

June 7, 2016

BY RESS & Courier

Ms. Kirsten Walli Board Secretary Ontario Energy Board Suite 2700, 2300 Yonge Street Toronto, Ontario M4P 1E4

Dear Ms. Walli:

Re: Union Gas Limited ("Union") Leamington Expansion Project Board File # EB-2016-0013

Attached please find the revised AC Interference Study dated June 3, 2016.

Sincerely,

[Original Signed By]

Shelley Bechard Administrative Analyst, Regulatory Projects :sb Encl.

cc: L. Gluck, OEB M. Millar, OEB

All Intervenors

Union Gas Ltd.

NPS12 Learnington Expansion Phase II

Leamington, ON

AC Interference Study

15136-20

©2016 Corrosion Service Company Limited. All rights reserved. This document may not be copied, reproduced or transmitted, fully or partially, in paper, electronic, recording or any other form without the written permission of Corrosion Service Company Limited.

This report was prepared exclusively for the purposes, project, and site location(s) outlined in the scope of work. The conclusions and recommendations in this report are based on data obtained and analyzed in accordance with industry practice, on the site conditions and operational status of the system at the time of the survey, and on information provided to us. Corrosion Service Company Limited waives responsibility for any decisions or actions taken as a result of our report, or for any consequential damage resulting from such decisions or actions, should the site conditions change, should the operational status change, and should the information provided to us be in error.

For further information and contact detail, visit www.corrosionservice.com

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pa	ge 1 of 44

Owner:

Union Gas Ltd.

Prepared for:

Union Gas Ltd. 50 Keil Drive North Chatham, ON N7M 5M1

Client Contract or Other Ref:

PO 4950009394UG

Prepared by:

H. Bahgat, E.I.T., Technical Associate NACE CP Technician #59494

L. Corner, E.I.T., System Specialist

Reviewed by:

R. A. Gummow, P. Eng. NACE Corrosion Specialist #710

Approved by:

S. Segall, P. Eng., VP of Technical Engineering NACE CP Specialist #5087

Revision Table:

Status/REV	Description	Date
A0	Issued for Review	2016-05-13
C1	Issued for Use	2016-05-18
C2	Issued for Use	2016-06-03

Stamps:

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date YYYY-MM-DD: 2016-06-03			Page 2 of 44

EXECUTIVE SUMMARY

UGL Leamington Expansion Phase II AC Interference Study

Table of Contents

1	Genera	al				
2	Refere	ence Specifications and St	andards			
3	Desigr	n Data & Assumptions				10
	3.1	•	n			
	3.2					
	3.3	Powerline Data				1
	3.4	Soil Resistivity				1
4	Effects	s of AC Interference				14
5	Admis	sible Limits				1
	5.1	Steady-State Conditions				1
	5.1.1	•				
	5.1.2	AC Corrosion				15
	5.2	Fault Conditions				17
	5.2.1	Hazardous Voltages				17
	5.2.2	Risk of Arcing				19
	5.2.3	Coating Stress				20
	5.3	Summary				20
6	Predic	ted Unmitigated AC Interfe	erence			20
	6.1	Steady-State Conditions				2 ⁻
	6.1.1	-				
	6.1.2	AC Corrosion				2 ⁻
	6.2	Fault Conditions				22
	6.2.1	Hazardous Voltages				22
	6.2.2	Risk of Arcing				24
	6.2.3	Coating Stress				32
	6.3	Summary				32
7	Mitigat	tion of AC Interference				3
	7.1	Proposed AC Mitigation				3
	7.2	Mitigated Steady-State Co	nditions			34
	7.2.1	Touch Voltage				34
	7.2.2	AC Corrosion				3
	7.3	Mitigated Fault Conditions				30
	7.3.1	Hazardous Voltages				36
	7.3.2	Risk of Arcing				3
	7.3.3	Coating Stress				38
	7.4	Summary				38
8	Risk o	f DC Interference				38
9	Conclu	usions				39
			I 222 2 12	T	T. a	
	2016 Corrosio I rights reserv	n Service Company Limited ed.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
			Revision Release Date: 2016-06-03	1	F	Page 3 of 44
L					'	

Appendix A	40
Soil Resistivity Measurements	40
List of Tables	
Table E-1. Predicted Unmitigated Hazards	6
Table E-2. Summary of Recommended Mitigation	7
Table E-3. Predicted Mitigated Hazards	8
Table 3-1. Pipeline Parameters	11
Table 3-2. Cathodic Protection System	11
Table 3-3. Powerline Configuration Parameters	12
Table 3-4. Steady-State Loading	12
Table 3-5. Fault Current Contributions	12
Table 3-6. Soil Resistivity Data	13
Table 4-1. AC Interference Hazards	15
Table 5-1. Safe Separation Distance (Worst Case Scenario)	19
Table 5-2. Safety Limits	20
Table 6-1. Current Distribution and Voltage Rise of the Towers Assuming a Maximum Tower Resistance	of 20 Ω.25
Table 6-2. Current Distribution and Voltage Rise of the Towers Using the Calculated Tower Resistance B Measured Soil Resistivities at Each Tower	
Table 6-3. Voltage Difference between Faulted Tower and Pipeline Assuming a Maximum Tower Resista 20 Ω	
Table 6-4. Voltage Difference between Faulted Tower and Pipeline Using the Calculated Tower Resistant on Measured Soil Resistivities at Each Tower	
Table 6-5. Predicted Unmitigated Hazards	33
Table 7-1. Summary of Recommended Mitigation	34
Table 7-2. Predicted Mitigated Hazards	38

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pa	ge 4 of 44

List of Figures

Figure 3-1. Pipeline/Powerline Right-of-Way Configuration	10
Figure 5-1. Corrosion Rate vs AC Current Density	16
Figure 6-1. Predicted Unmitigated Touch Voltages under Steady-State Conditions	21
Figure 6-2. Predicted Unmitigated AC Current Densities under Average Steady-State Conditions	22
Figure 6-3. Predicted Unmitigated Touch Voltages under Fault Conditions	23
Figure 6-4. CEA Test Data in Native Soil	29
Figure 6-5. CEA Test Data in Sand	30
Figure 6-6. CEA Test Data in Top Soil (8 kA)	31
Figure 6-7. CEA Test Data in Top Soil (4 kA)	31
Figure 7-1. Predicted Mitigated Touch Voltages under Steady-State Conditions	35
Figure 7-2. Predicted Mitigated AC Current Densities under Average Steady-State Conditions	36
Figure 7-3. Predicted Mitigated Touch Voltages under Fault Conditions	37

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pa	ge 5 of 44

EXECUTIVE SUMMARY

Corrosion Service Company Limited (CSCL) was retained by Union Gas Limited (UGL) to conduct an AC interference study for the collocation of the proposed UGL NPS12 Leamington Expansion Phase II (LEP2) pipeline with the proposed Hydro One 230 kV powerline (SECTR Project) in Leamington, ON.

The objectives of the AC interference study were to determine if the induced AC voltages are within safety limits under steady-state and fault conditions, to minimize the risk of AC corrosion, to avoid an arc striking between the pipeline and any grounded parts of a powerline structure, and to minimize excessive coating stress.

For the purpose of this study, the proposed LEP2 pipeline was considered electrically isolated from the stations and from the existing pipelines by installing three underground monolithic isolating fittings, as shown in Figure 3-1.

Under this configuration, any mitigation measures required to avoid AC interference on the existing UGL pipelines will not affect the results of this study.

The AC interference study was completed using Right-of-Way, software developed by Safe Engineering Services & technologies Itd. (SES). Pipeline data was obtained from UGL, and powerline parameters were obtained from HONI. A site survey, including soil resistivity measurements, was completed by CSCL personnel in April 2016.

The predicted unmitigated AC interference hazards are summarized in Table E-1.

Condition **Predicted Value** Hazard Limit Shock to Personnel Touch Voltage - Max. 15 V 197 V - Exceeds limit Steady-State AC Corrosion AC Current Density - Max. 50 A/m² 1,468 A/m² – Exceeds limit Touch Voltage - Max. 356 V* 3,686 V - Exceeds limit Shock to Personnel Metal-to-metal Voltage - Max. 356 V N/A** Step Voltage - 356 V* N/A** **Fault** Minimum Separation Distance - Varies Power Arc with the voltage difference between the 4 m – Acceptable risk faulted tower and the pipeline 3,686 V – Slightly exceeds Coating Stress Voltage - Max. 3 to 5 kV Coating Stress lower limit

Table E-1. Predicted Unmitigated Hazards

The recommended mitigation measures to reduce touch potentials at above-grade appurtenances and minimize the risk of AC corrosion are summarized in Table E-2.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pa	ge 6 of 44

^{*} Assuming zero soil resistivity.

 $^{^{**}}$ To be assessed as part of the study of AC interference on existing pipelines and UGL stations – see paragraphs 5.2.1.2 and 5.2.1.3.

