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A. INTRODUCTION 
 
In recent years, the Province of Ontario has adopted ambitious conservation goals1

 

 and 
assigned a leadership role to the Ontario Power Authority (OPA) in ensuring that they are 
met.  In planning to meet the current goal of 6,300 MW of peak demand reduction by 
2025, the OPA expects a significant contribution from customers enrolled in demand 
response (DR) resources.  To date, this has primarily entailed DR programs administered 
by the OPA, but other options—such as DR programs offered by other entities including 
local distribution companies (LDCs) or the Independent Electricity System Operator 
(IESO), or time-varying retail rates approved by the Ontario Energy Board (OEB)—could 
also contribute to meeting future provincial targets. 

The OPA is committed to the evaluation, measurement and verification (EM&V) of all 
conservation programs, including estimation of savings impacts based on data collected 
from actual program experience.  This is necessary not only to assess progress toward 
meeting Provincial resource goals, but also to obtain information for improving program 
design and as input to resource planning.  The OPA has developed a framework2 and 
protocols3

 

 for evaluating conservation programs that are designed to improve energy 
efficiency, based on methods developed over several decades of evaluating similar types 
of programs and initiatives across North America. 

For demand response resources, evaluation methods are less well developed. Moreover, 
several key aspects of DR resources differ from energy efficiency in ways that impact 
their evaluation (see How is Demand Response Different from Energy Efficiency? on 
page 3).  Recognizing these differences, the OPA initiated development of a separate DR 
evaluation framework that includes the following key elements:4

 
 

• a white paper5

• a set of protocols for estimating load impacts—this document; and 

 that discusses issues and methods for estimating load impacts and 
cost-effectiveness of DR resources and provides recommendations on a DR 
evaluation framework—completed in November 2008; 

• a framework for determining the cost-effectiveness of DR programs—to be 
completed. 

                                            
1 “Conservation” is an umbrella term for four categories of demand-side resource: demand 
management/conservation behaviour; energy efficiency; fuel switching; and customer-based generation. 
Demand response is considered part of the first category. 
2 Evaluation, Measurement & Verification Framework for Ontario Power Authority Conservation Programs.  
Final Version 1.0, April 9, 2008. p.3-4. 
http://www.powerauthority.on.ca/Storage/68/6326_OPA_EM&V_Framework_1.0.pdf . 
3 OPA Evaluation Protocols. Undated.  
http://www.powerauthority.on.ca/Storage/68/6325_FINAL_Evaluation_Protocols_-Single_Document.pdf . 
4 Process evaluation is another EM&V function that can inform program design and planning. This initiative 
does not include special guidelines for DR process evaluation beyond those laid out in the OPA EM&V 
framework and protocols. 
5 Stephen George and Josh Bode. Assessing Demand Response Cost-Effectiveness and Load Impacts in 
Ontario, prepared by Freeman, Sullivan & Co. for the Ontario Power Authority. November 7, 2008. 
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How is  Demand Res pons e  Diffe ren t from Energy Effic ienc y?  
 

1. Energy efficiency benefits are typically tied to the installation of specific energy-
efficient devices, whereas DR benefits tend to result from behavioral actions 
associated with a variety of end-use activities.  This has the following implications: 

 For energy efficiency, load impacts can often be estimated from engineering 
calculations that compare the relative efficiencies of two devices based on 
prescriptive or quasi-prescriptive measure assumptions.  

 For DR, load impacts are best determined from empirical analysis of load 
data at the individual customer, segment or program level. 

2. Energy efficiency benefits typically accrue over the life of a device.  For most DR 
options, the benefits are tied to the continuation of customer participation in a 
program in response to price signals or direct incentive payments.  Even when 
technology is used to automate DR, consumers can override it, and the benefits may 
cease if the program incentives are removed. 

3. DR resources often have constraints on their frequency and timing (determined by 
program rules) that must be factored into cost-effectiveness analysis. 

4. Classic free-ridership (i.e., paying customers for something they would have done 
anyway) is a key component of energy-efficiency program cost-effectiveness, but is 
largely irrelevant for most DR options—people don’t “do DR” in the absence of 
program incentives or time-varying prices.  

“Structural benefiters” may exist with DR—that is, some consumers may pay lower 
bills or receive incentives even if they don’t shift load, simply due to their inherent 
pattern of usage.  However, structural benefiters are not necessarily non-
responders, since on the margin, they receive the same benefits from DR as other 
customers, and may respond similarly. 

5. Most DR resources are event driven—that is, benefits accrue only when an event is 
called. Energy efficiency benefits are continuous—although they may vary over time 
with the loads they affect, they are not “dispatchable.” 

6. Many DR resources have insurance or option value—that is, like insurance, much of 
the value of DR exists even when it is not used. 

7. Energy efficiency benefits primarily derive from reductions in energy use, whereas 
DR benefits are mostly tied to reductions in capacity costs. 

8. The magnitude of load impacts, and benefits, associated with DR may vary 
significantly across the hours of a day, days of the week, months and seasons due 
to exogenous factors such as weather and customer energy usage behavior.  For 
DR resources that vary with weather, it is often the case that the magnitude of load 
reduction is greatest when the value of demand reduction is greatest (e.g., on hot 
summer afternoons).   
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A.1. LOAD IMPACT ESTIMATION OBJECTIVES 
This document contains eight protocols for estimating the load impacts of demand 
response resource options. These protocols were designed to meet the following primary 
objectives: 
 

• Establish minimum requirements to support resource planning, cost-
effectiveness analysis and program design and improvement; 

• Focus on the outputs that should be provided, rather than on how to obtain them; 
• Develop a common set of outputs to enable “apples-to-apples” comparison of 

load impacts across DR resource options, event conditions, and time;  
• Be applicable to a wide range of DR resource options, to accommodate a 

changing landscape of policies, programs, and program delivery agents; 
• Ensure that the documentation of methods and results allow knowledgeable 

reviewers to judge the quality of the work and the validity of the impact estimates 
provided; and 

• Encourage recommendations for improvements to the evaluated DR resources 
and future load impact evaluations. 

A.2. CONTEXT AND USES FOR LOAD IMPACTS 
Although load impact estimation is in itself an important tool for determining if a program 
met its targets, its usefulness extends much further.  As is demonstrated in Figure A-1, 
load impact estimation informs a variety of questions that arise throughout the life cycle of 
a DR resource—including evaluation, operations, settlement, program planning and 
resource planning.  
 
The protocols in this document distinguish between ex post and ex ante load impact 
estimation (see Figure A-1). This distinction is important.  
 

• Ex post load impacts are reflective:  They describe the past impact of an 
existing resource option.  In other words, they quantify the demand reduction that 
occurred during a defined historical period, under the conditions that were in effect 
during that time.  Because ex post performance is tied to past conditions, such as 
weather, price levels or system conditions that determine the extent to which 
resources are needed at the time, the impacts may not reflect the full value of the 
DR resource.  As such, it would be inappropriate to use ex post impacts to 
determine DR program cost-effectiveness.  Ex post load impact estimation should 
be viewed primarily as a means to an end—it is an important step in developing 
and validating ex ante impact estimates, which are described below. 

 
• Ex ante load impacts are forward-looking:  They describe the expected load 

impact under a range of potential conditions of interest, such as extreme weather, 
high prices or increased program participation.  Ex ante load impacts are an 
important input to DR cost-effectiveness analysis, both for program planning 
(comparing different DR program designs) and resource planning (comparing 
archetypal DR options against other conservation and supply resources). For 
these purposes, ex ante impacts should be based on the extreme conditions for 
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which the system is designed (e.g., 1-in-10 weather year conditions) in order to 
capture the full option (or insurance) value of DR. Program planners may also wish 
to estimate ex ante load impacts for average conditions (or other conditions of 
interest), particularly for non-event-based DR options such as time-of-use rates, as 
understanding impacts on a day-to-day basis can be a useful input to calculating 
lost revenue, identifying structural benefiters, or answering other questions that 
arise in program design and planning. 

 
Figure A-1 

Context for DR Load Impact Protocols 
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Although the focus of these protocols is on ex post evaluation and ex ante estimation for 
program and resource planning, load impact estimation can also contribute to program 
operation.  Ex ante load impact estimates can form the basis for developing dispatch 
models to predict, in near-real time, the impact of DR programs as they are activated.  
 
DR program settlement can also be informed by load impact estimation, although these 
protocols do not provide direct guidance to do so.  Nonetheless, similar methods and data 
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sources can be used to determine how accurately a program’s settlement methodology 
compensates participants for their demand reductions.  Going a step further, it may be 
possible to develop dynamic settlement models based on the same statistical methods 
(e.g., regression analysis) that are typically used for ex ante impact estimation.  

A.3. HOW TO USE THIS DOCUMENT 
In addition to presenting the load impact protocols described above, this document is 
intended to provide the necessary background to understand and implement the 
protocols, as well as provide guidance on related evaluation issues that go above and 
beyond the minimum requirements. 
 
The intended audience for this document includes: 

• evaluation contractors performing DR impact evaluations; 
• OPA staff responsible for managing DR program evaluations; 
• OPA staff responsible for DR program design and resource planning; 
• staff of other organizations that may administer future DR programs/tariffs; and 
• other stakeholders with an interest in DR program evaluation. 

 
The remainder of this document is organized as follows: 
 

• Section B provides an overview of issues and methods for estimating DR load 
impacts.  Evaluation managers and others tasked with understanding the results 
of DR load impact estimates should find useful background in this section.  In 
addition, this section describes optional elements that evaluators may wish to 
consider including in specific DR program evaluations. 

 
• The load impact protocols are presented in section C.  Below is a roadmap to 

the topics covered by the protocols and where they can be found: 
 

Protocol 1—Evaluation Planning Page 25 
Protocol 2—Time Periods Page 27 
Protocol 3—Reporting Format Page 29 
Protocol 4—Day Types and Event Conditions Page 31 
Protocol 5—Portfolio Analysis Page 33 
Protocol 6—Statistical Reporting and Validation Page 33 
Protocol 7—Analysis Based on Sampling Page 34 
Protocol 8—Reporting and Documentation Page 36 

 
• A Glossary of Terms is provided for reference (beginning on page 40).  

 
• Finally, additional technical information on the Criteria for Developing Good 

Impact Estimates, Sampling Issues, Evaluation Methods and Regression 
Analysis is provided in Appendices 1 through 4. This should be helpful to 

Filed: September 7, 2017, EB-2017-0150, Exhibit I, Tab 1.1, Schedule 2.04, Attachment 3



INTRODUCTION 

 7 

individuals tasked with designing and/or implementing DR load impact estimation 
studies. 
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B. OVERVIEW OF LOAD IMPACT ESTIMATION ISSUES AND METHODS 
 
The load impact protocols set forth in Section C are meant to establish minimum 
requirements for DR load impact evaluations—they focus on what to provide, rather than 
how to provide it. This is because there is a great degree of variation in the potential types 
of DR resource options, stakeholder interests, uses for load impact estimates, and other 
factors, that make it impractical to dictate precise requirements to meet all possible 
conditions.  More importantly, it would be inappropriate to do so, as factors such as the 
availability of resources, the magnitude of the DR resource (e.g., whether it is a large or 
small program), and available data, should also be considered when planning a load 
impact evaluation.   

Accurately estimating load impacts associated with DR resources is a challenging 
exercise.  By their very nature, DR resource impacts, and the need for them, are 
dynamic—load impacts vary with key drivers such as weather, prices and other factors, 
while system conditions drive the need for them.  Customer behaviour is also a significant 
determinant of DR resource impacts, one that varies across customers and by time of 
day, day of week and season.  The likelihood that a DR resource will be available when it 
is needed is also influenced by the magnitude and nature of the financial incentives 
provided (e.g., the magnitude of the price signal, whether non-performance penalties 
apply, etc.).  Finally, different parties and stakeholders have different interests in 
understanding how DR load impacts vary across individual customers or customer 
segments, across geographical locations, and across system conditions.  All of these 
factors influence the way in which load impact evaluations should be conducted and what 
they should provide.   

The protocols presented in Section C were designed with sufficient flexibility to achieve 
the key objectives of minimizing excess evaluation burden and costs while providing 
valuable input to resource planning and program design.  While this leaves room for 
discretion in designing specific program evaluations, it also means that evaluators must 
have a solid understanding of key issues, methods and objectives.  The goal of this report 
section is to provide an overview of key issues that should be considered during 
evaluation planning and that must be addressed when conducting DR impact evaluations. 
Impact evaluation methods that can be used to address these issues are discussed in 
Appendices 2 through 4.       

This section begins with a brief discussion of what a “load impact” is and a word of 
caution on how certain approaches can introduce bias into load impact estimates.  This is 
followed by a discussion of the characteristics of different types of DR resources that 
influence the type of output required by the protocols. The remainder of the section 
provides a brief discussion of numerous issues that evaluators and users of impact 
estimates must address during evaluation planning and when using the results for 
program design, cost-effectiveness analysis and resource planning.  
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B.1. DEFINING LOAD IMPACTS 
Load impacts associated with DR resources are defined as the difference between a 
customer’s actual (observed) electricity demand, and the amount of electricity the 
customer would have demanded in the absence of the DR program incentive. The 
latter cannot be observed and must be estimated. This estimate is referred to as the 
reference load.  Figure B-1 illustrates the load impacts associated with an event-based 
DR resource.6

 
    

Figure B-1 
Load Impacts for Demand Response Resources 
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As seen in Figure B-1, load impacts for an event-based resource can occur not just 
during the event window (i.e., the period of time between when an event is triggered and 
when it is stopped), but also during the hours leading up to or following an event window.  
For example, with critical peak pricing, a residential participant with air conditioning might 
pre-cool the house before an event window begins, thus increasing load for an hour or 
two before the event starts relative to normal usage on a non-event day.  Similarly, for 
direct load control, load following the end of an event window is often higher than it 
otherwise would have been, as air conditioners cycle more frequently once cycling control 
ceases in order to return the house to its normal temperature setting.  
 
To account for these pre- and post-event impacts, the load impact protocols in Section C 
require that impact estimates be provided for all hours of an event day (not just during the 
event window itself), and similarly, for all hours of a typical day in which non-event based 
(e.g., time-of-use rates or permanent load-shifting) resources are in effect.   
 

                                            
6 Event-based DR resources are triggered by the occurrence of pre-defined “event” conditions, such as 
system emergencies or supply resource constraints. Event-based resources are distinguished from 
“continuous” DR resources, such as time-of-use (TOU) rates or permanent load shifting programs (e.g., 
OPA’s DR-2), that effectively reduce peak demand all (or most) of the time.  
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As stated above, load impacts equal the difference between what a customer actually 
used in the presence of a DR incentive, which can be observed for customers with 
interval meters, and an estimate of what they would otherwise have used.  Given this 
definition, it would seem logical to estimate load impacts as the difference between 
observed load and the estimated reference load.  However, this approach will not 
necessarily produce the most accurate estimate of demand response.   
 
A more accurate estimate may result from taking the difference between two estimated 
values—predicted load without DR in effect and predicted load with DR in effect.  This is 
because the difference between observed load and predicted load is a function not only 
of the actual load reduction, but also of any error in the predicted reference load.  The 
model used to estimate the reference load could do a very good job of tracking the 
pattern of usage for a day, and also a good job determining the magnitude of the load 
drop, but might be biased upward or downward in its prediction of the reference load.  
Under these circumstances, it would be more accurate to estimate the load impact as the 
difference between two predicted values—one with DR in effect, and one without DR in 
effect.   
 
The two different approaches are illustrated with an example in Figure B-2.  The 
regression model over-predicts customer load during the DR event relative to the actual 
(measured) load in all hours—that is, it is biased upward.  As such, estimating load 
impacts as the difference between the observed load and the reference load predicted by 
the regression model produces a biased load impact estimate that overstates the actual 
impacts.  Under these circumstances, estimating the impact as the difference between 
predicted load with and without DR in effect would be less biased.  As indicated in Section 
C, either approach to estimating load impacts may be suitable depending on 
circumstances and it is up to the evaluator to decide which approach is preferable in each 
instance and to produce evidence in support of the chosen method.     

 
Figure B-2 

Two Approaches to Load Impact Estimation 
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B.2. CHARACTERISTICS OF DEMAND RESPONSE RESOURCES 
As DR resource options have proliferated and gained increasingly widespread adoption 
throughout North America, various parties have attempted to categorize them. Depending 
on the context, a variety of DR resource characteristics have been adopted for this 
purpose. For example, as mentioned in the previous section, DR resources may be 
considered “event-based”—that is, tied to a specific trigger that “calls” the resource when 
it is needed—or “continuous”—in which response is not tied to a specific trigger but may 
nevertheless fluctuate with exogenous factors such as weather or prices.  Another 
common categorization is as emergency (reliability) or economic resources—in this case, 
the triggering conditions (e.g., system emergencies, fluctuations in wholesale market 
prices) are of interest.  DR options may also be categorized as “incentive-based”—in 
which participants receive payments (typically funded by ratepayers) in return for reducing 
load—or “price-based”—in which customers respond to time-differentiated prices built into 
retail electricity rates.    

For the purposes of defining analysis and output requirements for load impact estimation, 
it is useful to categorize DR resources according to the following design characteristics:  

• Frequency of Use:  Some resource options, typically emergency programs like 
interruptible rates and direct load control, are triggered relatively infrequently. At 
the other end of the scale are continuous DR resources, such as time-of-use 
(TOU) and real-time pricing (RTP) rates.  Other programs may be called several 
times a season.  For event-based resources, the frequency of use is often tied to 
program rules that set a maximum number of events per season or other time 
period.  

• Event Timing and Duration:  For some resource options, such as critical peak 
pricing, the event window—the event start time and number of hours of duration—
is fixed (e.g., noon to 6 p.m.).  For other resource options, such as direct load 
control, both the start time and event duration can be highly variable.  Of course, 
this characteristic is only applicable to event-based DR resources. 

• Number of Participants Called:  For some resource options, it is typical that all 
program participants are called for every event.  For others, flexibility exists to only 
call program participants in specific locations to provide emergency relief of 
transmission or distribution system contingencies. 

 
For purposes of these protocols, the above characteristics can be combined to produce 
the following four DR resource categories:   

• Limited Frequency Resources:  Characterized by very infrequent use, highly 
variable event timing and duration, and high variability in the number of 
participants that are called for each event.  This option is represented by 
emergency resources such as interruptible rates and emergency-driven direct load 
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control.  OPA’s peaksaver®7

• Limited Variation Resources:  Typically has the same event window each day 
and little or no variation in the number of participants that are called for each event.  
This type of resource is characterized by low to moderate frequency of use.  
Examples of this resource option include most critical peak pricing tariffs.   

 program is an example of this type of resource 
option.   

• High Frequency Resources:  Characterized by a very high number of event days 
and highly variable event timing and duration.  The number of customers 
participating in each event is largely at the discretion of the participants themselves 
and may vary significantly with market conditions (e.g., more will participate on 
very high priced days than on other days).  OPA’s DR-1 program is an example of 
this resource option. 

• Continuous Use Resources:  This category includes all non-event based 
resources, such as RTP, TOU and permanent load shifting.  OPA’s DR-2 program 
is an example of this option. 

 
The preferred analysis methods for impact evaluation and the outputs of interest vary 
across the above categories.  For low frequency resources, it is not uncommon that no 
events are called in a given year.  As such, any requirement to provide ex post load 
impact estimates would not be applicable for that year.  Furthermore, with very infrequent 
events, it may be difficult to develop models to predict ex ante load impacts based on 
actual event data—in these circumstances, it may be necessary to use end-use metering 
on a sample of participants that are intentionally triggered under event-like conditions in 
order to develop statistically rigorous ex ante impact estimates.   
 
For limited variation and high frequency resource options, it is much easier to develop 
sound, statistical estimates of impacts under various conditions.  Since events are 
triggered on some days and not others, empirical estimates can be developed using 
relatively small participant samples and without the need for pre-enrolment customer load 
data.  Instead, each participant acts as its own control—data from “event-like” days on 
which events are not called is a good proxy for the reference load on event days.  On the 
other hand, with so many event days in any given year, a requirement to report load 
impacts on every historical event day would pose a significant burden.   
 
Continuous-use resources present a significant empirical challenge in that one must use 
a control group, pre-enrolment data, or another approach such as elasticity estimation to 
determine load impacts, since there are no “event-like” days to use as a reference load 
proxy.  One must also decide which day types are of greatest interest from a reporting 
standpoint unless impacts are going to be produced for all hours of the year.   
 

                                            
7 ® Trademark of Toronto Hydro Corporation. Used under license. 
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The load impact protocols in Section C, in particular protocol 4, try to strike a balance 
between the need for comparability across resource options, the need to develop 
estimates that best support cost-effectiveness analysis, the need to report information 
that allows reviewers to assess the validity of the impact estimates, and the desire to 
minimize the analysis and reporting burden by not requiring that estimates be developed 
for every possible day type or event condition for which each resource might be used.    

B.3. EX POST VESUS EX ANTE IMPACT ESTIMATION 
As introduced in Section A.2, load impacts can be estimated on an ex post or ex ante 
basis.  Ex post load impacts are estimates of demand reductions under conditions that 
actually occurred in the past for the specific set of customers that were called on an event 
day or were enrolled in a non-event-based program on a selected day.  Ex ante load 
impact estimates represent expected demand reductions under a set of predefined 
conditions for a specified group of customers.   

