractors perceived risks are no longer applicable.
41		
42		Excerpt from Section 17.0 RECOMMENDATIONS:
43		We support Kingston Hydro carrying out the electrical work. It greatly reduces soft
44		costs, provides much more flexibility in terms of scheduling and will reduce the
45		pressure on operational staff to take risks because a contractor is pushing a time
46		table. This method of executing the contract will also greatly increase the
47		possibility of phasing the budget within annual budgets by allowing equipment to
48		be purchased in separate fiscal years from the their installation.
49		
50	b)	As stated previously, J.L. Richards did not provide a breakdown for soft
51		costs. However there is mention about material mark-up and flexibility in
52		terms of scheduling. Scheduling is likely a large portion of the soft costs
53		and may be attributed to unplanned Mobilization and Demobilization of
54		High Voltage contractors due to unpredictable project execution
55		challenges. For example, the changing configuration/state of the
56		distribution system, weather conditions and system loading are
57		unpredictable and may trigger the need to reschedule an outage and
-		

2-Staff-31 Page **3** of **3**

58		associated high voltage work on short notice. Contractors often find it
59		challenging to reschedule work on short notice, especially when it
60		involves mobilization and/or demobilization of out-of-town staff and
61		resources. Conversely this is less of an issue for Kingston Hydro staff.
62		
63	c)	No. Kingston Hydro has reviewed all aspects of its plan to undertake the
64		renewal of Substation 1. Option A2 is the preferred solution for the reasons
65		noted in our DSP. Option A was identified to demonstrate that various
66		alternatives were considered as part of Kingston Hydro's consideration of the
67		best approach to be taken. Kingston Hydro continues to support and
68		recommend Option A2.
69		
70		In the event that the renewal of Substation 1 could not proceed as planned,
71		Option A is not necessarily the next best option as it has been demonstrated
72		to be a more costly solution and an inefficient solution that would impact our
73		customer's preferences negatively. Kingston Hydro has carefully considered
74		its work program, the priorities and the assignment of resources to undertake
75		the proposed work. Option A would result in a re-evaluation of the program to
76		assess the impact on resources, and priorities. Kingston Hydro would offer the
77		observation that even if Option A was to proceed, Kingston Hydro would still
78		need to allocate engineering and electrical staff to manage, coordinate and
79		inspect construction activities within the substation.

1	EXH	IIBIT 2 – RATE BASE	
2			
3	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-32	
4	D .(
5	Ref:		
6		Exhibit 2, Tab 2, Schedule 1, PDF pp. 797 – 799 Appendix 9 - Capital	
7		Project Write-ups Substation No. 1 Rebuild	
8			
9	Inte	rrogatory:	
10			
11	Sou	rces of Cost Savings - Substation #1 Comparison of Upgrade Options	
12	With	reference to Option A2, Kingston Hydro states that "Paced design creates cost	
13	uncertainty since total construction cost cannot be accurately estimated until final design		
14	is co	omplete".	
15			
16	a)	Please quantify the range of the project cost uncertainty associated with the	
17		proposed project implementation approach.	
18			
19	b)	Please assess if the cost uncertainty is greater than the projected \$1.65M cost	
20		savings of Option A2 relative to Option A.	
21			
22	<u>Res</u>	ponse:	
23			
24	a)	Kingston Hydro continues to advance the necessary studies to upgrade the	
25		existing facility and is satisfied with the forecasted expenditures for the Substation	
26		No. 1 rebuild project contained within the DSP and this application. With that	
27		being said, Kingston Hydro does have concerns about cost uncertainty of	
28		structural work related to seismic upgrades. The J.L. Richards Opinion of Probable	

2-Staff-32 Page **2** of **2**

29 Cost (OPC) found in the Substation MS-1 Station Upgrade Options report pegs 30 these structural costs at \$1,000,000 and recommends a seismic assessment. That 31 amount is being carried in the overall project budget and may need to be adjusted 32 post 2020 dependent upon final structural engineering assessment reports.

34 Section 4.1.8 of Part 4 of the Ontario Building Code (OBC) deals with earthquake 35 loads and effects and describes the system requirements associated with post-36 disaster buildings. The intent of a post-disaster building is that it must remain 37 operational after a disaster event such as an earthquake; in the case of a 38 substation this is interpreted as protecting the internal electrical plant from a 39 seismic event. Based on this information, Kingston Hydro retained the MMM Group 40 in 2015 to perform a Seismic Screening Study. Two structural upgrade options 41 were considered to retrofit the building so that it could be considered to be a "near 42 post-disaster" building. The cost estimate for Option 1 is \$1,600,000 and involves 43 upgrades to preserve the existing building as a means to protect the internal 44 electrical plant from a seismic event. The cost estimate for Option 2 is \$950,000 45 and involves upgrades intended to perform in isolation to the building as a means 46 to protect the internal electrical plant from a seismic event. The range of the cost 47 uncertainty for structural work related to seismic upgrades is therefore:

48

33

49 -\$50,000 (Option 2 – OPC) to +\$600,000 (Option 1 – OPC).

- 50 These options remain draft and are not final.
- 51

b) Based on the best information available at this time, Kingston Hydro believes the
cost uncertainty is less than the projected \$1.65M cost savings of Option A2
relative to Option A. It is also noted that an additional cost savings of \$50,000
(increase to \$1.7 million) could be achieved if structural upgrade Option 2 is
selected.

1	EXH	IBIT 2 – RATE BASE
2		
3	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-33
4		
5	Ref	Exhibit 2, Tab 2, Schedule 1 – DSP 5.2.1 (e), p. 16
6		
7	Inte	rrogatory:
8		
9	Plea	ase describe Kingston Hydro's transition from "a 'top down' planning process" to "a
10	mor	e formal asset lifecycle optimization process." When did the transition begin, and
11	whe	n does Kingston Hydro plan to have fully transitioned?
12		
13	a)	Will the transition to formal asset lifecycle optimization approach impact the capital
14		investment decisions in the 2016-2020 time period?
15		
16	b)	If no, then why not?
17		
18	c)	What is Kingston Hydro's assessment of the risk of not yet having fully transitioned
19		to a new process? What is the risk that a number of assets fail simultaneously or
20		in quick succession relative to Kingston Hydro's recent operating history?
21		
22	Res	ponse:
23		
24	King	ston Hydro's transition in asset management has its origins in the adoption of
25	Ente	erprise Geospatial Information Systems (GIS) in 2006-2008. Kingston Hydro's DSP
26	sub	mission in Section 5.3.1.b) describes the process, the various components and the
27	inte	rrelationships that have been created and evaluated. The evolution of Asset
28	Con	dition, System Performance and System Planning data have evolved to become

29 more robust asset information and system knowledge component that influence the 30 bottom up process described in Section 5.3.1.a) Figure 1 of the DSP. 31 32 Kingston Hydro notes that there is an implied assumption in the question that Kingston 33 Hydro will transition completely from a top down process. That has not been determined 34 by Kingston Hydro at this time, nor has Kingston Hydro assumed that it is an "either or" 35 scenario. Kingston Hydro sees merit in a planning approach that utilizes both a bottom 36 up and top down approach. 37 38 a) The capital investment proposal for the 2016-2020 period reflects the influence of 39 Kingston Hydro's work on asset management. The outcome as presented is 40 therefore a reflection of all of the various inputs and influences as described in our 41 application. Currently, Kingston Hydro does not foresee any impacts during the 42 2016-2020 period. 43 44 Kingston Hydro has committed significant resources to the development of the b) 45 DSP submitted as part of this application. The assets identified for action have been subjected to the various processes and analysis as identified in the DSP and 46 47 represent an appropriate investment program for Kingston Hydro. Kingston Hydro 48 submits that the proposed capital investment represents those assets in need of 49 action during the 2016-2020 period. 50 51 C) Kingston Hydro notes that the Capital and O&M Expenditure Decision Making 52 Process (Section 5.3.1.b - DSP) and the Capital Expenditure Planning Process 53 Overview (Section 5.4.2 – DSP) describe the considerations reviewed regarding 54 risk of asset failure. 55 56 Kingston Hydro's historic "top down" approach to Asset Management has been

2-Staff-33 Page **3** of **3**

and continues to be an effective approach to risk assessment and decision
making. Two key factors that contribute to the effectiveness of Kingston Hydro's
historic top down approach are the size of the team involved with the decision
making (typically no more than 9 people) and the cross-functional make-up of the
team. This approach is very similar to the "Scrum" and "Agile" management
methods, which advocate getting work done faster with great teams that are cross-
functional, autonomous and small. The current decision making is further
supported by the employment continuity of staff, some of which have more than 35
years of hands-on field knowledge of the distribution assets. Kingston Hydro
acknowledges that the current decision making process is evolving through
continuous improvement, but that this is an appropriate evolution and it is
consistent with the current evolution taking place in the industry.

1	EXHIBIT 2 – RATE BASE		
2			
3	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-34	
4			
5	Ref:	Exhibit 2, Tab 2, Schedule 1 – DSP 5.2.1 (f), p. 16	
6			
7	Inte	rrogatory:	
8			
9	Sect	tion 5.2.1 (f) describes the future influences on Kingston Hydro's DSP.	
10			
11	a)	What are the anticipated impacts of these influences?	
12	b)	What is the risk that the costs associated with the DSP will increase or	
13		decrease?	
14	c)	Please describe how Kingston Hydro calculates and quantifies the costs	
15		provided in response to the previous question.	
16			
17	Res	ponse:	
18			
19	a)	Kingston Hydro would anticipate impacts of two types, those that might influence	
20		the current 2016-2020 program and those that will influence the post 2020 period.	
21		For example, Kingston Hydro anticipates that improvements to our asset condition	
22		registry (cable condition assessment methodology) will potentially affect the	
23		investment decisions and priorities on assets in the post 2020 period. During the	
24		2016-2020 period Kingston Hydro has noted in the discussion regarding	
25		Downtown Intensification (DSP -5.2.1.f) that while we do not foresee impacts to	
26		System Access, this area is driven by private sector investment decisions that can	
27		be unpredictable. The location, size, density and land uses of these intensification	

proposals could require infrastructure improvements/investments in order to
provide service to a customer.

30

31 On a similar note, third party activity, particularly involving third party attachments 32 to Kingston Hydro's overhead assets, continues to present uncertainties with 33 respect to the impact on resources this will have on the 2016-2020 program. For 34 2015, Kingston Hydro acknowledged the impact the Bell 'fibre to the home' project 35 would have by reducing the amount of work linked to overhead renewal activity. 36 Kingston Hydro is aware of several other "proposed" fibre builds from others, but 37 to date no confirmed applications to attach to our infrastructure have been received. Kingston Hydro has just recently been approached by another 38 39 telecommunication company regarding a "fibre to the home" plan that "may" 40 involve three years of activity in Kingston Hydro's distribution area. Third party 41 investment decisions and their timing are difficult to predict, however, Kingston 42 Hydro will be undertaking contingency planning to ensure we can meet our 43 regulatory requirements for third parties as well as complete our scheduled capital 44 infrastructure program, particularly in the area of overhead renewal.

45

46 With respect to Substation 1, Kingston Hydro has indicated that this rebuild is a 47 long term project that will span 10 years. Kingston Hydro believes the sequencing 48 of work and the pacing to mitigate sharp rate increases is the correct approach. 49 The consequence is some risk associated with total cost estimates as detailed 50 design work has not advanced enough. That aspect might impact the post 2020 51 period but cannot be quantified at this time. During the 2016-2020 period. 52 Kingston Hydro will be advancing works to ensure the building is ready for major 53 electrical upgrades (i.e., protection and structural). To meet current codes, safety 54 issues and structural loading requirements (i.e., transformers), Kingston Hydro will 55 be assessing the structural requirements. Although this work is not complete,

2-Staff-34 Page **3** of **3**

56 preliminary results relating to seismic matters indicate potential costs are in line 57 with estimated costs. Structural assessments relating to floor loadings, as an 58 example, have not been undertaken and remain a possible area of impact on the 59 budget. Kingston Hydro is, however confident in the estimates for the 2016-202 60 period and was aware of these matters in establishing the program for Substation 61 1.

62

63 b) Within our multi-utility model we have had considerable experience with multi-year 64 (3-4 years) approved capital budgets. This requires forecasting capital program 65 work and cost estimates. Our experience suggests that there are risks of costs changing, particularly in the latter years of the program. Notwithstanding our 66 67 understanding of market conditions that impact the competitive bidding processes (i.e., tendering) bid pricing on construction items can create surprises (both above 68 69 or below the estimate established), particularly in the later years of a multi-year 70 approved program. Similarly, pricing for equipment supplied by manufactures can 71 be influenced by global economic changes. However, acknowledging these 72 factors, and based on our experience, we believe the risks are manageable, that 73 we intend to work within the proposed budgets established and continue to 74 support the proposed investment program over 2016-2020.

75

c) As noted in the previous question, the influences on costs cannot be quantified as
the variables are based on future events and influences. Kingston Hydro would
not presume to have any greater knowledge of future costs than anyone else and
therefore is not prepared to attempt to do so.