Table E-2. Summary of Recommended Mitigation

No.	Start Chainage (m)	End Chainage (m)	Mitigation Wire Length (m)	DC Decouplers	AC Coupons	Zinc Anodes	Description
1	0+0	000	-	-	1	-	Install AC coupon for monitoring.
2	0+000	1+400	1,400	4	-	22	Install one run of 1,400 m bare 2/0 copper wire and connect to pipeline via DC decouplers.
3	0+090	3+775	-	-	-	-	All test posts to be of dead-front configuration.
4	4 2+770		-	-	1	-	Install AC coupon for monitoring.
5	5 3+160		-	-	1	-	Install AC coupon for monitoring.
6	3+180	5+090	1,910	5	-	30	Install one run of 1,910 m bare 2/0 copper wire and connect to pipeline via DC decouplers.
7	5+	580	-	-	1	-	Install AC coupon for monitoring.
8	8 7+000		-	-	1	-	Install AC coupon for monitoring.
	Totals		3,310	9	5	52	

The recommended mitigation system consists of a total of 3,310 m of 2/0 bare copper mitigation wire, connected to the pipeline at nine locations. The length of wire varies with location. In order to cathodically protect the copper wire, it is recommended that 13.6 kg (30 lb.) packaged zinc anodes be connected to the copper wire at designated intervals (i.e., two anodes approximately every 150 m and at the DC decoupler junction boxes).

It is also recommended that a total of five AC coupons be installed on the LEP2 pipeline.

The primary purpose of the AC coupon is to facilitate the measurement of AC current density levels. AC coupons are fabricated of steel with a precise surface area, typically 1 cm², which is considered worst case for AC current density. These coupons will be monitored bi-annually during corrosion prevention surveys.

Any test stations installed on the LEP2 pipeline from Ch. 0+090 m to Ch. 3+775 m shall be of dead-front configuration.

With the proposed LEP2 pipeline electrically isolated from the stations using underground monolithic isolating fittings, there are no safety risks associated with the proposed line at UGL stations and along the two existing pipelines (i.e., NPS8 Leamington North and Leamington Expansion Phase I). The risks associated with the influence of the proposed 230 kV powerline on the UGL stations and existing lines will be assessed in a separate AC interference study.

The risk of arcing along the close collocation (i.e., 4 m) between the proposed pipeline and the future 230 kV powerline is acceptable. The voltage difference under fault will not exceed 4.2 kV, well below the actual voltages (i.e., 28 to 30 kV), which did not sustain arcing at the same

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pa	ge 7 of 44

separation during the CEA testing. Therefore, no mitigation is required to specifically address the hazard of power arcing.

The predicted mitigated AC interference hazards are summarized in Table E-3.

Table E-3. Predicted Mitigated Hazards

Condition	Hazard	Limit	Predicted Value	
	Shock to Personnel	Touch Voltage – Max. 15 V	12 V – Below limit	
Steady-State	AC Corrosion AC Current Density – Max. 50 A/m ²		44 A/m ² – Below limit (minimum risk)	
		Touch Voltage – Max. 356 V*	1,697 V, with dead-front test stations – Acceptable risk	
	Shock to Personnel	Metal-to-metal Voltage – Max. 356 V	N/A**	
Fault		Step Voltage – 356 V*	N/A**	
	Minimum Separation Distance – Varies Power Arc with the voltage difference between the faulted tower and the pipeline		4 m – Acceptable risk	
	Coating Stress	Coating Stress Voltage – Max. 3 to 5 kV	1,697 V – Below limit	

^{*} Assuming zero soil resistivity.

The proposed LEP2 pipeline will be electrically isolated from the existing pipeline and protected by a sacrificial cathodic protection system. Subsequently, DC interference on the tower foundations of the future 230 kV powerline is expected to be negligible due to low current outputs. However, the existing lines are protected by an impressed current installation (rectifier #193) located at Mersea Road 10. As such, it is recommended that DC interference testing be conducted once the construction of the HONI powerline is completed.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pa	ge 8 of 44

^{**} To be assessed as part of the study of AC interference on existing pipelines and UGL stations – see paragraphs 7.3.1.2 and 7.3.1.3.

1 General

Corrosion Service Company Limited (CSCL) was retained by Union Gas Limited (UGL) to conduct an AC interference study for the collocation of the proposed UGL NPS12 Learnington Expansion Phase II (LEP2) pipeline with the proposed Hydro One Networks Inc. (HONI) 230 kV powerline (SECTR Project) in Learnington, ON.

The objectives of the AC interference study were to ensure that the induced AC voltages are within safety limits under steady-state and fault conditions, to minimize the risk of AC corrosion, to avoid an arc striking between the pipeline and any grounded parts of a powerline structure, and to minimize excessive coating stress.

For the purpose of this study, the proposed LEP2 pipeline was considered electrically isolated from the stations and from the existing pipelines by installing three underground monolithic isolating fittings, as shown in Figure 3-1.

This option is the most conservative in terms of induced voltages and arcing along the LEP2 pipeline, but would reduce the induced voltages and subsequently the risk of AC corrosion on the existing lines.

The AC interference study was completed using Right-of-Way, software developed by Safe Engineering Services & technologies Itd. (SES). Pipeline data was obtained from UGL, and powerline parameters were obtained from HONI. A site survey, including soil resistivity measurements, was completed by CSCL personnel in April 2016.

2 Reference Specifications and Standards

The AC mitigation systems for the subject pipeline will be designed in accordance with the following standards, guidelines, and specifications:

- BS EN 15280-2013: Evaluation of a.c. corrosion likelihood of buried pipelines applicable to cathodically protected pipelines
- CSA Z662-15: Oil and Gas Pipeline Systems
- CAN/CSA-C22.3 No. 6-13: Principles and Practices of Electrical Coordination between Pipelines and Electric Supply Lines
- CIGRE, Working Group 36.02-1995: Guide on the Influence of High Voltage AC Power Systems on Metallic Pipelines
- IEEE Standard 80-2013: Guide for Safety in AC Substation Grounding
- NACE SP0177-2014: Mitigation of Alternating Current and Lightning Effects on Metallic Structures and Corrosion Control Systems

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pa	ge 9 of 44

3 Design Data & Assumptions

3.1 Right-of-Way Configuration

Figure 3-1 depicts the pipeline/powerline right-of-way configuration.

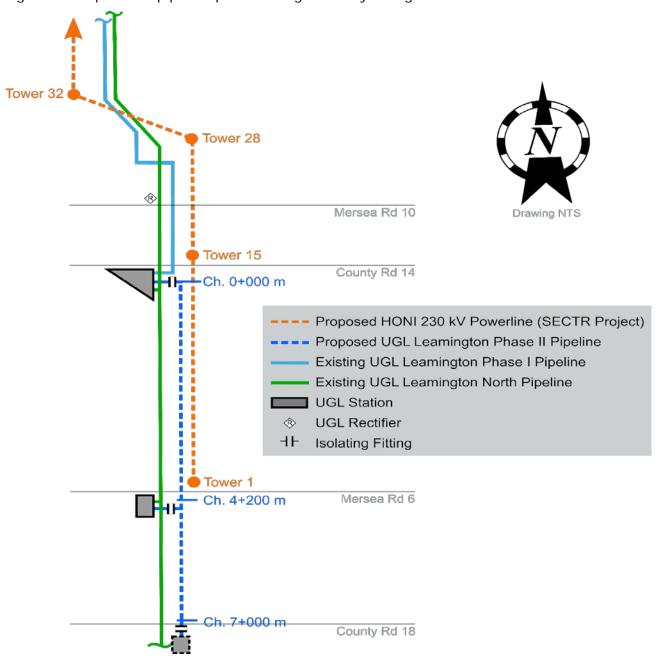


Figure 3-1. Pipeline/Powerline Right-of-Way Configuration

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 10 of 44

The proposed LEP2 pipeline is a continuation of the Leamington Phase I project (EB-2012-0431). The pipeline will extend for approximately 7 km from the UGL Transmission Station at County Road 14 to County Road 18 in Leamington, ON and will parallel the existing UGL NPS 8 Leamington North pipeline for its entire length.

The proposed pipeline will parallel the proposed HONI 230 kV powerline in close proximity (i.e., 4 m) for approximately 4 km from County Road 14 to Mersea Road 6. Three underground monolithic isolating fittings will be installed to electrically isolate the LEP2 pipeline from the stations and the other pipelines.

3.2 Pipeline Data

The new steel pipeline will be coated with 16 mils (0.4064 mm) of fusion bond epoxy, estimated to have a coating resistance of 80 k Ω -m². The parameters used to model the new and existing pipelines in the AC interference study are summarized in Table 3-1.

Table 3-1. Pipeline Parameters

Pipeline	Outer Diameter	Coating Resistance	Burial Depth
Leamington Expansion Phase I & II	323.9 mm	80 kΩ-m²	1.5 m
Leamington North	219.1 mm	20 kΩ-m²	1.5 m

The existing Leamington Expansion Phase I and Leamington North pipelines are cathodically protected by an impressed current system. The proposed LEP2 pipeline will be electrically isolated from the other two pipelines and subsequently will be protected by its own galvanic system. Table 3-2 provides the details of the cathodic protection systems.