As indicated in Section A.2, the primary objective of the load impact protocols presented 
here is to develop estimates that can support program and resource planning, which are 
inherently forward-looking, or ex ante, exercises.  Resource planning seeks to identify the 
optimal combination of resources that will balance supply and demand at least cost under 
a specified set of conditions.  Program planning involves comparing the cost-
effectiveness of different potential resource options, also under a specified set of 
conditions.  While ex post load impact estimates may have some interest to resource 
planners and program managers, for reasons discussed below, they typically should not 
be used for cost-effectiveness analysis or for long-term resource planning.  Ex post 
impact estimation is primarily a means to an end—it is essential for determining the 
relationship between demand response and key explanatory variables, which can then be 
used to estimate ex ante impacts.   
 
Having said that, it should also be noted that the desire to reflect changing customer 
characteristics and event conditions in ex ante load impact estimates may impose certain 
model specification and data requirements on the evaluation process that would not be 
necessary in order to develop accurate ex post estimates.  If the only interest is in 
knowing what load impacts were during a specific historical time period, simpler 
estimation methods might not only be suitable, they might produce more accurate or at 
least more easily understood estimates than would the more complex methods required 
to produce reasonable ex ante forecasts.   
 
Ex ante load impact estimates for event-based resources should be developed based on 
the conditions under which the resource is most likely to be called.  Quite often, DR 
resources provide larger load reductions on these high probability days than they would if 
they were called on other days.  For example, in jurisdictions such as Ontario where air 
conditioning drives system peak demand, an air conditioning cycling program is more 
likely to be called on hot days when the system is stressed than on cooler days when 
reserve margins are much larger.  Moreover, on hot days, the load reduction potential 
from air conditioner cycling is significantly greater than on cool days.  Similarly, load 
impacts for a year in which the weather is hotter than normal would be greater on 
average than for a normal weather year.   
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For example, Figure B-3 shows the difference in the aggregate impact across the 20 
highest system loads days for Southern California Edison’s air conditioner cycling 
program, based on normal (1-in-2 year) weather conditions and on more extreme (1-in-10 
year) weather conditions.8

 

  The average impact across the top 20 system load days is 
more than 16 percent higher under 1-in-10 year weather conditions than under normal 
weather conditions.  The difference during the peak event hour is roughly 21 percent (719 
MW compared with 592 MW).    

  Figure B-3 
DR Load Impacts by Weather Year for Southern California Edison’s 

Air Conditioner Cycling Program  
(Top 20 System Load Days for All Participants) 
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Short of requiring load impacts for every hour of each forecast year over the desired 
planning horizon, a challenging issue in developing load impact protocols is deciding on 
the conditions and time periods for which load impact estimates should be provided.  A 
key concept that should guide these decisions is that many DR resources are like options 
or insurance—they provide value even when they are not used.  Emergency resources 
provide insurance or protection against typically low probability, high cost events such as 
brownouts and blackouts.  Economic resources can provide protection against high 
wholesale market clearing prices by reducing demand when prices rise and, therefore, 
allowing the market to equilibrate at lower prices than it otherwise would.  Even if a DR 

                                            
8 Stephen S. George, Josh Bode and Josh Schellenberg.  Load Impact Estimates for Southern California 
Edison’s Demand Response Program Portfolio.  September 25, 2008. 
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resource is typically operated by calling on just a subset of participants (e.g., air 
conditioner cycling called in response to local distribution outages), cost-effectiveness 
analysis should still be based on the full option value of the resource—that is, the 
magnitude of load reduction that could be achieved if all participants were called 
simultaneously.  In other words, DR resource cost-effectiveness should not be based on 
the ex post load impacts that were achieved in the past year, or even several years, 
because the conditions under which those resources were used or the number of 
participants called may significantly understate the full option value of the resource. 

B.4. CHANGES IN PROGRAM ENROLMENT 
Because ex ante load impacts are forward looking, the issue of program enrolment must 
be considered.  If the enrolment is expected to be more or less static, ex ante load 
impacts may be estimated for the group of customers currently enrolled in a program, 
under the conditions of interest (e.g., normal or extreme weather year conditions).  If 
program enrolment is expected to change, either quantitatively (number of participants) or 
qualitatively (participant size, business activity, end uses, etc.), then these changes must 
be predicted and the load impacts applied to the expected new participant population to 
determine overall program impacts and cost-effectiveness.   

This presents a significant challenge, as predicting DR program enrolment can be either 
very difficult, quite subjective or some combination of the two.9

The primary focus of these protocols with respect to ex ante estimation is on developing 
estimates for the average enrolled customer that reflect the day types and event 
conditions needed for program and resource planning.  Determining what enrolment will 
be in future years is considered to be an exogenous exercise.  However, the load impact 
evaluator should be cognizant of how enrolment is expected to change in the future and, 
as necessary, be prepared to develop models that can reflect the impact of these 
changes on aggregate impacts.   

  Furthermore, since load 
impacts can vary significantly across customer groups (e.g., average impacts per 
customer might be quite different for office buildings than for manufacturing plants), 
determining the average or aggregate load impact for a group of customers that has a 
significantly different mix of businesses than exists among current enrolees would not 
only require forecasting the mix of customers in each planning year but also estimating 
average load impacts for each relevant business type.  As such, a key decision that must 
be made in the planning stages of ex ante load impact estimation is whether the load 
impacts are required just for the current set of enrolees, or also for a future group of 
enrolees that might differ significantly from the current mix. If the latter, the evaluation 
must estimate load impacts at a sufficient level of granularity to support such an 
analysis—i.e., participant characteristics and other factors that drive variation in load 
impacts should be identified and load impacts estimated separately for the identified sub-
groups. Understanding how impacts vary across customer segments may be important 
not only as a means of ensuring accuracy as customer populations change, but also as 
input to developing more effective marketing strategies and tactics and or refining 
program rules and characteristics. 

                                            
9 To bound the uncertainty in future enrolment, it may be desirable to take a scenario approach. 
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B.5. TIME PERIODS   
When planning an evaluation of DR resources, it is important to consider the granularity 
of time intervals at which impacts will be reported.  The load impact protocols require that 
impacts for event-based resources be developed for each hour of an event day (in order 
to capture any adjustments in usage prior to or following an event period).  However, 
some stakeholders may find this level of detail to be unnecessary and may wish only to 
see estimates for the average impact across an event period.  Other stakeholders may 
wish to see estimates for each half hour or even for each 15-minute interval.  The degree 
of granularity for which load impact estimates are needed can impact both the analysis 
approach as well as data requirements, and evaluators must balance the availability of 
data and resources against desired outputs in developing an evaluation plan. 

B.6. DAY TYPES 
As discussed above, DR resources vary significantly with respect to the frequency and 
duration with which they can be exercised.  While some resources are in effect for all 
8,760 hours of the year, program rules may limit the availability of others to, for example, 
only the summer season, or certain hours on weekdays.  Some resources are typically 
only called during system emergencies or on days with very high electricity demand or 
high prices, while others, such as permanent load shifting, are in effect nearly every day.  
To reduce the burden of predicting impacts for each hour of the year that a resource may 
be called, load impacts may be estimated for pre-defined “day types”.  The load impact 
protocols take this approach, dictating the minimum day types for which estimates must 
be provided, taking into consideration the desire to have common day types across 
resource options so they can be compared, the desire to recognize the unique 
characteristics of each resource, and the need to keep the amount of work and evaluation 
output manageable.  In some cases, these minimum output requirements may not meet 
the interests of all stakeholders.  As such, evaluation planners should solicit input from 
interested parties and decide whether estimates are needed for day types other than 
those required by the protocols.  
 
Determining the day types for which impacts are reported is particularly challenging when 
there are correlations between several drivers of demand response and/or it is difficult to 
predict conditions under which a resource is likely to be triggered because of lack of 
historical data or likely changes in future conditions.  OPA’s DR-1 program is an example 
of a resource for which it is difficult to develop estimates for day types representing ex 
ante event conditions.  DR-1 is called when prices exceed a certain threshold.  
Historically, DR-1 has been called very frequently (over 1,000 hours a year), and this high 
frequency can reduce customer load response relative to what it would be with a lower 
number of events.  Furthermore, high prices are correlated not only with high demand, 
which in turn, is correlated with hot weather, but also with high natural gas prices, which 
often occur in winter.  For such a program, load impact estimates under normal and 
extreme weather conditions may have little relevance to what the impacts would be for a 
normal or extreme program event day and it is difficult even to define what a normal or 
extreme day is for such a program.  Even if data were available to correlate weather, 
market prices and other factors that drive demand and demand reduction, the correlation 
between these factors could change in the future as supply conditions become looser or 
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tighter relative to historical conditions or OPA modifies the DR-1 strike price trigger to 
reduce the number of event hours.  This is a particularly perplexing problem for which 
there is no easy solution.   
 
At a minimum, in such situations, it is imperative that evaluators identify shortcomings of 
this sort and properly caveat load impacts that meet minimum requirements but that might 
not capture important correlations or have other limitations due to lack of data or changing 
conditions.  Scenario analysis (e.g., producing impacts under various conditions that 
reflect all relevant drivers of demand response based on assumed conditions and 
correlations) is another option to address such shortcomings.  Over time, as more 
historical data become available, the number of resources for which such challenges 
arise should diminish.        

B.7. EVENT WINDOW 
For programs with variable event timing and duration, deciding on the event window for 
which ex ante load impacts should be provided is another challenging issue.  Even for ex 
post impact estimates, if there are a large number of events and the timing and duration 
of events varies significantly, reporting impacts for the “average event” can be somewhat 
complex.  Once again, the protocols describe the event windows for which load impacts 
must be reported for each program type for both ex post and ex ante estimation, taking 
into consideration resource planning needs.  However, stakeholders may wish to see 
estimates for other event windows.   

B.8. EXTREME CONDITIONS  
As discussed previously, when examining the cost-effectiveness of DR resources, it is 
important to estimate the impacts not just under normal conditions, but also under the 
extreme conditions under which many DR resources are designed to be used and provide 
their highest value.  This means that impact estimation methods must be able to predict 
DR load impacts under conditions that may not have actually occurred during the 
historical period from which the data for estimating the impacts is obtained.  In these 
instances, it is important, for example, to pay careful attention to the functional form of the 
models being developed, making sure to examine non-linearities in the relationship 
between load impacts and key drivers.  For example, the relationship between weather 
and energy use is typically non-linear—above certain temperatures, air conditioners are 
already running at full capacity and additional increases in temperature beyond that point 
do not increase energy use.  Similarly, the relationship between price and energy use 
may be non-linear.  For example, across a reasonable range of price changes, the 
percentage change in energy use given a percentage change in price (e.g., the price 
elasticity) may be relatively constant.  However, above a certain threshold, the same 
percentage increase in prices may elicit a much lower percentage change in energy use 
as all largely discretionary energy use has already been eliminated.     

The load impact protocols presented in Section C require that estimates be developed 
based on both normal and extreme weather year conditions.  There are various ways to 
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define normal and extreme weather conditions for ex ante load impact estimation.10

B.9. UNCERTAINTY 

  OPA 
is currently working on developing these definitions.   

Load impact estimation is inherently uncertain, as impacts are based in part on estimated 
values.  If regression analysis is used to develop ex post impact estimates, uncertainty 
can be expressed in terms of the standard errors of the impact coefficients, the standard 
error of the forecast for energy demand, or both.  For ex ante impact estimates, not only 
is there uncertainty in terms of model parameters, but also in the magnitude of the key 
drivers of demand and demand response, such as weather.   
 
Uncertainty-adjusted load impact estimates can be developed based on standard errors 
of the model coefficients as reported by any statistical software used for regression 
analysis, or based on Monte Carlo simulation of model parameters and key drivers.  The 
California Public Utilities Commission’s (CPUC) load impact protocols11 require that 
uncertainty-adjusted impact estimates be provided for the 10th, 30th, 50th, 70th and 90th

 

 
percentiles for each hour of each required event day.  Table B-1 contains an example of 
what these requirements produce for each DR resource and event day.  While this 
enhances understanding of the uncertainty surrounding the impact estimates, it does add 
to the burden of load impact estimation and to the proliferation of output provided.   

The load impact protocols in Section C do not require that uncertainty adjusted impacts 
such as those shown in Table B-1 be reported as part of the minimum requirements for 
program evaluation.  However, as some stakeholders may desire such information, the 
need for developing uncertainty-adjusted impact estimates should be determined as part 
of evaluation planning.     

                                            
10 In recent work in California, proxy 1-in-2 and 1-in-10 weather years were selected by examining weather 
conditions over the last 30 years and ranking each year based on cooling degree days during the summer.  
The 1-in-2 and 1-in-10 weather years were chosen as the years representing the 50th and 90th percentiles 
from this distribution.  However, choosing a single year to represent the weather can lead to anomalies 
when comparing single days across the years.  For example, weather on the June system peak day can 
easily be cooler in the proxy year for 1-in-10 weather conditions than for 1-in-2 weather conditions.  An 
alternative approach would be to use the average weather across several years surrounding the 50th and 
90th percentile years.  This would not guarantee that there will be no anomalies across the two years, but it 
should reduce the likelihood that this will be the case.  Another alternative would be to construct stylized 
years that ensure that such anomalies don’t exist (e.g., by taking the higher of the June days to represent 
the 1-in-10 weather year) or by selecting the 50th and 90th percentile years for each month, rather than for 
the year as a whole.    
11 Load Impact Estimation for Demand Response:  Protocols and Regulatory Guidance, California Public 
Utilities Commission, March 2008.   
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Table B-1 
Uncertainty Adjusted Load Impact Estimates for PG&E’s SmartRate Program 

Average Residential Participant, July 8, 2008 Event Day 
Uncertainty Adjusted Impact - Percentiles

10th 30th 50th 70th 90th

1:00 1.31 1.36 -0.05 -3.63% 85.5 -0.08 -0.06 -0.05 -0.04 -0.02

2:00 1.15 1.21 -0.06 -5.58% 84.5 -0.09 -0.08 -0.06 -0.05 -0.03

3:00 1.03 1.09 -0.06 -5.43% 83.0 -0.09 -0.07 -0.06 -0.04 -0.03

4:00 1.00 1.04 -0.04 -3.51% 82.5 -0.06 -0.05 -0.04 -0.02 -0.01

5:00 0.95 0.95 0.00 -0.33% 81.0 -0.03 -0.02 0.00 0.01 0.03

6:00 0.88 0.91 -0.04 -4.10% 79.0 -0.07 -0.05 -0.04 -0.02 -0.01

7:00 1.03 1.03 0.00 0.17% 81.0 -0.03 -0.01 0.00 0.01 0.03

8:00 1.08 1.13 -0.05 -4.23% 83.5 -0.08 -0.06 -0.05 -0.03 -0.02

9:00 1.13 1.17 -0.03 -2.82% 87.5 -0.06 -0.04 -0.03 -0.02 0.00

10:00 1.25 1.30 -0.05 -3.93% 92.0 -0.08 -0.06 -0.05 -0.04 -0.02

11:00 1.57 1.60 -0.03 -1.92% 97.5 -0.06 -0.04 -0.03 -0.02 0.00

12:00 1.87 1.85 0.01 0.70% 100.0 -0.02 0.00 0.01 0.03 0.04

13:00 2.20 2.17 0.03 1.42% 103.0 0.00 0.02 0.03 0.04 0.06

14:00 2.40 2.27 0.13 5.25% 104.5 0.10 0.11 0.13 0.14 0.16

15:00 2.58 2.08 0.50 19.32% 106.0 0.47 0.49 0.50 0.51 0.53

16:00 2.76 2.25 0.51 18.46% 106.5 0.48 0.50 0.51 0.52 0.54

17:00 3.11 2.48 0.62 20.07% 108.0 0.59 0.61 0.62 0.64 0.65

18:00 3.20 2.53 0.67 20.87% 107.0 0.64 0.65 0.67 0.68 0.70

19:00 3.03 2.51 0.52 17.17% 105.5 0.49 0.51 0.52 0.53 0.55

20:00 2.89 2.89 0.00 0.13% 103.5 -0.03 -0.01 0.00 0.02 0.03

21:00 2.72 2.87 -0.15 -5.55% 100.5 -0.18 -0.16 -0.15 -0.14 -0.12

22:00 2.48 2.68 -0.20 -8.00% 97.5 -0.23 -0.21 -0.20 -0.19 -0.17

23:00 2.14 2.30 -0.17 -7.73% 95.0 -0.19 -0.18 -0.17 -0.15 -0.14

0:00 1.77 1.89 -0.12 -6.79% 92.0 -0.15 -0.13 -0.12 -0.11 -0.09

Uncertainty Adjusted Impact - Percentiles
10th 30th 50th 70th 90th

Daily 45.53 43.57 1.96 4.31% 130.9 1.96 1.96 1.96 1.96 1.97

Hour 
Ending

Reference Load 
(kW)

Observed 
Load (kW)

Weighted 
Temp (F)

%Load 
Reduction

Cooling 
Degree Hours                      

(Base 75)

Load Impact 
(kW)

Reference Energy 
Use (kWh)

Observed 
Energy Use 

(kWh)

Change in 
Energy Use 

(kWh)
% Daily Load 

Reduction

 
Source: Stephen S. George and Josh Bode. 2008 Ex Post Load Impact Evaluation for Pacific Gas and 
Electric Company’s SmartRateTM

 
 Tariff. Prepared for PG&E. December 30, 2008.   

B.10. LOCATION SPECIFIC IMPACTS 
For a variety of reasons, both the magnitude and benefits of DR may vary significantly 
across geographic regions.  The magnitude of load reductions may vary geographically 
due to differences in the underlying population and climate (e.g., air conditioning 
saturation, a key driver of demand response for residential customers, may vary across 
different regions of Ontario due to climate and socio-economic factors).  Differences in the 
mix of commercial and industrial customers, and differences in marketing effectiveness 
and program characteristics across local distribution companies (LDCs), may also 
influence load impacts geographically.   
 
The benefits, or avoided cost, associated with DR may also differ geographically.  The 
OPA has identified a number of local constrained areas (LCAs) within Ontario; regions 
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with transmission or distribution capacity constraints, with excess generation on one side 
of the constraint and supply shortages on the other.  DR resources have greater value in 
areas with generation needs than in those with excess generation.  Furthermore, if DR 
can defer the need to invest in new or upgraded supply, the time value of deferring the 
investment may also be counted as a benefit of DR. 
 
For these and other reasons, it is important that the evaluation planner consider the need 
to develop load impacts and cost-effectiveness estimates for selected geographic 
regions, not just for the Province as a whole.  The need for geographic-specific impact 
estimates could significantly affect data requirements, the analysis approach, or both.  
However, to produce impact estimates for every possible region of interest, it is not 
necessary to develop load impact estimates based on samples from each geographic 
region.  All that is necessary is to know how many DR program participants are in the 
region of interest and to combine data on the key drivers of demand response with a 
model that predicts load impacts based on those key drivers. 
 
For example, in recent work in California, the load impacts associated with an air 
conditioner cycling program were produced by Local Capacity Areas (transmission-
constrained regions) using load impact estimates developed by climate zone, a key driver 
of demand response.  Program enrolment was predicted at the Census Block Group 
(CBG) level and then each CBG was mapped into a climate zone.  The LCA impact 
estimates were developed by calculating an enrolment-weighted average of the climate 
zone estimates for each LCA.12

B.11. CUSTOMER PRICE ELASTICITIES   

   

Price elasticity is a measure of customer responsiveness to price signals through 
changes in their demand for the good being priced.  Elasticities can be used in impact 
evaluations in two ways: (1) to evaluate load impacts of DR program participants that are 
simultaneously exposed to market or other time-varying prices, such as Ontario’s large 
electricity consumers who are Market Participants; and (2) to predict load impacts from 
participants in continuous use resources such as TOU and RTP rates.   

In both instances, elasticities can be used to estimate reference loads that account for 
price fluctuations.  In the first instance, if DR resources are called on high-price days, and 
price-induced demand fluctuations are not factored into the reference load, DR load 
impacts could be overstated.  In the second instance, where TOU or RTP price incentives 
are in effect all the time, there are no data for event-like days with which to estimate 
reference loads.  If load data exists for a sufficiently long time period prior to customer 
enrolment in the DR program, these data could be used to develop reference loads.  
However, where such information is not available, elasticity estimates can be used to 
determine what the load shape would be in the absence of the RTP or TOU that is in 

                                            
12 Stephen S. George, Mathew G. Mercurio and Josh Bode.  Ex Ante Load Impact Estimates for Pacific Gas 
and Electric Company’s SmartACTM Program for 2009-2010.  April 1, 2009.   
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effect.  This approach has been used in recent evaluations of RTP and TOU tariffs in 
California.13

B.12. FREE RIDERS AND STRUCTURAL BENEFITERS 

   

With energy efficiency program impact estimation, free riders are defined as those 
program participants who would have implemented a measure in the absence of the 
energy efficiency program’s influence.  Determining what participants would have done in 
the absence of the program—that is, sorting out the difference between gross impacts 
and net impacts—is a key element of energy efficiency program evaluation.  However, it 
is not very relevant to impact estimation for most DR resources as few customers would 
reduce load during DR events in the absence of the stimulus provided by the DR 
resource.  Put another way, customers don’t typically “do DR” in the absence of a DR 
program. 

On the other hand, there is an issue that many think of as free-ridership that is relevant to 
DR impact estimation.  This issue concerns customers who, by simply enrolling in a DR 
program, are better off than if they had not participated due to the nature of their load 
profile.14

Some would argue that enrollment by structural benefiters should be encouraged 
because it would reduce historical cross-subsidies inherent in average cost pricing.  
However, others believe that the existence of structural benefiters on a time-varying rate 
means that incentive payments (in the form of lower electricity bills) will be larger than 
required to achieve the same level of demand response or, worse, that structural 
benefiters will not provide any demand response benefits at all.  These stakeholders may 
be interested in estimating the number of structural benefiters participating in a DR 
resource option.   