1	EXI	HBIT 2 – RATE BASE
2		
3	Res	sponse to Ontario Energy Board Staff Interrogatory 2-Staff-35
4		
5	Ref	: Exhibit 2, Tab 2, Schedule 1 – DSP 5.2.1 (b) p. 15
6		
7	Inte	errogatory:
8		
9	Soι	Irces of Cost Savings - Reduced Underground Asset Costs
10	King	gston Hydro states that costs were reduced through coordinating replacement of
11	und	erground assets with City of Kingston road upgrades.
12		
13	a)	Please quantify the expected savings for each of the road upgrade projects and
14		describe how the savings were calculated.
15	b)	Does Kingston Hydro have input into the City of Kingston's planning and
16		scheduling of road upgrade projects?
17		
18	Res	sponse:
19		
20	a)	By coordinating the renewal of underground assets with the city road
21		reconstruction works, Kingston Hydro is able to save on road excavation and
22		restoration expenses that are borne by the city in a joint construction project.
23		
24		Kingston Hydro has estimated the savings utilizing an average of the unit
25		cost pricing received on Kingston Hydro contracts over the last two years.
26		
27		The excavation and restoration cost is calculated by multiplying the
28		excavated area and the unit price $(/m^2)$.

29	The quantities of asphalt excavation and restoration are calculated
30	based on the width and the linear length of the road-cut required for
31	installation of concrete encased duct banks or manholes.
32	The quantities of concrete sidewalk excavation and restoration are
33	calculated based on the linear length of the trench and width of the
34	sidewalk as the City of Kingston requires a full sidewalk panel
35	replacement for any construction in sidewalk. The width of the sidewalk
36	varies from 2 to 2.5 m.
37	• For projects located in the downtown area, the unit price will be higher
38	than average because the contractor incurs additional costs associated
39	with customer communication, lane/road closures and traffic control,
40	which are factored into the unit price.
41	
42	Cost savings for all road reconstruction projects from 2015 to 2020 are
43	summarized in the following table. There is no saving on excavation and

- 43 summarized in the following table. There is no saving on excavation and
- 44 restoration in the Russell St. Reconstruction project as Kingston Hydro will
- 45 only be relocating poles in the gutter/sidewalk to the back of the sidewalk.

Road Upgrade Project	Total Project Estimate	Total Saving	Saving, %
Princess St. Reconstruction 2016	\$2,820,000	\$289,000	10.2%
Johnson St. Reconstruction	\$100,000	\$12,400	12.4%
Russell St. Reconstruction	\$80,000	\$0	0.0%
Barrie St. Reconstruction	\$260,000	\$29,500	11.3%
Division St. Reconstruction	\$250,000	\$25,450	10.2%

Expected Savings in Road Reconstruction Projects

46

- b) Kingston Hydro participates (along with other utility providers) in the planning
- 48 of the "4 Year Capital Budget" undertaken by the City of Kingston as it
- 49 relates to road infrastructure. Kingston Hydro would also refer to the

2-Staff-35 Page **3** of **3**

50 response in Interrogatory 2.0-STAFF-24 for additional information on this

51 issue.

1	EXH	IBIT 2 – RATE BASE	
2			
3	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-36	
4			
5	Ref	: Exhibit 2, Tab 2, Schedule 1 – DSP 5.2.3 (a) pp. 26 & 27	
6			
7	Inte	rrogatory:	
8			
9	Eng	ineering Costs	
10	King	ston Hydro states that as a percentage of its total project costs, engineering costs	
11	amo	ount to approximately 2% for pole replacement projects, and in the range of 5% to	
12	8.5%	% for other project types. The RSMeans Electrical Cost Data indicates that industry	
13	standard engineering and construction management fees for projects up to \$1M, range		
14	fron	n 8.6% to 17.6% of total project costs.	
15			
16	a)	Does Kingston Hydro's low level of engineering expenditure relative to industry	
17		standards materially improve average projected costs?	
18	b)	Does Kingston Hydro's low level of engineering expenditure relative to industry	
19		standards increase the risk of poor project execution or reduced project reliability	
20		and quality?	
21			
22	Res	ponse:	
23			
24	a)	Yes. Any time that Kingston Hydro can gain efficiencies and effectiveness in	
25		undertaking capital programs, it will yield positive results in total costs and over	
26		time, average costs. Engineering is one component of a project and where	
27		Kingston Hydro can develop effective cost controls in engineering, it assists in	
28		producing an improved financial result as described in the DSP 5.4.3.a).	

- b) No. There is no history of that occurring. In fact, there is considerable pride
- 30 amongst staff in the quality, professional and cost effective manner our projects
- 31 are undertaken in. To-date our historical capital work continues to perform as
- 32 designed and expected.

1	EXHIBIT 2 – RATE BASE		
2			
3	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-37	
4			
5	Ref	: Exhibit 2, Tab 2, Schedule 1 – DSP 5.2.1 (f) p. 17	
6		Exhibit 2, Tab 2, Schedule 1 – DSP 5.2.2 p. 19 Table 1	
7			
8	<u>Inte</u>	rrogatory:	
9			
10	Coc	ordination with Third Parties	
11	King	gston Hydro has identified that third party projects, including Bell's Fibre-To-	
12	The-Home and Fibre-To-The-Node projects are expected to have an impact on staff		
13	resources for most of 2015, and will have an ongoing impact on Capital		
14	Exp	enditures for 2016-2020 related to System Access.	
15			
16	a)	How are Kingston Hydro's costs for performing the cited make-ready work	
17		allocated to third parties?	
18			
19	b)	Does the allocation methodology fully recover Kingston Hydro's incremental	
20		costs, including the impacts on staff resources?	
21			
22	<u>Res</u>	ponse:	
23			
24	a)	In general, when a third party applies to attach to Kingston Hydro poles, the third	
25		party pays for all materials and resources required to complete the "Make Ready	
26		Work". Make ready work encompasses all necessary work required for the third	
27		party to safely attach its assets to Kingston Hydro poles; make ready work does	
28		not include bringing existing distribution assets up to current standards as	

29	required by Ontario Regulation 22/04. However, due to the volume of Bell's fibre
30	to the home program, Bell has agreed to pay more of the costs for both "Make
31	Ready Work" and for bringing existing assets up to current standards.
32	
~~	 N .

33 b) Yes.

1	EXH	IBIT 2 – RATE BASE
2		
3	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-38
4		
5	Ref:	Exhibit 2, Tab 2, Schedule 1 – DSP 5.2.3 Figure 2 p. 23
6		
7	Inter	rogatory:
8		
9	Ann	ual ESA Audit Findings
10	King	ston Hydro's ESA audit performance as shown in Figure 2 improved materially
11	over	the period from 2006 to 2015.
12		
13	a)	Describe any capital projects or O&M changes Kingston Hydro undertook to
14		deliver the improved performance.
15		
16	b)	Did implementing the required changes impact capital or operating
17		budgets?
18		
19	Res	ponse:
20		
21	a)	Generally speaking, the ESA audit performance improved materially through
22		minor changes to internal processes, policies and procedures.
23		
24	b)	No.

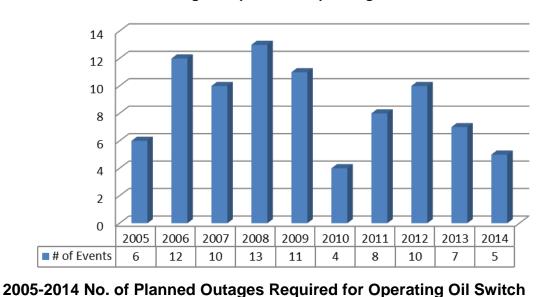
1	EXH	HBIT 2 – RATE BASE
2		
3	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-39
4		
5	Ref	: Exhibit 2, Tab 2, Schedule 1 – DSP 5.2.3 (a), p. 24, 5.2.3 – Table 1
6		Kingston Hydro Performance Outcomes
7		
8	Inte	errogatory:
9		
10	In 5	.2.3 – Table 1 Kingston Hydro Performance Outcomes, Kingston Hydro lists
11	"Ris	k Management" as one of the categories monitored.
12		
13	a)	Please describe how Kingston Hydro identifies, prioritizes, and mitigates risks.
14		
15	b)	Does Kingston Hydro maintain some form of risk registry or a database listing risks
16		being monitored?
17		
18	c)	If yes,
19		i) Please provide a recent sample of the document.
20		ii) Please list which assets are not covered by the risk registry.
21		
22	Res	sponse:
23		
24	a)	As described in Section 5.2.3 a) of the DSP Kingston Hydro utilizes reliability
25		indices as one method for identifying risk. Kingston Hydro would also refer to
26		Section 5.4.2 (a) of the DSP as further documentation about the factors
27		considered in risk identification, prioritization. Furthermore the Asset Management
28		Process described in Section 5.3.1 of the DSP and in particular the review of

29		Capital O&M Expenditure Decision Making and Work Execution reviews the
30		notion of mitigation by considering both capital renewal and or operational
31		activities to mitigate risk on assets of high priority.
32		
33	b)	Kingston Hydro has as part of its Strategic Plan, identified a need to undertake
34		formal corporate Risk Management Activities. That process has begun and
35		reference is made to the response provided in IR-1-SEC-10 for further
36		information about that process. However a formal risk registry as it applies to
37		asset management has not been completed. Kingston Hydro notes that the DSP
38		does however identify a number of risk factors that are considered throughout the
39		Asset management Process.
40		
41	c)	Not applicable.

1	EXHIBIT 2 – RATE BASE		
2			
3	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-40	
4			
5	Ref	Exhibit 2, Tab 2, Schedule 1 – DSP 5.2.3 (a) p. 25	
6			
7	Inte	rrogatory:	
8			
9	Mor	hitoring of Risk Management	
10	King	ston Hydro adjusted its Tree Trimming program to produce a significant reduction in	
11	Tota	al Customer Hour Interruptions (TCHI).	
12			
13	a)	Quantify the annual changes in tree trimming program costs associated with the	
14		referenced TCHI improvements.	
15			
16	b)	Will the tree trimming program adjustments be continued going forward into the	
17		forecast period to maintain the improved TCHI performance?	
18			
19	c)	If yes to b), what are the associated incremental O&M costs during each year of	
20		the forecast period?	
21			
22	<u>Res</u>	ponse:	
23			
24	a)	Since power interruptions from tree contact occur almost exclusively due to	
25		unpredictable weather events such as ice storms, high winds, or heavy snowfalls,	
26		it is difficult to quantify TCHI improvements associated with incremental changes to	
27		tree trimming costs. Upon review of the outage data, staff noticed an increase due	
28		to tree contacts in conjunction with less stringent tree trimming activity in 2012.	

29		TCHI for that year was 32,215 and 6,073 the year prior. Changes were made to
30		improve line-clearing, and results were positive with a TCHI of 3,813 for 2013,
31		excluding the major December ice storm. Similarly, 2014 TCHI was 1,274 and
32		2015 is currently at 2,275. The Applicant is not able to specifically quantify the
33		program costs with the TCHI improvements as year-to-year weather comparables
34		are not tracked, however we do believe that there is strong causality between the
35		level of tree-trimming and the TCHI.
36		
37	b)	The Applicant believes that the proposed budget amounts for tree trimming will
38		provide the right balance to minimize the amount of customer interruptions from
39		tree contacts.

- 40
- 41 c) N/A



1	EXHIBIT 2 – RATE BASE			
2				
3	Res	Response to Ontario Energy Board Staff Interrogatory 2-Staff-41		
4				
5	Ref	: Exhibit 2, Tab 2, Schedule 1 – DSP 5.2.3 (a) p. 29		
6				
7	<u>Inte</u>	rrogatory:		
8				
9	Agi	ng Oil Switches		
10	King	ston Hydro notes that Outage Code 1B was created to denote planned outages		
11	perf	ormed to accommodate work or switching involving aging oil switches which are		
12	unsafe to operate while energized due to slow-moving deteriorated mechanical			
13	cont	tacts.		
14				
15	a)	Is it anticipated that replacement of the aging oil switches will eliminate or		
16		significantly reduce Outage Code 1B outages?		
17	b)	What is the count of problematic/unsafe oil switches in the Kingston Hydro system		
18		at present?		
19	c)	How many problematic/unsafe oil switches will remain in the Kingston Hydro		
20		system after 2020 following the planned replacements under the DSP?		
21				
22	<u>Res</u>	ponse:		
23				
24	a)	It is anticipated that the continued replacement of the aging oil switches will		
25		reduce Outage Code 1B outages. Kingston Hydro replaced five oil switches (21		
26		switched ways) during the last rate application period (2010-2014) and plans to		
27		replace 4 switches (16 switched ways) in the next five years. The table below		
28		shows the trend of the planned outages required for operating oil switches		

(Outage Code 1B) in the last ten years. There are currently 18 obsolete oil switch
assemblies (72 switched ways) still in service in the Kingston Hydro distribution
system. If all oil switches were replaced, then Outage Code 1B would be
eliminated.

No. of Outages Required for Operating Oil Switch

- 36
 37 b) There are currently 18 obsolete oil switch assemblies (72 switched ways) in
 38 service in the Kingston Hydro distribution system.
- 39

34

- 40 c) Fourteen obsolete oil switch assemblies (56 switched ways) will remain in the
- 41 Kingston Hydro distribution system after 2020 in accordance with the DSP.