Table 3-2. Cathodic Protection System

Pipeline	System	Location	Capacity	Output
Leamington Expansion Phase II	Galvanic Anodes	Distributed along the pipeline	<70 mA	-
Leamington North & Leamington Expansion Phase I	Impressed Current	Mersea Road 10	10 Anode Groundbed, Rectifier - 24 V, 12 A	250 mA

3.3 Powerline Data

The powerline configuration parameters, steady-state loading, and fault current contributions were provided by HONI. The powerline configuration parameters are summarized in Table 3-3.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 11 of 44

Table 3-3. Powerline Configuration Parameters

Parameter	Operating Details		
Circuit ID	C22J	C21J	
System Voltage	230) kV	
Conductor Configuration	Double Circuit Vertical		
Horizontal Conductor Separation	8.23 m / 14.33 m / 8.23 m		
Vertical Conductor Separation	7.7	' m	
Minimum Conductor Height	8	m	
Maximum Sag	10	m	
Shield Wire	2 – 7#5 Alumoweld		
Shield Wire Resistance	0.74278 Ω/	/km at 20°C	
Tower Grounding	1 Augured Footing, 3.5	35 m dia. X 12 m deep	
Maximum Tower Grounding Resistance	20	Ω	
Average Span	280) m	
Phasing (top-bottom)	B-W-R	W-B-R	
Primary Fault Duration	106 ms		
Substation Grounding Resistance - near Tower 1	Summer 0.385 Ω , winter 0.441 Ω		

The steady-state loading is summarized in Table 3-4.

Table 3-4. Steady-State Loading

Steady-State Loading	Current (in 2018)	Projected
Peak	210 A	620 A
Average	150 A	470 A

The fault current contributions are summarized in Table 3-5.

Table 3-5. Fault Current Contributions

Fault Location	From North (A)	From South (A)	Total (A)
7 km from Leamington TS	7,166	326	7,492
4 km from Leamington TS	6,461	328	6,789
3.5 km from Leamington TS	6,357	329	6,686
2 km from Leamington TS	6,065	330	6,395
Outside Leamington TS	5,720	320	6,040

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 12 of 44

3.4 Soil Resistivity

Soil resistivity measurements were taken using the Wenner 4-pin method along the proposed collocation during a site survey by CSCL personnel in April 2016. Deep measurements were taken using spacings of 1', 2', 5', 10', 15', 20', 30', 50', 75', and 100'. Shallow measurements were taken using spacings of 1', 2', 5', 10', 15', 20', and 30'. Detailed resistivity measurements can be found in Appendix A. The soil stratigraphy was determined using Winsev6, software developed by W-Geosoft.

Historical soil resistivity measurements, obtained during a site survey by CSCL personnel in July 2004, were used in the area outside of the LEP2 pipeline and HONI 230 kV collocation.

Table 3-6 summarizes the soil resistivities used in the AC interference study.

Table 3-6. Soil Resistivity Data

ID	LEP2 Chainage (m)	Leamington North Chainage (m)	Closest Tower	Layer 1 Resistivity (Ω-m)	Thickness (m)	Layer 2 Resistivity (Ω-m)	Thickness (m)	Layer 3 Resistivity (Ω-m)
1	-	1+157	43	16	2.40	96	-	-
2	-	3+109	36	21	2.40	110	-	-
3	-	4+307	32	19	1.80	50	-	-
4	-	5+570	26	15	2.00	61	-	-
5	-	6+894	21	15	1.30	40	-	-
6	-	8+331	15	23	18.00	135	-	-
7	0+207	8+579	14	59	1.30	35	1.50	21
8	0+488	8+860	13	65	0.34	25	5.30	41
9	0+770	9+142	12	29	-	-	-	-
10	1+043	9+415	11	27	0.18	18	4.10	72
11	1+331	9+683	10	62	0.57	23	4.70	59
12	1+612	9+964	9	59	0.19	24	2.90	46
13	1+892	10+244	8	227	0.49	31	-	-
14	2+155	10+507	7	207	0.81	62	-	-
15	2+549	10+901	6	76	0.93	27	10.00	163
16	2+810	11+170	5	177	0.65	38		
17	3+140	11+500	4	79	0.67	34	-	-
18	3+491	11+851	3	44	0.20	27	2.50	47
19	3+782	12+142	2	45	-	-	-	-
20	4+007	12+380	1	488	0.90	48	7.60	2061
21	5+559	13+949	-	8	1.20	36	-	-
22	7+000	15+340	-	54	1.50	89	-	-
23	-	15+813	-	94	-	-	-	-

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03			e 13 of 44

4 Effects of AC Interference

A pipeline which runs in the proximity of a high voltage powerline is subject to voltages induced by magnetic coupling. These AC induced voltages (V_{AC}) appear both under steady-state and fault conditions and their magnitude depends on the phase current, on the length of parallelism, on the distance between pipeline and powerline, and on the pipeline-powerline configuration. The induced voltages reach maximum values at discontinuities^[1] and gradually attenuate along the pipeline.

A recent NACE paper indicates that, under certain conditions, distribution powerlines (35 kV and lower) can also induce significant steady-state AC voltages on paralleling pipelines.^[2] The phenomenon is attributed to the presence of 3rd harmonics of the fundamental 60 Hz frequency (i.e., 180 Hz, 360 Hz, etc.). Although these are typically a very small component of the load current, they may induce a substantial amount of AC voltage, as pipelines are hundreds of times more sensitive to AC induction of the 3rd harmonic frequency than the fundamental 60 Hz frequency.

A second type of AC interference on the pipelines, defined as "conductive coupling", only appears under powerline fault conditions. The fault current flowing through the grounding of the high voltage structure (i.e., tower or pole) produces a potential rise in the neighboring soil defined as "ground potential rise" (GPR). Part of this rise is transferred to the pipe (V_{tr}) and would be added to the AC induced voltage.

The pipe voltage (V_{pipe}) is typically defined as the pipe voltage with respect to close ground (V_{P-CG}) and is the difference between the potential of the pipe itself (i.e., pipe metal) and the potential of the ground.

Under steady-state conditions, the AC interference could result in safety problems for people coming in contact with the metallic pipe or its appurtenances and in accelerated corrosion on the underground section of the pipe (i.e., AC corrosion).

Under fault conditions, the AC interference could result in damage to the pipe itself (i.e., electrical arc between the structure grounding and the pipe), in safety concerns for pipeline personnel and in damage to pipeline coating.

The hazards generated by AC interference are summarized in Table 4-1.

[1] Start and end of the common ROW, phase transpositions, isolating fittings on the pipeline, etc. [2] Boteler, D.H., Croall, S., and Nicholson, P., "Measurements of Higher Harmonics in AC Interference on Pipelines" *NACE Corrosion 2010*, Paper No. 10107.

©2016 Corrosion Service Company Limited
All rights reserved.

CSCL Doc ID:
UGL (LEP2) ACI-REP-001

Revision Release Date:
2016-06-03

CSCLRev:
C2

Client Doc ID:
Client Rev:
Page 14 of 44

Table 4-1. AC Interference Hazards

Condition	Hazard	Relevant Parameter	Symbol	Notes
	Shock to Personnel	Touch Voltage	V _{touch}	Considered equal to V _{AC} .
Steady-State	AC Corrosion	Current Density at Holidays	İAC	Derived from the V _{AC} and soil resistivity.
		Touch Voltage	V_{touch}	Considered equal to V _{pipe} (or V _{P-CG}).
	Fault Metal-to Touch V Voltage D Power Arc between	Step Voltage	V _{step}	Dependent on the ground voltage gradient.
Fault		Metal-to-Metal Touch Voltage	V _{metal} -	Considered equal to V _{pipe} (or V _{P-CG}).
rauit		Voltage Difference between Faulted Tower and Pipeline	V _G	Derived from fault current, grounding electrode data, soil resistivity, etc. Cannot exceed the phase-to-ground voltage.
	Coating Stress	Coating Stress Voltage	V _{stress}	Equal to V _{pipe} (or V _{P-CG}).

5 Admissible Limits

5.1 Steady-State Conditions

5.1.1 Touch Voltage

The AC induced voltages under steady-state conditions shall not exceed 15 V at above-grade appurtenances of the pipeline in order to avoid an electrical shock to pipeline personnel or to the general public, as per NACE SP0177-2014.

5.1.2 AC Corrosion

There are no specified limits in the Canadian or NACE standards for prevention of AC corrosion on a pipeline.

European standard BS EN 15280:2013 provides criteria for evaluating the risk of AC corrosion after the mitigation system was already installed, using measured values of AC and DC current densities on coupons. It limits the AC current densities to 30 A/m² when the DC current density exceeds 1 A/m², but no upper limit is specified when the DC current density is lower or equal to 1 A/m².

A proposed NACE Standard under ballot is following the same approach, but it is expected to limit the AC current density to 100 A/m^2 when the DC current density is lower or equal to 1 A/m^2 .