  These customers are often referred to as structural benefiters.  An example of a 
structural benefiter is a customer who volunteers for a critical-peak pricing tariff but who 
does not have air conditioning or who typically does not use air conditioning during peak 
periods.  If a critical peak price is designed to be revenue neutral relative to current 
average prices, customers without air conditioning are more likely to be structural 
benefiters than are those with air conditioning.   

When deciding whether or not to determine the number of structural benefiters that might 
be participating in a DR program or tariff, it is important to keep the following in mind: 

• First, it is not necessary to estimate the number of structural benefiters in order to 
obtain unbiased estimates of demand response.  For event-based programs, using 
participants as their own control will automatically produced unbiased impact 
estimates for the participant population.  For non-event based programs, careful 
attention to selection of an external control group (or use of pre-treatment data, if 

                                            
13 Analysis of Southern California Edison Company’s RTP program is presented in Stephen S. George and 
Josh Bode.  Load Impact Estimates for SCE’s Demand Response Programs:  Residential and Commercial 
Summer Discount Plan; Agricultural and Pumping Interruptible Program; Real Time Pricing;, Optional 
Binding Mandatory Curtailment.  April 1, 2009.      
14 This issue arises primarily, if not exclusively, with tariff-based DR options such as time-varying pricing.   
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available, to estimate reference loads) will also generate unbiased impact 
estimates.   

• Second, just because a participant’s usage pattern might produce a windfall gain 
from participating in a DR program does not mean that that person will not reduce 
their energy use during peak periods.  Structural benefiters and structural non-
benefiters face the same marginal price signal or incentive and, in theory, should 
respond in the same manner to those economic incentives.  Indeed, any attempt to 
eliminate structural benefiters from participating in DR programs could lead to 
lower participation rates and lower overall demand response since structural 
benefiters (assuming they can self-identify as such) are logically more inclined to 
enroll than other customers.   

• Finally, it is important to keep in mind that estimating the number of structural 
benefiters can require an entirely different approach to impact estimation.  
Estimating the average or total response, without regard for structural benefiters, 
can be accomplished using regression methods that involve a single equation 
estimated from data pooled across customers and over time.  To estimate the 
number of structural benefiters, it would be necessary to estimate individual 
regression equations for every customer using just the time series data available 
on each customer.  This is a lot of additional work and it is important to assess 
whether the added information is worth the effort.   

B.13. DISTRIBUTIONAL IMPACTS 
In addition to (or as an alternative to) knowing whether structural benefiters and structural 
non-benefiters respond differently to DR resource incentives, some stakeholders may 
want to know how much variation there is in impacts across the full spectrum of enrolled 
customers.  For example, there may be interest in knowing what percent of enrolled 
customers provide load reductions equal to or greater than selected amounts or to know, 
for example, that 20 percent of customers provide 80 percent of the total load reduction 
for a program.   
 
Table B-2 provides an example of the distribution of impacts across customers enrolled in 
Pacific Gas & Electric Company’s SmartRate critical peak pricing program.  Roughly 30 
percent of customers do not reduce demand at all for the average event day, whereas 
another 30 percent reduce peak demand by more than 30 percent.  This type of 
information can be very useful for targeted marketing if it is possible to identify the 
characteristics of high and low responders.  However, as with identifying structural 
benefiters, this can require substantially more analytical work than is needed to develop 
average impacts based on aggregate data or pooled regressions.     
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Table B-2 
Distribution of Customer Response  

Pacific Gas & Electric Company’s SmartRate Tariff 
Summer 2008 

  
Share of accounts providing load reductions 

greater than… 
SmartDay Date 0% 10% 20% 30% 40% 50% 

7/8/2008 74.7 61.7 49.4 38.5 31.9 26.0 
7/8/2008 74.1 62.5 46.8 35.4 28.9 24.0 
7/8/2008 76.5 63.6 50.2 38.2 30.1 25.0 
8/8/2008 65.3 47.2 34.4 27.9 21.5 16.6 
8/8/2008 74.1 55.5 38.1 27.6 22.4 17.5 
8/8/2008 75.7 60.9 42.4 31.3 23.7 18.8 
9/8/2008 65.7 50.8 38.1 30.5 23.8 18.6 
9/8/2008 69.2 52.8 37.8 28.7 21.7 17.1 
9/8/2008 70.1 53.1 39.3 28.9 22.0 17.2 

Average Event 70.8 54.7 39.8 30.3 23.6 18.7 
 
Source: Stephen George and Josh Bode. 2008 Ex Post Load Impact Evaluation for Pacific Gas and Electric 
Company’s SmartRateTM

 
 Tariff. Prepared for PG&E. December 20, 2008 

B.14. PERSISTENCE AND LONG-TERM IMPACTS 
Another important difference between DR and energy efficiency is that load impacts for 
most DR resources do not persist beyond the life of the program.  If customers no longer 
receive DR program signals or incentives, they will usually stop providing demand 
response.   

However, the level or extent of the impact associated with a DR resource may change 
over time even if incentives continue to be offered.  For example, some argue that 
impacts estimated from the first year or two of a price-based DR program may diminish 
as customers tire of shifting their usage patterns or realize that the sacrifices made are 
not commensurate with the payments for load reduction or load shifting.  Others argue 
just the opposite—that impacts will increase over time as customers find new ways of 
responding to DR incentives or invest in enabling technology to automate and expand 
DR.  To date, there is little empirical evidence to settle this debate, as many DR resource 
options have not been in place long enough to observe whether load impacts change 
over time.  This is why it is important that OPA and others in Ontario conduct impact 
evaluations of the same program for a number of years, to develop the data needed to 
address this important question.  It is also important to monitor load impact evaluations 
being done elsewhere as it may be that programs similar to those of interest in Ontario 
have been in place for some time in other jurisdictions and can be used as a guide to any 
potential changes in average load impacts over time.   

B.15. UNDERSTANDING WHY, NOT JUST WHAT 
These protocols focus on the primary objective of impact estimation, determining the 
magnitude of impacts associated with a wide variety of DR resources.  That is, they focus 
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on “what” the impacts have been in the past or are expected to be in the future, not on 
“why” they are what they are.  However, for a variety of reasons, it may also be important 
to understand why the impacts are what they are.  If they are larger than expected or 
desired, it might be useful to ask, “are we lucky or are we good?”  If impacts are less than 
expected or desired, is it because of marketing ineffectiveness, customer inertia, lack of 
interest, technology failure, or some other reason?   
 
Some of these questions are more relevant to process evaluation than to impact 
evaluation.  Nevertheless, determining whether or not it is important to know the answers 
could influence the methodology that will be used for impact estimation and/or place 
additional requirements on the evaluation process in terms of customer surveys, 
measurement and verification activities, sampling strategy (e.g., stratification, sample 
size, etc.) and other activities.  For example, if the only question of interest is what the 
load impacts are for the current group of enrolled participants, this can often be done 
using just a sample of consumers drawn from the current participant group.  However, if, 
for example, the resulting load impact estimates fall short of what was expected, it might 
be because of selection issues (e.g., customers who don’t use their air conditioner very 
much might be more likely to participate in an air conditioning load control program than 
those who use it more).  In this situation, obtaining load data from a random sample of the 
general consumer population or from a sample of consumers who were offered the option 
to participate but declined, could help determine whether selection bias, or some other 
factor, is the cause of the lower than expected load impacts.    
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C. LOAD IMPACT ESTIMATION PROTOCOLS 
 
This section contains eight protocols that delineate the minimum requirements for 
estimating the load impacts associated with DR resources in Ontario. They are 
designed to afford a high degree of flexibility in the analysis methods, while 
providing standard outputs that can be used as inputs to resource planning, cost-
effectiveness analysis and program planning in the Province.   

C.1. PROTOCOL 1—EVALUATION PLANNING 
Determining how best to meet the minimum requirements in these protocols 
requires careful consideration of methods, data needs, budget and schedule—that 
is, it requires planning.  As such, the first protocol requires development of a formal 
evaluation plan.   

Protocol 1—Evaluation Planning 

Prior to conducting a load impact evaluation for a demand response 
resource in Ontario, an evaluation plan must be produced.  The plan 
must explain in general terms the approach that will be taken to 
meeting the minimum requirements of these protocols and contain an 
initial budget estimate and timeline for the analysis.  In addition, the 
evaluation plan must identify which of the following issues will be 
addressed as part of the impact estimation process: 

1. Whether the evaluation activity is intended to produce ex 
post impact estimates, ex ante estimates, or both and, if ex 
ante impacts are needed, whether they are needed for 
current enrolees only, future enrolees or both.  If ex ante 
estimates for future enrolees are needed, the plan should 
outline the changes that are expected to occur in the 
characteristics of the DR program and/or in the magnitude 
or characteristics of the participant population, and contain 
provisions to estimate load impacts at sufficient granularity 
to support analysis of ex ante changes in enrolment; 

2. Whether it is the intent to explicitly incorporate impact 
persistence into the analysis and, if so, the types of 
persistence that will be explicitly addressed (e.g., 
persistence beyond the funded life of the DR resource; 
changes in average impacts over time due to changes in 
customer behaviour; changes in average impacts over time 
due to technology degradation, etc.); 

3. Whether it is the intent to develop impact estimates for 
geographic sub-regions and, if so, what those regions are; 
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4. Whether it is the intent to develop impact estimates for sub-
hourly intervals and, if so, what those intervals are; 

5. Whether it is the intent to develop estimates of the change in 
daily, monthly and/or annual energy savings associated with 
a DR resource; 

6. Whether it is the intent to develop impact estimates for 
specific sub-segments of the participant population and, if 
so, what those sub-segments are; 

7. Whether it is the intent to develop impact estimates for 
event-based resources for specific days (e.g., the day before 
and/or day after an event), day types (e.g., hotter or cooler 
days, high price days, etc.) or series of days (e.g., multiple 
event days in a row) in addition to the minimum day types 
delineated in these protocols; 

8. Whether uncertainty-adjusted load impact estimates will be 
produced and, if so, whether just the uncertainty in model 
parameters will be factored into the analysis or, in addition, 
whether uncertainty in key drivers will also be incorporated; 

9. Whether it is the intent to determine not just what the DR 
resource impacts are, but to also investigate why the 
estimates are what they are and, if so, what measurement 
and verification activities will be used to inform this 
understanding;  

10. Whether free riders and/or structural benefiters are likely to 
be present among DR resource participants and, if so, 
whether it is the intent to estimate the number and/or 
percent of DR resource participants who are structural 
benefiters or free riders and/or to determine whether 
structural benefiters respond differently than structural non-
benefiters; 

11. Whether it is the intent to determine the distribution of 
impacts across individual customers; 

12. Whether a non-participant control group is needed for 
impact estimation and, if so, what steps will be taken to 
ensure that use of such a control group will not introduce 
bias into the impact estimates;  
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13. The target level of confidence and precision in the impact 
estimates that is being sought from the evaluation effort if 
sampling is used.15

C.2. PROTOCOL 2—TIME PERIODS 

 

DR programs are designed to influence the timing of energy use, reducing 
demand through load reduction or load shifting during peak periods or when 
resources are otherwise in short supply.  The objective of load impact 
estimation is to accurately determine the magnitude and nature of demand 
response.  Protocol 2 indicates that load impacts should be developed for 
each hour for selected day types and conditions delineated in subsequent 
protocols.  Requiring impact estimates for each hour of a day ensures that 
the estimates will reflect not just load reduction during peak periods, but 
load shifting as well.  As discussed in Section B.5 and as delineated in 
Protocol 1, more or less granularity in time periods may be of interest to 
some stakeholders or decision-makers.   

Protocol 2—Time Periods 

Load impact estimates shall be provided for each hour of the 
day for the day-types and conditions delineated in Protocol 4 
according to the format delineated in Protocol 3. 

C.3. PROTOCOL 3—REPORTING FORMAT 
As discussed in Section B.1, load impacts equal the difference in energy 
use in each hour (or sub-hourly period) with and without the influence of a 
demand response program or incentive.  Impacts can be legitimately 
estimated either as the difference between an estimated value (the 
reference load) and a measured value (metered load) or as the difference 
between two estimated values (load with and without the estimated load 
impact in effect).  As discussed in Section B.1, in some instances, the latter 
may produce a more accurate load impact estimate than the former.   

Protocol 3 describes the format in which load impact estimates must be 
reported for each day type, customer segment and set of event conditions.  
The column labelled “load without DR in effect” is always an estimated 
value, as this is unobservable.  The column labelled “load with DR in effect” 
may be either an estimated value or an actual meter read, at the discretion 
of the evaluator.  In either case, the entries in the “load impact” column 
should equal the difference between the other two columns.   

An additional reporting requirement is to include the temperature in each 
hour.  This is meant to provide reviewers with an easily understood indicator 
                                            
15 If sampling is not employed, the precision and confidence levels will largely be dictated by the 
number of customers in the program, the variation in demand response across customers (both of 
which are outside the control of the evaluator) and the modeling approach that is employed to 
develop the estimates.      
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of the weather conditions that often are a key driver of load and demand 
response for the day type and conditions underlying the load impact 
estimate presented in the table.  Such information is quite useful when 
comparing load impacts across day types, as one can easily see whether 
the estimates in one table or for one program represent a hotter or cooler 
day than the estimates in another table or for another program.  Including 
this information in the standard reporting table is not meant to imply that 
temperature is necessarily a key driver of demand response for every 
resource or that temperature, rather than some other weather variable, is 
the most appropriate driver of demand response even for weather sensitive 
loads.  For tables in which impacts are provided for an average day (e.g., 
typical event day), the average temperature across the event days should 
be provided.   
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Protocol 3—Reporting Format 

Table C-1 shall be completed for each event day and set of 
conditions delineated in Protocol 4 for each customer segment 
determined to be of interest during evaluation planning. 

Table C-1 
Required Format to Report Load Impact Estimates for DR Resources  

Program Name:  _________________________ 
Day Type:  _________________________ 

Event Conditions:  _________________________ 
Customer Segment::  _________________________ 

Average or Aggregate Load:  _________________________ 

Hour Ending 
at: 

Load w/o DR  
in Effect 

Load With 
DR  

in Effect 
Load Impact Temperature16 

1     
2     
3     
4     
5     
6     
7     
8     
9     

10     
11     
12     
13     
14     
15     
16     
17     
18     
19     
20     
21     
22     
23     
24     
 

                                            
16 The temperature data presented in the table should be weighted by the number of customers 
participating in the program or event in each climate zone, if temperatures vary across zones.  If the 
table represents multiple days (e.g., the top 10 system load days), the average temperature should 
also be weighted by the number of customers participating in each climate zone on each day.   
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C.4. PROTOCOL 4—DAY TYPES AND EVENT CONDITIONS  
Protocol 4 identifies four categories of DR resources based on elements of their 
program design that affect impact evaluation, and identifies the day types and 
event conditions for which load impact estimates must be provided for each of 
these four resource categories.  The selection of day types and event conditions to 
be reported for ex post and ex ante estimates balances the need for comparability 
across resource options, the need to develop estimates that best support cost-
effectiveness analysis, the need to report information that allows reviewers to 
assess the validity of the impact estimates, and the desire to minimize the analysis 
and reporting burden by not requiring that estimates be developed for every 
possible day type or event condition for which each resource might be used.      
 
As indicated in Protocol 4, the first step in determining the day types and event 
conditions that must be provided for a particular evaluation effort is to examine the 
characteristics of the resource according to the four dimensions discussed in 
Section B.2 and to classify each resource into the four categories discussed in 
Section B.2 and summarized in Table C-2.  If a DR resource does not fit neatly into 
one of these four categories, it is better to err on the side of providing more 
information rather than less.  For example, OPA’s DR-3 program has 
characteristics of both a limited variation and a high frequency resource—it can be 
called between 25 and 50 days per year, but events are of a fixed duration and 
their timing tends to be fairly consistent.  In this instance, it would be best to treat 
DR-3 as a high frequency resource when developing ex ante load impact 
estimates, thereby providing more detailed impact estimates.   

Protocol 4 describes the reporting requirements for both ex post and ex ante 
impact estimation.  It also includes requirements designed primarily to illustrate the 
validity of the estimation methodology.  Estimates for both the average participant 
and the sum of all enrolled participants are required for ex post impact estimation 
as well as for ex ante estimation for current enrolees.     

As indicated in Table C-3, ex ante impact estimates are required for normal and 
extreme weather.  The requirement to provide impact estimates based on extreme 
weather conditions is primarily designed to show the option value of DR resources 
under the conditions when they have a higher likelihood of being called and 
provide their highest value.  However, as discussed in Section B.6, not all 
resources are weather sensitive and some resources may be triggered under 
conditions (e.g., high price days) that are hard to predict due to lack of historical 
data or inherent complexities.  In these instances, the evaluator may wish to report 
impacts for additional day types that more accurately reflect the conditions under 
which the resource is likely to be called.  At a minimum, the evaluator should 
document the fact that the weather and event conditions for which load impacts 
are reported under the protocols may not accurately reflect the typical event 
conditions under which the resource is likely to be used.       
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Protocol 4—Day Types and Event Conditions 

The information shown in Table C-1 shall be provided for the day-
types and event conditions described in Table C-3 after classifying a 
DR resource according to the characteristics shown in Table C-2. For 
ex post estimation and for ex ante estimation based on current 
enrolees, impact estimates must be provided for both the average 
participant as well as for all enrolled or notified participants (as 
indicated in Table C-3).      

Table C-2 
Characteristics of Resource Options 

DR Resource 
Characteristics 

Limited 
Frequency 
Resources 

Limited 
Variation 

Resources 

High Frequency 
Resources 

Continuous Use 
Resources 

Frequency of 
Use Very Infrequent 

Moderate 
(5 to 25 days  

per year 

Very High 
(25 or more days 

per year) 

Continuous (non-
event-based 
resources) 

Variation in 
Event Timing & 

Duration 
Highly Variable Little or No 

Variation Highly Variable Not Applicable 

Variation in # of 
Participants 

Called Across 
Events 

Highly Variable Little or No 
Variation 

At Discretion of 
Participant or 

Market 
Conditions 

None 

Examples 

Interruptible Rates 
 

Emergency 
Dispatched Load 

Control 
(e.g,. peaksaver®) 

Critical Peak 
Pricing 

 
Economically 
Dispatched 

Load Control  

DR-1 
 

DR-3 

Real Time 
Pricing 

 
Static TOU 

 
DR-2 
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Table C-3 
Day Types and Event Conditions for Which Load Impacts Shall be Provided 

Purpose Da y Type  
Limited 

Frequenc y 
Res ources   

Limited 
Varia tion 

Res ources   

High 
Frequenc y 
Res ources   

Continuous  
Us e Res ources  

Ex Post 
Impact 

Estimation 

Each event day 

Yes 
(Based on 
actual # of 
participants 

called) 

No No No 

Average event 
day No 

Yes 
(based on day-

weighted 
average # of 

program 
participants) 

No No 

Each of top 5 
system load 

days  

Already 
incorporated in 
each event day 

requirement 

Yes 
Based on the actual # of 

participants called for each event 
Yes 

Ex Ante 
Impact 

Estimation  

Monthly system 
peak day—

normal weather 
year 

Yes, for months during which DR resource is available 
Assume event window is from noon to 6 pm unless maximum event 

window is less than 6 hours, in which case use maximum event window 
ending at 6 pm 

Assume all participants are called for event-based resources 
Monthly system 

peak day—
extreme 

weather year 
Same as above 

Average week 
day for each 

month—normal 
weather year 

No No Yes17 Yes  

Average week 
day for each 

month—
extreme 

weather year 

No No Yes Yes 18 

Validation 

Actual & 
predicted load 
by temperature 

For the estimating sample, provide graph showing predicted and actual 
average load for each temperature for the average customer 

Actual & 
predicted load 

by hour for 
average of top 
10 system load 

days  

For the estimating sample, provide 
graph showing predicted and actual 
average load for each hour of the 
day for the average of the top 10 
system load days for the average 

customer 

Yes Yes 

Actual & 
predicted load 

by hour for 
average week 
day for each 

month 

No No 

For the estimating sample, provide 
graph showing predicted and actual 
average load for each hour of the 
day for the average week day for 

the average customer18 

 

                                            
17 For high frequency resources, average weekday should take into account the fact that the 
resource is not in effect in all hours on every day and document the assumptions underlying the 
analysis.   
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C.5. PROTOCOL 5—PORTFOLIO ANALYSIS 
Protocol 5 applies when it is necessary to produce load impact estimates for 
multiple DR resources that may be called simultaneously.  There are two 
issues that must be addressed when producing impacts for a portfolio of DR 
resources.  One is that a common set of event conditions should be used.  
This is covered by the ex ante impact requirements in Protocol 4, which 
dictates that a common set of day types, weather conditions and event 
windows be used for all resource options for ex ante estimation.   

The second issue concerns avoiding double counting when customers are 
allowed to participate in multiple programs.  If two programs for which 
contemporaneous enrolment is allowed are called simultaneously, ideally, 
program rules will specify the program under which customers will be paid.  
For example, if a customer is allowed to participate in both an emergency 
program and a demand bidding program, the emergency program typically 
will dominate if both are called simultaneously.  If program impact estimates 
for each individual program were added together, this would overestimate 
the joint impact of the two programs because, when both are called, only 
the impacts associated with the dominant program should be counted.  
Protocol 5 addresses this issue.  If no program rules have been established, 
the evaluator will need to decide which program is likely to take precedence 
and to report that assumption.    