1	EXHIBIT 2 – RATE BASE
2	
3	Response to Ontario Energy Board Staff Interrogatory 2-Staff-42
4	
5	Ref: Exhibit 2, Tab 2, Schedule 1 – DSP 5.2.3 (b), p. 40, 5.2.3 – Table 4 Top
6	Three Defective Equipment Causes
7	
8	Interrogatory:
9	
10	Please explain why Kingston Hydro only listed years 2011 and 2014 in 5.2.3 –
11	Table 4 Top Three Defective Equipment Causes.
12	
13	Response:
14	
15	In Section 5.2.3. Figure 12 of the DSP, on the same page, indicates Defective
16	Equipment was one of the major causes of interruptions in the last five historical
17	years (2010 to 2014) and Defective Equipment had a large contribution to SAIDI in
18	2011 and in 2014. Given the data, the Defective Equipment outage code data in
19	2011 and 2014 were analyzed in more detail given that those years saw significant
20	variances. This was done to determine the causes and to identify which types of
21	equipment caused more forced outages.
22	
23	If all Defective Equipment outage code data from 2010 to 2014 were analyzed, the
24	top defective equipment types in the last five historic years are shown in the table
25	below. Distribution transformer fused switch is the no. 2 cause of interruptions
26	among all defective equipment types. However, the impact of this outage caused
27	by distribution transformer fused switch is minor as typically 10 to 20 customers are
28	affected by the outage and the switch is easily repaired. As a result the investment

29 priority for this asset is low.

30

	No. of Outages			
Year	Overhead Conductor	Distribution Tx	Distribution Transformer	5kV 500MCM
	(OH wires, transformer lead)	Fused Switch	& Auxiliaries	PILC Cable
2010	2	3	2	2
2011	6	3	5	3
2012	3	1	0	2
2013	7	7	0	1
2014	5	1	6	4
Total	23	15	13	12

1	EXHIBIT 2 – RATE BASE		
2			
3	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-43	
4			
5	Ref	Exhibit 2, Tab 2, Schedule 1 – DSP 5.2.3 (c), p. 43	
6			
7	<u>Inte</u>	rrogatory:	
8			
9	Reg	arding "Continuous Improvement Using Corporate Strategy":	
10			
11	a)	Please explain how Kingston Hydro links information that resides in the asset	
12		registry, the Asset Condition Assessment, and the observational database and/or	
13		the historical reliability data.	
14			
15	b)	Are there instances where there is inconsistency between one set of data and	
16		another?	
17			
18	<u>Res</u>	ponse:	
19			
20	a)	Dependent on the asset in question the process may vary slightly but in general	
21		the following process is utilized to link information together to produce information	
22		that enables further evaluation later in the Asset Management Process described	
23		in Section 5.3.1 of the DSP.	
24			
25		Data collected in Asset Registry is queried in order to extract relevant information	
26		and may be shown in tabular form or geospatially. That information might be	
27		related to the asset id, location of the assets being examined, the age, relevant	
28		condition and inspection data, other related equipment or circuits adjacent or	

located on the asset. As with most electronic data, this data can be very discrete
i.e. show only assets with "x" condition rating or it can be at a gross level i.e.
assets with condition ratings "x, y and z."

32

The data being refined in this early step is generally of interest because service quality, performance, reliability or outage indices are indicative of an "issue" or "concern" that warrants further investigation and analysis. In addition the observational (priority) data base is also used to identify areas of concern that warrant further investigation and analysis, especially new observational data since the last Health Index analysis. The data collected will assist in the determination of the causal effect creating the issue.

40

41 The other component utilized is the asset condition assessment work performed by 42 Kinetrics. Based on the asset in question a review of the Health Index and effective 43 age of the asset (derived from Health Index) is compared with the actual age and 44 typical useful life (TUL) data for the asset with a view to determining whether the 45 asset behaved as expected, whether it is over or under its TUL, and whether that information suggest more analysis is required. Kingston Hydro also considers the 46 47 suggested "flag for action numbers" for the asset in question against the number of 48 assets being considered in the analysis.

49

50 The process employed by Kingston Hydro is iterative depending on what the 51 information and data reveals during the review. It is not unusual to cycle back 52 through the process in order to ensure we completely understand the assets in 53 question and what actions may be required to resolve the matter.

54

b) In the earlier years (2006-2008) of asset management, there were instances of
 inconsistency between data sets largely due to multiple data sets being

2-Staff-43 Page **3** of **3**

57	maintained. Over the years Kingston Hydro has driven one centralized data
58	storage system available to all staff, principally held within the Enterprise
59	Geospatial Information System. Kingston Hydro utilizes several checks and
60	balances to ensure the consistency and accuracy of the data, before being stored
61	in its GIS system. This process has evolved to a point where all staff has a high
62	degree of confidence in the data and relies on it for information. Kingston Hydro
63	has also started to use tablets with a cellular data link for field inspections. Field
64	staff now has real-time access to the asset registry and can flag any
65	inconsistencies found with asset data while they are performing their inspections in
66	the field.
67	
68	As noted in the Kinectrics Asset Condition Assessment report, some
69	inconsistencies or missing data was encountered while performing the Health
70	Index analysis. A sample or subset of useful asset data was therefore used for
71	Health Index analysis and then extrapolated to the total asset population.
72	
73	As a result where inconsistency in data is revealed actions are taken to correct the
74	

74 inconsistency.

1	EXH	IIBIT 2 – RATE BASE
2		
3	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-44
4		
5	Ref:	Exhibit 2, Tab 2, Schedule 1 – DSP 5.3.1 (b), p. 55
6		
7	Inte	rrogatory:
8		
9	The	following are intended to assess Kingston Hydro's intentions regarding the
10	perf	ormance of its Asset Condition Assessments in the future:
11		
12	a)	Please provide a list of Kingston Hydro's electric assets for which Kinectrics did
13		not perform a Health Index calculation.
14	b)	How often will the ACA be performed?
15	c)	Will future ACAs be performed by Kingston Hydro personnel or external third
16		parties?
17	d)	Does Kingston Hydro intend that its ACA adhere to international standards or
18		processes?
19	e)	If yes, please provide details and relevant documentation.
20		
21	<u>Res</u>	ponse:
22		
23	a)	The following is a list of Kingston Hydro's electric assets for which Kinectrics did
24		not perform a Health Index calculation:

2-Staff-44 Page 2 of 3

25

Asset Class	Asset Subclass
Underground Civil Structures	Duct banks
Underground Equipment	Primary Cables
Underground Civil Structures	Maintenance Holes
Underground Civil Structures	Pad Foundations
Underground Civil Structures	Hand Holes
Substation Structures	Station 5kV Building
Substation Equipment	Station Arresters
Underground Civil Structures	U/G Vaults - Main Structure
Substation Equipment	Station Ground Grid
Substation Equipment	Current & Potential Transformers
Substation Equipment	Station Breakers - 44kV Standalone
Substation Structures	Station 44kV Building
Substation Equipment	Primary Cables
Substation Structures	Indoor/Outdoor Steel Structure
Substation Equipment	Station Switch - 44kV ganged 3ph
Substation Equipment	Station Breakers - 5kV Reclosers
Substation Structures	Roof
Underground Civil Structures	U/G Vaults - Removable Components
Substation Structures	Fence
Substation Equipment	Station Switch - 5kV ganged 3ph

26

b) Kingston Hydro expects to perform the ACA every 4-5 years. Kingston Hydro also
recognizes that the ACA is a continuous improvement process and expects to add
duct banks, primary cables and maintenance holes (first three items in the list from
the response to 2-Staff-44 a) to its next round of Health Index calculations and to
add updated information yearly.

- 32
- 33 c) That has yet to be determined.
- 34

35 d) First and foremost, the ACA will adhere to standards or processes consistent with

- 36 other Electrical Distributors in Ontario and any regulatory requirements. Adopting
- 37 standards or processes from other jurisdictions is dependent upon future

- 38 resources and a determination if there is value added above and beyond current
- 39 methodologies.
- 40
- 41 e) Not Applicable.

1	EXH	IIBIT 2 – RATE BASE
2		
3	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-45
4		
5	Ref:	Exhibit 2, Tab 2, Schedule 1 – DSP 5.3.1(b) pp. 61-64
6		
7	Inte	rrogatory:
8		
9	King	ston Hydro describes its asset management process as the collection of
10	infor	mational inputs, including asset age and asset degradation assessments, and
11	King	ston Hydro's proprietary asset registry. The informational inputs are then analyzed,
12	and	based upon that analysis; Kingston Hydro compiles a list of potential asset repair or
13	repla	acement projects. From this list of projects, Kingston Hydro prioritizes the projects,
14	and	schedules the work according to perceived available resources.
15		
16	a)	Is the prioritization process described in 5.3.1 (b): Capital Expenditure Decision
17		Making Process exclusively or primarily a qualitative exercise?
18	b)	Does Kingston Hydro use quantitative cost-benefit analysis in the selection and
19		prioritization of the capital investment projects?
20	c)	5.3.1 (b): Results Measurement Process states that Kingston Hydro, as part of
21		the continuous improvement of the asset management cycle, assesses the
22		effectiveness of the capital investment program. How does Kingston Hydro
23		measure the results of the individual capital projects? Please provide examples.
24		
25	<u>Res</u>	ponse:
26		
27	a)	No, the prioritization is not exclusively or primarily a qualitative exercise. For
28		example, risk is evaluated by relative order of magnitude based on voltage class

- (e.g. 44kV, 5kV, less than 1000V) and cost estimates are reviewed and discussed
 but the decision process is not currently documented or measured in a formal
 manner. Kingston Hydro believes the current prioritization methodology is
 effective and will evolve through a continuous improvement which is consistent
 with industry trends.
- b) Yes, but the quantitative cost-benefit analysis is often approximated based on
 expert judgment of competent staff and not formally documented.
 - 37

- 38 C) Whenever possible, Kingston Hydro measures the results of similar previous 39 capital projects. For example, in financial performance, current vault replacement 40 costs are compared with historic costs for similar projects. This has resulted in reduced reconstruction costs for new underground vaults through the use of 41 42 precast rather than cast-in-place structures as described in Section 5.2.1(b), page 43 15 of the DSP. It has also caused Kingston Hydro to re-tender civil contracts 44 resulting in reduced reconstruction costs as described in Section 5.2.3(a), page 25 of the DSP. 45
- 46

Kingston Hydro also reviews various performance measures such as reliability
indices as a measure of performance. The DSP for example notes changes to the
tree trimming activities and although weather conditions are variable we are
seeing some positive results in our reliability indices relating to that issue.
Kingston Hydro's capital work associated with the replacement of old, obsolete oil
switches is and will trend favorably in reducing the number of planned outages
caused by this equipment.

1	EXHIBIT 2 – RATE BASE
2	
3	Response to Ontario Board Staff Interrogatory 2-Staff-46
4	
5	Ref: Exhibit 2, Tab 2, Schedule 1 – DSP 5.3.2 (c) pp. 72 - 90
6	
7	Interrogatory:
8	
9	Summary of Asset Age and Condition
10	DSP section 5.3.2 provides Typical Useful Life (TUL) values for different asset
11	categories and then provides actual asset age distributions and condition
12	assessments for the Kingston Hydro portfolio.
13	
14	Should the TUL values be adjusted upward for specific asset categories, considering
15	that significant numbers of Kingston Hydro's pole, switch, transformer and
16	underground cable assets have achieved service lives far beyond the expected TUL
17	values?
18	
19	Response:
20	
21	No. Kingston Hydro submits that TUL values should not be adjusted at this time. TUL
22	values are consistent with the industry values identified by Kinectrics in the report
23	entitled Asset Depreciation Study for the Ontario Energy Board dated July 2010 and are
24	representative of industry wide experiences. TUL should not in principle be based on
25	one LDC's experience. Kingston Hydro acknowledges that the TUL values may not be
26	representative of industry norms for assets such as Oil Switches, PILC cables and
27	Cedar poles with Creosote impregnated butts. This however has more to do with
28	"legacy" issues than with any activities that prolonged the typical life of the asset.

- 29 Kingston Hydro also acknowledges that asset management and cost of service 30 methodologies have evolved considerably over the past decade. The goal of this 31 evolutionary change is to ensure effective and efficient investment decision making that 32 meets customer needs but it has also meant that annual capital spending related to 33 system renewal of these legacy assets will be significantly higher than the depreciation 34 expenses, until these legacy assets are replaced. 35 36 Another factor to be considered is that legacy assets with service lives that exceed the 37 expected TUL are not necessarily unsafe but they do affect operational activities and 38 performance. For example, Kingston Hydro has maximized the useful life of legacy oil
- 39 switches through planned outages to operate switches safely. The deferral of legacy
- 40 cedar poles with adequate structural strength has occurred but results in framing
- 41 configurations that are incompatible with current standards.
- 42
- 43 Kingston Hydro does not support a change to the TUL unless industry wide research
- 44 and data supports such a change.

1	EXI	IT 2 – RATE BASE	
2			
3	Res	nse to Ontario Ener	rgy Board Staff Interrogatory 2-Staff-47
4			
5	Ref	Exhibit 2, Tab 2, So	chedule 1 – DSP 5.3.1 (c), pp. 92-95
6			
7	Inte	ogatory:	
8			
9	King	on Hydro has listed th	nree groups of assets that "Require Detailed Condition
10	Ass	sment": Maintenance	Holes, Primary Cable, and Substation Facilities.
11			
12	a)	or maintenance holes	s, Kingston Hydro states: "Costs for this inspection would be
13		art of Kingston Hydro	's existing operating expenses created through on-going
14		fficiencies."	
15		Please explain the	Kingston Hydro ongoing efficiencies that are going to be
16		created.	
17		Are those efficience	cies accounted for in the current spending plans?
18	b)	or primary cable, King	gston Hydro states: "test are required providing further
19		vidence obsolete o	cable to be replaced."
20		Please explain the	purpose of the testing of the cables, since it appears that
21		Kingston Hydro int	tends to replace the cables regardless of the results of the
22		tests.	
23			
24	Res	nse:	
25			
26	a)	egarding ongoing eff	iciencies associated with maintenance hole inspections:
27		Kingston Hydro inf	tends to use a Maintenance Hole Scanner which will
28		eliminate the need	I for staff to make a confined space entry thus reducing the

29	field staff time.