According to literature, there is no risk of AC corrosion for AC current densities less than 20 A/ m^2 , AC corrosion is unpredictable for AC current densities between 20-100 A/ m^2 , and AC corrosion is to be expected for AC current densities greater than 100 A/ m^2 . In this same study, the highest

^[3] Prinz, W. – "AC Induced Corrosion on Cathodically Protected Pipelines", UK Corrosion 92, Vol. 1.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 15 of 44

corrosion rates were found on steel samples having a surface area in the range of 1 to 3 cm². A subsequent study determined that the highest corrosion rates occurred for a holiday size of 6.45 cm². As current densities are expected to be higher on smaller holidays, an area of 1 cm² was selected as the worst case value for our calculations (i.e., highest current density).

The maximum AC current density at a 1 cm² holiday can be calculated using the equation:

$$i_{AC} = \frac{8 \times V_{AC}}{\rho \times \pi \times d} \tag{1}$$

where

 i_{AC} = AC current density (A/m²)

 V_{AC} = AC induced voltage (V)

 ρ = Soil resistivity (Ω -m)

d = Diameter of holiday = 0.0113 m

The corrosion rates based on the calculated AC current density from several field investigations are summarized in Figure 5-1 and indicate that corrosion rates increase exponentially with current density.

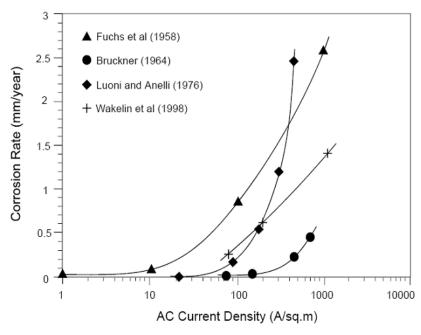


Figure 5-1. Corrosion Rate vs AC Current Density

The LEP2 pipeline will be protected using a galvanic system, therefore the DC current density is expected to be well below 1 A/m² at a 1 cm² holiday.

^[4] Goidanich, S., Lazzari, L., Ormellese, M., and Pedeferri, M.P. – "Influence of AC on Carbon Steel Corrosion in Simulated Soil Conditions", 16th ICC, Paper 04-03, held September 19-24, Beijing, China, 2005.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 16 of 44

Previous UGL projects used an AC current density of 50 A/m² at a 1 cm² holiday as the allowable limit to minimize the risk of AC corrosion.

With the proposed NACE Standard not yet officially issued and based on literature and the European Standard, the same 50 A/m² limit will be used for the LEP2 pipeline.

5.2 Fault Conditions

5.2.1 Hazardous Voltages

The recommended safety limits for AC voltage under fault conditions were calculated using the methodology specified in IEEE Standard 80 *Guide for Safety in AC Substation Grounding*.

5.2.1.1 Touch Voltage

For a person with a 50 kg body weight in uniform soil

$$V_{touch} = \frac{116 + 0.17 \times \rho}{\sqrt{t_f}} \tag{2}$$

For a person with a 50 kg body weight standing on a 0.1 m stone layer^[5]

$$V_{touch} = (1000 + 1.5 \times \rho_s \times C_s) \times \frac{0.116}{\sqrt{t_f}}$$
 [3]

where

 V_{touch} = Touch voltage (V)

 t_f = Duration of fault = 0.106 s

ρ = Soil resistivity, varies with location. A minimum of 0 Ω-m would be considered as the worst case for safety limit calculations.

 ρ_s = Resistivity of the $\frac{3}{4}$ " washed round stone layer = 3,000 Ω -m

 C_s = Corrective factor, calculated as:

$$C_s = 1 - \frac{0.09 \times \left(1 - \frac{\rho}{\rho_s}\right)}{2 \times h_s + 0.09}$$

 h_s = Thickness of the stone layer = 0.1 m

After calculations, the touch voltage limit in open field is 356 V, increasing to 1,462 V when using a 0.1 m layer of stone.

^[5] An isolating layer of stone inside the station significantly reduces the current through the body in the event of contact with an above-grade appurtenance, when the pipeline voltage rises due to a fault on the high voltage powerline.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 17 of 44

5.2.1.2 Metal-to-Metal Touch Voltage

$$V_{metal-metal} = \frac{116}{\sqrt{t_f}}$$
 [4]

where

 $V_{metal-metal}$ = Metal-to-metal voltage (V) t_f = Duration of fault = 0.106 s

After calculations, the metal-to-metal voltage limit is 356 V. Note that since the voltage is developed across the body, the presence of a layer of stone does not affect the safety limit.

5.2.1.3 Step Voltage

For a person with a 50 kg body weight in uniform soil

$$V_{step} = \frac{116 + 0.696 \times \rho}{\sqrt{t_f}}$$
 [5]

For a person with a 50 kg body weight standing on a 0.1 m stone layer^[6]

$$V_{step} = (1000 + 6 \times \rho_s \times C_s) \times \frac{0.116}{\sqrt{t_f}}$$
 [6]

where

 V_{step} = Step Voltage (V)

 t_f = Duration of fault = 0.106 s

ρ = Soil resistivity, varies with location. A minimum of 0 Ω-m would be considered as the worst case for safety limit calculations.

 $ρ_s$ = Resistivity of the 3/4" washed round stone layer = 3,000 Ω-m

 C_s = Corrective factor, calculated as:

$$C_s = 1 - \frac{0.09 \times \left(1 - \frac{\rho}{\rho_s}\right)}{2 \times h_s + 0.09}$$

 h_s = Thickness of the stone layer = 0.1 m

After calculations, the step voltage limit in open field is 356 V, increasing to 4,779 V when using a 0.1 m layer of stone.

^[6] An isolating layer of stone inside the station significantly reduces the current through the body in the event of contact with an above-grade appurtenance, when the pipeline voltage rises due to a fault on the high voltage powerline.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 18 of 44

5.2.2 Risk of Arcing

There is no rigid limit in the standards for the safe separation distance to prevent a power arc from damaging a pipeline.

Canadian Standard CAN/CSA-C-22.3 No. 6-13^[7] states that "It is difficult to quantify the safe distance between the pipeline and the fault current discharging facilities. Historically, a distance of 10 m between the pipeline and the tower footings of power lines with shield wires has appeared to be a conservative value". The standard further clarifies that "The 10 m separation distance was established as a reasonable physical clearance during construction and maintenance activities".

When the powerline is not equipped with a shield wire, the standard indicates that "a 10 m separation is not as effective in reducing the probability of damage to the pipeline, and agreement between the pipeline and power line companies is advisable".

NACE SP0177-2014^[8] also requires that a "minimum separation distance shall be maintained between powerline structure grounds and buried structures in order to ensure an arc initiated by lightning cannot be sustained by the fault current", but no numeric value is specified. However, the standard refers to CEA report 239 T-817^[9] to indicate that "Testing has been performed up to tower-ground-to-pipeline voltages of approximately 45 kV and power arcs were found to be sustained up to distances of up to 5.5 m (18 ft) at this voltage".

The CEA report 239 T 817 referenced in the NACE standard describes the tests that were conducted to determine the voltages required to sustain an arc to a pipeline through various soil types over a range of distances. The test results were used to develop regression formulas giving the critical voltage to sustain an arc as a function of the separation distance.

A particular "worst case scenario" was considered by the study authors to generate sets of safe distances, without having to calculate the actual voltage difference between the faulted tower and the pipeline. It noted that the voltage rise of the tower cannot exceed the phase-to-ground voltage of the powerline, used this value in the regression formulas, and proposed the values shown in Table 5-1.

Table 5-1. Safe Separation Distance (Worst Case Scenario)

System Voltage (kV)	Predicted Maximum Sustained Arc Length (m)
138	11
230	18
500	40

^[9] Canadian Electricity Association (CEA) report 239 T 817 – Powerline Ground Fault Effects on Pipelines, Surrey, BC, December 1994.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 19 of 44

^[7] CAN/CSA-C22.3 No. 6-13 – Principles and Practices of Electrical Coordination between Pipelines and Electric Supply Lines. Approved June 2014.

^[8] NACE SP0177-2014 – Mitigation of Alternating Current and Lightning Effects on Metallic Structures and Corrosion Control Systems, Houston, 2014.

CSCL technical approach is to use the "worst case scenario" safe distances as a primary filter to estimate if there is any risk of arcing and to conduct detailed calculations to determine the actual voltage rise of the tower, when the separation distance is below the values indicated in Table 5-1.

A complete description of the CSCL calculation methodology is included in paragraph 6.2.2 of this report.

5.2.3 Coating Stress

When a fault occurs at a power generation station and the potential difference between the pipe and the ground exceeds the dielectric strength of the coating, the subsequent current transfer between the pipe and ground could damage the coating.

NACE SP0177-2014 Mitigation of Alternating Current and Lightning Effects on Metallic Structures and Corrosion Control Systems specifies threshold values of 2 kV for coal tar enamels and tape wraps, and 3-5 kV for fusion bond epoxy (FBE), polyethylene (PE) coatings, and high performance composite coatings.