Protocol 5—Portfolio Analysis 

Whenever load impacts are produced for a portfolio of DR 
resources that can be called simultaneously and in which 
customers are allowed to participate in more than one resource 
option, the portfolio estimate shall only include load impacts 
associated with the dominant resource for each individual that 
is enrolled in more than one resource option.  

C.6. PROTOCOL 6—STATISTICAL REPORTING AND VALIDATION 
Protocol 6 establishes reporting requirements designed to allow a 
knowledgeable and well trained reviewer to assess the quality and validity 
of the analysis underlying the impact estimates.  Some of the requirements 
are unique to analysis methods based on regression modeling.  Regardless 
of the method used, Protocol 6 requires that test results be presented 
showing the extent of bias that may exist in the impact estimates based in 
part on the analytical tests presented previously in Protocol 4.   

Protocol 6—Statistical Reporting and Validation  

For regression based methods that estimate models based on 
data aggregated across customers, the following statistics and 
information shall be reported: 
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1. Adjusted R-square or, if R-square is not provided for the 
estimation procedure, the log-likelihood of the model; 

2. Total number of observations used in each regression, 
the number of cross-sectional units underlying the 
analysis, and the number of days worth of hourly data 
that were used; 

3. Coefficients for each of the parameters of the model 

4. Standard errors for each of the parameter estimates 

5. Tests conducted and corrections made, if any, to ensure 
robust standard errors.  

For regression-based methods that estimate models at the individual 
customer level, a histogram showing the distribution of R-square 
values for the individual customer regressions shall be provided, 
along with an R-square estimate representing the average customer.  
It is not necessary to report coefficient values or standard errors for 
each parameter for each individual regression.   

For all methods, whether regression-based or not, a summary of the 
results of all tests that were conducted to determine the extent of bias 
that exists for the impact estimates presented, including, but not 
necessarily limited to, the validation tests summarized in Table C-3, 
must be provided.   

C.7. PROTOCOL 7—ANALYSIS BASED ON SAMPLING 
Depending on the number of customers enrolled in a DR resource and/or the cost 
of end-use metering, surveys and other activities needed to develop load impact 
estimates, it may be necessary to work with data from a sample of participants 
rather than the entire group of enrolees.  As discussed at length in Appendix 2, 
whenever a sample of participants is used for analysis, issues of bias, precision 
and other concerns come into play.  The goal is to reduce or eliminate these 
problems whenever possible and cost-effective to do so.  In all situations, it is 
important to track and document the characteristics of the samples used relative to 
the population, and the steps taken to minimize bias and other issues that may 
arise when sampling occurs.  Protocol 7 establishes the minimum requirements 
that must be followed when samples are employed.    
 

Protocol 7—Analysis Based on Sampling 

If sampling is required, evaluators shall use the following 
procedures to ensure that sampling bias is minimized and that 
its existence is detected and documented.  
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1. The population(s) under study must be clearly identified and 
described – this must be done for both participants and 
control groups to the extent that they are used; 

2. The sample frame(s) (i.e., the list(s) from which samples are 
drawn) used to identify the population(s) under study must 
be carefully and accurately described and if the sample 
frame(s) do not perfectly overlap with the population(s) 
under study, the evaluator must describe the measures they 
have taken to adjust the results for the sample frame so that 
it reflects the characteristics in the population of interest – 
this would include the use of weighting, matching or 
regression analysis; 

3. The sample design used in the study must be described in 
detail including the distributions of population and sample 
points across sampling strata (if any); 

4. A digital snapshot of the population and initial sample from 
the sample frame must be preserved – this involves making 
a digital copy of the sample frame at the time at which the 
sample was drawn as well as a clean digital copy of the 
sample that was drawn including any descriptors needed to 
determine the sampling cells into which the sampled 
observations fall; 

5. For impact estimates based on experimental studies, the 
“fate” of all sampled observations must be tracked and 
documented throughout the data collection process (from 
initial recruitment to study conclusion) so that it is possible 
to describe the extent to which the distribution of the 
sample(s) may depart from the distribution of the 
population(s) of interest throughout the course of the study;  
If significant sample attrition is found to exist at any stage of 
the research process (i.e., recruitment, installation, 
operation), a study of its impact must be undertaken.   

6. If selection bias is suspected, the evaluator must describe it 
as well as any efforts made to control for it.18

                                            
18 The problem of controlling for selection bias has been discussed at great length in the literature 
on econometrics.  The seminal articles on this topic are by James Heckman: “The common 
structure of statistical models of truncation, sample selection and limited dependent variables and a 
simple estimator for such models”, in The Annals of Economic and Social Measurement 5: 475-492 
1976; and Sample selection bias as a specification error” in Econometrica, 47: 153-161. 
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C.8. PROTOCOL 8—REPORTING AND DOCUMENTATION 
The final protocol focuses on documentation and reporting.  Evaluation reporting 
has a variety of objectives, including: 

• Describing the evaluation objectives and plan; 

• Presenting the detailed impact estimates developed as part of the 
evaluation; 

• Comparing these findings with DR resource goals and any impacts that 
have been previously used to report progress toward goals, and explaining 
any differences; 

• Thoroughly documenting the methodologies used in sufficient detail so that, 
given access to the same data and information, a trained evaluator would 
be able to reproduce the reported impact estimates;  

• Reporting any deviations from the requirements of these protocols and the 
reasons why it was not possible to meet them; 

• Providing recommendations regarding modifications that would improve the 
DR program; 

• Providing recommendations concerning future evaluation activities. 

Evaluation reports should be written for a broad audience, including people who 
are not familiar with evaluation methods or the field’s specialized terminology.  
Technical information associated with evaluation methodologies, research design, 
sampling, M&V efforts, regression analysis, bias detection, bias correction and 
other technical areas must be reported and should not be avoided to ensure 
readability by a wider audience.  While a summary of the methodology, findings 
and decisions covering these issues should be written for a broader audience, the 
more technical details relating to these reporting categories must also be provided. 

 
Protocol 8—Reporting and Documentation 

DR impact evaluation reports shall include, at a minimum, the following 
sections: 

1. Executive Summary - this section should very briefly present an 
overview of the evaluation findings and any recommendations for 
changes to the DR resource; 

2. Introduction and Purpose of the Study - this section should briefly 
summarize the DR resource or resources being evaluated and 
provide an overview of the evaluation objectives and plan, 
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including the research issues that are addressed.  It should also 
provide a summary of the report organization; 

3. Description of DR Resources Covered in the Study - this section 
should provide a detailed description of the resource option being 
evaluated in enough detail that readers can understand the DR 
resource that delivered the estimated impacts. The description 
should include a history of the DR program, a summary of 
resource goals (both in terms of enrolment and demand impacts), 
tables showing reported progress toward goals, projections of 
future goals and known changes, and any other information 
deemed necessary for the reader to obtain a thorough 
understanding of how the DR resource has evolved over time and 
what changes lie ahead.  

4. Study Methodology - this section should describe the evaluation 
approach in enough detail to allow a repetition of the study in a 
way that would produce identical or similar findings. (See 
additional content requirements below.) 

5. Validity Assessment of the Study Findings – this section should 
include a discussion of the threats to validity and sources of bias 
and the approaches used to reduce threats, reduce bias and 
increase the reliability of the findings, and a discussion of 
confidence levels. (See additional content requirements below.) 

6. Detailed Study Findings - this section presents the study findings 
in detail. (See additional content requirements below.) 

7. Recommendations - this section should contain a detailed 
discussion of any recommended changes to the DR program as 
well as recommendations for future evaluation efforts. 

The Study Methodology section shall include the following:  

1. Overview of the evaluation plan; 

2. Questions addressed in the evaluation; 

3. Description of the study methodology, including not just the 
methodology used and the functional specification that produced 
the impact estimates, but also methodologies considered and 
rejected and interim analytical results that led to the final model 
specification.  The intent of this section is to provide sufficient 
detail so that a trained reviewer will be able to assess the quality of 
the analysis and thoroughly understand the logic behind the 
methodology and final models that were used to produce the 
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impact estimates, and the statistics required to be reported in 
Protocol 7.    

4. How the study meets or exceeds the minimum requirements of 
these protocols or, if any protocols were not able to be met, an 
explanation of why they were not and recommendations for what it 
will take to meet these protocols in future evaluations; 

5. How the study addresses the technical issues presented in these 
Protocols; 

6. Sampling methodology and sample descriptions (including 
frequency distributions for population characteristics from any 
surveys done in conjunction with the analysis).   

The Validity Assessment section of the report shall focus on the targeted 
and achieved confidence levels for the key findings presented, the 
sources of uncertainty in the approaches used and in the key findings 
presented, and a discussion of how the evaluation was structured and 
managed to reduce or control for the sources of uncertainty.  This 
section should:   

1. Discuss and assess all potential threats to validity given the 
methodology used;   

2. Provide the evaluator’s opinion of how the types and levels of 
uncertainty affect the study findings;   

3. Include information for estimation of required sample sizes for 
future evaluations and recommendations on evaluation method 
improvements to increase reliability, reduce or test for potential 
bias and increase cost efficiency in the evaluation study(ies);   

4. Present the results of the validity tests required in Protocol 4.  

The Detailed Study Findings section shall include the following: 

1. A thorough discussion of key findings, including insights obtained 
regarding why the results are what they are; 

2. All output requirements and accompanying information shown in 
Table C-1 for each set of event conditions, day types and customer 
segments.  If the number of data tables is large, the main body of 
the report should include some exemplary tables and explanatory 
text with the remaining required tables provided in appendices in 
electronic format;     
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3. For ex post evaluations of event-based resources, a table 
summarizing the relevant characteristics associated with each 
event and the date of each event over the historical evaluation 
period.  At a minimum, the table should include for each event:  
date, weather conditions (for weather-sensitive loads), start and 
end times for the event, event duration in hours, number of 
participants notified, and number of participants enrolled;  

4. For ex ante forecasts, detailed descriptions of the event and day 
type assumptions underlying the estimates; 

5. For ex ante forecasts, assumptions and projections for all 
exogenous variables that underlie the estimates;   

6. A comparison and detailed explanation of any significant 
differences in impact estimates derived from the analysis itself, 
any impact estimates previously obtained in other studies, and 
those previously used for reporting of impacts toward resource 
goals. 
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GLOSSARY OF TERMS 
 
Critical-Peak Pricing (CPP) 
A retail electricity rate with a basic rate structure similar to a TOU rate, but with the 
provision to replace the normal peak-period price with a much higher event price 
under specified trigger conditions (e.g., when system reliability is compromised or 
supply prices are very high). 
 
Demand response 
A change in electricity demand by end-use customers from their normal 
consumption patterns in response to changes in the price of electricity over time, 
or to incentive payments designed to induce lower electricity demand at times of 
high wholesale market prices or when supply resources are limited.19

 
   

Dynamic pricing 
A retail electricity rate in which there is some uncertainty in the timing associated 
with a known price, in the price itself, or both.  CPP and RTP tariffs are examples 
of dynamic prices.   
 
Ex ante load impact estimate 
A load impact estimate representing a set of conditions or group of customers, or 
both, that differ from historical conditions.   
 
Ex post load impact estimate 
A load impact estimate representing a set of conditions that actually occurred on a 
specific date or over some period of time for the customers that were enrolled in 
the program and called on that date or over that period of time.  
 
Free rider 
A participant in a conservation program who would have adopted the measure 
promoted by the program on his or her own initiative, in the absence of the 
program’s influence. 
 
Evaluation, Measurement & Verification (EM&V) 
The undertaking of studies and activities aimed at assessing and reporting the 
effects of a Conservation program on its participants and/or the market 
environment. Effectiveness is measured though energy efficiency and cost 
effectiveness. 
 
Independent Electricity System Operator (IESO) 
A regulated government corporation that acts as the settlement agent for the 
Ontario wholesale spot market and as the system controller. The IESO is 

                                            
19 U.S. Department of Energy, Benefits of Demand Response in Electricity Markets and 
Recommendations for Achieving Them. Report to the United States Congress Pursuant to Section 
1252 of the Energy Policy Act of 2005, February 2006, page 6. 
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responsible for maintaining system reliability by forecasting and balancing supply 
and demand. 
 
Incentives 
Financial support designated to encourage program participation and lower 
additional incremental equipment costs. For energy efficiency programs, the most 
common form of incentive is a rebate designed to help offset the cost of 
purchasing a more expensive piece of efficient equipment. For demand response 
programs, incentives are typically payments for measured and verified demand 
reductions. For time-varying pricing, customers may face incentives tied to the 
price differentials inherent to the rate design, but do not receive payments from a 
program administrator. 
 
Load Impacts 
Load impacts associated with DR resources are defined as the difference between 
a customer’s actual (observed) electricity demand, and the amount of electricity 
the customer would have demanded in the absence of the DR program incentive. 
 
Local Distribution Company (LDC) 
An entity that owns and operates low-voltage wires and distributes electricity from 
the IESO controlled grid to end-use customers in local regions. 
 
Ontario Energy Board (OEB) 
An agency responsible for regulating all non-commodity electricity rates, setting 
electricity prices for low volume and designated customers, and licensing the IESO 
and all market participants. 
 
Time-varying pricing 
Any electricity rate in which prices vary by time of day.  Examples include TOU, 
CPP and RTP rates. 
 
Time-of-use (TOU) rate 
A retail electricity rate with fixed unit prices for usage during pre-established blocks 
of time, usually defined by time-of-day and season. 
 
Real-time pricing (RTP) 
A retail electricity rate in which the price for electricity fluctuates on an hourly (or 
sub-hourly) basis, reflecting changes in the wholesale price of electricity.  
 
Reference load 
An estimate of the load that a DR program participant would have used at a 
specific time if they had not been not participating in a DR program. 
 
Structural benefiter 
A participant in a DR program who benefits from participation even if they do not 
change their behaviour in response to the price or other incentives offered by the 
program.   
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APPENDIX 1:  CRITERIA FOR DEVELOPING GOOD IMPACT 
ESTIMATES 
 
A variety of methods can be used to develop load impact estimates.  Their 
suitability depends on the type of DR resource analyzed and the goal of the impact 
estimates.  Some methods that are well suited for ex post impact estimation are 
poorly suited for ex ante impact analysis.  Regardless of the purpose for which 
impact estimates are being developed, accuracy and precision are critical criteria.  
Methodological transparency and the ability to compare “apples to apples” across 
multiple resource options are also important.   

1.1 ACCURACY 
The most important characteristic of any impact estimate is accuracy.  An accurate 
estimate is an unbiased estimate.  Bias is often confused with precision.  Precision 
is the degree of certainty associated with an estimate.  However, it is possible to 
produce an estimate that is known with a high degree of certainty – that is, one 
that is precisely estimated – but that is biased relative to the true value of a 
variable for the population of interest.  

Three sources of potential inaccuracy are worth noting.  The first is sampling 
bias.20

Another source of inaccuracy in load impact estimation can arise from the 
estimation process itself.  As discussed in Section B.1, if load impacts are 
estimated as the difference between the reference load and the measured load 
during an event period, any inaccuracy, or bias, in the reference load will affect the 
load impact estimate.  Depending on circumstances, it may be possible to reduce 
this type of bias by estimating the load impact as the difference between two 
predicted values, the reference load and the predicted value with DR in effect.  
This approach would not eliminate any bias that might exist in the DR impact 
coefficient in a regression model, for example, but it would eliminate any forecast 
error in the model that is due to model misspecification or to errors in variables that 
affect overall energy use but that do not affect the change in energy use due to 
demand response.     

  Sampling bias can arise if estimates for a particular group of customers are 
based on a sample of customers that differ in relevant ways from the population at 
large.  For example, suppose that the objective is to estimate what the average 
impact is likely to be for a DR program for the commercial/industrial customer class 
as a whole.  If the estimate is based on a sample of customers comprised of only 
commercial office buildings, the impact estimate might be quite precise but it could 
be biased if, for example, commercial office buildings are either more or less 
responsive to DR incentives than other segments of the C&I population.   

                                            
20 Appendix 2 provides additional information concerning sampling.   
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A third source of inaccuracy that can occur when ex ante load impact estimates 
are being developed stems from inaccuracy in predicting the key drivers of 
demand response.  Load impacts will vary with the characteristics of the participant 
population in a DR program.  It is quite common for participant population 
characteristics to change over time.  For example, initial program participants may 
be comprised primarily of customers that are large or that have large amounts of 
load that can be called.  As the program expands or matures, the typical new 
participant might be smaller or have a smaller percent of load that can be reduced.  
Demand response load impact estimates derived by scaling up the average 
estimates for these early program participants would over state demand response.  
To the extent possible, it is important for ex ante impact estimates to reflect 
expected changes in participant characteristics and other factors that drive 
demand response. 
 
As seen in Section C, the load impact protocols require that each program 
evaluation pay particular attention to developing unbiased impact estimates and 
that evidence be presented indicating the extent of bias that exists in the estimates 
and the steps that were taken to ensure that such bias was minimized.  
Comparisons between predicted and actual energy use under various conditions is 
the best method for determining the extent of bias.  When examining bias in this 
manner, it is important that such tests be done not just under average conditions, 
but also under extreme conditions that drive demand and demand response.  For 
example, there is not much value in knowing how well a model predicts for an air 
conditioner cycling program for a typical summer day, since this DR resource is 
likely to be called only on very hot summer days.  It may also be important to know 
how well the model predicts under very extreme weather conditions, such as the 
July 2006 heat wave that affected most of North America for a two-week period.   
 
Figure 1-1 shows a useful graph for assessing model validity.  The graph 
compares the average predicted and actual energy use based on a model that 
was developed to estimate impacts for Southern California Edison’s air conditioner 
cycling program.21

 

  As seen, at temperatures below about 92°F, the model has a 
slight upward bias whereas, at temperatures above about 97°F, the predictions 
have a slight downward bias.  On average, across summer weekdays, the model 
predicts quite well, as evidenced in Figure 1-2.  However, during the very extreme 
July heat wave of 2006, which in California represented a 1-in-50 or even 1-in-100 
year heat wave (depending on who you ask), the model was downward biased 
between about 10 am and 6 pm.  Working hard to minimize the magnitude of such 
biases is a key focus of load impact estimation.  Even more important is having a 
clear understanding of any bias that might still exist after all reasonable steps have 
been taken to minimize it.            

                                            
21 Stephen George, Josh Bode and Josh Schellenberg.  Load Impact Estimates for Southern 
California Edison’s Demand Response Program Portfolio.  Prepared by FSC for SCE.  September 
25, 2008.   
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Figure 1-1 
Actual versus Predicted Load by Temperature 

Southern California Edison Company’s Air Conditioner Cycling Program 
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Figure 1-2 
Actual versus Predicted Load for a Typical Summer Weekday 

Southern California Edison Company’s Air Conditioner Cycling Program 
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Figure 1-3 
Actual versus Predicted Load for the 2006 Heat Wave (July 16th through 24th

Southern California Edison Company’s Air Conditioner Cycling Program 
)  
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1.2 PRECISION 
As described above, statistical precision concerns the degree of uncertainty 
associated with impact estimates.  In statistical terms, precision is typically 
reported in terms of the size of the confidence bands around the predicted impact.  
There are at least two sources of uncertainty that must be considered when 
developing DR impact estimates.   

One potential source of uncertainty is sampling error.22

Samples can be made to be nearly perfectly precise for all intents and purposes.  
However, sampling precision is not inherently valuable and it comes at a cost in 
terms of meter installation, sample maintenance and database management.  In 

  A sample is a subset of 
the population of interest and, as such, typically will not have exactly the same 
statistical properties as the population as a whole.  Consequently, sample 
estimators such as means, standard deviations, frequency counts, etc. will vary 
from random sample to random sample.  Depending on the number of enrolled 
customers, it may not be necessary to use a sample to estimate load impacts.  
However, whenever sampling is used to describe the characteristics of a 
population, there is some uncertainty about the estimates from the sample that 
comes from random variation in the sampling process.   

                                            
22 This issue is discussed further in Appendix 2. 
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essence, the reduction in uncertainty associated with sampling error has to be 
balanced against the increased cost of obtaining more precise estimates in 
sampling.  An important step in designing a DR load impact evaluation is to identify 
the extent of sampling precision required to support decision making.  There are 
no hard and fast rules concerning how much sampling precision is enough.  It 
depends on how the information is intended to be used.  Establishing an 
appropriate level of sampling precision is best done by consulting with the intended 
users of the information and asking them to agree to an acceptable sampling error 
rate.   

The extent of sample-to-sample variation in measurements generally depends on 
the inherent variation in the factor of interest in the population (in this case hourly 
loads) and the number of observations that are sampled.  In general, the more 
homogeneous the population of interest with respect to the variable of interest, the 
lower the sample-to-sample variation in measurements that can occur.  If every 
element in a population is the same or nearly the same with respect to the variable 
of interest, there will be little sample-to-sample variation obtained through random 
sampling.  On the other hand, if the elements in the population are very different 
from one another with respect to the variable of interest, there will be high sample-
to-sample variation obtained through random sampling. 

Another source of uncertainty in impact estimation arises from inherent uncertainty 
in the factors that influence DR impacts.  Perhaps the simplest example of this is 
weather.  For such factors, the inherent uncertainty in the impact estimates can be 
accounted for by estimating impacts based on a probability distribution of, for 
example, temperature.   