- 30 ii) Yes.
- 31
- 32 b) Regarding primary cable testing:
- i) Kingston Hydro intends to test cables in an effort to prioritize and pace
 investments in cable replacement.

1	EXH	IBIT 2 – RATE BASE
2		
3	Res	oonse to Ontario Energy Board Staff Interrogatory 2-Staff-48
4		
5	Ref:	Exhibit 2, Tab 2, Schedule 1 – DSP 5.3.3 p. 113
6		Exhibit 2, Tab 2, Schedule 1 – DSP 5.4.4 pp. 179 – 183
7		
8	<u>Inter</u>	rogatory:
9		
10	Ass	et Lifecycle Optimization
11	Just	ification and Investment Drivers – Historic Trend and Forecast Evolution
12	King	ston Hydro's pole, switchgear, transformer and underground cable assets can be
13	gene	erally grouped into two vintage categories: very old assets near, at or beyond
14	plan	ned end of life, and very new assets which have a substantial expected remaining
15	usef	ul life. For example, 41% of the pole assets exceed the typical planned useful life of
16	45 y	ears and 19% are in Poor or Very Poor condition.
17		
18	In its	discussion of investment drivers, Kingston Hydro states that it has to maintain the
19	sam	e investment level over the forecast period, so that the overhead infrastructure can
20	be s	ustainable.
21		
22	a)	Considering the "dumbbell shaped" vintage curves for much of Kingston Hydro's
23		fleet of poles, switches, transformers and underground cables, and the fact that a
24		significant proportion of the asset portfolio has already reached, or will reach or
25		exceed planned service life over the next 5 years, is the planned investment level
26		adequate to maintain system performance and customer service?
27	b)	Has Kingston Hydro quantitatively evaluated the system performance and
28		customer service risk that would be associated with accelerating equipment failure

29 rates due to the asset vintage distribution? 30 c) Would an increased rate of asset failure over the next 5 years materially impact 31 future operation and/or capital maintenance costs? 32 33 **Response:** 34 35 For clarification purposes, Kingston Hydro does not currently have vintage curves a) 36 for underground cables and has established a "reactive cable replacement 37 program" in the absences of cable condition information. Continuous 38 improvements to the asset registry, condition assessment and performance 39 monitoring factors may result in different investment levels in the future. Currently, 40 Kingston Hydro believes the planned investment level is adequate to maintain 41 system performance and customer service based on the available data and 42 condition information, historic reliability performance indicators and the intimate 43 knowledge of field staff as balanced against resources and customer preferences. 44 45 b) Kingston Hydro has not formally evaluated system performance and customer 46 service risk associated with accelerating equipment failure rates but staff have 47 considered the relative magnitude of risk associated with different distribution 48 voltages (e.g. 44kV, 5kV, Less Than 1000V) and prioritized work accordingly. 49 Many assets such as poles and switches have surpassed their typical useful life 50 and Kingston Hydro has prioritized work using relative magnitude of risk for quite 51 some time. We believe the current prioritization approach is effective. Kingston 52 Hydro expects that continuous improvements to the investment decision making 53 process will provide additional confirmation that Kingston Hydro's investment 54 decision making is not only effective but also efficient. 55

2-Staff-48 Page **3** of **3**

- 56 Kingston Hydro would also make the observation that the implications noted in 57 guestions a) and b) are not new observations/conditions and in fact are indicative 58 of conditions that have existed for some time. Kingston Hydro through this 59 application is not suggesting that a rapid or significantly different investment 60 strategy is required. Kingston Hydro continues to approach its asset management 61 strategy with a long term perspective that will evolve and improve and with time 62 will sustain our asset base and continue to satisfy customer preferences. 63 64 c) This is difficult to answer without considering all investment decision factors. But, 65 Kingston Hydro has in the past adjusted capital programs where the unexpected failure of an asset has resulted in no other alternative but to invest now. Typically 66 67 that has occurred within the total allocated budget with minimal impacts. Kingston
- 68 Hydro would only foresee such a situation arising if there was a catastrophic failure
- 69 of multiple assets; then there would be a materiality impact on operations and/or
- the capital investment program. At this time, however, there does not appear to be
- any evidence that such an increase in the rate of asset failure is occurring.

1	EXH	IIBIT 2 – RATE BASE
2		
3	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-49
4		
5	Ref:	Exhibit 2, Tab 2, Schedule 1 – DSP 5.4.4 p. 113
6		
7	Inte	rrogatory:
8		
9	Сар	ital vs. Operating Costs
10	This	table shows that System O&M costs are projected to increase in each year of
11	the I	Forecast Period of 2015 to 2020 by an average of over \$93,000 (approximately
12	2.7%	6) per annum, resulting in a cumulative O&M cost increase of \$467,236 annually,
13	or a	pproximately 15% over the forecast period. Historical System O&M costs fell from
14	\$3,3	44,858 in 2010 to \$3,051,338 in 2014, representing a reduction of \$293,520 or
15	аррі	oximately 8.8% over the historical period.
16		
17	a)	Please explain what is causing the historical trend in O&M cost reductions to
18		reverse into significant O&M cost increases.
19		
20	b)	Given the forecast increase in average expenditures for System Renewal and
21		System Service projects, and considering the planned General Plant
22		expenditures on upgraded CIS, GIS and Financial systems, should the
23		expectation not be that O&M costs will decrease over the forecast period?
24		
25	<u>Res</u>	ponse:
26		
27	a)	The amounts provided in the referenced table (5.4.4. Table 1b) for System O&M
28		costs is incorrect. As noted on the page, the data is from Appendix 2-AB, and

- that appendix does have the correct amounts. The table below provides thecorrect information:
- 31

37

	2015	2016	2017	2018	2019	2020
System O&M	\$ 3,204,043	\$ 3,300,165	\$ 3,389,269	\$ 3,480,779	\$ 3,574,760	\$ 3,671,279

This correction yields System O&M costs projecting to increase in each year of the Forecast Period of 2015 to 2020 by an average of \$69,493 (2.0%) per annum, resulting in a cumulative O&M cost increase of \$347,463 annually, or approximately 10% over the forecast period.

The Applicant would argue that the proposed projected O&M expenses do not reflect a reversal of a historical cost reduction trend that is bringing forth significant O&M cost increases. The table below reports our O&M costs for the historic years.

42

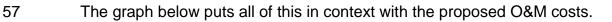
	2010	2011	2012	2013	2014
System O&M	\$ 3,344,856	\$ 3,415,756	\$ 3,212,599	\$ 3,888,080	\$ 3,051,338

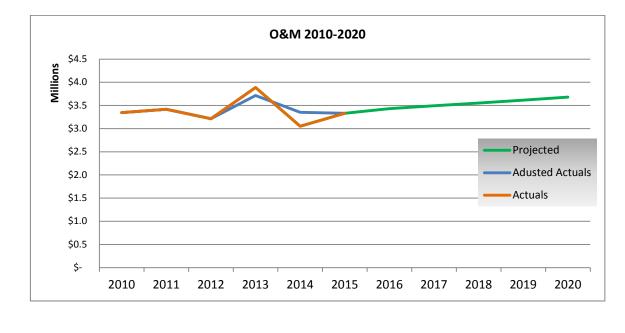
43

As Exhibit 4 Tab 2 Schedule 1 provides, 2014 O&M costs were unusually low
due to the Bell Fibre to the Home project amongst some others as noted in
Appendix 2-JB of that Exhibit. Adjusting for that 2014 Bell work as well as the
major ice storm in 2013 – events largely beyond the control of the utility – yields
the following adjusted O&M costs:

49

	2010	2011	2012	2013	2014
System O&M	\$ 3,344,856	\$ 3,415,756	\$ 3,212,599	\$ 3,713,080	\$ 3,351,338


50


51 The Applicant would argue that this represents a more fair representation. As 52 the graph below illustrates, the trend actually indicates cost increases, not cost 53 reductions.

55 56

- 59
- 60

61 The average O&M costs for the 2010-2014 period is \$3,382,526.

- 62
- 63 The average O&M costs for the 2010-2014 period as adjusted is \$3,407,526.

- The projected 2020 O&M expense of \$3,679,007 is a \$271,481 increase over
 the 2010-2014 adjusted average O&M costs a modest 8.0% increase over that
 6-year term.
- 67
- 68 b) The Applicant does not have a 2015-2020 forecast increase in average
- 69 expenditures above the 2010-2014 historic average for the capital works noted.
- As evidenced in Attachment 2.2.1.1 Distribution System Plan 5.4.5, p175, the
- 71 average forecast expenditure for System Renewal, System Service, and for
- 72 General Plant was decreasing. Revised numbers in response to Board Staff
- 73 interrogatory 2-Staff-19 yields a reallocation between the categories but does
- not change the net effect that overall the average capital expenditures aredecreasing:
- 76

Capital Investment	2010-2014 Average	2015-2020 Average	Variance
System Renewal	\$3,019,078	\$3,192,167	\$173,089
System Service	\$221,362	\$95,000	(\$126,362)
General Plant	\$507,101	\$418,667	(\$88,434)
Total	\$3,747,541	\$3,705,834	(41,707)

With a projected 2015-2020 period 8.0% increase over the 2010-2014 adjusted
actuals, representing 1.6% per annum, Kingston Hydro would suggests that this

80 does represent a decrease in O&M costs when placed in context with an

81 inflationary rate of 2% per year.

1	EX⊦	IIBIT 2 – RATE BASE
2		
3	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-50
4		
5	Ref:	Exhibit 2, Tab 2, Schedule 1, Appendix 4
6		
7	Inte	rrogatory:
8		
9	Utili	ties Kingston 2012 Asset Condition Assessment
10	Kine	ectrics Inc. issued the Utilities Kingston Asset Condition Assessment report in
11	Dec	ember 2013.
12		
13	a)	Please confirm that the Asset Condition Assessment by Kinectrics was prepared
14		based entirely upon information provided by Utilities Kingston, and did not involve
15		any field evaluation of assets by Kinectrics.
16	b)	Please confirm that the Asset Condition information used in the report was
17		collected up to and including 2012.
18	c)	Did Kinectrics identify any deficiencies in the quality or quantity of the asset
19		condition data or records made available by Utilities Kingston for preparation of the
20		report?
21	d)	If yes to c), please identify any steps Kingston Hydro has taken to improve the
22		asset condition information that will be made available for subsequent Asset
23		Condition Assessments.
24		
25	Res	ponse:
26		
27	a)	Confirmed.
28		

- 29 b) Some of the Asset Condition information was collected up to 2011 (e.g. oil 30 analysis) and other Asset Condition information was collected up to 2012 (e.g. transformer loading). 31 32 33 No, Kinectrics did not identify any deficiencies in the Asset Condition Assessment C) 34 (ACA) report relating to the quality of the asset condition data or records for the 35 assets analyzed. Kinetrics did identify differences between the population size and the sample size used to establish the health indices and Flag-For-Action 36 37 plans for each asset class analyzed. 38 39 d) Kingston Hydro recognizes that Asset Management is a continuous improvement 40 process. In 2014, Kingston Hydro staff reviewed, prioritized and recommended a focus on reviewing the asset registry and asset condition data for Wood Poles, 41 42 Duct Banks, Primary Cables, Maintenance Holes and Substation Transformers. 43 In 2014, GIS staff recommended the adoption of the ArcFM Multispeak Electric 44 Data Model which serves as the asset registry for many of Kingston Hydro's
- 45 assets such as wood poles, duct banks and primary cables. Currently progress on
- 46 these items has already occurred, but none are complete.

1	EXH	IIBIT 2 – RATE BASE
2	Dee	nonce to Ontoria Energy Roard Staff Interregistery 2 Staff Ed
3 4	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-51
4 5	Ref:	Exhibit 2, Tab 2, Schedule 1, PDF p. 797 Appendix 9 - Capital Project Write-
6	itter.	ups Substation No. 1 Rebuild
7		
8	Inte	rrogatory:
9		
10	Sub	station #1 Comparison of Upgrade Options
11	Tabl	le 1 on PDF page 797 compares various parameters related to the different
12	deve	elopment options. This table rates Option A2 as "Difficult to Manageable" for
13	Con	structability and Health & Safety, and as "High Risk" for Reliability.
14		
15	a)	Has Kingston Hydro quantified or evaluated the project cost risks attributable to
16		pursuing an upgrade option with such Constructability, Health & Safety and
17		Reliability risks?
18		
19	b)	Has Kingston Hydro created a planning phase risk register for the Substation #1
20		project?
21	-	
22	<u>Res</u>	ponse:
23 24		Vac. staff have considered the project cast ricks accorded with Constructability
24 25	a)	Yes, staff have considered the project cost risks associated with Constructability, Health & Safety and Reliability and determined that these risks can be mitigated.
25 26		For example, the greatest risks are associated with performing work in close
20		proximity to energized bus work and equipment. Staff have reviewed feeder
28		loading and developed a plan for offloading Substation No. 1 which will greatly
~		5 · · · · · · · · · · · · · · · · · · ·

reduce these risks.