5.3 Summary

The calculated safety limits are summarized in Table 5-2.

Table 5-2. Safety Limits

Condition	Hazard	Relevant Parameter	Safety Limit
Stoody State	Shock to Personnel	Touch Voltage	15 V
Steady-State	AC Corrosion	Current Density at Holidays	50 A/m²
		Touch Voltage	356 V*
		Touch Voltage with Stone Layer	1462 V
	Shock to Personnel	Metal-to-Metal Touch Voltage	356 V
		Step Voltage	356 V*
Fault		Step Voltage with Stone Layer	4,779 V
	Power Arc	Minimum Separation Distance	Varies with the voltage difference between the faulted tower and the pipeline
	Coating Stress	Coating Stress Voltage	3,000 to 5,000 V**

^{*} A minimum soil resistivity of 0 $\Omega\text{-m}$ was considered as the worst case for safety limit calculations.

6 Predicted Unmitigated AC Interference

The hazards predicted along the LEP2 pipeline under steady-state and phase-to-ground fault conditions on the powerline were evaluated using Right-of-Way, software developed by SES.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 20 of 44

^{**} Recommended range.

6.1 Steady-State Conditions

6.1.1 Touch Voltage

Unmitigated touch voltages predicted along the LEP2 pipeline, under peak steady-state powerline operating conditions, are shown in Figure 6-1.

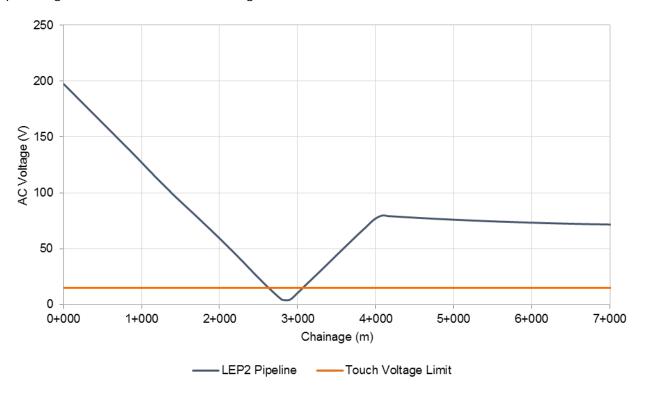


Figure 6-1. Predicted Unmitigated Touch Voltages under Steady-State Conditions

As shown, the unmitigated touch voltages predicted along the LEP2 pipeline exceed the 15 V safety limit from Ch. 0+000 m to Ch. 2+603 m and Ch. 3+079 m to Ch. 7+020 m. The maximum unmitigated touch voltage is 197 V at Ch. 0+000 m. As such, mitigation is required.

6.1.2 AC Corrosion

Unmitigated AC current densities predicted along the LEP2 pipeline, under average steady-state powerline operating conditions, are shown in Figure 6-2.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 21 of 44

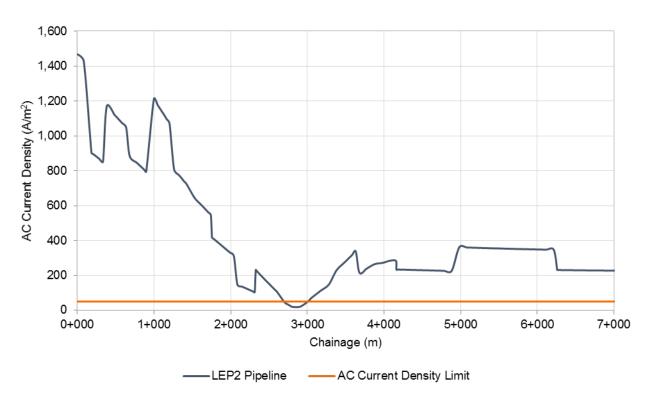


Figure 6-2. Predicted Unmitigated AC Current Densities under Average Steady-State Conditions

As shown, the unmitigated AC current densities predicted along the LEP2 pipeline exceed the 50 A/m² limit from Ch. 0+000 m to Ch. 2+603 m and Ch. 3+046 m to Ch. 7+020 m. The maximum unmitigated AC current density is 1,468 A/m². As such, there is an elevated risk of AC corrosion and mitigation is required.

6.2 Fault Conditions

6.2.1 Hazardous Voltages

6.2.1.1 Touch Voltage

Unmitigated touch voltages predicted along the LEP2 pipeline, under phase-to-ground fault conditions on the powerline, are shown in Figure 6-3.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 22 of 44

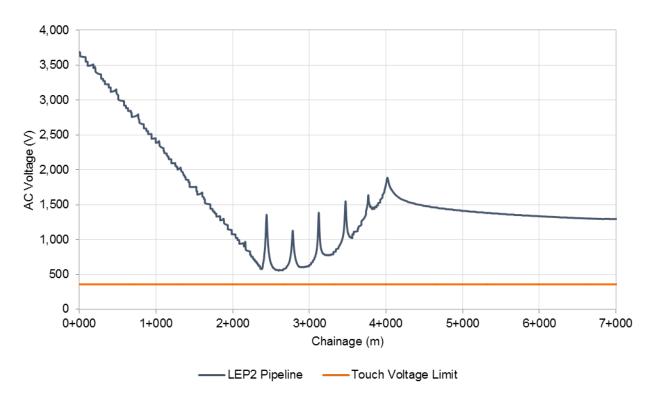


Figure 6-3. Predicted Unmitigated Touch Voltages under Fault Conditions

As shown, the unmitigated touch voltages predicted along the LEP2 exceed the 356 V open field safety limit the entire length of the pipeline. The maximum unmitigated touch voltage is 3,686 V. As such, mitigation is required.

6.2.1.2 Metal-to-Metal Touch Voltage

The installation of underground monolithic isolating fittings to electrically isolate the LEP2 pipeline from the stations and other existing UGL pipelines will prevent the transfer of hazardous induced voltages from the LEP2 pipeline to the UGL stations. As such, there are no metal-to-metal touch hazards at above-grade appurtenances within the UGL stations due to the installation of the proposed LEP2 pipeline.

However, hazardous induced voltages may be transferred inside the station by the existing pipelines and subsequently this safety risk will be assessed as part of the future study dealing with AC interference on the existing pipelines.

6.2.1.3 Step Voltage

With the LEP2 pipeline electrically isolated, the step voltage safety hazard at the UGL stations will not be affected by the installation of the new line and subsequently will also be assessed as part of the future study dealing with AC interference on the existing pipelines.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 23 of 44

6.2.2 Risk of Arcing

The risk of sustained arcing along the close collocation between the proposed UGL LEP2 pipeline and proposed HONI 230 kV powerline was assessed by comparing the calculated voltage difference between the faulted tower and the pipeline with the test voltage which did not sustain an arc at a similar distance during the CEA testing. The step-by-step methodology is detailed below.

Step 1 – Check if the separation distance at each tower exceeds the "worst case scenario" safe distance indicated in Table 5-1.

The separation distance (i.e., 4 m) is less than the value indicated in Table 5-1 (i.e., 18 m), therefore detailed calculations must be conducted.

Step 2 – Calculate the distribution of the fault current and the voltage rise of the tower for each tower of the close collocation.

The calculations were conducted using Right-of-way, software developed by SES. Powerline details and operating parameters were provided by HONI – see paragraph 3.3. Site data including soil resistivity measurements, were collected by CSCL in April 2016. The soil resistivity stratigraphy (i.e., resistivities per layer) was calculated from the apparent resistivities using Winsev6, software developed by W-Geosoft – see paragraph 3.4.

The calculations were conducted initially using the maximum tower grounding resistance provided by HONI (i.e., $20~\Omega$), representing the "worst case scenario" in terms of voltage rise of the tower. A second set of calculations was then conducted based on tower foundation geometry and measured soil resistivities at each tower location, to determine the actual current distribution.

The calculation results, assuming maximum grounding resistance, are summarized in Table 6-1 and the results for the calculated ground resistance are summarized in Table 6-2.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 24 of 44

Table 6-1. Current Distribution and Voltage Rise of the Towers Assuming a Maximum Tower Resistance of 20 Ω

Tower	Total Fault Current (A)	Tower Resistance (Ω)	Tower Fault Current** (A)	Tower Voltage Rise (V)
1	6,040*	20	87	1,748
2	6,082	20	106	2,129
3	6,132	20	131	2,615
4	6,190	20	157	3,134
5	6,247	20	178	3,555
6	6,303	20	195	3,891
7	6,350	20	206	4,112
8	6,395*	20	215	4,295
9	6,454	20	223	4,452
10	6,513	20	229	4,582
11	6,570	20	234	4,687
12	6,627	20	239	4,773
13	6,686*	20	242	4,843
14	6,741	20	245	4,897
15	6,789*	20	247	4,940

^{*} Values provided by HONI. All other values were estimated using linear interpolation.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 25 of 44

^{**} Defined as the part of the total fault current discharged via the grounding of the faulted tower.