1.3 TRANSPARENCY 
Another useful criterion for guiding impact estimation methodology selection and 
analysis is transparency.  Transparency affects the ability of decision makers and 
other stakeholders to understand and agree that the impact estimates are suitable.  
Certain impact estimation methods are much easier to understand than others.  
For example, a method that estimates the impact as the difference between the 
metered load and a reference load calculated as the average load across the prior 
10 days, referred to as day-matching or baseline methods, is much easier to 
understand than a method based on regression analysis using pooled time-series 
and cross section data with a fixed effects model incorporating weather and price 
interaction terms.  Day matching methods can also be implemented quickly, such 
as the day after an event, whereas regression methods might take much longer 
and might logically be done after all events in a season have been called so that 
variation across events can be incorporated into the impact model.  For these and 
other reasons, day-matching methods are typically used for customer settlement, 
since the inherent transparency of the approach is useful for obtaining customer 
buy-in and the speed of application is useful for monthly settlement.  On the other 
hand, regression methods are needed for ex ante estimation and the audience for 
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these estimates is typically sophisticated enough to understand and evaluate the 
estimates despite their being less transparent.   

1.4 COMPARABILITY 
One final criterion worth mentioning is comparability.  From a planning perspective, 
it is useful to be able to compare two or more DR program options in terms of their 
ability to replace supply-side resources under specific event conditions.  This does 
not necessarily mean that the impact estimates for each DR option must be 
developed using the same methods.  Rather, it means that each of the estimates 
should be based on the same forecast of relevant drivers (e.g., that the same 
weather be used to predict impacts for two or more weather sensitive programs) 
and that there be a common set of outputs provided (e.g., that impact estimates be 
provided for a common set of hours and day types for each program). 
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APPENDIX 2:  SAMPLING OVERVIEW23

 
 

Sampling is a useful procedure in estimating DR load impacts because information 
needed for impact estimation (i.e., interval load measurements) often is not available for 
the customers who are participating in DR programs and installing interval meters that are 
often needed to estimate impacts is costly.  Even in the future when most customers have 
interval meters, sampling may be useful as a means to reduce analysis costs when the 
volume of data available for describing load impacts is large.  Despite these obvious 
advantages, relying on sampling for estimating load impacts increases uncertainty about 
the accuracy and precision of load impact estimates.   

If interval load data is available for the entire population of DR resource participants, 
evaluators should strongly consider using all available information to estimate load 
impacts.  Analyzing data from the entire population of resource participants eliminates the 
need for sampling and the attendant concerns about potential sampling bias and 
sampling precision discussed in this section.   

The decision to employ sampling and the numerous technical decisions required in 
sample design are driven by the broader research issues that are addressed during 
evaluation planning.  These issues were discussed in Section B.  Examples include:  
required sampling precision, statistical confidence; the need for geographical specificity; 
the need for segmentation by customer types; the temporal resolution of the 
measurements, etc.  As Figure 2-1 illustrates, taking account of these considerations, it is 
possible to specify an appropriate statistical or econometric estimation model for the 
study as well as the specific measurements that must be made to drive the estimation 
process.  Working from these decisions, it is then possible to determine whether sampling 
is appropriate and if so, to identify the most efficient sample design given the available 
resources.  It is also possible as a result of the sampling process to inform stakeholders 
of the technical constraints associated with the available resources and to therefore make 
possible adjustments to expectations or resources before the actual study is fielded. 

Sampling adds three potential sources of uncertainty about the magnitude of load impact 
estimates:  

• The potential for bias or inaccuracy resulting from the processes used to select 
and observe load impacts (i.e., sampling bias);  

                                            
23 This section is taken largely verbatim from Section 8 of Load Impact Estimation for Demand Response:  
Protocols and Regulatory Guidance, California Public Utilities Commission, March 2008.  A draft version of 
this document was written by Freeman, Sullivan & Co. on behalf of California’s three investor owned utilities, 
PG&E, SCE and SDG&E, and submitted on their behalf to the CPUC.  The CPUC made minor edits to the 
document and adopted it for use by California’s utilities to develop load impact estimates for DR programs in 
CA.   
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• Increased imprecision in the load impact estimates arising from sampling error 
(i.e., error arising from the inherent sample-to-sample variation that will occur when 
samples are used to estimate load impacts from the population); and 

• Concern about the reliability of load impact estimates obtained from samples (i.e., 
concern that the results obtained from the sample may accidentally over or 
understate load impacts). 

These issues should be directly addressed whenever sampling is used to estimate load 
impacts.  Recommended approaches and resources for dealing with these issues are 
discussed below. 

Figure 2-1 
Sample Design Process Diagram 

Identify Study Requirements
• Precision
• Confidence
• Geographical specificity
• Customer market segments
• Temporal resolution
• Need for control groups
• Need for ex-ante forecasts

Commence sampling

Choose Sampling
Methodology

Identify research design

Is Sampling 
Required?

Identify data collection requirements

Identify Estimation Model
•Difference in mean loads
•Ratio estimator
•Regression adjusted difference in loads
•Repeated measures
•Regression adjusted repeated measures

Are 
Resources 
Sufficient?

Simple Random

Stratified Random

Ratio or regression

Repeated Measures

Identify Required 
Sample Size

Given Precision 
and 

Reliability 
Requirements

Stakeholders should be informed of the achievable precision 
and reliability from most efficient sample size and

resources available and given an opportunity to revise resources 
or precision requirements

Stakeholders 
Change

Requirements or
Resources

End

NoYes

No

Yes

Yes

No

Identify available research funds

 
 

2.1 SAMPLING BIAS 
 
By far the most dangerous source of uncertainty arising from sampling is sampling bias.  
When sampling bias occurs, what is true of the sample is not necessarily true of the 
population – no matter how large the sample is.  
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There are two important sources of sampling bias: 

• Under-coverage bias – a situation in which the sample frame from which the study 
participants are selected does not represent important elements of the population.  
(At present, under-coverage bias is not a problem with samples chosen for DR 
resource impact estimation because the population of participants in DR resources 
is known); and 

• Selection bias – a situation in which elements in the sample are selected in such a 
way that they are not representative of the population of interest. 

The best way to control sampling bias is to eliminate it by sampling observations for study 
at random from the populations of interest.  This practice will ensure that the initial sample 
is “representative” of the population of interest.  Whenever possible, this approach to 
sampling should be employed.  Unfortunately, it is virtually impossible to completely 
enumerate (i.e., observe all sampled members) a random sample when people are 
involved; and this opens up the possibility of sampling bias even when random sampling 
has been undertaken. 

There are many ways in which randomly selected observations can be systematically 
“selected out” of a given study before they can be observed.  Examples of potential 
sources of selection bias include: 

• Technical constraints associated with telecommunications, meter installation or 
other physical constraints that may limit the installation of interval meters to a 
subset of sampled customers;  

• Participants may refuse to supply information that is necessary for impact 
estimation (i.e., non-response to survey elements that may correspond with load 
impact measurements); and 

• Participants may migrate out of the study while it is in progress. 

It is important to keep in mind that the mere fact that some randomly sampled 
observations are not completely observed (i.e., have been selected out of the sample at 
some point) does not necessarily mean that the resulting sample has been biased in 

Sampling Bias refers to the accuracy of the estimates obtained from a sample. 
 

To understand sampling bias, it is useful to think of a simple measuring instrument 
like a ruler or scale.  If a scale accurately measures the weight of an object, it is said 

to be unbiased.  Like a household scale, a sample is said to be unbiased if it 
accurately measures the parameters in a statistical distribution (e.g., the mean, 

proportion, standard deviation, etc.).  The accuracy of a scale or ruler is ensured by 
calibrating the scale to a known quantity.  The accuracy of a sample estimator is 

ensured by the method used to select the sample (i.e., whether or not observations 
are sampled randomly.) 
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some significant way.  Whether bias is induced by selection depends on whether the 
selection is somehow related to the magnitude of the impact of the DR resource.  This 
can only be determined by carrying out the work outlined above. 

The first and most important step in minimizing selection bias is to dedicate adequate 
project resources to ensuring that initially selected sample points are observed during the 
study.  Because the cost of data collection varies (sometimes dramatically) from 
observation to observation, it is sometimes tempting to restrict data collection to 
observations that are easy to recruit or inexpensive to observe.  This temptation should 
be resisted.  The 20% of observations that are the most difficult and expensive to observe 
may be the most important ones to observe.   

2.2 SAMPLING PRECISION 
 
A sample is a subset of the population of interest and as such will not, in general, have 
exactly the same statistical measurements as the population as a whole.  
Correspondingly, sample estimators such as means, standard deviations, frequency 
counts etc. will vary from random sample to random sample.  Thus, whenever sampling is 
used to describe the characteristics of a population, there is some uncertainty about the 
estimates from the sample that comes from random variation in the sampling process.  
While we sometimes find it convenient to talk about the results obtained from a sample as 
though they were “point estimates” of the measures of the population of interest, it is 
generally inappropriate to interpret the results of sampling without considering the 
sample-to-sample variation that is likely to have occurred.  This is the problem of 
sampling precision. 

 

 

 

The extent of sample-to-sample variation in measurements generally depends on the 
inherent variation in the factor of interest in the population (in this case hourly loads) and 
the number of observations that are sampled.  In general, the more homogeneous the 

Sampling Precision refers to the magnitude of random sampling error present in the 
parameter estimates obtained from a sample. 

 
Again, it is useful to consider the example of a scale.  Some scales (e.g., household 

scales) can measure the weight of objects to within plus or minus 1/2 lb., while others 
(like those used in chemistry laboratories) can measure objects to within plus or 

minus 1 microgram.  The range within which an accurate measurement can be taken 
is the precision of the scale.  Likewise, the measurements of the population 

parameters taken from a sample can be said to be more or less precise—that is, the 
population parameters can be measured with more or less statistical error depending 

on a number of considerations such as sample size, stratification and the inherent 
variability in the parameter of interest.  This is what is meant by sampling precision. 
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population of interest is with respect to the variable of interest, the lower the sample-to-
sample variation in measurements that can occur.  If every element in the population is 
the same or nearly the same with respect to the variable of interest, then there will be little 
sample to sample variation obtained through random sampling.  On the other hand, if the 
elements in the population are very different from one another with respect to the variable 
of interest, there will be high sample to sample variation obtained through random 
sampling. 

It is also true that the larger the sample size, the lower the sample-to-sample variation in 
measurements.  This is because the standard error of the mean (average distance of 
the sampled mean from the true population mean) decreases with the square root of the 
sample size.  This can be seen in the formula for the standard error of the mean shown 
in Equation 2-1:   

nm

2
2 σσ =    (2-1) 

where 2
mσ  is the standard error of the mean, 2σ is the variance of the population, and n is 

the sample size. 

Both of the determinants of sampling precision described above can be manipulated by 
design to establish desired levels of sampling precision. 

The standard error or average distance of sampled means from the center of the 
sampling distribution is a useful measure of sampling precision because it explains how 
far on average the sample can be expected to stray from the mean of the population 
given its variance and sample size.  However, an even more useful measure of sampling 
precision can be derived from the standard error of the mean by computing the interval 
within which the true population estimate is likely to be found.  This is called the 
confidence interval.  The confidence interval for a sample estimator is the interval in which 
the true population value is likely to be found with a certain probability.  So, for example, 
you often see sample estimators described in terms of upper and lower confidence limits 
expressed in terms of percentages.  The confidence interval for a given estimator is 
obtained by multiplying the standard error of the mean times the area under the sampling 
distribution for the mean associated with the observation of a given extreme value (i.e., 
90%, 95% or 99%).  This can be seen in the formula for the confidence interval of the 
mean shown in Equation 2-2: 

22
mm zxzx σµσ +≤≤−   (2-2) 

where x is the sample mean, z is the value of the z distribution associated with the 
selected confidence level, and 2

mσ  is the standard error of the mean. 

The confidence interval is a useful statistic because it reflects the upper and lower limits 
within which the true population value will be found with a given level of certainty.  It is 
particularly useful in operations and resource planning where users will generally want to 
incorporate the maximum amount of load impact they can confidently expect to occur in 
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their decision making and planning.  Whenever load impacts are calculated based on 
sampling, the upper and lower confidence limits should be reported.  The confidence 
levels or probabilities employed in the calculation should be determined in consultation 
with the users of the information. 

It is important to keep in mind that sampling precision and sampling bias are two very 
different things.  One cannot overcome inaccuracy or bias in load impact measurements 
induced by inaccurate reference load measurements or sample selection by increasing 
sampling precision as this will simply result in a more precise estimate of the wrong 
answer. 

2.2.1 Establishing Sampling Precision Levels 
Samples can be made to be nearly perfectly precise for all intents and purposes.  
However, sampling precision is not inherently valuable and it comes at a cost in terms of 
meter installation, maintenance and database management.  In essence, the reduction in 
uncertainty associated with sampling error has to be balanced against the increased cost 
of obtaining more precise estimates in sampling.  

An important step in designing a DR load impact evaluation is to identify the extent of 
sampling precision required to support decision making.  There are no hard and fast rules 
concerning how much sampling precision is enough.  It depends on how the information 
is intended to be used.  Establishing an appropriate level of sampling precision is best 
done by consulting with the intended users of the information and asking them to agree to 
an acceptable sampling error rate.   

There are two related issues that must be decided in this conversation – identification of 
an acceptable level of sampling precision (e.g., plus or minus 5% or 10% or whatever) 
and identification of the desired reliability of the estimate (e.g., 95% reliable, 90% reliable, 
etc.).  In the end, it is important to agree with intended users about both the precision and 
reliability of the estimators coming from the sample – since these two issues can be 
traded off against one another.  Once the desired level of sampling precision has been 
determined, an appropriate sample design can be determined.  
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2.2.2 Overview of Sampling Methodology 
Sampling is a well developed scientific discipline and there are well known textbooks that 
outline technical approaches to sample design that are appropriate for designing samples 
to be used in DR load impact estimation.  These include classics such as Cochran, Kish 
and Deming.24

Sample design is a highly technical art that requires training and experience in statistics 
and survey sampling.  If the expected level of investment in metering and data collection 
is significant for a given resource, it is recommended that evaluators consult with an 
expert survey statistician in order to develop an efficient sample design for DR resource 
impact evaluation.   

   While an in-depth treatment of sample design is well beyond the scope of 
this document, there are certain sample design options that are more appropriate for DR 
load impact estimation than others and the remainder of this section discusses issues that 
favour using some designs over others under certain conditions. 

2.2.2.1 Simple Random Sampling   
 
Any discussion of sampling and sample design must begin with a review of simple 
random sampling because it is the basis of most sampling procedures that are 
appropriate for DR load impact estimation.  However, for reasons that will be discussed 
below, simple random sampling will seldom be appropriate in studies of DR load impacts.   

                                            
24 Classic textbooks useful in survey sampling include: 
Sampling Techniques: third edition, by William Cochran, John Wiley and Sons. 1977 
Survey Sampling, by Leslie Kish, John Wiley and Sons, 1965 
Sample Design in Business Research, by William Deming, John Wiley and Sons 1960 
 

Confidence Level – refers to the likelihood that parameter estimates obtained from 
a sample will actually be found within the range of sampling precision calculated 

from the sample. 
 

It is possible to take a sample, and just by chance to observe a result that is quite 
different from that of the actual population; and if another sample was taken a 
completely different result would be found.  This can happen just because of 

sampling error.  So, a reasonable question to ask is: “how sure are you that the 
results obtained in your sample actually describe the situation in the population?” 

 
This question can be answered by calculating the likelihood that the parameter of 
interest falls within a certain range given the size of the sample and the variation 
observed in the sample.  This likelihood is usually described as a percentage like 
90% or 95%.  This percentage refers to the percentage of the intervals (between 

upper and lower limits) that can be expected to contain the true population 
parameter given the sample size and variation observed in the sample. 
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In simple random sampling, population units are selected for observation with probability 
1/N.  That is, all of the elements in the population have an equal chance of being selected 
for study.  Statistical estimators obtained from such simple random samples are unbiased 
and consistent.   

Equation 2-3 identifies the formula for determining the sample size required to obtain a 
given level of precision under simple random sampling:25

22

22

xr
zn σ

=

  

   (2-3) 

where n is the sample size, z is the value in the z distribution associated with alpha 
(probability of Type II error), 2σ  is the population variance, 2r is the relative error (error as 
a percentage of the mean), and x is the population mean. 

Notice that this formula requires just two types of information;  a desired level of sampling 
error and an estimate of the standard deviation of the variable of interest in the 
population.  In most cases, the standard deviation of the variable of interest in the 
population is unknown and must be estimated by proxy from the distribution of some 
variable for which these values are known.  It is also possible to substitute an estimate of 
the coefficient of variation (CV) for the standard deviation in the above equation and solve 
for sample size.  The CV is equal to the ratio of the standard deviation to the mean. 

Load research has been underway for many years in the utility industry and in most cases 
it is possible to identify a reasonable proxy for the standard deviation of an electric load in 
the population of interest or, in the absence of that, a reasonable estimate of the 
coefficient of variation.  Using the above information, the sample size required to obtain a 
given level of statistical precision is easy to calculate. 

Simple random sampling is easy to do and the results obtained from it can be directly 
used to estimate population parameters from sample values by multiplying the sample 
estimates times the sampling fractions (e.g., population weights).  So, what’s not to like 
about simple random sampling? 

While simple random samples are easy to create and use they have certain limitations in 
practice.  First, because sample elements in simple random samples are selected exactly 
in proportion to the prevalence of conditions in the population, they may produce relatively 
small numbers of “interesting” population members that occur relatively rarely.  For 
example, commercial office buildings comprise only a small fraction of all commercial 
accounts.  Too few of these buildings may be selected in a simple random sample of 
commercial accounts to meaningfully describe the impacts of DR resources on loads in 
these buildings.  To the extent that it is useful to describe the DR load impacts of 
                                            
25 The actual equation for calculating sample size includes a correction for the size of the population called 
the finite population correction.  This adjustment has been left off of the equation for ease of exposition.  In 
general, its effect on the sample size calculation is de minimis when the population of interest is large (e.g., 
more than a few thousand). 
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important subsets of the population, a simple random sample may not be a practical 
approach to sampling because the sample size required to select them at random from 
the population is extremely large. 

A second limitation in the usefulness of simple random sampling in DR load impact 
estimation arises from the fact that customer loads vary widely within populations of DR 
resources with known customer characteristics (i.e., geographic location, customer type, 
connected load, etc.).  It is not unusual to observe coefficients of variation for energy use 
and hourly loads ranging from 1 to 4 for these populations.  Left unchecked, this variation 
can lead to greatly inflated requirements for sample size.   

These problems are common to most scientific research and many sample design 
alternatives have evolved to solve them.  Consequently, in many applications, more 
complicated sample designs are often preferred over simple random samples.   

2.2.2.2 Stratified Random Sampling 
 
In stratified random sampling, each and every element of the population of interest is pre-
sorted into one and only one category for purposes of sampling.  Then samples are 
drawn at random from each category.  The sample sizes obtained from each category are 
generally not proportional to the distribution of the population across the strata, so the 
sample per se is not representative of the population of interest (i.e., it is biased).  This 
distortion, however, can be used to good effect if properly constructed. 

Stratification is very useful in load impact estimation because it allows the researcher to 
exactly control the distribution of the sample across meaningful categories.  Examples of 
useful stratification variables include: weather zones, usage categories, utility service 
territories, business types, occupancy patterns and a host of other variables that can have 
an effect on customer loads.  Stratified random samples can be constructed in such a 
way as to supply known levels of sampling precision within strata and for the population 
as a whole.  In this way they can be used to develop statistically precise estimates of load 
impacts within weather zones, usage categories and so on.  They can also be useful for 
developing sample designs that are statistically more efficient (i.e., have higher statistical 
precision at given sample sizes) than simple random samples.  

The sample estimators (i.e., means, standard deviations, etc.) for the sampling strata are 
unbiased estimators of the parameters of interest for the population within each stratum.  
However, to estimate total population parameters using estimators from stratified random 
samples, it is necessary to properly weight the estimates obtained from each of the 
sample strata so that the effects of the measurements from the strata (e.g., mean, 
standard deviation, proportion, etc.) are proportional to the sizes of the populations in the 
strata.  All statistical estimators obtained through stratified random sampling must be 
corrected in this manner to produce unbiased total population estimates.   

Identification of appropriate sample sizes for stratified random samples is somewhat more 
complicated than it is in the case of simple random samples.  If the purpose of 
stratification is to obtain designated levels of sampling precision within the strata, then the 
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sample sizes within each stratum are obtained using the formula for simple random 
sampling – using the estimated standard deviation and desired sampling precision for the 
stratum.  It is not unusual for decision makers to specify that they require a given level of 
sampling precision for each utility, or by weather zone.  In such cases, the sampling 
precision within the strata will determine the overall sampling precision obtained for the 
population.  The sampling precision for the combined sample (i.e., with all the strata taken 
together) is obtained by calculating the weighted standard error of the estimate.26

On the other hand, or in addition to the above consideration, stratification can be used to 
enhance sampling efficiency.  In this case, the sample is distributed among the strata in 
such a way as to minimize the weighted standard error of the total population estimate.  
Procedures for identifying optimal stratum boundaries and for calculating sample sizes 
within strata to achieve desired levels of statistical precision in stratified random sampling 
have been developed by Delanius and Hodges

  The 
sampling precision for the entire population should be substantially higher than it is for 
any of the strata taken alone. 

27 and Neyman28

Stratified random sampling will almost always be required in assessing DR resource 
impacts – particularly for resources where it is important to develop reasonably precise 
measurements within geographic locations or for different customer types.  It may also be 
useful for improving the efficiency of sample designs – though in the case of many 
resources, the improvements in sampling efficiency obtained from repeated measures 
designs (discussed below) will overshadow any improvements that may be obtained by 
pre-stratifying on the basis of customer size. 

 respectively.   