- b) No, we have not formally created a planning phase risk register however, by
- 32 undertaking the design and high voltage construction work in-house our team of
- 33 competent staff will carefully plan the required work sequences, consider the risks
- 34 and take measure to mitigate them accordingly through good communications,
- 35 extensive experience and good work practices.

1	EXH	IIBIT 2 – RATE BASE
2		
3	Res	ponse to Ontario Energy Board Staff Interrogatory 2-Staff-52
4		
5	Ref:	Exhibit 2, Tab 2, Schedule 1, PDF pp. 788 & 789 Appendix 9 - Capital
6		Project Write-ups Substation No. 1 Rebuild
7		
8	<u>Inte</u>	rrogatory:
9		
10	Ove	rview of the Condition of Major Substation Components
11	Tabl	e 1 on pdf page 788 categorizes the condition of the six power transformers in
12	Sub	station #1 as "Critical – at end of life". The detailed description table on page 789
13	state	es: "oil analysis suggests these transformers have reached end-of-life".
14		
15	a)	Has Kingston Hydro quantitatively evaluated the probability and cost
16		consequences of one or more of these transformers failing prior to their planned
17		replacement?
18		
19	b)	Would catastrophic failure of any of the 6 power transformers in Substation No. 1
20		potentially cause an extended loss of service to significant portions of downtown
21		Kingston?
22		
23	c)	How frequently is the transformer oil analyzed?
24		
25	d)	Confirm that none of these transformers has real-time alarms to enable preventive
26		de-energization of an individual transformer in the event of sudden acceleration in
27		the rate of off-gassing.
28		

29	Response:			
30				
31	a)	Yes. Please refer to Table I-15 Prioritized Flag-For-Action List of Substation		
32		Transformers on page 59 of the Utilities Kingston 2012 Asset Condition		
33		Assessment prepared by Kinectrics and filed as Appendix 4 of the DSP (EX 2 ATT		
34		2 SCH 1 ATT 1). Table I-15 includes references to the 6 transformers in Substation		
35		1. Kinectrics developed a condition-based flag-for-action plan that identifies the		
36		action year for proactive replacement when the risk (probability of failure times		
37		criticality) is greater than or equal to a pre-set minimum risk value.		
38				
39	b)	No, failure of 1 of 6 power transformers would not cause an extended loss of		
40		service to significant portions of downtown assuming the remaining 5 of 6 power		
41		transformers can be returned to service immediately after the failure of one		
42		transformer.		
43				
44	c)	The transformer oil is analyzed annually. The transformer oil may be resampled		
45		more frequently if the oil analysis identifies changes in the oil condition.		
46				
47				
48	d)	All 6 transformers are protected by sudden pressure relays which trip the 44kV		
49		breakers at Substation No. 1 and are also remotely monitored by SCADA.		

1	EXHIBIT 2 – RATE BASE
2	
3	Response to The Consumers Council of Canada Interrogatory 2-CCC-20
4	
5	(Ex.2/T2/S1/Att. 1)
6	
7	Interrogatory:
8	
9	Re: Third party Infrastructure Development Requirements:
10	
11	Please prepare a Table showing the breakdown of actual costs between Kingston
12	Hydro contributions and total project costs for each third party project from 2010 -
13	2014 and the forecast breakdown between Kingston Hydro and the third party for
14	each project in the proposed capital expenditures from 2015 - 2020.
15	

Response:

Year	Project	Total Project Cost	Kingston Hydro Cost	Third Party Cost
2010	Princess St. Reconstruction - Phase 1	\$1,141,036	\$841,036	\$300,000
2010	Barrie St. Reconstruction	\$169,158	\$169,158	\$0
2011-2012	Pine St & Division St Pole Replacement	\$296,206	\$296,206	\$0
2012	Johnson- Victoria to Division 44kV Extension	\$286,345	\$286,345	\$0
2012-2013	King-Centre St 44kV Line Extension	\$127,195	\$117,319	\$9,876
2013	Williamsville-Transferring OH Secondary Services to UG	\$354,584	\$0	\$354,584
2013	Princess St Reconstruction - Phase 2	\$2,014,223	\$1,816,412	\$197,811
2013-2014	New Transformer Vault TV82 on Queen st	\$321,463	\$321,463	\$0
2015-2016	Princess St Reconstruction-Phase 3	\$3,320,000	\$3,150,000 Below the Materiality	\$160,000 to \$180,000 \$100,000 to
2016	44kV Services for 333 University Ave.	\$160,000	Threshold	\$125,000

20	Notes:	
21		
22	1.	Barrie St. Reconstruction project and Pine & Division St Pole Replacement
23		project were incorrectly coded to System Access and should have been
24		coded to System Renewal.
25		
26	2.	Johnson – Victoria to Division 44kV Extension project and New
27		Transformer Vault TV82 on Queen St. project were triggered by new
28		customer connection proposals. However, the expansions are also of
29		benefit to other existing customers and new customers. The capital
30		contribution calculation conducted by Kingston Hydro indicated the
31		revenues generated from the new customer will cover the cost of the
32		connections and therefore no required customer capital contributions were
33		imposed.
34		
35	3.	For the 2017-2020 period Kingston Hydro has not identified any customers
36		or development scenarios that would trigger third party contributions.

1	EXHIBIT 2 – RATE BASE
2	
3	Response to The Consumers Council of Canada Interrogatory 2-CCC-21
4	
5	(Ex.2/T2/S1/Att. 1, p. 181)
6	
7	Interrogatory:
8	
9	With the large amounts of 44kV and 5kV PILC cables in service, which are known to
10	have high asset failure issues, why has Kingston Hydro not undertaken more of this
11	work to either replace or refurbish the asset to date?
12	
13	Response:
14	
15	Kingston Hydro prioritizes and paces investments in asset renewal to achieve the
16	optimum investment level needed to sustain all assets in Kingston Hydro distribution
17	system, reliably delivery electricity to our customers and ensure a predictable and
18	smooth investment. In the past, the investment priorities were mainly given to station
19	breakers, deteriorated poles and transformer vault structures and equipment due to
20	their criticality and required sustainable replacement levels. As a result, available
21	resources and priority setting meant the primary strategy for underground cables was
22	reactive replacement.
23	
24	However, Kingston Hydro is proposing to increase the investment level in legacy PILC
25	cable replacement during the 2015-2020 forecast period for the following reasons:
26	
27	Increasing 44kV PILC cable failure rate
28	 Increasing replacement backlog of failed 5kV PILC cables

- Need to bring duct structures up to current standards to enable installation of new
- 30 cross-link cable
- Shifting of investment priorities from station breakers to PILC cable replacement
- 32
- 33 Kingston Hydro plans to replace 5,700 meters of PILC cables and install additional
- 34 ducts to facilitate future PILC cable replacement in various projects over this rate
- 35 application term.

1	EXHIBIT 2 – RATE BASE
2	
3	Response to The Consumers Council of Canada Interrogatory 2-CCC-22
4	
5	(Ex.2/T2/S3)
6	
7	Interrogatory:
8	
9	Please list the proposed individual projects and the associated costs within each of
10	the four capital expenditure categories that are greater in cost than the materiality
11	threshold, as shown on Appendix 2#AB for 2015 – 2020.
12	
13	Response:
14	
15	Appendix 2-AB is the actual and forecast capital expenditure summary by four
16	investment categories over the historical and forecast periods. Appendix 2-AA is the
17	proper table to list the individual projects and associated costs. Therefore, the
18	proposed individual projects and the associated costs within each of the four capital
19	expenditure categories that are greater in cost than the materiality threshold were
20	provided on Appendix 2-AA.

Appendix 2-AA Capital Projects Table

	2015	2016	2017	2018	2019	2020
Projects	Bridge	2010	2017	2010	2019	2020
Reporting Basis	MIFRS	MIFRS	MIFRS	MIFRS	MIFRS	MIFRS
Sy	stem Acce	ss				
Meters	300,000	300,000	376,000	440,000	340,000	332,000
44kV Services for 333 University Ave.		160,000				
Russell St. Reconstruction - Division to Montreal				80,000		
Miscellaneous	105,000	60,000	60,000	60,000	60,000	60,000
Sub-Total	405,000	520,000	436,000	580,000	400,000	392,000
	stem Renev					
Substation No.1 Rebuild	400,000	150,000	300,000	374,000	438,000	1,529,000
Transformer Vault TV#8 Upgrade	385,000					
Transformer Vault TV#9 Upgrade	470,000					
Substation No. 10 44kV Riser PILC Cable Replacement	135,000					
Deteriorated Overhead Infrastructure Replacement Program	847,000	1,177,000	1,211,000	1,379,000	1,355,000	1,378,000
Reactive 5kV Cable Replacement	70,000					
5kV Cable Replacement on Seaforth	165,000					
5kV 306 Circuit Fault PILC Cable Replacement	70,000					
Princess St Reconstruction-Phase 3	330,000	2,820,000				
Transformer Vault TV#29 Upgrade			210,000			
5kV 108 Circuit Fault PILC Cable Replacement			90,000			
Division St Reconstruction - Union to Princess			250,000			
Substation MS#4 T1 Transformer Replacement				420,000		
Substation MS#17 T1 Transformer Replacement				90,000		
Transformer Vault TV#38 Upgrade				570,000		
Johnson St. Reconstruction - S.J.A to MacDonnell				100,000		
Substation MS#4 Y2&Y3 Bus Switchgear Replacement					1,100,000	
44kV Riser PILC Cable Replacement					100,000	
Barrie St. Reconstruction - Union to King					260,000	
Transformer Vault TV#3 Upgrade						230,000
Miscellaneous	100,000	100,000	150,000	150,000	100,000	150,000
Sub-Total	2,972,000	,	2,211,000	3,083,000	3,353,000	3,287,000
Sv	stem Servi		, , ,			, ,
44kV Motor Operated Switch				180,000		180,000
Miscellaneous	50,000	20,000	80,000	20,000	20,000	20,000
Sub-Total	50,000	20,000	80,000	200,000	20,000	200,000
G	eneral Plar	nt				
Vehicle Modifications/Upgrades	69,000	389,000		300,000	390,000	284,000
Computer Hardware & Software		393,000	234,000	76,000		
Miscellaneous	104,000	81,000	88,000	30,000	37,000	37,000
Sub-Total	173,000	863,000	322,000	406,000	427,000	321,000
Total	3,600,000	5,650,000	3,049,000	4,269,000	4,200,000	4,200,000
Less Renewable Generation Facility Assets and Other Non						
Rate-Regulated Utility Assets (input as negative)						
Total	3,600,000	5,650,000	3,049,000	4,269,000	4,200,000	4,200,000

21 22

1	EXH	IBIT 2 – RATE BASE
2		
3	Res	ponse to Energy Probe Interrogatory 2-Energy Probe-6
4		
5	Ref:	Exhibit 2, Tab 1, Schedule 1, Attachment 1
6	• •	
7	Intel	rrogatory:
8 9 10	a)	Please explain why there are no contributions and grants shown for 2015 through 2020. If the contributions and grants have been included in the individual line
10 11 12		items that add up to the total, please provide revised continuity schedules for 2015 through 2020 that reflect the gross additions by line item, offset by the contribution
13 14		and grants shown in a separate line.
15 16 17 18	b)	Please explain why the depreciation expense shown on both schedules for 2013 have different figures for the Total PP&E line and the Total line, whereas in all other years they are identical.
19 20 21 22 23	c)	Please confirm that Kingston Hydro does not have any fully allocated depreciation expense. If this cannot be confirmed, please provide a table that shows for 2011 through 2020 the total fully allocated depreciation and the amount that is capitalized and the amount that is expensed and included in OM&A.
24	Res	ponse:
25		
26 27 28	a)	Contributions and grants are dependent on customer driven work. The capital program is based on the DSP. There are no budgeted contributions and grants
20		because if Kingston Hydro receives contributions and grants, then the capital

29		program is increased by the same amount, which results in the same net book
30		value of capital assets.
31		
32	b)	The difference for 2013 reflects the Smart Meter Decision of \$818,462 under the
33		column "Smart Meter Additions".
34		
35	c)	Kingston Hydro does not have any fully allocated depreciation.