Table 6-2. Current Distribution and Voltage Rise of the Towers Using the Calculated Tower Resistance

Based on Measured Soil Resistivities at Each Tower

Tower	Total Fault Current (A)	Tower Resistance (Ω)	Tower Fault Current** (A)	Tower Voltage Rise (V)
1	6,040*	5.82	325	1,624
2	6,082	1.87	363	1,817
3	6,132	1.74	412	2,059
4	6,190	1.44	454	2,268
5	6,247	1.63	478	2,389
6	6,303	1.81	491	2,457
7	6,350	2.66	499	2,493
8	6395*	1.32	501	2,506
9	6,454	1.63	503	2,513
10	6,513	1.68	504	2,518
11	6,570	1.72	504	2,518
12	6,627	1.21	502	2,508
13	6,686*	1.40	497	2,484
14	6,741	0.95	489	2,445
15	6,789*	1.22	483	2,417

^{*} Values provided by HONI. All other values were estimated using linear interpolation.

Step 3 – Calculate the vectorial voltage difference between the faulted tower and the pipeline using the induced voltages under fault and the voltage rise of the towers, conservatively assuming they are 180° out of phase.

Note: The mitigated induced voltages on the pipeline are typically less than 1 kV and subsequently were considered negligible compared to the phase-to-ground voltages used in Table 5-1 under the "worst case scenario" (i.e., 132.8 kV for a 230 kV powerline).

The unmitigated induced voltages under fault were calculated using Right-of-way, software developed by SES.

The calculated voltage differences between the faulted towers and the pipeline assuming maximum grounding resistance are summarized in Table 6-3 and for the calculated grounding resistance are summarized in Table 6-4.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 26 of 44

^{**} Defined as the part of the total fault current discharged via the grounding of the faulted tower.

Table 6-3. Voltage Difference between Faulted Tower and Pipeline Assuming a Maximum Tower Resistance of 20 Ω

Tower	Tower Voltage Rise (V)	Pipeline Induced Voltage* (V)	Voltage Difference (V)
1	1,748	1,562	3,309
2	2,129	1,282	3,411
3	2,615	952	3,567
4	3,134	654	3,788
5	3,555	454	4,009
6	3,891	384	4,275
7	4,112	417	4,529
8	4,295	500	4,795
9	4,452	580	5,032
10	4,582	664	5,246
11	4,687	730	5,416
12	4,773	801	5,573
13	4,843	847	5,691
14	4,897	897	5,794
15	4,940	858	5,798

^{*} Includes transferred voltage to the pipe.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 27 of 44

Table 6-4. Voltage Difference between Faulted Tower and Pipeline Using the Calculated Tower Resistance Based on Measured Soil Resistivities at Each Tower

Tower	Tower Voltage Rise (V)	Pipeline Induced Voltage* (V)	Voltage Difference (V)
1	1,503	1,459	2,962
2	1,734	1,169	2,903
3	1,995	911	2,906
4	2,231	696	2,927
5	2,374	552	2,926
6	2,457	553	3,010
7	2,493	427	2,920
8	2,506	424	2,930
9	2,513	447	2,960
10	2,518	480	2,998
11	2,518	509	3,027
12	2,508	467	2,975
13	2,484	489	2,973
14	2,445	475	2,920
15	2,417	506	2,922

^{*} Includes transferred voltage to the pipe.

Step 4 – Assess the risk of arcing at the actual separation distance of 4 m by comparing the calculated voltage difference between the faulted towers and the pipeline with the test voltage which did not sustain an arc at a similar distance, as recorded during the CEA testing.

A plot of the CEA test data in native soil is shown in Figure 6-4 (Figure 3.4 in the CEA study).

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 28 of 44

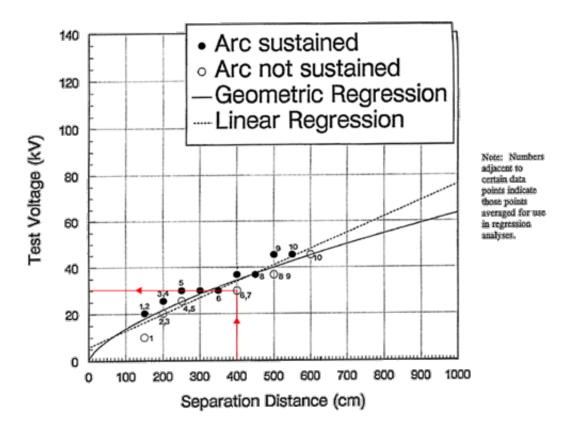


Figure 6-4. CEA Test Data in Native Soil

Tests conducted at 4 m separation indicated that arcs for an average test voltage of 30 kV were not sustained. With the maximum voltage between a faulted tower and the pipeline of less than 5.8 kV under maximum tower grounding resistance of 20 Ω and less than 3.1 kV using the calculated tower resistance, there is an acceptable risk of a power arc damaging the pipeline in native soil.

A plot of the CEA test data in sand is shown in Figure 6-5 (Figure 3.5 in the CEA Study).

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 29 of 44

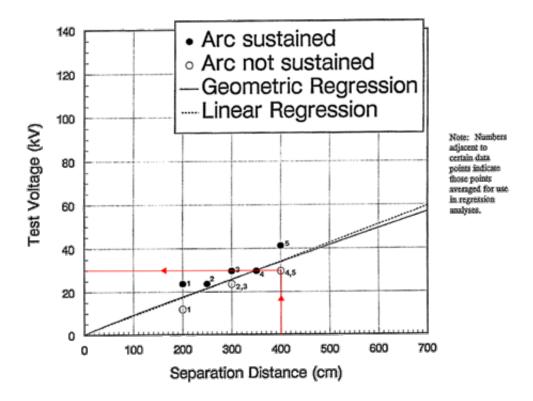


Figure 6-5. CEA Test Data in Sand

Tests conducted at 4 m separation indicated that arcs for an average test voltage of 30 kV were not sustained. With the maximum voltage between a faulted tower and the pipeline of less than 5.8 kV under maximum tower grounding resistance of 20 Ω and less than 3.1 kV using the calculated tower resistance, there is an acceptable risk of a power arc damaging the pipeline in sand.

Plots of the CEA test data in top soil are shown in Figure 6-6 and Figure 6-7 for currents of 8 kA rms and 4 kA rms, respectively (Figures 3.6 and 3.7 in the CEA study).

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 30 of 44

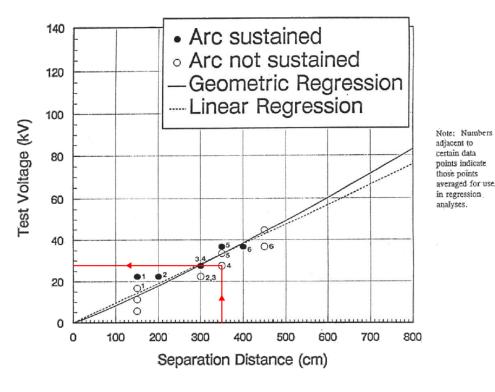


Figure 6-6. CEA Test Data in Top Soil (8 kA)

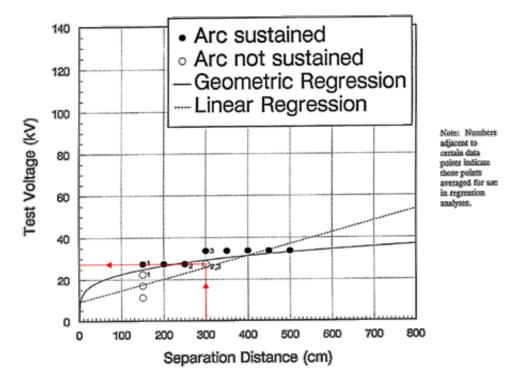


Figure 6-7. CEA Test Data in Top Soil (4 kA)

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 31 of 44

Tests conducted at 3.5 m separation at 8 kA and 3 m separation at 4 kA indicated that arcs for average test voltages of 28 kV, for both cases, were not sustained. With the maximum voltage between a faulted tower and the pipeline of less than 5.8 kV under maximum tower grounding resistance of 20 Ω and less than 3.1 kV using the calculated tower resistance, there is an acceptable risk of a power arc damaging the pipeline in top soil.

The values shown in Figure 6-7 are considered as the most representative for the collocation area in the Leamington utility corridor.

In conclusion, due to low fault current (i.e., up to 6.8 kA along the collocation), low shield wire impedances (i.e., 0.7 Ω /km) and connection of the shield wires to a nearby substation, the maximum fault current discharged at a tower does not exceed 510 A. The voltage rise of the tower does not exceed 2.5 kV and the total voltage difference between the tower grounding and the pipe is less than 3.1 kV.

The calculated voltage difference between the faulted tower and pipeline was compared with the critical voltage, which did not sustain an arc during the CEA tests in various soils at the same separation distance (i.e., less or equal to 4 m).

In all cases, the actual voltage difference was well below the critical voltage.

6.2.3 Coating Stress

As shown in Figure 6-3, the maximum unmitigated coating stress (i.e., 3,686 V) slightly exceeds the lower limit of the 3-5 kV coating stress range, as recommended by NACE SP0177-2014 for FBE and PE coatings.