Whenever stratified random samples are used to estimate DR load impacts, researchers 
should carefully describe the sample design.  Oft-reported measures include; 

1. the distribution of the population across sampling strata; 

2. the distribution of the sample across sampling strata; 

3. any procedures used to identify optimal stratum boundaries used in pre-
stratification and the impacts of pre-stratification on sampling efficiency (i.e., if 
Delanius-Hodges and/or Neyman allocation are used, the researcher should 
provide a rationale for their choice of the number of strata and stratum boundaries 
used in the design and their respective impacts on sampling precision); 

                                            
26 Ibid  
 
27 See “Minimum Variance Stratification” Dalenius T. and Hodges J. L., Journal of the American Statistical 
Association, 1959, 4, pp. 88-101 
28 See “On the two different aspects of the representational method: the method of stratified sampling and 
the method of purposive selection”, Jerzy Neyman, Journal of the Royal Statistical Society, 1934, 97, pp 
558-625. 
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4. the expected statistical precision for estimators within each strata (including a 
discussion of any use of proxy measures of the standard deviation used in this 
calculation); and 

5. the expected statistical precision for estimators in the population overall. 

2.2.2.3 Sample Designs Using Alternative Estimators 
 
Beyond stratification, there are several other important ways of enhancing the statistical 
precision of sample estimates.  These are used in conjunction with the basic sample 
designs outlined above.  They involve using alternative estimators compared with the 
conventional approaches discussed above.  The conventional sample designs discussed 
above are focused on identifying sampling procedures that will achieve a certain level of 
statistical precision in estimating well known parameters of statistical distributions such as 
the mean and standard deviation.  In the case of DR load impacts, these sample designs 
can be used to achieve a certain level of precision in estimating the average load impact, 
its standard deviation and confidence intervals.   

It is possible and in many cases desirable to create samples designed to measure other 

Ratio Estimation 

parameters in the population that can be used to develop more precise estimates of load 
impacts than the elementary sample means and standard deviations.  Two important 
alternative estimators that should be considered are ratio estimators and regression 
estimators.  Under certain circumstances, these estimators can be used to greatly 
enhance the precision of statistical estimates obtained from sampling and thereby 
significantly lower the cost of impact evaluation. 

Sampling to observe ratio estimators improves efficiency by sampling to observe the 
relationship in the population between an unknown variable (e.g., the actual load 
observed during a DR event) and a property that is known for all population members 
(e.g., the contractual firm service level for subscribers to the resource).  To the extent that 
the actual load observed during the DR event is correlated with the firm service level, the 
ratio of the two variables will have inherently lower variation than the metric value of the 
loads involved in the numerator or denominator; and the estimated load impact can be 
measured with substantially greater precision than the metric loads underlying it.  
Correspondingly, significantly smaller numbers of sample points are required to observe 
the ratio of the two variables in the population than would be required to estimate the 
value of either the numerator or denominator.  This is called ratio estimation.  Designing 
samples for ratio estimation follows the same basic logic as for conventional sample 
designs – except the variable of interest in establishing sampling precision is the ratio, not 
the metric value of the loads of interest. 

The EE protocols devote considerable attention to the technical details of developing 
samples for ratio estimators and these protocols should be consulted if the use of ratio 
estimators is being considered in DR load impact estimation.  Ratio estimators are very 
useful in EE resource evaluation because it is relatively easy to conceive of the impact of 
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an EE resource as a ratio of achieved savings to estimated savings for measures that 
were supposed to have been adopted.  DR resources that are excellent candidates for 
sampling based on ratio estimation are those where participants agree to reduce loads to 
firm service levels on command and those where participants are demand bidding – both 
cases where the resource impact is easily defined as a ratio. 

Regression Estimation 

An extension of the logic of ratio estimation is regression estimation.  In regression 
estimation, sampling efficiency is improved by sampling to observe the relationship in the 
population between the regression adjusted mean (in this case of hourly load) and 
variables that influence the value of the regression adjusted mean (e.g., time of day, 
resource participation, ambient temperature, household size, load in hours prior to the 
event, etc.).  To the extent that hourly loads are correlated with factors that vary 
systematically in the population, it is possible to define a regression function that will 
predict those loads more or less precisely.    

An interesting property of the regression adjusted mean is that its standard error 
decreases with (1-R2).  This means that if the R2 (e.g., the proportion of the variation in 
the load explained by the regression function) is 0.9, the standard error of the regression 
adjusted mean is 10% of the standard error of the population mean.  Thus, substantial 
improvement in sampling precision can be obtained if the regression adjusted mean and 
standard error are estimated instead of the population mean.  Of course, the smaller the 
R2

While the potential for improvement in sampling efficiency from regression estimation is 
tantalizing, researchers have to bear in mind that the extent of improvement in sampling 
efficiency depends entirely on the predictive power of the regression function that is 
specified.  Practically speaking, this means that the researcher must have some a priori 
knowledge that the predictors to be included in the regression function actually have 
substantial predictive power before developing a sample design based on regression 
estimation.  Fortunately, there is ample evidence in prior research concerning customer 
loads that information about type of customer, time of day, temperature, day of week, and 
other variables are highly predictive of hourly customer loads. 

 for the regression equation, the smaller will be the improvement in sampling precision.  

If the relationships between predictor variables and hourly loads have been studied in 
prior research, sample sizes for estimating regression functions including variables from 
the prior research can be calculated directly.  This is done by observing the R2 of the 
prediction equation (applied to past data) and making a reasonable guess about the 
incremental increase in R2

Most statistical packages provide algorithms for estimating sample sizes for estimation of 
effects using multiple regressions.  These require making assumptions about R

 that will result from addition of the effect variable (a new 
predictor).   

2 of the 
model without the effect predictor, the incremental improvement in R2 that will result from 
the inclusion of the predictor variable, desired statistical power and alpha (probability of 
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Type II error).  For examples of these algorithms see STATA and SPSS software 
documentation.  

In the case where no prior information is available concerning the predictive power of the 
regression function, sample sizes can be estimated using various rules of thumb involving 
assumptions about desired statistical power, Type II error (alpha) and the number of 
predictors in the regression equation.  See Tabachanick and Fidell (2001)29

Given the uncertainty that may exist about the predictive power of regression models, if 
circumstances permit, it is advisable to set sample sizes for estimating regression 
functions using double sampling.  In double sampling, an initial sample is drawn that is 
thought to be sufficient and the parameters in the distribution of interest (in this case 
regression parameters) are calculated.  The initial sample might be drawn according to 
the first rule of thumb described above which would yield less than 120 observations in 
most cases.  If the initial sample is insufficient to precisely estimate the parameters of 
interest, sufficient additional samples are then drawn to supplement the first sample. 

 for a 
discussion of the various rules of thumb that have been applied historically to estimating 
sample sizes required to estimate regression parameters.  Various rules have been 
suggested.  For example, one rule suggests that the minimum sample size for estimating 
regression coefficients should not be less than 104 plus the number of predictors in the 
regression equation.  Another rule suggests that the sample size should be at least 40 
times the number of independent variables in the regression equation.  Still another rule 
says that the minimum sample size should depend both on the effect size that is to be 
detected and the number of variables in the equation.  This rule calculates the minimum 
sample size as [8/(effect size)] plus the number of independent variables minus 1.  All of 
these rules have some basis in logic and experience, but none can be said to be robust 
and capable of producing efficient sample size decisions.  

Regression estimation can be used to good effect in estimating load impacts for most DR 
resources.   

2.2.2.4 Repeated Measures Designs 
 
For event based resources it is possible to employ repeated measures designs.  The 
availability of repeated measures of the outcome variable (i.e., hourly loads) is an 
interesting complication (and great advantage) in load impact estimation.  When multiple 
events occur over a given period of time (e.g., critical peak days, interruptions, calls for 
curtailment) each conventionally sampled “point” (i.e., customer) actually produces 
multiple observations of the resource impacts (hourly loads).  In effect, the study design 
that is being undertaken is a panel in which repeated measurements are taken over some 
number of time periods.   

To talk about this sort of study design, one must distinguish between two kinds of 
measurements – cross-sectional measurements and time series measurements.  
                                            
29 Using Multivariate Statistics (3rd ed.), Tabachnick, B. G., & Fidell, L. S. New York: Harper Collins (1996). 
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Repeated measures study designs typically have both kinds of measurements.  The 
cross-sectional measurements are those that vary over customers but not over time – 
things like location, customer type and income.  Time series measurements are those 
that vary over time within a given member of the cross-section.  These are variables like 
energy use, cooling degree hours, day of week, season and whether a DR event has 
been called.   

Variation in customer loads arises out of variation in factors in the cross-section and out 
of variation in factors in the time series.  For example, in a given hour, one customer in 
the cross section might use 2 kWh of energy while another might use 4 kWh.  Such a 
difference could be because one of the customers has twice the air conditioner capacity 
of the other or it might be because one of the customers has a chest freezer in the garage 
and is charging the battery on their electric car during the time the energy use is 
observed.  The sources of variation among customers that account for these differences 
are numerous and some are very difficult to measure.  From hour to hour for any given 
customer, the loads also vary as a result of factors that are changing with time – factors 
such as season, day of week, temperature, occupancy patterns, and whether or not a DR 
event is called, etc.  Some of these are also difficult to measure.   

Because observations are being made across the variables in the cross-section and over 
time, it is possible with repeated measures designs to isolate the effects of cross-
sectional and time series variables.  In particular, it is possible to observe the main effect 
of a DR resource in isolation from the cross sectional variation and to observe the 
interaction between the DR resource and the cross sectional variables of interest.  These 
can be used to produce a very powerful predictive model of the load impacts of event 
based DR resources. 

Repeated measures designs offer several powerful advantages.  

• These designs are statistically much more powerful than conventional designs in 
which a single observation is taken per sampled point.  That is, much smaller 
cross-sectional samples can be used to estimate average load impacts than would 
otherwise be necessary. 

• There is typically no need for a control group in estimating load impacts because 
load impacts for sampled units (e.g., households, firms, etc.) can be estimated as 
the difference between loads for “event” days and “non-event” days for each 
sampled unit.  This eliminates the attendant risks of selection bias in comparing 
volunteers in the DR resource with those who have not volunteered in the general 
population of interest; 

• The potential for estimation bias arising from fixed omitted variables in the 
estimation equation can be completely eliminated; and 

• Variation in load measurements arising from factors in the cross-section can be 
isolated and accurately described. 
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The conventional sample design techniques discussed under simple random sampling 
and stratified random sampling provide no basis for selecting an appropriate sample size 
for this sort of study because they are based on the notion that the sampled observations 
are independent of one another.  The observations within the time series are not.    

The sampling precision in a repeated measures design is a function of the size of the 
cross-section, the number of repeated measurements that occur and the correlation 
between the measurements.  All other things being equal, sampling precision and 
statistical power increase significantly as the number of measurements increases.  For 
DR resources involving six to ten events per season, sampling precision can be 
increased very dramatically – making it possible to detect relatively small effects (i.e., load 
reductions in the range of 5-10%) with only a few hundred observations.   A good 
example of the analysis of repeated measures to observe relatively small load impacts is 
the SPP. 

It is possible to calculate the sample size required to detect effects of a given size with 
repeated measurements in time given the: 

• mean of the variable of interest; 

• standard deviation of the variable of interest; 

• number of repeated measurements by type (event and non-event); 

• the number of groups in the analysis; 

• acceptable probability of Type II error (alpha); 

• desired power of the statistical test; 

• correlation between measurements in the time series (rho);  

• type of model used to estimate impact (e.g., Pre/Post, Change, ANOVA or 
ANCOVA); and 

• minimum effect size that is to be detected. 

A procedure for making this calculation is available in STATA’s sampsi program.30

It is possible to use information from load research samples to estimate the parameters 
that are required to calculate the sample sizes necessary to undertake a repeated 
measures study.  In general, this will be the minimum sample size required to estimate 
the load impacts of the DR resource. 

   

                                            
30 See Frison and Pocock (1992) “Repeated measures in clinical trials: An analysis using mean summary 
statistics and its implications for design”, in Statistics in Medicine 11: 1685-1704 for a technical discussion of 
the method used to estimate the impacts of repeated measures on sampling precision and sample size. 
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Sample sizes calculated in this way do not include any provision for estimating the effects 
of the interactions of cross-sectional variables with the treatment effect. Accounting for 
the effects of the cross-sectional variables on the load impact will in most cases require 
additional samples.  There are two reasons for this.  First, the effect size specified in the 
sample design calculation must be reduced substantially if the effect sizes for the 
interactions are to be observed because interacting the cross sectional variables with the 
treatment will, in effect, decompose the treatment effect into smaller pieces (effects).   
Second, to observe the effects of the cross sectional variables it will be necessary to 
ensure that these variables have sufficient variation to permit regression type estimation. 

If the effects of cross-sectional variables are to be included in repeated measures 
calculations it is probably more appropriate to employ sample sizes that would be 
required to estimate cross sectional effects in regression models (i.e., stratified random 
sampling).   

2.2 CONCLUSIONS 
Sampling adds uncertainty about the accuracy, precision and reliability of load impact 
estimates.  When interval load data is available for the entire population(s) under study, 
evaluators should consider using it to avoid these sources of uncertainty.  However, there 
may be instances where using data for the entire population might be impractical and 
sampling will be the appropriate method for observing DR load impacts.  This will be true 
for mass market resources where interval metered data is not available for all population 
members.  The use of sampling may be desirable even when information is available for 
a large mass market resource because a more focused effort on a properly designed 
sample can produce more accurate information than may be available through an attempt 
to analyze the information for the entire population.      

When sampling is used care must be taken to ensure that it is representative of the 
population of interest and that it is sufficiently precise to meet the needs of the various 
stakeholders.  There are well accepted sampling techniques that should be used 
whenever sampling is employed.  These include: random sampling from the populations 
of interest and stratifying the random sample to achieve an acceptable level of statistical 
precision. 

In most cases, stratified random sampling will be required for DR resource evaluations 
because it will be necessary to precisely estimate load impacts for important subsets of 
the populations under study (e.g., by utility service territories, weather zones and 
customer types defined in various ways).  It may also be necessary to stratify samples by 
usage or other variables representing customer size in order to achieve acceptable 
sampling precision within budget limitations.  Whenever stratified random samples are 
used, care must be taken to consider the impacts that sample weighting will have on 
subsequent analyses and to make sure that sampling weights are appropriately applied 
when summary measures for the population are calculated. 

Efficiency gains arising from regression based estimators and repeated measures 
designs will generally favour the use of these analysis techniques in DR load impact 
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estimation.  Sampling to support the use of these techniques is not straightforward.  It is 
possible in both cases to use either simple random sampling or stratified random 
sampling to establish appropriate sample sizes for DR load impact evaluations.  Sample 
sizes established using these procedures will be conservative since the effects of the 
covariates and repeated measures will only serve to make the measurements more 
precise. 

The most robust approach to estimating the sample size required for regression modeling 
presupposes an understanding of the variation in the customer loads in the population of 
customers under study; and the relationship between those loads and the factors that are 
being considered for use as control variables.  In some cases, this information is available 
from prior studies (e.g., SSP) or from load research samples.  Whenever such information 
is available, it should be used to identify an appropriate sample size required to support 
the analysis.  If this information is not available, the sample design should be developed 
using conventional stratified random sampling techniques (i.e., those that only require 
information about the population mean and standard deviation within strata).   

There are well developed procedures for establishing sample sizes for repeated 
measures studies used in experiments and clinical trials.  An important determinant of the 
sample size required in a repeated measures design is whether interactions between 
cross-sectional variables and the effect of the resource have to be estimated.  If this is not 
required, then the sample can be designed using the simple procedures that are 
appropriate for establishing sample sizes for clinical trials and experiments.  On the other 
hand, if the interactions of the cross-sectional variables are to be described, it is probably 
more appropriate to employ sample sizes that would be required to estimate cross-
sectional effects in regression models.  The resulting sample size will be larger than what 
is possible with a repeated measures design, but will ensure that the cross section is 
large enough and diverse enough to estimate the cross-sectional effects. 

Given the complexity of the analysis procedures used in DR load impact estimation, 
evaluators are advised to consult with a qualified and experienced survey statistician in 
developing sample designs to be used in DR load impact estimation.  This is particularly 
true if significant resources will be expended installing meters and surveying customers. 
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APPENDIX 3:  IMPACT EVALUATION METHODS 
 
As discussed in Section B, DR load impacts can be estimated as the difference between 
what a customer would have used in the absence of the DR program, referred to as the 
reference load, and either what they actually used (as determined by metered load) or an 
estimate of what they used when a DR incentive was in effect. Reference load estimates 
can be based on observing what participating customers used under conditions similar to 
event-day conditions but without the DR incentive in place (e.g., a day with similar 
weather to a DR event day) or they can be based on the load on an event day from a 
sample of similar customers that don’t receive the DR incentive (that is, a suitable control 
group).  Basing estimates on the load for participating customers on non-event days 
avoids the problem of selection bias that can accompany methods that rely on external 
control groups for load estimation.  On the other hand, an external control group may be 
necessary to estimate impacts for DR options that are not event-driven (e.g., TOU or RTP 
pricing, permanent load shifting options such as ice storage) since, in these cases, 
participant data covering a period when the DR stimulus is not present may not be 
available.   

Below is a very brief summary of several methods that can be used for load impact 
estimation.  No single approach is best for all circumstances and it is not the intent of 
these protocols or guidelines to dictate the method that should be used for evaluation 
purposes.  Having said that, as long as there is sufficient data and/or event history to 
allow its use, regression estimation, which is discussed at greater length in Appendix 4, is 
the leading method for both ex post and ex ante estimation for resource planning and 
cost-effectiveness analysis.  Day-matching, or baseline, methods are not suitable for ex 
ante impact estimation, but are popular for determining load impacts for customer 
settlement and may be suitable for ex post impact estimation.  While load impact 
estimation for settlement is not the focus of these protocols, we have included a very brief 
summary of day-matching methods because, for many stakeholders, these are the only 
methods with which they are familiar.  We also briefly mention several other methods that 
do not have widespread applicability but that may be suitable for selected DR programs.   

3.1 REGRESSION ANALYSIS 
Regression methods rely on statistical analysis to develop a mathematical model 
summarizing the relationship between a variable of interest, known as the dependent 
variable, and other variables, known as independent or explanatory variables, that 
influence the dependent variable.  When used to determine DR impacts, the dependent 
variable is typically either energy use31

An important factor to keep in mind when using regression analysis is that the goal is to 
do the best possible job of estimating DR resource impacts, not necessarily to develop 

 or the change in energy use, and the independent 
variables can include a variety of factors such as weather, participant characteristics and 
behaviour and, most importantly, variables representing the influence of the DR resource.     

                                            
31 Some model specifications use ratios of energy use in different time periods as a dependent variable. 
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the best model for predicting energy usage.  Put another way, impact estimates depend 
not on the power of the model to predict energy use, but on the accuracy, stability, and 
precision of the coefficient that represents the change in energy use in response to DR 
program incentives.  A model of energy use as a function of DR resource characteristics 
and other explanatory variables might have a low R-squared value (a measure of the 
explanatory power of the model), but very high t-statistics on the DR characteristics 
variables, meaning that it may explain the impact of the DR resource quite well even if it 
does not predict overall energy use that well.   

When using regression analysis to estimate load impacts for event-based DR resources, 
the repetitive nature of event-based resources may allow the analysis to be conducted 
using smaller samples than would be needed for non-event based resources.  This 
repeated measures characteristic typically eliminates the need for external control groups 
since days on which events are not called that have characteristics similar to event days 
allow the participant group to act as its own control.  This feature also makes it possible to 
develop customer-specific impact estimates, thus affording the opportunity to examine the 
distribution of impacts across the participant population.   

Regression modeling is the most robust and flexible approach to DR load impact 
estimation and should be considered the default option for the majority of applications, 
especially when ex ante impact estimates are the primary objective.  While regression 
modeling requires more skill and experience to implement, and is not as transparent as 
most day-matching methods, it offers numerous advantages compared with other 
methods.  For example, regression analysis can be used to examine impacts outside the 
event period and to quantify the influence of event characteristics, heat build up, multi-day 
events, weather and customer characteristics on demand response.   

Several regression approaches and techniques have been used to develop load impact 
estimates.  These include individual customer time series regressions, aggregate time 
series regressions, panel regressions, and hierarchical linear models.  In some instances, 
data structure issues present specific challenges that require specific techniques (e.g. 
prevalence of zero values for sub-metered air conditioner data).  Experienced evaluators 
must take into account the advantages and disadvantages of various techniques in light 
of the challenges presented by data limitations, inherent complexities resulting from the 
nature of the relationships being modeled and the output requirements of interest.  No 
single model or approach is suitable in all situations.      

3.2 DAY-MATCHING (BASELINE) METHODS 
With day matching methods, the reference load used to determine load impacts is 
estimated by calculating the average usage in relevant hours for selected days leading up 
to an event day.  For example, the reference load for a particular event day for the first 
hour of the event period might be determined by taking the average load in that hour for 
the top 3 out of the prior 5 load days.  This method can only be used to calculate impacts 
for event-based resources, not for non-event based resources such as static TOU rates 
or permanent load shifting.   
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The first step in developing reference load shapes involves selecting relevant days.  
Second, an average of the load in each hour for the days that are chosen is computed.  If 
loads vary with weather or other observable factors, a third step that can improve the 
reference load shape involves making “same day” adjustments to the initial load 
estimates.  These adjustments can be based on differences between load in hours 
outside the event period on prior days and load during the same hours on the event day 
or on differences in the value of other variables such as weather on prior days and event 
days.  Below is a list of methods that have been used or tested in the past.  This list is 
intended to be exemplary, not a complete census of all options:     

• Previous 3, 5, 7 or 10 business days or weekdays 

• Highest 10 out of 11 prior business days 

• Highest 5 of the last 10 business days 

• Highest 3 out of 10 prior business days with a same-day adjustment based 
on the two hours prior to the event period32

• 20 days bracketing the event day  

 

• All relevant days in an entire season. 