1	EXH	IIBIT 2 – RATE BASE
2		
3	Res	ponse to Energy Probe Interrogatory 2-Energy Probe-7
4		
5	Ref:	Exhibit 2, Tab 1, Schedule 1, Attachment 1
6		
7	Inte	rrogatory:
8		
9	a)	Please provide an updated continuity schedule for 2015 based on the latest year
10		to date capital expenditures in 2015 along with the most current forecast for the
11		remainder of the year.
12		
13	b)	If necessary, please provide updated continuity schedules for 2016 through 2020
14		that reflect the changes in 2015 plus any additional changes based on the most
15		current forecast available.
16		
17	Res	ponse:
18		
19	a)	Attached is Appendix 2-BA updated for YTD actuals and forecast expenditures to
20		the end of 2015.
21		
22	b)	N/A

Response to Energy Probe Interrogatory 2-Energy Probe-7

Attachment 1

Appendix 2-BA Fixed Asset Continuity Schedule

MIFRS 2015

					Cost					Accumulated [Depreciation		
					Additions								
CCA Class	OFB	Description	Opening Balance	Additions to June 30, 2015	July - December, 2015	Disposals	Closing Balance		Opening Balance	Additions	Disposals	Closing Balance	Net Book Valu
	1610	Misc. Intangible Plant	\$ 242,440			Diopotale	\$ 242,440	-\$	39,776	- 6,061	Diopotale	-\$ 45,83	
12	1611	Computer Software (Formally known as Account 1925)	\$ 345,639	Ś -	\$ 23,000		\$ 368,639	-Ś	324,118	- 14,195		-\$ 338,31	
CEC	1612	Land Rights (Formally known as Account 1906)	\$ -				\$ -	Ś	-	,		\$ -	\$ -
N/A	1805	Land	\$ 197.343				\$ 197,343	\$	-			s -	\$ 197.34
47	1808	Buildings	\$ 725,696	\$ 30,828	\$ 50,172		\$ 806,696	-\$	235,369	- 15,075		-\$ 250,44	
13	1810	Leasehold Improvements	\$ -				\$ -	Ś	-			\$ -	\$ -
47	1815	Transformer Station Equipment >50 kV	\$ -				s -	Ś	-			s -	\$ -
47	1820	Distribution Station Equipment <50 kV	\$ 9,492,611	\$ 170,170	\$ 84,444		\$ 9,747,225	-\$	2,692,449	- 210,046		-\$ 2,902,49	
47	1825	Storage Battery Equipment	\$ -	, .	,		s -	Ś	-			s -	\$ -
47	1830	Poles, Towers & Fixtures	\$ 14,758,203	\$ 326,087	\$ 75,241		\$ 15,159,531	-\$	5,782,601	- 255,696		-\$ 6,038,29	7 \$ 9,121,23
47	1835	Overhead Conductors & Devices	\$ 4,527,444	\$ 68,181	\$ 386,057		\$ 4,981,682	-\$	990,573	- 80,346		-\$ 1.070.91	
47	1840	Underground Conduit	\$ 10,524,032	\$ 77,896	\$ 567,149		\$ 11,169,077	-\$	3,287,710	- 150,896		-\$ 3,438,60	,,
47	1845	Underground Conductors & Devices	\$ 6.978.767	\$ 148.840	\$ 753.815		\$ 7,881,422	-\$	2.111.225	- 123,839		-\$ 2.235.06	
47	1850	Line Transformers	\$ 4,676,568	\$ 90,003	\$ 79,347		\$ 4,845,918	-\$	2,300,711	- 81,101		-\$ 2,381,81	
47	1855	Services (Overhead & Underground)	\$ 1,741,481	\$ 27,806	\$ 40,664		\$ 1,809,951	-\$	875,229	- 17,504		-\$ 892,73	
47	1860	Meters	\$ 5,822,567	\$ 64,607	\$ 235,393		\$ 6,122,567	-\$	1,655,959	- 358,819		-\$ 2,014,77	
47	1860	Meters (Smart Meters)	\$ -	+ .,	+		\$ -	Ś	-	,		\$ -	\$ -
N/A	1905	Land	\$ -				\$ -	Ś	-			\$ -	\$ -
47	1908	Buildings & Fixtures	\$ -				\$ -	Ś	-			\$ -	\$ -
13	1910	Leasehold Improvements	\$ 335,574				\$ 335,574	-\$	234,693	- 8,114		-\$ 242,80	•
8	1915	Office Furniture & Equipment (10 years)	\$ 27,285		\$ 1,000		\$ 28,285	-\$	8,533	- 2,779		-\$ 11,31	
8	1915	Office Furniture & Equipment (5 years)	\$ -		¢ 1,000		\$ -	Ś	-	2,773		\$ -	\$ -
10	1920	Computer Equipment - Hardware	\$ -				\$-	Ś	-			\$ -	\$ -
45	1920	Computer EquipHardware(Post Mar. 22/04)	\$ 405,077				\$ 405,077	-\$	282,635	- 41.461		-\$ 324.09	Ŧ
45.1	1920	Computer EquipHardware(Post Mar. 19/07)	\$ -				\$ -	Ś	-	11,101		\$ -	\$ -
10	1930	Transportation Equipment	\$ 2.951.072	Ś 18.479	\$ 50.521		\$ 3.020.072	-\$	1.676.728	- 198.247		-\$ 1.874.97	Ŧ
8	1935	Stores Equipment	\$ 61,101	Ş 10,475	<i>Ş 30,321</i>		\$ 61,101	-\$	35,435	- 6,110		-\$ 41,54	1 1 1 1 1 1
8	1940	Tools, Shop & Garage Equipment	\$ 1,082,327	\$ 1,648	\$ 28,352		\$ 1,112,327	-\$	805,669	- 51,052		-\$ 856,72	
8	1945	Measurement & Testing Equipment	\$ 63,381	<i>v</i> 1,010	¢ 20,002		\$ 63,381	-\$	33,227	- 6,338		-\$ 39,56	
8	1950	Power Operated Equipment	\$ -				\$ -	Ś	-	0,550		\$ 55,50 \$ -	\$ -
8	1955	Communications Equipment	\$ 157,913	\$ 1,782	\$ 48,218		\$ 207,913	-\$	92,651	- 22,926		-\$ 115,57	
8	1955	Communication Equipment (Smart Meters)	\$ -	φ <u>1</u> ,702	¢ 10,210		\$ -	Ś	-	22,520		\$ -	\$ -
8	1960	Miscellaneous Equipment	\$ -				\$ -	Ś	-			\$ -	\$ -
47	1970	Load Management Controls Customer Premises	\$ -				\$ -	Ś				\$ -	\$ -
47	1975	Load Management Controls Utility Premises	\$ -				\$ -	¢				\$ -	\$ -
47	1980	System Supervisor Equipment	\$ 2,722,393	\$ 1,435	\$ 48,565		\$ 2,772,393	-\$	1,983,857	- 61,901		-\$ 2,045,75	
47	1985	Miscellaneous Fixed Assets	\$ -	<i>y</i> 1,433	÷ +0,505		\$ -	Ś	1,505,057	01,501		\$ <u>2,0</u> 43,73	\$ 720,000
47	1990	Other Tangible Property	\$ -				\$ -	¢	-			\$ -	\$ -
47	1330		Ş -				Ş -	Ş	-			Ş -	φ -
		Sub-Total Before Contributions	\$ 67,838,914	\$ 1,027,762	\$ 2,471,938	\$ -	\$ 71,338,614	-\$	25,449,149	-\$ 1,712,506	\$ -	-\$ 27,161,65	5 \$ 44,176,95
47	1995	Contributions & Grants	-\$ 2,848,475				-\$ 2,848,475	\$	357,655	64,604		\$ 422,25	9 -\$ 2,426,21
47	2440	Deferred Revenue⁵	\$ -				\$ -	\$	-			\$ -	\$ -
			\$ -				\$ -	\$	-			\$ -	\$ -
		Sub-Total	\$ 64,990,439	\$ 1,027,762	\$ 2,471,938	\$ -	\$ 68,490,139	-\$	25,091,494	- 1,647,902	\$ -	-\$ 26,739,39	6 \$ 41,750,74
		Less Socialized Renewable Energy Generation Investments (input as negative)					ş -					\$ -	\$ -
		Less Other Non Rate-Regulated Utility Assets (input as negative)					ş -					ş -	\$ -
		Total PP&E	\$ 64.990.439	1		\$-	\$ 68,490,139	-\$	25,091,494	- 1,647,902	\$-	-\$ 26.739.39	6 \$ 41,750,74

1	EXHIBIT 2 – RATE BASE
2	
3	Response to Energy Probe Interrogatory 2-Energy Probe-8
4	
5	Ref: Exhibit 2, Tab 1, Schedule 4
6	
7	Interrogatory:
8	
9	Given the Board letter of June 3, 2015 setting the default WCA percentage to 7.5%, is
10	Kingston Hydro going to continue with the option of choosing the default value, or does
11	Kingston Hydro plan on filing a lead-lag study? If the latter, when does Kingston Hydro
12	expect to file the study?
13	
14	Response:
15	

16 Please see response to 1-Staff-5.

1	EXHIBIT 2 – RATE BASE
2	
3	Response to Energy Probe Interrogatory 2-Energy Probe-9
4	
5	Ref: Exhibit 2, Tab 2, Schedule 3, Attachment 1
6	
7	Interrogatory:
8	
9	Please provide a version of Appendix 2-AB that shows for each of 2010 through 2014
10	the budgeted capital expenditure amount for each year and the actual amount (already
11	shown) as well as variance column in the same level of detail as shown in the table.
12	
13	Response:
14	
15	During the 2010-2014 period, budgets were not developed on the basis of the
16	investment categories established by the Board on March 28, 2013. Actuals were
17	reported in Appendix 2-AB after analysis.
18	
19	As part of the development of the DSP, the investment categories are being used for
20	the 2015-2020 budgets.

1	EXHIBIT 2 – RATE BASE
2	
3	Response to Energy Probe Interrogatory 2-Energy Probe-10
4	
5	Ref: Exhibit 2, Tab 2, Schedule 3, Attachment 2
6	
7	Interrogatory:
8	
9	Please provide an updated Appendix 2-AA (for 2015 only) that reflects actual
10	expenditures to date in 2015 along with the most recent forecast for the remainder of
11	the year. Please also include a column that shows for each project the projected in-
12	service date for each discrete project.
13	
14	Response:

Appendix 2-AA Capital Projects Table

Projects	2015 Bridge	2015 Actual By June 30, 2015	2015 Year-End Forecast	Projected In-service Date	
Reporting Basis	MIFRS	MIFRS	MIFRS	MIFRS	
System	n Access			-	
Meters	300,000	66,389	225,000	12/31/2015	
Miscellaneous	105,000	35,807	60,000	12/31/2015	
Sub-Total	405,000	102,196	285,000		
System	Renewal				
Substation No.1 Rebuild	400,000	166,793	400,000	Multi-year project	
Transformer Vault TV#8 Upgrade	385,000	24,420	385,000	11/15/2015	
Transformer Vault TV#9 Upgrade	470,000	26,039	470,000	10/31/2015	
Substation No. 10 44kV Riser PILC Cable Replacement	135,000	75,956	75,956	2/9/2015	
Deteriorated Overhead Infrastructure Replacement Program	847,000	342,108	958,000	12/31/2015	
Reactive 5kV Cable Replacement	70,000	34,077	70,000	10/31/2015	
5kV Cable Replacement on Seaforth	165,000	274	165,000	11/15/2015	
5kV 306 Circuit Fault PILC Cable Replacement	70,000	0	70,000	10/31/2015	
Princess St Reconstruction-Phase 3	330,000	68,869	330,000	12/31/2015	
Miscellaneous	100,000	62,819	150,000	12/31/2015	
Sub-Total	2,972,000	801,355	3,073,956		
System	n Service				
Miscellaneous	50,000	33,624	50,000	12/31/2015	
Sub-Total	50,000	33,624	50,000		
Gener	al Plant				
Vehicle Modifications/Upgrades	69,000	18,479	69,000	12/31/2015	
Miscellaneous	104,000	72,108	104,000	12/31/2015	
Sub-Total	173,000	,	173,000		
Total	3,600,000	1,027,762	3,581,956		
Less Renewable Generation Facility Assets and Other Non					
Rate-Regulated Utility Assets (input as negative)					
Total	3,600,000	1,027,762	3,581,956		

1	EXHIBIT 2 – RATE BASE
2	
3	Response to Energy Probe Interrogatory 2-Energy Probe-11
4	
5	Ref: Exhibit 2, Tab 2, Schedule 8
6	
7	Interrogatory:
8	
9	Please confirm that each of the projects shown in Table 1 was complete and placed into
10	service by the end of 2014. If this cannot be confirmed, please indicate when the
11	project was completed and placed into service and the total cost associated with the
12	project at the time of completion.
13	
14	Response:
15	

16 All ICM projects were completed and placed into service by the end of 2014.

1	EXHIBIT 2 – RATE BASE
2	
3	Response to Energy Probe Interrogatory 2-Energy Probe-12
4	
5	Ref: Exhibit 2, Tab 2, Schedule 3, Attachment 2
6	
7	Interrogatory:
8	
9	Please provide a table in the same format at Appendix 2-AA that shows the capital
10	projects forecast for 2016 through 2020 broken down by project within each of the
11	system access, system renewal, system service and general plant categories.
12	
13	Response:

Appendix 2-AA Capital Projects Table

Projects	2016	2017	2018	2019	2020
Reporting Basis	MIFRS	MIFRS	MIFRS	MIFRS	MIFRS
System	Access				
Meters	300,000	376,000	440,000	340,000	332,000
44kV Services for 333 University Ave.	160,000				
Russell St. Reconstruction - Division to Montreal			80,000		
Miscellaneous	60,000	60,000	60,000	60,000	60,000
Sub-Total	520,000	436,000	580,000	400,000	392,000
System	Renewal				
Substation No.1 Rebuild	150,000	300,000	374,000	438,000	1,529,000
Deteriorated Overhead Infrastructure Replacement Program	1,177,000	1,211,000	1,379,000	1,355,000	1,378,000
Princess St Reconstruction-Phase 3	2,820,000				
Transformer Vault TV#29 Upgrade		210,000			
5kV 108 Circuit Fault PILC Cable Replacement		90,000			
Division St Reconstruction - Union to Princess		250,000			
Substation MS#4 T1 Transformer Replacement			420,000		
Substation MS#17 T1 Transformer Replacement			90,000		
Transformer Vault TV#38 Upgrade			570,000		
Johnson St. Reconstruction - S.J.A to MacDonnell			100,000		
Substation MS#4 Y2&Y3 Bus Switchgear Replacement				1,100,000	
44kV Riser PILC Cable Replacement				100,000	
Barrie St. Reconstruction - Union to King				260,000	
Transformer Vault TV#3 Upgrade					230,000
Miscellaneous	100,000	150,000	150,000	100,000	150,000
Sub-Total	4,247,000	2,211,000	3,083,000	3,353,000	3,287,000
System	Service				
44kV Motor Operated Switch			180,000		180,000
Miscellaneous	20,000	80,000	20,000	20,000	20,000
Sub-Total	20,000	80,000	200,000	20,000	200,000
Genera	I Plant				
Vehicle Modifications/Upgrades	389,000		300,000	390,000	284,000
Computer Hardware & Software	393,000	234,000	76,000		
Miscellaneous	81,000	88,000	30,000	37,000	37,000
Sub-Total	863,000	322,000	406,000	427,000	321,000
Total	5,650,000	3,049,000	4,269,000	4,200,000	4,200,000
Less Renewable Generation Facility Assets and Other Non					
Rate-Regulated Utility Assets (input as negative)					
Total	5,650,000	3,049,000	4,269,000	4,200,000	4,200,000