6.3 Summary

The predicted unmitigated AC interference hazards are summarized in Table 6-5.

016 Corrosion Service Company Limited rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 32 of 44

Table 6-5. Predicted Unmitigated Hazards

Condition	Hazard	Limit	Predicted Value
Stoody State	Shock to Personnel	Touch Voltage – Max. 15 V	197 V – Exceeds limit
Steady-State	AC Corrosion	AC Current Density – Max. 50 A/m ²	1,468 A/m ² – Exceeds limit
		Touch Voltage – Max. 356 V*	3,686 V – Exceeds limit
	Shock to Personnel	Metal-to-metal Voltage – Max. 356 V	N/A**
Fault		Step Voltage – 356 V*	N/A**
Taun	Power Arc	Minimum Separation Distance – Varies with the voltage difference between the faulted tower and the pipeline	4 m – Acceptable risk
	Coating Stress	Coating Stress Voltage – Max. 3 to 5 kV	3,686 V – Slightly exceeds lower limit

^{*} Assuming zero soil resistivity.

7 Mitigation of AC Interference

7.1 Proposed AC Mitigation

The recommended mitigation measures to reduce touch potentials at above-grade appurtenances and minimize the risk of AC corrosion are summarized in Table 7-1.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 33 of 44

^{**} To be assessed as part of the study of AC interference on existing pipelines and UGL stations – see paragraphs 5.2.1.2 and 5.2.1.3.

Table 7-1. Summary of Recommended Mitigation

No.	Start Chainage (m)	End Chainage (m)	Mitigation Wire Length (m)	DC Decouplers	AC Coupons	Zinc Anodes	Description
1	0+0	000	-	-	1	-	Install AC coupon for monitoring.
2	0+000	1+400	1,400	4	-	22	Install one run of 1,400 m bare 2/0 copper wire and connect to pipeline via DC decouplers.
3	0+090	3+775	-	-	-	-	All test posts to be of dead-front configuration.
4	2+7	770	-	-	1	-	Install AC coupon for monitoring.
5	3+	160	-	-	1	-	Install AC coupon for monitoring.
6	3+180	5+090	1,910	5	-	30	Install one run of 1,910 m bare 2/0 copper wire and connect to pipeline via DC decouplers.
7	7 5+580		-	-	1	-	Install AC coupon for monitoring.
8 7+000		-	-	1	-	Install AC coupon for monitoring.	
	Totals		3,310	9	5	52	

The recommended mitigation system consists of a total of 3,310 m of 2/0 bare copper mitigation wire, connected to the pipeline at nine locations. The length of wire varies with location. In order to cathodically protect the copper wire, it is recommended that 13.6 kg (30 lb.) packaged zinc anodes be connected to the copper wire at designated intervals (i.e., two anodes approximately every 150 m and at the DC decoupler junction boxes).

It is also recommended that a total of five AC coupons be installed on the LEP2 pipeline.

The primary purpose of the AC coupon is to facilitate the measurement of AC current density levels. AC coupons are fabricated of steel with a precise surface area, typically 1 cm², which is considered worst case for AC current density. These coupons will be monitored bi-annually during corrosion prevention surveys.

Any test stations installed on the LEP2 pipeline from Ch. 0+090 m to Ch. 3+775 m shall be of dead-front configuration.

7.2 Mitigated Steady-State Conditions

7.2.1 Touch Voltage

Mitigated touch voltages predicted along the LEP2 pipeline, under peak steady-state powerline operating conditions, are shown in Figure 7-1.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 34 of 44

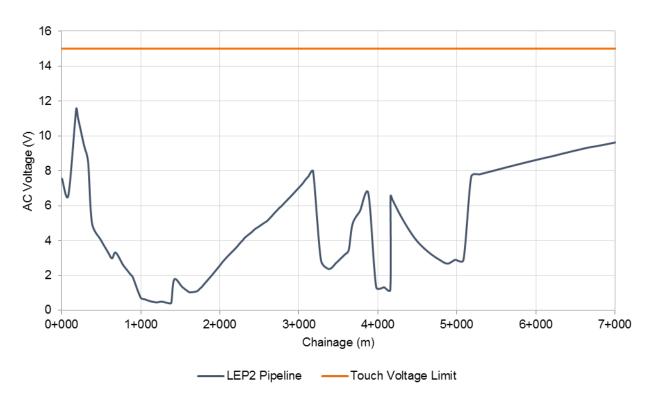


Figure 7-1. Predicted Mitigated Touch Voltages under Steady-State Conditions

As shown, the mitigated touch voltages predicted along the LEP2 pipeline do not exceed the 15 V safety limit. The maximum mitigated touch voltage is 12 V at Ch. 0+182 m.

7.2.2 AC Corrosion

Mitigated AC current densities predicted along the LEP2 pipeline, under average steady-state powerline operating, conditions are shown in Figure 7-2.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 35 of 44

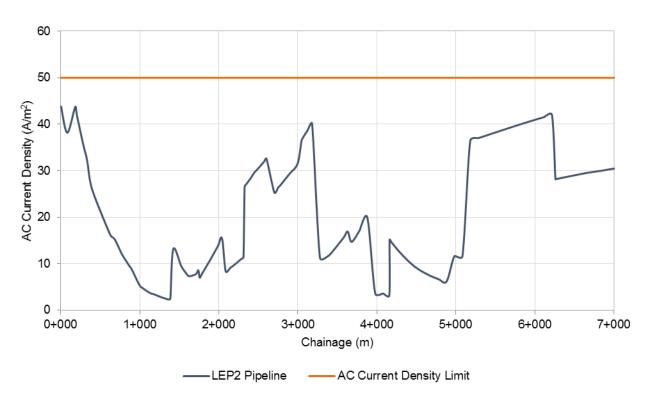


Figure 7-2. Predicted Mitigated AC Current Densities under Average Steady-State Conditions

As shown, the mitigated AC current densities predicted along the LEP2 pipeline do not exceed the 50 A/m^2 safety limit. The maximum mitigated AC current density is 44 A/m^2 at Ch. 0+000 m. As such, there is a minimum risk of AC corrosion.

7.3 Mitigated Fault Conditions

7.3.1 Hazardous Voltages

7.3.1.1 Touch Voltage

Mitigated touch voltages predicted along the LEP2 pipeline, under phase-to-ground fault conditions on the powerline, are shown in Figure 7-3.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 36 of 44

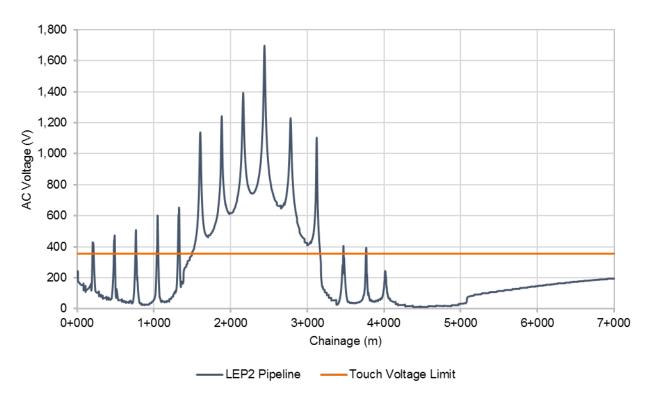


Figure 7-3. Predicted Mitigated Touch Voltages under Fault Conditions

As shown, the mitigated touch voltages predicted along the LEP2 pipeline under a fault on the powerline exceed the 356 V open field safety limit from Ch. 0+090 m to Ch. 3+775 m. The maximum mitigated touch voltage is 1,697 V at Ch. 2+442 m. With no above grade appurtenances along the pipeline, and with dead-front test stations along the high touch voltage section, the touch voltage risks for pipeline personnel and the general public are acceptable.

7.3.1.2 Metal-to-Metal Touch Voltage

The metal-to-metal touch voltages at the UGL stations will be assessed as part of the AC interference on existing pipelines study – see paragraph 5.2.1.2.

7.3.1.3 Step Voltage

The step voltages at the UGL stations will be assessed as part of the AC interference on existing pipelines study – see paragraph 5.2.1.3.

7.3.2 Risk of Arcing

With the induced voltages under fault further reduced due to mitigation, the maximum voltage difference between the faulted tower and the pipeline is below 4.2 kV. Subsequently, there is an acceptable risk of arcing under mitigated or unmitigated conditions.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 37 of 44

7.3.3 Coating Stress

As shown in Figure 7-3, the 3-5 kV coating stress limit, as recommended by NACE SP0177-2014 for fusion bond epoxy coatings, was not exceeded at any location along the UGL Leamington Expansion Phase II pipeline. As such, there is a negligible risk of coating damage to the LEP2 pipeline under mitigated fault conditions.

7.4 Summary

The predicted mitigated AC interference hazards are summarized in Table 7-2.