For commercial and industrial customers, only business days are typically used to 
calculate the initial reference load.  For residential customers, if events only occur on 
weekdays, weekends would logically be excluded from day selection.  When it comes to 
using day matching, one size definitely does not fit all.  What works best will vary by 
customer type, load shape, whether or not the load is weather sensitive, and other 
factors.   

Day matching methods are easy to understand and often easier to produce and use than 
regression methods.  If the primary question is, “What was the DR impact for yesterday’s 
event,” day matching can be an intuitively appealing and practical approach.  However, 
day matching is not a suitable approach when the primary focus is on ex ante estimation 
for day types that differ from those that have occurred historically. 

3.3 SUB-METERING 
Another approach to load impact estimation involves sub-metering.  Sub-metering is 
primarily useful in situations where the load contributing to demand response is relatively 
easy to isolate without rewiring or other costly procedures.  An example is when load 
response is associated with a single piece of end-use equipment (e.g., an air conditioner, 
pump or other large motor).   

                                            
32 This reference method is discussed in a recent LBNL report, Estimating DR Load Impacts:  Evaluation of 
Baseline Load Models for Commercial Buildings in California, July 2, 2007.   
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If the isolated equipment is always on except when interrupted for an event, sub-metering 
will provide a very accurate estimate of load impact by simply comparing load just prior to 
and after the beginning of an event period.  If the equipment has a duty cycle, and one 
that differs across days due to variation in weather or some other variable, there will still 
be a need to develop a reference load shape or, alternatively, use regression analysis to 
predict the “but for” load.  However, this task will typically be much simpler when the data 
being used reflects the only relevant load rather than total premise load.  Sub-metering 
may be necessary if there is significant variability in premise load and the DR impact is 
small relative to total premise load.  In these circumstances, day matching and regression 
analysis are unlikely to generate statistically significant impact estimates, even if the load 
reduction is reasonably large in absolute terms (but not relative to the total premise load).   

3.4 ENGINEERING ANALYSIS 
Another method that might be useful in limited situations is engineering analysis.  
Engineering analysis is much less useful for estimating load impacts for DR programs 
than it is for EE programs because impacts are driven much more by consumer behavior 
than by technology implementation.  Even some technology enabled DR programs, such 
as those using programmable communicating thermostats, have a strong behavioral 
component since consumers can vary the automated set point and/or override the 
predetermined setting whenever they wish.  For very large loads, there may be situations 
where a program administrator has direct control over the equipment for emergency 
purposes, thus eliminating any behavioral influence.  Under these circumstances, 
engineering analysis might produce accurate impact estimates, but these loads are likely 
to be sub-metered so that impacts can be measured directly.   

An example where engineering analysis might be useful would be if a program targeted 
continuously running pumps and the pumps were remotely controlled during DR events.  
In this case, one could conduct a survey to gather information on the horsepower 
associated with each pump and use simple engineering calculations to convert that data 
into estimates of connected load.  DR impacts could then be calculated based on the 
control strategy that was used for each event.  However, this somewhat contrived 
example may have little practical value as these circumstances are rare.   

3.5 DUTY-CYCLE ANALYSIS 
Another approach to load impact estimation is to combine end-use metering with 
engineering calculations.  This approach was employed in the evaluation of SCE’s air 
conditioning cycling program for residential customers, and termed the Duty Cycle 
Approach.33

                                            
33 Quantum Consulting Inc.  The Air Conditioner Cycling Summer Discount Program Evaluation Study.  
January 2006.  See also George, Bode and Schellenberg, Ibid.     

  The approach is designed to take into account the fact that load cycling 
impacts vary across program participants by temperature, hour of day, size of air 
conditioner, and the share of time the air conditioner is in operation (the duty cycle).  The 
duty cycle approach is designed to create a reference value for A/C load by collecting 
data on the total connected load for each enrolled participant, and the share of connected 
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load utilized by hour of day and temperature bin (for non-event days).  The specific load 
impacts are then calculated by: 

• Identifying the average share of connected load utilized during the appropriate 
temperature and time bins (average duty cycle), and  

• Calculating program load impacts by taking into account the average duty cycle, 
total connected load of each participant, participant cycling selections, and the 
cycling device failure rate.  

Importantly, the approach is able to provide load impact estimates for both ex post and ex 
ante scenarios as well as information about the uncertainty of those estimates.  

3.6 OPERATIONAL EXPERIMENTATION 
Still another approach to impact estimation for event-based programs involves the use of 
what might be called operational experimentation.  By operational experimentation, we 
mean the selective exercise of a program on a sub-sample of participants for the sole or 
primary purpose of generating data for impact estimation.  This is perhaps best 
understood with an example constructed once again around an air conditioner cycling 
program.   

Given the typically large number of customers participating in load control programs, 
there are plenty of customers from which a small sample can be drawn for experimental 
purposes.  One could split this sample into two groups using random sampling and either 
install an interval meter on the whole house or on the air conditioning unit to obtain the 
data necessary to determine load impacts.  With the metering in place, one could 
experiment with different load control strategies and event windows across a variety of 
day types to generate a database that would allow you to estimate impacts under various 
conditions.  The control and treatment groups could be alternated to ensure that there is 
no correlation between customer characteristics and impacts.  Given that this approach 
provides data on both a control and treatment group on event days, a simple comparison 
of means on event days would provide a valid estimate of average impacts.  However, if 
ex ante estimates are needed, regression analysis would be required.  Operational 
experimentation would be very cost-effective and straightforward if interval meters were 
already in place (as they ultimately will be in Ontario), and if incentives are largely fixed 
(that is, if customer payments are not event-specific).  This approach could be quite 
useful for relatively new DR programs or even for long-standing emergency programs that 
are not triggered very frequently.  In these situations, there may not be sufficient data on 
event days to estimate impacts using other methods. 
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APPENDIX 4:  OVERVIEW OF REGRESSION METHODS 
 
Regression analysis is the recommended method for estimating the impact of DR 
resources in most instances for ex ante estimation, although data limitations or lack of 
event history could dictate that alternative methods are needed either as a complement to 
or substitute for regression analysis.  Regression methods rely on statistical analysis to 
develop a mathematical model summarizing the relationship between a variable of 
interest, known as the dependent variable, and other variables, known as independent or 
explanatory variables, that influence the dependent variable.  Typically, regression 
models include several variables such as:  

 Hourly and day-of-week variables that reflect customers’ average load shapes 
absent curtailments; 

 Variables designed to explain variation in load patterns such as weather, electricity 
prices, and seasonal usage; 

 Variables designed to quantify the average and variation in load impacts, 
When used to determine DR impacts, the dependent variable is typically either energy 
use34

E

 or the change in energy use, and the independent variables can include a range of 
influencing factors such as weather, participant characteristics and, most importantly, 
variables representing the influence of the DR resource.  A very simple regression model 
that relates energy use to temperature and a variable representing the presence or 
absence of a DR resource event is depicted in Equation 4-1.   

i = a + bTi + c(Ti)(Di) + ei

where  E

  (4-1) 

i

T

 = energy use in hour i 

i = the temperature in hour i

D

  

i

e = the regression error term 

 = the resource variable, equal to 1 when an event is triggered in hour i, 0 
otherwise 

a = a constant term 

b = the change in load given a change in temperature 

c = the change in load given a change in temperature when a DR event is 
triggered. 

 

                                            
34 Some model specifications use ratios of energy use in different time periods as a dependent variable. 
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Regression modeling can be complicated and it requires strong training in statistics and 
econometrics.  There are many different approaches to regression modeling that vary 
with respect to the general method used (e.g., classical versus Bayesian), estimation 
algorithms (e.g., Ordinary Least Squares, Generalized Least Squares, Maximum 
Likelihood Estimation), functional specification (e.g., conditional demand analysis, change 
modeling, etc.), the use of control groups (e.g., participants versus non-participants), and 
the variables that are explicitly included in the model specification.  No single approach 
will be best in all situations.  Indeed, the primary objective of regression–based methods 
for impact estimation is to choose the method that works best for the application at hand, 
and to justify that choice.  There is both an art and science to regression modeling and 
there is no substitute for a skilled professional when it comes to the successful application 
of regression-based methods to DR impact estimation.   

4.1 OVERVIEW OF REGRESSION ANALYSIS 
A very useful overview of regression modeling, including a discussion of the many 
technical issues that must be considered when developing regression models, is 
contained in The California Evaluation Framework.35

An important factor to keep in mind when using regression analysis is that the goal is to 
do the best possible job estimating DR resource impacts, not necessarily to develop the 
best model for predicting energy usage.  This point is expressed well in The California 
Evaluation Report (p. 115), where it states,  

  This is a good starting point for 
readers who want a general understanding of some of the options and challenges 
associated with regression modeling.  However, neither that document nor anything said 
here is intended to be a “how to guide” for using regression analysis for impact 
estimation.   

“It is important to recognize that energy savings estimates depend not on 
the predictive power of the model on energy use, but on the accuracy, 
stability, and precision of the coefficient that represents energy savings.”   

A model of energy use as a function of DR resource characteristics and other explanatory 
variables might have a low R-squared (a measure of the explanatory power of the model), 
but a very high t-statistic on the DR characteristics variables, meaning that it may explain 
the impact of the DR resource quite well even if it does not predict overall energy use that 
well.   

Most of the work that econometricians do is intended to test whether the key assumptions 
of the estimator employed are valid, and if not, apply the appropriate corrections or 
alternative estimation methodologies to acquire accurate, stable, and precise load 
impacts.  Errors in applying econometric methods can lead to:  

• Biased estimates of load impacts;  

• Imprecise estimates of the level of confidence that can be placed on the results; 
                                            
35 TecMarket Works.  The California Evaluation Framework, June 2004.  pp. 105 – 120.   
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• The inability to mathematically find a solution.  

For load impacts, both unbiased estimates and correct portrayals of the uncertainty 
around those estimates are not only desirable, but necessary.  
 
Table 4-1 identifies potential problems in regression modeling that can influence either 
the accuracy (lack of bias) or the estimated certainty of the load impacts.  It is not 
intended to be an all inclusive list of potential regression pathologies.  Rather, it highlights 
some of those that can be most damaging to estimating DR impacts using regression 
methods.  Some of the statistics required by Protocol 6 are intended to reveal the extent 
to which many of these issues have been addressed.   
 

Table 4-1 
Issues in Regression Analysis 

Problems that potentially bias estimates Problems that lead to incorrect standard errors 
1. Omitted Variable:  This is a type of 
specification error. Omitted variables that are 
related to the dependent variable are picked up in 
the error term.  If correlated with explanatory 
variables representing the load impacts, they will 
bias the parameter estimates.  
 
 

1. Serial-Correlation:  Also known as auto-
correlation, this occurs when the error term for an 
observation is correlated with the error term in 
another observation. This can occur in any study 
where the order of the observations has some 
meaning.  Although it occurs most frequently with 
time-series data, it can also be due to spatial 
factors and clustering (i.e., the error terms of 
individual customers are correlated).   

3. Improper functional form:  This occurs when 
the relationship of an explanatory variable to the 
dependent variable is incorrectly specified.  For 
example, the function may be treating the variable 
as linear when, in fact, it is logarithmic.  This type 
of error can lead to incorrect predictions of load 
impacts. 

2. Heteroscedasticity:  This occurs when the 
variance is not constant but is related to a 
continuous variable. Depending on the model, if 
unaccounted for, it can lead to incorrect inferences 
of the uncertainty of the estimates 

4. Simultaneity:  Otherwise known as 
endogeneity, this occurs when the dependent 
variable influences an explanatory variable. This is 
unlikely to be a problem in modeling load impacts. 

3. Irrelevant Variables:  When irrelevant variables 
are introduced into a model, they generally 
weaken the standard errors of the explanatory 
variables related to the dependent variable.  This 
leads to overstating the uncertainty associated with 
the impacts of other explanatory variables. 

5. Errors in Variables:  Explanatory variables that 
contain measurement error can create bias if the 
measurement error is correlated with explanatory 
variables(s). 

 

6. Influential data:  A data point is considered 
influential if deleting it changes the parameter 
estimates.  Influential variables are typically 
outliers with leverage.  These are more of an issue 
with large C&I customers. 

 

 
 
Importantly, a large number of the problems that lead to potential bias are due to model 
misspecification and the closely related phenomena of correlations between the error 
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terms and the explanatory variables.  Despite a large set of diagnostic tools, it is difficult 
to write down a set of rules that can be used to guide model specification, especially since 
the best approach for model specification is not a settled question.  This is where the art 
of regression analysis comes into play, making the experience and knowledge base of 
evaluators and reviewers critical.  
 
Typically, DR load impact analysis involves both a time series and a cross-sectional 
dimension.  This type of data is referred to by a variety of names – including time series 
cross-sectional, panel, longitudinal, and repeated measures data.  With this type of data, 
evaluators are able to account for a significant share of omitted variables, including those 
that are unobservable or not recorded, leading to better specified, more robust regression 
models.  
 
Panel regressions can control for omitted and sometimes unobserved factors that vary 
across individuals but are fixed over the course of the study (fixed effects – e.g. 
household size, income, appliance holdings, etc.), and for factors that are fixed for all 
customers but vary over time (time effects -economic conditions).  Regression-like 
models that can be used to analyze panel data include ANOVA, ANCOVA, and 
MANOVA.  These models are similar in that they allow each individual to act as their own 
control and account for the effects of the fixed, but unmeasured characteristics of each 
customer.   
 
However, the ability to control for fixed effects comes at a price.  First, panel regressions 
typically calculate the average effect of DR programs, although variation in the average 
impact across a limited number of dimensions can be estimated through interactions with 
impact variables.  In contrast, other approaches, such as individual customer time series 
or hierarchical linear models, can better identify the variation in load response among 
participants or across different conditions.  Second, by controlling for fixed effects, these 
models cannot incorporate the impact of explanatory variables that are time-invariant 
(e.g., air conditioning ownership) except through interactions with time-variant variables 
(e.g. temperature).  In other words, a fixed effects model only controls for the variation 
within individual units; it does not control for the variation across individual units.  In many 
instances, impact evaluations will need to take into account how fixed characteristics such 
as appliance holdings, household size, etc. affect the load response provided, requiring 
either: 
 

• The use of interactions; 

• A two-stage model, where load impacts for each customer are first estimated using 
individual regressions (or regressions for customer pools defined by criteria such 
as industry classification) followed by a second stage that regresses load impacts 
against customer characteristics; 

• Using a random effects model which is able to use fixed characteristics as 
explanatory variables.  
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Two additional topics that are particularly relevant when working with load data are auto-
correlation and heteroscedasticity.  Having both cross-sectional and time-series 
dimensions, there are multiple ways in which the errors can be related.  Basic panel data 
methods generally assume:  
 

• No correlation between the error terms of units in the same time period; 

• No correlation across units in different time periods; 

• No auto-correlations within units over time; 

• Constant variances over time within a unit (different variances across units are 
allowed).  

Impact evaluations will most likely have to account for auto-correlation due to the 
prevalence of a time dimension in load impact data.  However, it is important to 
distinguish between pure and impure auto-correlation.  Impure auto-correlation can arise 
because of a specification error such as an omitted variable or incorrect functional form.  
Pure auto-correlation is the correlation that is still present when the model is properly 
specified.  This implies that auto-correlation should be viewed as more than a nuisance to 
be corrected, but as a signal to further explore the potentially larger problem of 
misspecification.  Correcting the standard errors due to auto-correlation is straightforward 
and there are a number of options for addressing it, including first differencing, 
Generalized Least Squares, and the use of Maximum Likelihood estimation that does not 
assume an error matrix with constant diagonals and zero values in the off-diagonals.  
 
Only heteroscedasticity within individual units is problematic in panel data, although when 
faced with large variations in customer size and impacts, the evaluator should consider 
transforming the data to a common metric such as the percent change in load.  While 
heteroscedasticity can typically be corrected for using of robust standard errors – also 
known as Huber-White standard errors and the sandwich standard errors – they do not 
apply if serial correlation is present36

 

. Because of this, the more labour intensive process 
of testing for heteroscedasticity, determining the specific form of heteroscedasticity, and 
applying the appropriate data transformation may often be required to identify and correct 
for heteroscedasticity within units.  

Difficulties in estimating load impacts using regression analysis can also result from 
variation (or lack thereof) in load.  For example, it may be difficult to estimate load impacts 
if there is a large degree of variation in energy use that can’t be explained by variation in 
observable variables and the DR impact is small relative to the total load.  This can occur 
if data on the independent variables that drive this variation is difficult to obtain, as it could 
be with industrial customers where variation may be caused by industrial process 
operations that are hard to measure.  If the DR impact is small relative to the normal 
variation in energy use, and that variation in energy use can not be explained, it will be 
                                            
36 Page 274-276 of Jeffrey Woolridge’s textbook “Econometric Analysis of Cross-section and Panel Data” 
provides and excellent discussion on serial correlation and the robust variance matrix estimator. 
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very difficult for the regression analysis to isolate changes in energy use due to the DR 
resource from the unexplained variation in energy use due to other factors.   
 
In contrast to the situation where too much variation creates estimation difficulties is the 
case where there is too little day-to-day variation in load.  For example, with loads that are 
not at all weather sensitive and, as a result, may not vary much from day-to-day, there 
may not be much of an advantage in using regression analysis over less complicated and 
easier to understand methods such as day matching.  In these circumstances, regression 
analysis may be effective for estimating the impact of the DR event, but that impact 
wouldn’t be expected to change from one event to another in response to variation in 
other observable factors such as weather.  As such, one of the primary benefits of 
regression analysis, the ability to make ex ante estimates for day types or other 
conditions that differ from the past, is no longer relevant.  Given this, if some participants 
in a DR resource have weather sensitive loads, or loads that vary with other observable 
variables, while other participants have loads that vary very little, using regression 
modeling to estimate impacts for the variable segment and day-matching to estimate 
impacts for the non-variable segment may be the best strategy.  In these circumstances, 
using a regression model to estimate the impacts for both types of customers may distort 
the impacts associated with the market segment with the variable load.37

 

  It could also 
distort ex ante estimate if future participation by the two segments is not proportional to 
that of the ex post group of participants.    

Difficulties can also arise from limited variation in event conditions.  This is particularly 
true for resources, such as emergency programs, that are dispatched on a limited basis.  
In these instances, ex-post load impacts can typically be calculated accurately, but it is 
often difficult to estimate ex-ante load response due to insufficient variation in historical 
event conditions that would support extrapolation to the desired ex ante conditions.  In 
such situations, evaluators should explicitly acknowledge the data limitation and, where 
appropriate, apply alternative techniques to produce ex-ante load impacts.  For example, 
in the case of air conditioner cycling, engineering duty cycle analysis may provide a basis 
for estimating ex ante load impacts.   
 

4.2 THE ADVANTAGE OF REPEATED MEASURES 
One of the interesting and useful characteristics of event based resources that differs 
from the typical situation with both EE evaluation and the evaluation of non-event based 
DR resources is the fact that you are typically able to observe the impact of the DR 
resource multiple times for the same customer.  For an energy efficiency resource or for 
non-event based DR resources, if you have usage data before a customer enrols in a DR 
resource option, even if you have daily or hourly usage data, you only have two time 
periods per customer in which the DR resource variable(s) differs, one before enrolment 
and one after.  If there is no pre-treatment data, you only have one time period for each 
customer (in which case a suitable control group is needed in order to statistically 
estimate the impact of the DR resource).  However, with event-based resource options, 
                                            
37 In this instance, separate output tables should be reported for each market segment. 
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you get multiple observations for each customer over which the DR incentive either is or 
is not in effect.  For example, if you have twelve days in a year in which a CPP day is 
called, you have 12 days on which the DR incentive is in effect, and many more days in 
which it is not.   

The repeated measure effect associated with event-based DR resources has several 
significant advantages for impact evaluation compared with non-event based resources.  
One concerns sampling efficiency.  As discussed in Appendix 2, with repeated measures, 
you may be able to use much smaller sample sizes to achieve the same level of statistical 
precision.  The reduction in sample size is a function of the expected impact size, the 
coefficient of variation and the number of repeated measures that occur, but a 10-fold 
decrease may be possible compared with a simple comparison of means using before-
and-after data on participants or side-by-side data with participant and control samples.    

A second advantage of the repeated measure effect associated with event-based 
resources is that impact estimation typically does not require an external control group.38  
The fact that the DR resource incentive is in effect on some days and not on others allows 
you to estimate the influence of variation in factors that change daily, such as weather, 
along with the influence of the DR resource.  This, in turn, allows you to estimate the 
impact of the DR resource on any day type that can be characterized in terms of the 
explanatory variables included in the model without needing a sample of customers who 
do not participate in the resource.  This eliminates any concern about internal validity, as 
there is no opportunity for differences between control and treatment groups to generate 
biased estimates.  This is a significant advantage as long as your primary interest is in 
estimating impacts for a set of volunteers behaviourally similar to those who have 
participated to date.39

A third advantage associated with the repeated measures property of event-based 
resources is that it allows you to estimate customer-specific regressions.  For example, a 
regression model like the very simple specification shown earlier in Equation 2-1, could 
be estimated for each individual customer.  This would allow you to understand the 
distribution of impacts across customers, which can be quite useful from a policy 
perspective, since it allows one to determine if the average impact is more or less typical, 
or, alternatively, if a relatively small percentage of customers account for the majority of 
demand response.  For example, this type of analysis based on the SPP data produced 
the distribution of demand response impacts shown in Figure 4-1, indicating that roughly 
80 percent of total demand response was provided by roughly 30 percent of participants.   