1	EXHIBIT 2 – RATE BASE
2	
3	Response to Sustainable Infrastructure Alliance of Ontario Interrogatory 2-SIA-4
4	
5	Ref: Exhibit 2, Tab: 2, Schedule 2, DSP Section 5.2.3
6	
7	Interrogatory:
8	
9	Kingston Hydro describes a number of monitoring methods that it uses to gauge the
10	effectiveness of its performance and planning objectives. Please summarize what
11	specifically Kingston Hydro plans to track and report to the OEB on an annual basis (or
12	at the end of the term) as part of its reporting commitment for this CIR application. In
13	responding, please specifically address the proposed format and level of detail for
14	capital spending reporting needed to satisfy the OEB's RRFE requirement to "monitor
15	capital spending against the approved plan by requiring distributors to report annually
16	on actual amounts spent" ¹
17	
18	¹ RRFE Report, page 20.
19	
20	Response:
21	
22	The DSP in Section 5.2.3 identifies a number of monitoring activities that are intended
23	to satisfy regulatory reporting requirements. Kingston Hydro will report in the format
24	required within the timelines stipulated on all regulatory reporting matters.
25	
26	Annually, as part of the RRR reporting requirements, Kingston Hydro reports its
27	financial results with the OEB. Included in this reporting are annual capital expenditures,
28	operating expenses, revenues and Return on Equity. Additionally, as part of its MD&A

- 29 reporting on the annual scorecard results, Kingston Hydro explains the results of its
- 30 operational effectiveness measures as it relates to system reliability, DSP
- 31 implementation progress and cost control.

1	EXHIBIT 2 – RATE BASE
2	
3	Response to Sustainable Infrastructure Alliance of Ontario Interrogatory 2-SIA-5
4	
5	[Ref: Exhibit 2, Tab 2, Schedule 2, DSP Section 5.4.2]
6	
7	Interrogatory:
8	
9	In this section, Kingston Hydro describes the process it undertakes to develop its capital
10	program budget, noting among other things that "A balance of 'Bottom up' project
11	identification and 'Top Down' project prioritization/selection is commonly used when
12	developing a capital expenditure plan."
13	
14	To what extent did the "top down" approach reduce the proposed capital budget? That
15	is, in the absence of any top down restrictions, what levels of incremental spending did
16	Kingston Hydro consider to undertake over the term of this application?
17	
18	Response:
19	
20	Kingston Hydro appreciates the intent of the question, but must acknowledge that "top
21	down" approaches are not the only factor that acts to "reduce proposed capital
22	spending". Kingston Hydro has acknowledged in the DSP the significance of its
23	customer engagement process and the influence it has had in order to address those
24	expressed preferences including smoothing and pacing. Furthermore, available
25	resources, both human and equipment, act to constrain the ability to complete work and
26	hence budgets; and lastly debt to equity ratios and borrowing limits further influence
27	proposed budgets.
28	

- 29 With the forgoing in mind, Kingston Hydro during the Asset Management Process did
- 30 consider other work not identified in the 2016-2020 program which resulted in reducing
- 31 the overall budget between \$750,000- \$900,000 per year on average during this period.

1	EXHIBIT 2 – RATE BASE									
2										
3	Response to Sustainable Infrastructure Alliance of Ontario Interrogatory 2-SIA-6									
4										
5	Ref: Exhibit 2, Tab 2, Schedule 2, DSP Section 5.4.2									
6										
7	Interrogatory:									
8										
9	Kingston Hydro provided an example of its capital expendite	ure planning process: "a								
10	team comprised of Field Staff, Engineering Staff, an Operat	or, a Supervisor, a Manager								
11	and a Director reviews the list of potential capital expenditur	re projects then informally								
12	discuss and compare projects using the objectives, criteria	and assumptions outlined in								
13	5.4.2a. Projects are then prioritized and annual capital expe	enditures are optimized."								
14										
15	Please provide the list of capital projects that were consider	ed through this process but								
16	ultimately not included as part of this rate application. Pleas	e list the general reasons								
17	why these projects were deemed to be of a lower priority the	an those ultimately included.								
18										
19	Response:									
20										
21	The following projects were considered and either deferred	or reduced in scope:								
22										
23	MS 5 T1 Transformer replacement	deferred								
24	MS 8 T2 Transformer replacement	deferred								
25	5Kv Feeder 1400 extension deferred									
26	 Voltage Conversion – Dalton Avenue – Phase 1 	deferred								
27	Substation 1	reduced								
28	 Deteriorated Overhead Infrastructure Replacement reduced 									

29	 44kv motor operated switch 	reduced
30		
31	As described in the DSP, Asset Manageme	nt Process, Kingston Hydro evaluated these
32	projects with the above noted results. These	e projects were ultimately deferred or
33	reduced in scope for the following reasons:	
34		
35	 Limited risk due to actions/plans to m 	itigate such as spares, load shift, alternate
36	feeds etc.	
37	Limited risk/impact to customers by c	leferral.
38	Ranked lower in the priority setting e	xercise as compared to projects selected.
39	Consideration of available resources	when measured against the "total" work
40	plan i.e. can the scope of work being	considered be completed?
41	Projects were not integral / linked to	other projects and did not affect sequencing.

1	EX⊦	IIBIT 2 – RATE BASE
2		
3	Res	ponse to Vulnerable Energy Consumers Coalition Interrogatory 2-VECC-6
4		
5	Ref	erence: E2/T1/S4
6		
7	Inte	rrogatory:
8		
9	a)	Please recalculate the 2016-2020 Rate Base working capital allowance using the
10		Board's default value of 7.5% of controllable costs.
11		
12	b)	If Kingston Hydro does not intend to use this value please indicate when it expects
13		to file its own lead/lag study.
14		
15	<u>Res</u>	ponse:
16		
17	a)	Kingston Hydro has recalculated the WCA rate to 7.5%.
18		
19	b)	Please see response to 1-Staff-5.

Response to Vulnerable Energy Consumers Coalition Interrogatory 2-VECC-6

Attachment 1

Rate Base and Working Capital

	Rate Base						
Line No.	Particulars	_	Initial Application	Adjustments	Interrogatory Responses	Adjustments	Per Board Decision
1 2 3	Gross Fixed Assets (average) Accumulated Depreciation (average) Net Fixed Assets (average)	(3) _(3) (3)	\$73,979,610 (\$27,861,376) \$46,118,234	\$ - <u>\$ -</u> \$ -	\$73,979,610 (\$27,861,376) \$46,118,234	\$ - <u>\$ -</u> \$ -	\$73,979,610 (\$27,861,376) \$46,118,234
4	Allowance for Working Capital	(1)	\$11,759,763	(\$4,975,284)	\$6,784,479	<u> </u>	\$6,784,479
5	Total Rate Base	=	\$57,877,997	(\$4,975,284)	\$52,902,713	\$ -	\$52,902,713

(1) Allowance for Working Capital - Derivation

6 7 8	Controllable Expenses Cost of Power Working Capital Base		\$7,130,810 \$83,328,903 \$90,459,713	\$ - <u>\$ -</u> \$ -	\$7,130,810 \$83,328,903 \$90,459,713	\$ - <u>\$ -</u> \$ -	\$7,130,810 \$83,328,903 \$90,459,713
9	Working Capital Rate %	(2)	13.00%	-5.50%	7.50%	0.00%	7.50%
10	Working Capital Allowance	:	\$11,759,763	(\$4,975,284)	\$6,784,479	\$ -	\$6,784,479

Notes (2) (3)

Rate Base and Working Capital

	Rate Base						
Line No.	Particulars	_	Initial Application	Adjustments	Interrogatory Responses	Adjustments	Per Board Decision
1 2 3	Gross Fixed Assets (average) Accumulated Depreciation (average) Net Fixed Assets (average)	(3) _(3) (3)	\$78,117,585 (\$29,757,628) \$48,359,957	\$ - <u>\$ -</u> \$ -	\$78,117,585 (\$29,757,628) \$48,359,957	\$ - <u>\$ -</u> \$ -	\$78,117,585 (\$29,757,628) \$48,359,957
4	Allowance for Working Capital	_(1)	\$11,653,174	(\$4,930,189)	\$6,722,985	<u> </u>	\$6,722,985
5	Total Rate Base	=	\$60,013,131	(\$4,930,189)	\$55,082,942	\$ -	\$55,082,942

(1) Allowance for Working Capital - Derivation

6 7 8	Controllable Expenses Cost of Power Working Capital Base		\$7,253,351 \$82,386,451 \$89,639,802	\$ - \$ - \$ -	\$7,253,351 \$82,386,451 \$89,639,802	\$ - <u>\$ -</u> \$ -	\$7,253,351 <u>\$82,386,451</u> \$89,639,802
9	Working Capital Rate %	(2)	13.00%	-5.50%	7.50%	0.00%	7.50%
10	Working Capital Allowance		\$11,653,174	(\$4,930,189)	\$6,722,985	\$ -	\$6,722,985

Notes (2) (3)

Rate Base and Working Capital

	Rate Base						
Line No.	Particulars	_	Initial Application	Adjustments	Interrogatory Responses	Adjustments	Per Board Decision
1 2 3	Gross Fixed Assets (average) Accumulated Depreciation (average) Net Fixed Assets (average)	(3) _(3) (3)	\$81,712,470 (\$31,791,818) \$49,920,652	\$ - <u>\$ -</u> \$ -	\$81,712,470 (\$31,791,818) \$49,920,652	\$ - <u>\$ -</u> \$ -	\$81,712,470 (\$31,791,818) \$49,920,652
4	Allowance for Working Capital	(1)	\$11,486,494	(\$4,859,670)	\$6,626,823	<u> </u>	\$6,626,823
5	Total Rate Base	=	\$61,407,146	(\$4,859,670)	\$56,547,475	<u> </u>	\$56,547,475

(1) Allowance for Working Capital - Derivation

6 7	Controllable Expenses Cost of Power		\$7,378,017 \$80,979,625	\$ - \$ -	\$7,378,017 \$80,979,625	\$ - \$ -	\$7,378,017 \$80,979,625
8	Working Capital Base		\$88,357,642	\$ -	\$88,357,642	\$ -	\$88,357,642
9	Working Capital Rate %	(2)	13.00%	-5.50%	7.50%	0.00%	7.50%
10	Working Capital Allowance		\$11,486,494	(\$4,859,670)	\$6,626,823	\$ -	\$6,626,823

Notes (2) (3)

Rate Base and Working Capital

	Rate Base							
Line No.	Particulars		Initial Application	Adjustments	Interrogatory Responses	Adjustments	Per Board Decision	
1 2 3	Gross Fixed Assets (average) Accumulated Depreciation (average) Net Fixed Assets (average)	(3) _(3) (3)	\$85,931,970 (\$33,939,211) \$51,992,759	\$ - <u>\$ -</u> \$ -	\$85,931,970 (\$33,939,211) \$51,992,759	\$ - <u>\$ -</u> \$ -	\$85,931,970 (\$33,939,211) \$51,992,759	
4	Allowance for Working Capital	(1)	\$11,425,178	(\$4,833,729)	\$6,591,449	<u> </u>	\$6,591,449	
5	Total Rate Base	=	\$63,417,937	(\$4,833,729)	\$58,584,208	<u> </u>	\$58,584,208	

(1) Allowance for Working Capital - Derivation

6 7 8	Controllable Expenses Cost of Power Working Capital Base		\$7,504,848 \$80,381,134 \$87,885,982	\$ - <u>\$ -</u> \$ -	\$7,504,848 \$80,381,134 \$87,885,982	\$ - <u>\$ -</u> \$ -	\$7,504,848 \$80,381,134 \$87,885,982
9	Working Capital Rate %	(2)	13.00%	-5.50%	7.50%	0.00%	7.50%
10	Working Capital Allowance	•	\$11,425,178	(\$4,833,729)	\$6,591,449	\$ -	\$6,591,449

Notes (2) (3)

Rate Base and Working Capital

	Rate Base							
Line No.	Particulars		Initial Application	Adjustments	Interrogatory Responses	Adjustments	Per Board Decision	
1 2 3	Gross Fixed Assets (average) Accumulated Depreciation (average) Net Fixed Assets (average)	(3) _(3) (3)	\$90,207,745 (\$36,156,094) \$54,051,651	\$ - <u>\$ -</u> \$ -	\$90,207,745 (\$36,156,094) \$54,051,651	\$ - <u>\$ -</u> \$ -	\$90,207,745 (\$36,156,094) \$54,051,651	
4	Allowance for Working Capital	(1)	\$11,304,580	(\$4,782,707)	\$6,521,873	<u> </u>	\$6,521,873	
5	Total Rate Base	=	\$65,356,231	(\$4,782,707)	\$60,573,524	<u> </u>	\$60,573,524	