Condition Hazard Limit **Predicted Value** Shock to Personnel Touch Voltage - Max. 15 V 12 V - Below limit Steady-State 44 A/m² – Below limit AC Corrosion AC Current Density - Max. 50 A/m² (minimum risk) 1,697 V, with dead-front test Touch Voltage - Max. 356 V* stations – Acceptable risk Shock to Personnel Metal-to-metal Voltage - Max. 356 V N/A** N/A** Step Voltage - 356 V* **Fault** Minimum Separation Distance - Varies Power Arc with the voltage difference between the 4 m – Acceptable risk faulted tower and the pipeline Coating Stress Voltage - Max. 3 to 5 kV 1,697 V - Below limit Coating Stress

Table 7-2. Predicted Mitigated Hazards

8 Risk of DC Interference

When a powerline tower is located close to the groundbed of a cathodic protection system, part of the current discharged by the groundbed could be picked up by the grounding rods, tower foundations, or the guy wire anchors near the groundbed. This stray current could travel through the shield wire along the powerline and be discharged back to the pipeline via the grounding rods, tower foundations, or the guy wires of other towers, resulting in accelerated corrosion at the discharge location (DC interference).

For pipelines with sacrificial cathodic protection systems, such as the proposed LEP2, DC interference is expected to be negligible due to low current outputs. However, the existing lines are protected by an impressed current installation (rectifier #193) located at Mersea Road 10. As such, it is recommended that DC interference testing be conducted once the construction of the HONI powerline is completed.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 38 of 44

^{*} Assuming zero soil resistivity.

^{**} To be assessed as part of the study of AC interference on existing pipelines and UGL stations – see paragraphs 7.3.1.2 and 7.3.1.3.

9 Conclusions

Following mitigation, the calculated AC induced voltage under steady-state conditions will be below the 15 V safety limit along the entire proposed LEP2 pipeline.

Following mitigation, the calculated AC current densities will be below the 50 A/m² AC corrosion limit along the entire proposed LEP2 line.

Following mitigation, including use of dead-front test stations, the touch voltage risks at above-grade appurtenances for pipeline personnel and the general public are acceptable along the entire proposed LEP2 line under fault conditions.

With the proposed LEP2 pipeline electrically isolated from the stations using underground monolithic isolating fittings, there are no safety risks associated with the proposed line at UGL stations and along the two existing pipelines (i.e., NPS8 Leamington North and Leamington Expansion Phase I). The risks associated with the influence of the proposed 230 kV powerline on the UGL stations and existing lines will be assessed in a separate AC interference study.

There is an acceptable risk of arcing along the close collocation (i.e., 4 m) between the proposed pipeline and the future 230 kV powerline. The voltage difference under fault will not exceed 4.2 kV, well below the actual voltages (i.e., 28 to 30 kV), which did not sustain arcing at the same separation during the CEA testing.

Following mitigation, the calculated coating stress under fault conditions will be below the 3 to 5 kV limit along the entire proposed LEP2 pipeline.

There is no risk of DC interference on the tower foundations associated with the proposed LEP2 pipeline, since it is protected by a sacrificial cathodic protection system. However, the existing lines are protected by an impressed current installation (rectifier #193) and subsequently it is recommended that DC interference testing be conducted once the construction of the HONI powerline is completed.

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 39 of 44

Appendix A

Soil Resistivity Measurements

Table A-1. Soil Resistivity Measurements from Site Survey

ID	LEP2 Chainage (m)	Closest Tower	Spacing (ft)	Spacing (m)	Resistance (Ω)	Resistivity (Ω-m)
			1	0.30	11.00	21.06
			2	0.61	7.20	27.56
			5	1.52	2.70	25.84
			10	3.05	1.30	24.88
6		15	15	4.57	0.76	21.82
0	-	13	20	6.10	0.59	22.59
			30	9.14	0.39	22.40
			50	15.24	0.29	27.76
			75	22.86	0.21	30.15
			100	30.48	0.23	44.03
			1	0.30	32.00	61.25
	0+207	14	2	0.61	16.00	61.25
			5	1.52	3.80	36.37
7			10	3.05	2.60	49.77
			15	4.57	1.00	28.71
			20	6.10	0.65	24.88
			30	9.14	0.42	24.12
			1	0.30	31.00	59.34
			2	0.61	10.00	38.28
			5	1.52	3.20	30.63
8	0+488	13	10	3.05	1.60	30.63
			15	4.57	0.80	22.97
			20	6.10	0.67	25.65
			30	9.14	0.56	32.16
			1	0.30	17.00	32.54
			2	0.61	7.70	29.48
			5	1.52	3.10	29.67
9	0+770	12	10	3.05	1.40	26.80
			15	4.57	0.92	26.42
			20	6.10	0.66	25.27
			30	9.14	0.48	27.56

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 41 of 44

Table A-1. Soil Resistivity Measurements from Site Survey Continued

ID	LEP2 Chainage (m)	Closest Tower	Spacing (ft)	Spacing (m)	Resistance (Ω)	Resistivity (Ω-m)
		11	1	0.30	12.00	22.97
			2	0.61	5.00	19.14
			5	1.52	2.00	19.14
			10	3.05	1.20	22.97
10	1+043		15	4.57	0.74	21.25
10	1+043		20	6.10	0.72	27.56
			30	9.14	0.55	31.58
			50	15.24	0.50	47.85
			75	22.86	0.39	55.99
			100	30.48	0.29	55.51
		10	1	0.30	30.00	57.42
			2	0.61	15.00	57.42
			5	1.52	3.20	30.63
11	1+331		10	3.05	1.30	24.88
			15	4.57	0.99	28.43
			20	6.10	0.84	32.16
			30	9.14	0.59	33.88
		1+612 9	1	0.30	22.00	42.11
			2	0.61	7.60	29.09
			5	1.52	2.70	25.84
12	1+612		10	3.05	1.50	28.71
			15	4.57	1.05	30.15
			20	6.10	0.89	34.07
			30	9.14	0.65	37.33
	1+892	1+892 8	1	0.30	110.00	210.56
			2	0.61	38.00	145.47
			5	1.52	5.48	52.45
13			10	3.05	1.80	34.45
			15	4.57	1.20	34.45
			20	6.10	0.65	24.88
			30	9.14	0.58	33.31

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 42 of 44

Table A-1. Soil Resistivity Measurements from Site Survey Continued

ID	LEP2 Chainage (m)	Closest Tower	Spacing (ft)	Spacing (m)	Resistance (Ω)	Resistivity (Ω-m)
			1	0.30	101.20	193.71
			2	0.61	55.00	210.56
		7	5	1.52	12.00	114.85
14	2+155		10	3.05	3.70	70.82
			15	4.57	2.50	71.78
			20	6.10	1.70	65.08
			30	9.14	1.05	60.30
			1	0.30	41.00	78.48
			2	0.61	18.00	68.91
			5	1.52	4.90	46.90
			10	3.05	1.80	34.45
15	2+549	6	15	4.57	1.20	34.45
13	2+549		20	6.10	0.85	32.54
			30	9.14	0.50	28.71
			50	15.24	0.46	44.03
			75	22.86	0.41	58.86
			100	30.48	0.38	72.74
		310 5	1	0.30	88.50	169.40
			2	0.61	38.30	146.62
	2+810		5	1.52	7.54	72.16
16			10	3.05	2.15	41.15
			15	4.57	1.28	36.69
			20	6.10	0.98	37.33
			30	9.14	0.71	40.48
		4	1	0.30	39.80	76.18
	3+140		2	0.61	19.04	72.89
			5	1.52	5.09	48.71
17			10	3.05	1.77	33.88
			15	4.57	1.15	32.88
			20	6.10	0.90	34.57
			30	9.14	0.65	37.04

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Page 43 of 44	

Table A-1. Soil Resistivity Measurements from Site Survey Continued

ID	LEP2 Chainage (m)	Closest Tower	Spacing (ft)	Spacing (m)	Resistance (Ω)	Resistivity (Ω-m)
		3	1	0.30	19.55	37.42
			2	0.61	7.54	28.87
			5	1.52	3.11	29.76
18	3+491		10	3.05	1.65	31.49
			15	4.57	1.18	33.94
			20	6.10	0.98	37.33
			30	9.14	0.71	40.60
			1	0.30	25.80	49.38
			2	0.61	10.56	40.43
	3+782	2	6	1.83	4.58	52.60
19			10	3.05	2.22	42.49
			15	4.57	1.47	42.09
			20	6.10	1.10	42.00
			30	9.14	0.72	41.12
		4+007 1	1	0.30	236.00	451.74
			2	0.61	128.30	491.17
	4+007		6	1.83	13.80	158.49
			10	3.05	4.20	80.39
20			15	4.57	2.26	64.89
20			20	6.10	1.56	59.72
			30	9.14	1.45	83.27
			50	15.24	1.15	110.06
			75	22.86	1.24	178.02
			100	30.48	1.32	252.67

©2016 Corrosion Service Company Limited All rights reserved.	CSCL Doc ID: UGL (LEP2) ACI-REP-001	CSCLRev: C2	Client Doc ID:	Client Rev:
	Revision Release Date: 2016-06-03		Pag	e 44 of 44