(1) Allowance for Working Capital - Derivation

6 7 8	Controllable Expenses Cost of Power Working Capital Base		\$7,633,881 \$79,324,426 \$86,958,307	\$ - <u>\$ -</u> \$ -	\$7,633,881 <u>\$79,324,426</u> \$86,958,307	\$ - \$ - \$ -	\$7,633,881 \$79,324,426 \$86,958,307
9	Working Capital Rate %	(2)	13.00%	-5.50%	7.50%	0.00%	7.50%
10	Working Capital Allowance	-	\$11,304,580	(\$4,782,707)	\$6,521,873	\$ -	\$6,521,873

Notes (2) (3)

1	EXI	HBIT 2 – RATE BASE
2		
3	Res	sponse to Vulnerable Energy Consumers Coalition Interrogatory 2-VECC-7
4		
5	Ref	erence: E2/T1/S1/DSP/pg.13
6		
7	Inte	errogatory:
8		
9	a)	Please show 5.2.1 Table 2 (Breakdown by key investment) by the same categories
10		for years 2010 through 2020.
11		
12	b)	Please show the Engineering cost percentage expected for each of these
13		categories (see pg.26)
14		
15	c)	For each of the categories please provide the measurement metric(s) and targeted
16		outcome(s) that Kingston will use to assess these work programs over the term of
17		the rate plan.
18		
19	Res	sponse:
20		
21	a)	Kingston Hydro would refer to the response provided in IR 2-Staff-19 for relevant
22		information pertaining to the 2010-2014 period as well as 2015-2020.
23		
24	b)	As noted in the DSP, Section 5.2.3 (a) Table 2, 90% of the engineering cost
25		examples were below the materiality threshold. Kingston Hydro, in the DSP
26		section 5.2.3 (a) page 27, line 17 to 19 identifies that the expected forecasted
27		engineering costs will range from 5-8% of project costs.
28		

29 30		Kings	ston Hydro also refers to the OEB's procedural order and in particular:
31		"Parti	ies should use the materiality thresholds documented in Chapter 2 of the
32		Filing	Requirements as a guide"
33			
34		То со	omplete the request as stated would require a significant level of effort to
35		extra	ct this data for each of the categories defined for each of the requested years.
36			
37	c)	Kings	ston Hydro would refer to the response provided in IR 1-Staff-12 for relevant
38		inforr	nation pertaining to this question.
39			
40		Annu	ally, as part of the RRR reporting requirements, Kingston Hydro reports its
41		finan	cial results with the OEB. Included in this reporting are annual capital
42		expe	nditures, operating expenses, revenues and Return on Equity. Additionally, as
43		part o	of its MD&A reporting on the annual scorecard results, Kingston Hydro
44		expla	ins the results of its operational effectiveness measures as it relates to
45		syste	m reliability, DSP implementation progress and cost control
46			
47		In ad	dition, Kingston Hydro is planning on measuring the success of its capital
48		inves	tment program over the planning period by answering the following questions.
49		This	would apply to not only the categories identified in Section 5.2.1 Table 2 noted
50		abov	e but for all capital investment areas identified in the DSP.
51			
52		•	Over the planning period, did Kingston Hydro replace the number of assets it
53			indicated in the DSP? In other words, if we proposed to undertake to replace
54			6 pad mount switchgear, was that in fact completed as planned?
55		•	Over the planning period, did Kingston Hydro place the asset into service as
56			planned and within the estimated budget?

57	• Over the planning period, did Kingston Hydro vary from the planned program
58	and if so explain the variation and its outcomes.
59	
60	Kingston Hydro would also refer to the OEB Scorecard and in particular
61	Operational Effectiveness – System Reliability. Not all of the categories noted in
62	Section 5.2.1 Table 2 of the DSP relate specifically to system reliability, however
63	Kingston Hydro would expect on balance, over the five year average to observe
64	improvements in reliability trends as reported in the OEB Scorecard as a result of
65	our proposed capital investment plan as identified in the DSP.

0.00

0.19

0.00

0.00

0.09

1	EXH	IBIT 2 – RATE BASE						
2								
3	Resp	oonse to Vulnerable En	ergy Cons	umers Coa	alition Inte	errogator	y 2-VECC-8	3
4								
5	Refe	rence: E2/T1/S1/DSP/p	og.37, 44-4	5				
6								
7	Inter	rogatory:						
8								
9	a)	Please provide a table s	howing for	each year f	rom 2010	to 2014 c	outages by a	all
10		cause codes tracked by	Kingston H	lydro (if mo	re than th	ose showr	n at pages 3	36-
11		41).						
12	b)	Please also show by cau	use codes f	or each vea	ar's contri	bution to S	SAIFI.	
13		,,,,,,						
	Deer							
14	Resp	oonse:						
15								
16	a) R	efer to 5.2.3. Figure 12 c	on E2/T1/S ²	1/DSP/page	e 40 for th	e table.		
17								
18	b)							
19		2010-2014 SAIFI Break	down by All	Cause Coc	les Excluc	ling Major	Events	
		Cause of Interruption	2010	2011	2012	2013	2014	
		Unknown/Other	0.04	0.04	0.02	0.15	0.04	
		Scheduled Outage	0.17	0.20	0.13	0.10	0.11	
		Loss of Supply	0.11	0.45	0.02	0.13	0.00	
		Tree Contacts	0.09	0.30	0.17	0.07	0.08	

0.00

0.13

0.13

0.00

0.00

0.21

0.00

0.54

0.15

0.00

0.05

0.03

0.00

0.05

0.10

0.00

0.06

0.09

0.02

0.49

0.21

0.00

0.00

0.24

Lightning

Defective Equipment

Adverse Environment

Foreign Interference

Adverse Weather

Human Element

1	EXF	IBIT 2 – RATE BASE
2		
3	Res	ponse to Vulnerable Energy Consumers Coalition Interrogatory 2-VECC-9
4		
5	Ref	erence: E2/T1/S1/DSP/pg.41-47
6		
7	Inte	rrogatory:
8		
9	a)	Does Kingston anticipate any change to its planned outage metrics during the
10		course of the rate plans' capital program?
11		
12	b)	Please provide the anticipated contribution (percentage) of planned outages
13		contribution to SAIFI and SAIDI during the period 2015 through 2020.
14		
15	<u>Res</u>	ponse:
16		
17	a)	Kingston Hydro anticipates there are no significant changes to its planned outage
18		metrics during the custom IR term.
19		
20		The planned outage (scheduled outage) is the customer interruptions due to the
21		disconnection at a selected time for the purpose of construction or preventive
22		maintenance, including power outages required for asset replacement, regular
23		preventive maintenance, new utilities equipment connections, new customer
24		connections and other construction purposes. In the forecast period, Kingston
25		Hydro plans to maintain the similar maintenance practice and investment levels as
26		in the last five historical years. Therefore, the planned outage metrics (no. of
27		planned outages) are expected to remain in a similar pattern during the 2015-2020
28		period. However, customers may experience less TCHI (Total Customer Hour

29	Interruptions) caused by planned outages as more obsolete vault oil switches are
30	being replaced. The oil switch is unsafe to operate under load due to deteriorated
31	mechanical contacts. Current safe work practice requires Kingston Hydro staff to
32	de-energize this type of switch by opening feeder breakers at substations before
33	operating it, resulting in extended outages,
34	

- b) During the 2010-2014 historical years, the planned outages contributed 15% to
- 36 SAIDI and 14% to SAIFI in Kingston Hydro's distribution system. So Kingston
- 37 Hydro anticipates the planned outages will provide a similar contribution to SAIDI
- and SAIFI during the period of 2015 to 2020 for the reasons stated in the question
- 39 a).

500 \$

(

0

0\$

(Budget)

N/A

N/A

84,516.00

100,196.00

1	EXHIBIT 2 – RATE BASE
2	
3	Response to Vulnerable Energy Consumers Coalition Interrogatory 2-VECC-10
4	
5	Reference: E2/T1/S1/DSP/pg.179
6	
7	Interrogatory:
8	
9	Please provide a table for each year for the first full year following the implementation of
10	smart meters (2013?) to 2020 which shows by rate class: (a) total number of meters
11	installed; (b) new service meters installed; (c) total meter costs.
12	
13	Response:
14	
15	Kingston does not have sufficiently detailed records to be able to report the requested
16	data for 2013. Kingston does not have total meter costs for the Large User rate class
17	separated from interval metered customers, and as such cannot provide specific
18	financial data for specifically the GS>50, or Large User Rate Class.
19	
20	Note that 2015 total meters installed is an actual value up to August 31, 2015.
21	
22	Note that the total meters installed from 2016 to 2020 are the same values used in the
23	Cost Allocation.
24	
	2013 2014 2015
	Total Meters Installed New Service Meters Total Meter Costs Total Meters Installed New Service Meters Total Meter Costs (Acts Dec 23 2004) New Service Meters (Acts Dec 23 2004) New Service Meters (Acts Dec 23 2004) New Service Meters (Acts Dec 23 2004)

346

(Actual)

N/A

N/A

89,397.00

131,214.00

(As at August 31 2015)

24260

3009

323

5

(As at Dec 23 2014)

24144

3004 326

5

110,170.00

71,373.00

47,392.00

N/A

140 \$ 0 \$ 0 \$ 0 \$

Residential GS<50 GS>50 Large User

N/A

	2016			2017		2018			
Total Meters Installed (Forecast from CA)	New Service Meters	Total Meter Costs	Total Meters Installed (Forecast from CA)	New Service Meters	Total Meter Costs	Total Meters Installed (Forecast from CA)	New Service Meters	Total Meter Costs	
24157	500	\$ 93,631.00	24311	1000	\$ 95,336.89	24466	1000	\$ 98,586.35	
2950	0	\$ 107,857.00	2901	. 0	\$ 110,209.75	2853	0	\$ 117,066.54	
337	0	N/A	343	0	N/A	350	0	N/A	
5	0	N/A	5	0	N/A	5	0	N/A	

	2019				2020		
Total Meters Installed (Forecast from CA)	New Service Meters	Total	Meter Costs	Total Meters Installed (Forecast from CA)	New Service Meters	Total	Meter Costs
24622	1000	\$	102,085.75	24779	1000	\$	104,772.89
2805	0	\$	123,135.14	2758	0	\$	127,414.05
357	0		N/A	364	0		N/A
5	0		N/A	5	0		N/A

1	EXHIBIT 2 – RATE BASE
2	
3	Response to Vulnerable Energy Consumers Coalition Interrogatory 2-VECC-11
4	
5	Reference: E2/T1/S1/pg. 174 /Appendix 2-AB
6	
7	Interrogatory:
8	
9	a) Please provide a table in the form of Appendix 2-B which shows the actual
10	spending in each category and the associated capital contributions for that
11	category in each of the years 2010 through 2020.
12	
13	Response:
14	

15 Please see response to 2-CCC-20.

1	EXHIBIT 2 – RATE BASE
2	
3	Response to Vulnerable Energy Consumers Coalition Interrogatory 2-VECC-12
4	
5	Reference: E2/T1/S1/pg. 183 / Appendix 9 (PDF pgs. 920-)
6	
7	Interrogatory:
8	
9	a) For each of the following IT investments : a) CIS system; (b) ERP, (c) Customer
10	Relationship Management System - please provide the total cost of the system,
11	the amount allocated to Kingston Hydro and the methodology used for allocating
12	the costs to Kingston Hydro. Please also provide the forecast in-service year.
13	
14	Response:
15	
16	Please refer to 2-Staff-28.

1	EXHIBIT 2 – RATE BASE
2	
3	Response to Vulnerable Energy Consumers Coalition Interrogatory 2-VECC-13
4	
5	Reference: E2/T1/S1/pg. 183 / Appendix 9
6	
7	Interrogatory:
8	
9	For each year 2015 through 2020 please provide the number of new vehicles to be
10	purchased and the cost of the vehicles. If some or all of the vehicles are purchased in
11	common by and for Utilities Kingston then please show the allocation of costs to
12	Kingston Hydro and the methodology used for allocating those costs.
13	
14	Response:
15	

- 16 The table below indicates the vehicles being purchased. The cost allocation for the
- 17 units that are used by Utilities Kingston to serve the electric, gas, water, and wastewater
- 18 customers is based on the number of customers for each of those utilities.
- 19

2015				
Туре	Vehicle	KHydro Allocation	Cost to Kingston Hydro	Allocation Methodology
Addition	Locator Van	23%	\$11,500	Based on # of customers for each utility
Addition	Service Van	23%	\$11,500	Based on # of customers for each utility
Addition	Service Van	23%	\$11,500	Based on # of customers for each utility
2016				
Replacement	Lines Bucket Truck	100%	\$375,000	
Addition	SCADA Van	23%	\$14,000	Based on # of customers for each utility
2017				
Replacement	Lines Van	100%	\$44,000	
Addition	Metering Van	23%	\$14,000	Based on # of customers for each utility
2018				
Replacement	RBD	100%	\$280,000	
Addition	Locators Van	23%	\$20,000	Based on # of customers for each utility

2019			
Replacement	Lines Bucket Truck	100%	\$390,000
2020			
Replacement	Substation Step Van	100%	\$142,000
Replacement	Substation Step Van	100%	\$142,000

20