    

                                            
38 There are situations in which an external control group might still be needed.  For example, if an event is 
only called on the hottest days of the year, and the relationship between energy use on those days is 
different from what it is on other days, the model may not be able to accurately estimate resource impacts 
on event days.  In this instance, it may be necessary to have a control group in order to accurately model 
the relationship between weather and energy use on the hottest days in order to obtain an unbiased 
estimate of the impact of the resource on those day types.  
39 There may still be some interest in knowing how participants differ from non-participants if there is a need 
to extrapolate the impact estimates to a population of customers who are unlikely to volunteer (which may 
differ from those who have not yet volunteered).  If so, an external control group may be needed.   
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Figure 4-1 
Percent Demand Response Impact Relative to Percent Population 

California’s Statewide Pricing Pilot 
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A final advantage associated with repeated measures for a cross-section of customers is 
the ability to better specify regression equations and to produce more robust results.40

4.3 QUANTIFYING THE IMPACT OF EVENT CHARACTERISTICS 

  
Regressions that have observations over time and across customers can control for 
omitted variables that vary across customers but are fixed over the study period, known 
as fixed effects, and for omitted variables that are fixed across customers but vary over 
time, know as time effects.    

One of the primary advantages of regression analysis is the ability to determine the 
impact of various factors on demand response.  One important set of factors is the event 
characteristics.  Notification lead time and the timing and duration of events may influence 
demand response for resources in which these factors are allowed to vary across events 
or across customers (e.g., as in cafeteria style resources).  The ability to do this is a 
function of how much these characteristics vary over the estimation time period or across 
customers.  Given sufficient variation, it is relatively straightforward to include interaction 
terms in the regression model to determine if impacts vary with these event 
characteristics.  For example, it might be possible to define a set of binary variables 
representing different event periods (e.g., a variable equal to 1 if the event period is less 
than 3 hours, 0 otherwise).  An alternative would be to calculate individual customer 
impacts for each event day and analyze patterns and drivers of demand response by 
specifying a second-stage regression that relates load impacts to specific customer and 

                                            
40 Peter Kennedy, in Guide to Econometrics, provides an excellent discussion of some of the advantages of 
having repeated measures across a cross-section of customers in the introduction to Chapter 17.    
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event day characteristics.  These types of specifications would allow development of ex 
ante estimates for specific combinations of event conditions that did not occur in the past.  
This could be quite useful for operational purposes or for longer term resource planning or 
resource design.   

4.4 ESTIMATING IMPACTS FOR HOURS OUTSIDE OF THE EVENT PERIOD 
As indicated in Protocol 2, impact estimates for event based resources are required for all 
hours on an event day.  This requirement fulfills the need to understand the extent and 
nature of load shifting that occurs with some types of DR resources, and to estimate the 
impact of DR resources on overall energy use.  Regression modeling can be used to 
estimate all of these impact types using a variable representing an event day, as distinct 
from a variable representing an event window, interacted with variables representing 
individual hours in a regression analysis that pools all hours in a single regression.    

4.5 WEATHER EFFECTS 
Accurately reflecting the influence of weather in load modeling and impact estimation is 
essential, both in order to normalize for day-to-day load variation during impact estimation 
as well as to develop estimates for day types with weather conditions that differ from 
those in the past.  Incorporating weather into regression modeling is easily done using 
weather variables and interaction terms as illustrated in the simple model in Equation 4-1 
and the example shown in Section 4.10 below.   

A related factor is heat build up in buildings caused by multiple hot days in a row.  This 
can also be reflected in a regression model, for example, using a variable representing 
cooling degree hours on days prior to an event day, or cumulative cooling degree hours 
leading up to the event period.   

4.6 MULTI-DAY EVENTS 
Another issue to consider when developing model specifications is variation in impacts 
across multi-day events.  Distinct variables indicating whether an event is the first, second 
or third day of a multi-day event can be included in a regression specification to determine 
if impacts vary according to this event feature.  Section 4.2 of the Impact Evaluation of the 
California Statewide Pricing Pilot41

4.7 PARTICIPANT CHARACTERISTICS 

 provides an example of this type of specification.   

The influence of participant characteristics on load impacts can be determined using 
interaction terms between variables representing customer characteristics, such as air 
conditioning and/or other equipment ownership, and socio-demographic or firmographic 
variables such as income, persons per household, business type and others.  This 
capability is essential for predicting how impacts might change as the mix of participant 
characteristics changes.  We mention this here because it is important to consider the 
need for ex ante estimates when developing a model specification designed to do both ex 

                                            
41 Stephen S. George and Ahmad Faruqui.  Impact Evaluation of the California Statewide Pricing Pilot.  
Final Report.  March 16, 2005.  p. 66. 
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post and ex ante estimation.  It might not be necessary to include socio-demographic 
variables in the model if only ex post estimates are needed, since fixed or variable-effects 
specifications can control for variation in energy use across customers without explicitly 
including such variables in the model.  However, if ex ante estimation is needed, it will be 
necessary to explicitly incorporate variables in the specification that are expected to 
change in the future.   

4.8 GEOGRAPHIC SPECIFICITY 
Knowing how impacts vary across regions can be very useful for transmission and 
distribution planning and for operational dispatch decisions by the IESO, who must 
balance supply and demand at numerous points on the grid.  Understanding the extent to 
which impact estimates are required for specific locations is an important input to 
evaluation planning.   

There are two basic approaches to developing location-specific impact estimates.  One is 
to obtain large enough samples at each desired location to develop statistically valid and 
precise impact estimates based on each geographic sub-population.  If the number of 
geographic regions is large, this could be a very costly approach.   

An alternative approach is to incorporate variables in a regression model that explain how 
impacts vary according to weather and population characteristics that vary regionally.  
Using survey and climate data to develop estimates of the mean values for each 
explanatory variable by region, such a model can be used to predict what the impacts will 
be given the local conditions.  It may be possible to implement this approach with data on 
a much smaller sample of customers than the location-specific sampling approach by 
using stratified sampling methods that ensure sufficient variation in the characteristics of 
interest to develop the model parameters.   

4.9 SUMMARY 
Regression modeling is the most robust and flexible approach to DR load impact 
estimation and should be considered the default option for the majority of applications.  
While regression modeling requires more skill and experience to implement, and is not as 
transparent as most day-matching methods, it offers numerous advantages compared 
with other methods.  Regression analysis can be used to examine impacts outside the 
event period and to quantify the influence of event characteristics, heat build up, multi-day 
events, weather and customer characteristics on demand response.   
 
The repetitive nature of event-based resources may allow for regression analysis (or 
other methods) to be implemented using smaller samples than would be needed for non-
event based resources.  It also eliminates the need for external samples in most 
situations, and allows customer-specific impact estimates to be developed, thus affording 
the opportunity to examine the distribution of impacts across the participant population.   
 
Day matching methods can produce reasonably accurate ex post impact estimates and 
may be preferable for use in customer settlement.  However, difficulties in estimating 
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uncertainty adjusted impact estimates and in developing ex ante estimates using day 
matching are significant shortcomings in many applications.        

4.10 REGRESSION ANALYSIS:  AN EXAMPLE 
This section contains an excerpt from a recent study showing how regression analysis 
can be used to develop DR load impact estimates.  The example is from Pacific Gas and 
Electric Company’s (PG&E) SmartRateTM42 tariff.  During the summer of 2008, SmartRate 
was offered to PG&E SmartMeterTM43

 

 customers in the Bakersfield and greater Kern 
County region, a very hot area where maximum temperatures exceed 100ºF on many 
summer days.  The tariff was initially offered to customers that were on PG&E’s E-1 and 
E-8 residential tariffs and the A-1 non-residential tariff, which applies to customers with 
peak demands below 200 kW.  Direct mail materials were sent to roughly 135,000 
accounts, of which more than 10,000 enrolled.  Approximately 7.5 percent of residential 
customers and 5 percent of small commercial customers that received direct mail 
materials enrolled in the SmartRate program.  

The SmartRate pricing structure is an overlay on top of a customer’s otherwise applicable 
tariff.  SmartRate pricing consists of an incremental charge that applies during the peak 
period on SmartDays and a per kilowatt-hour credit that applies for all other hours from 
June to September.   For residential customers, the additional peak-period charge on 
SmartDays is 60 ¢/kWh.  For non-residential customers, the incremental charge is 75 
¢/kWh.  The credit consists of two parts.  A credit of roughly 3 ¢/kWh applies to all 
electricity use other than use during the peak period on SmartDays during the months of 
June through September.  An additional credit of 1 ¢/kWh applies to tier 3 and higher 
usage for residential customers regardless of time period. 
 
PG&E called nine SmartDays during the summer of 2008.  Three days were called in a 
row in early July (the 8th, 9th and 10th), three in August (27th, 28th and 29th) and three in 
September (3rd, 4th and 5th).  The August and September event periods spanned the 
Labor Day weekend and covered six out of seven consecutive work days.  Although 
PG&E initially called an event on August 14th, a problem that occurred with the notification 
process caused PG&E subsequently to cancel the event.  Given the confusion over event 
notification, rather than treat August 14th

 

 as a non-event day, data for this date were 
dropped from the estimation sample. 

The 2008 load impacts for the SmartRate tariff were estimated through individual 
customer time-series regressions.  Time series regressions were estimated at the 
individual customer level rather than for all customers combined for several reasons.  
Most importantly, PG&E does not typically collect data on a key explanatory variable--the 
size and type of air conditioning at each household.  That being said, by employing 
individual customer regressions, the presence and use of air conditioning is captured 
through the temperature variables and their interaction with the hourly binary variables.  

                                            
42 Any use of the term SmartMeter or SmartRate in this document is intended to refer to the trademarked 
term, whether or not TM is included.  
43 SmartMeter™ is a trademark of SmartSynch, Inc. and is used by permission. 
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Put differently, the presence of air conditioning or lack thereof is a fixed effect that 
interacts with weather.  By allowing individual customer coefficients to vary, the results 
are more accurate at the customer level – an important feature when results are desired 
for various customer segments in addition to the average for all participants.  In addition, 
individual customer regressions can be employed to describe accurately the distribution 
of customer load reductions as well as the distribution of percent load reductions.  

The main regression alternatives, panel regressions and segmented aggregate time 
series, were not selected due to the unique features of the data and the evolving 
customer mix and enrolment rates over time.  Unlike individual customer regressions, 
panel regressions can make use of both control groups and pre-enrolment data and can 
provide very robust average customer impact estimates by controlling for omitted 
variables.44

The analysis of PG&E’s SmartRate tariff was based on a proportional random sample of 
approximately 2,000 customers drawn from the participant population of roughly 10,000.

 While panel regression can increase the accuracy of the impact estimates for 
the average customer, it cannot be employed to describe meaningfully the distribution of 
impacts among the participant population.  Importantly, the lack of data on the type and 
size of air conditioners at the customer level precluded the use of panel regression.  
Because air conditioning is a key driver of electricity demand that interacts with weather, 
its omission in a panel regression would likely lead to inaccurate results.  The other 
alternative, running time series on customer load aggregated by segment, could not 
adequately control for the evolving customer mix or provide insights into the distribution of 
impacts among the participant population.  Except for the lower amount of effort required, 
segmented time series did not yield methodological benefits that were not also captured 
through individual customer regressions.  

45

 Variables that reflect the average load shape of customers, absent the need for 
cooling;  

  
The dependent variable in each regression is average hourly demand (kW).  The 
explanatory variables can be grouped into three main categories:  

 Variables that explain deviations in hourly usage from the average load shape; and 
 Variables that estimate the change in energy use during event days and the factors 

that influence the load reductions. 
The explanatory variables include hourly binary variables to capture the inherent variation 
in usage across hours of the day, day-of-week binary variables to capture variation in 
usage between week days and weekends and across weekdays, weather variables to 
capture the influence of temperature on electricity use, and event-day and event-hour 
variables to estimate the impact of the higher SmartDay prices on energy use during each 
                                            
44 Panel regression can account for omitted variables that are unique to customers but fixed over time (fixed 
effects) such as household income, and can also account for omitted variables that are common across the 
participant population but unique to specific time periods.  They cannot, however, account for omitted 
variables that vary both by participant and by time period or for household characteristics (e.g., central air 
conditioning) that interact with variables that vary over time, such as weather.   
45 The exact number of participants and sample points vary by date as enrolment grew over time during the 
2008 summer months.  
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hour of the event period as well as hours leading up to and following the event period.  
The event variables are interacted with weather, day of week, month, number of 
consecutive event days, and cumulative number of events throughout the season in order 
to explain how the impacts vary as a result of changes in those conditions.  For 
customers for whom event notification was unsuccessful or who elected not to be notified, 
the relevant event days were treated as non-event days in terms of the model 
specification.  However, when the average and aggregate impact estimates were 
developed from the individual customer regressions, impacts for these non-notified 
customers were assumed to equal zero.   

The model specification was intentionally designed to capture a wide variation of 
household operating schedules as well as different hourly responses to weather and 
event conditions.  The specification performed well for most customers, although for 
specific customers, some of the parameters may have been irrelevant.46

The regressions were estimated using generalized least squares (GLS) and Huber-White 
robust standard errors in order to ensure that the confidence bands around the impact 
variables were not overstated either due to auto-correlation or heteroscedasticity.
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  The 
following equation summarizes the model specification.  Given the large number of 
regressions (e.g., 2,000), it was not feasible to customize regressions for each customer.  
Importantly, the model performed well in the aggregate, as shown below. 

 

Where: 
KW = Electricity usage in Hour i for Customer j 
NS = No School (period during the summer when school is NOT in session) 
S = Period during the summer when school is in session 

                                            
46 Irrelevant parameters can lead to wider standard errors, but do not bias the significant parameters.  Given 
that the amount of observations per regression generally exceeded 2,000, statistical power was not a major 
concern. 
47 The GLS method used relied on the Prais-Winsten technique – a form of iterated GLS.  
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WEEKDAY = Monday – Friday 
WEEKEND = Saturday – Sunday 
HOURi

MONTH
 = Hours of the day, numbered 1-24 

j

CDH
 = Months of the year, numbered 1-12 

i

CDH

 = Cooling Degree Hour for that hour of the day, defined as Max(0,  
Temperature(F) -70) 

2

EVENTDAY = SmartRate event day (all 24 hours) 
 = CDH squared 

EVENT= SmartRate event window (2-7 pm) 
INAROW = Number of consecutive events in a row 
CUMEVENTS= Cumulative number of events in season 
DOW = Day of week 
ε =  the error term  
i = Subscript indicating the hour of day (1-24) 
j = Subscript indicating the month of the year (1-12) 
k = Subscript indicating the number of consecutive events in a row 
l = Subscript indicating the day of week (1-7) 

 

Although the regressions were developed at the individual customer level, from a policy 
standpoint, the focus is less on how the regressions perform for individual customers than 
it is on how the regressions perform for the average participant and for specific customer 
segments.  Overall, individual customers exhibited more variation and less consistent 
energy use patterns than the aggregate participant population.  Likewise, the regressions 
explained better the variation in electricity consumption and load impacts for the average 
customer (or average customer within a specific segment) than for individual customers.  
Put differently, it is more difficult to explain fully how a specific CARE customer behaves 
on an hourly basis than it is to explain how the average CARE customer behaves on an 
hourly basis.  Because of this, we present measures of the explained variation, as 
described by the R-squared goodness-of-fit statistic, for the individual regressions and for 
specific segments as well as for the average customer. 

Figure 4-2 shows the distribution of R-squared values from the individual residential 
customer regressions.  As the peak period use, annual consumption, and ratio of summer 
to non-summer usage increase, the goodness-of-fit from the regressions generally 
improves.  While the individual customer regressions do a reasonably good job of 
explaining the variation in electricity use, in aggregate, nearly all of the variation in energy 
use across hours is explained by the model specification. 
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Figure 4- 2 
Distribution of Adjusted R-squared Values from Individual Regressions 
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When the predicted and actual values are aggregated across the individual results, the 
model explains 92.2 percent of the variation in energy use.  Put another way, only about 
8 percent of the variation in energy use over time is explained by variables that are not 
included in the model.  In order to estimate the average customer R-squared values, the 
regression-predicted and actual electricity usage values were averaged across all 
customers for each date and hour.  This process produced regression predicted and 
actual values for the average customer, which enabled the calculation of errors for the 
average customer and the calculation of the R-squared value.  The same process was 
performed to estimate the amount of explained variation for the average customer in 
specific segments.  The R-squared values for the average participant and for the average 
customer by segment were estimated using the following formula48

R

: 

2

∑
∑

−

−
−

t
t

t
tt

yy

yy
2

2

)ˆ(

)ˆ(
1 =  

  Where: 
  ty  is the actual energy use at time t 

tŷ  is the regression predicted energy use at time t 

                                            
48 Technically, the R-squared value needs to be adjusted based on the number of parameters and 
observations from each regression. Given that the number of observations per regression was typically over 
two thousand, the effects of the adjustment were anticipated to be minimal.  As a result, the unadjusted R-
squared is presented in order to avoid the complication of tracking the number of observations and 
parameters from each individual regression.  
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y  is the actual mean energy use across all time periods. 

Table 4-2 summarizes the amount of variation explained by the regression model for the average 
customer for specific segments.  Overall, depending on the specific group assessed, roughly 80 to 
93 percent of the variation is explained through the individual regressions. 

Table 4-2 
Adjusted R-squared Values for the Average Customer by Segment 

 

 

Annual Consumption R2

Ratio of of Summer 
to Non-Summer 
Usage R2 CARE Status R2

5,000 or less 0.90 <100% 0.89 Non-CARE 0.91
5,000 to 7,500 0.78 100%-125% 0.89 CARE 0.93
7,500 to 10,000 0.91 125%-150% 0.88
10,000 to 12,500 0.93 150-175% 0.94
12,500 to 15,000 0.85 175%-200% 0.93

15,000 + 0.92 200%+ 0.85  

 
The most important feature of load impact analysis is the ability to predict accurately 
customer load and load reductions under the extreme conditions for which demand 
response is designed to provide a reliable resource.  Unlike day matching methods, the 
accuracy of load impact estimates depend more on the accuracy of the regression 
coefficients representing the load impacts than on how well the regression predicts 
customer load.  Put differently, if properly designed, regressions can accurately estimate 
load impacts and are more robust to over or under predictions of hourly energy 
consumption than day-matching methods.  For SmartRate, we are not only confident that 
the load impact parameters are accurate, but the regression predicted values of energy 
consumption closely mirror and are often nearly indistinguishable from actual energy 
consumption, further validating the accuracy of the load impact estimates.  To assess the 
accuracy and validity of the model, we compared actual and predicted values during 
event days by hour and temperature.  In addition, given the estimated differences in 
response between CARE and non-CARE customers discussed in Section 4, we also 
present the comparisons of actual and regression predicted values for those customer 
segments. 

Figure 4-3 shows the actual average hourly energy use of customers during event days 
compared to the regression predicted average customer energy use with and without 
demand response.  The close match between predicted values with demand response 
and actual values reflects the ability of the regressions to predict accurately under event 
conditions.  Figure 4-4 compares the actual and predicted values by temperature, based 
on data from the nine event days, and illustrates the model’s ability to predict accurately 
customer behaviour under event conditions for a wide range of temperatures.  It also 
illustrates that, in general, load response increases as temperature increases.  Figure 4-5 
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compares the actual and regression predicted values for CARE and non-CARE 
customers during event days.  For each figure the relevant comparison of accuracy is 
between the actual load under event conditions (the solid line) and the regression 
predicted load under the same conditions (solid line with squares).  For most graphs, the 
two are nearly indistinguishable.  In addition, for information purposes, we have included 
the regression predicted values absent the SmartDay event (the dashed line).  All of the 
comparisons are for time periods with actual interval data reads.  Estimates of missing 
values were not included in the comparisons or in the estimated regressions.  As seen, 
the regressions predict the behaviour of both CARE and non-CARE enrolees in 
Bakersfield extremely well.   

Figure 4 - 3 
Average Residential Customer Actual and Predicted Values for the Average 

SmartDay 
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Figure 4 - 4 
Average Residential Customer Actual and Predicted Values by Temperature for 

Event Days 
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Figure 4 – 5 
Comparison of CARE and Non-CARE Participants Actual and Predicted Values for 

Event Days 

CARE Customers
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Similar comparisons of actual and predicted values were conducted by month, day of 
week, individual event days, and various other iterations – all of which indicated that the 
results were not only unbiased for the average day and average customer, but also 
across multiple customer segments and temporal characteristics.   
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MAR 3 1 2014 
Mr. Colin Andersen 
Chief Executive Officer 
Ontario Power Authority 
1600-120 Adelaide Street West 
Toronto ON M5H 1T1 

Dear Mr. Andersen: 

Re: 2015-2020 Conservation First Framework 

I write in my capacity as the Minister of Energy in order to exercise the statutory power 
of ministerial direction I have in respect of the Ontario Power Authority (OPA) under the 
Electricity Act, 1988, as amended (the "Act"). 

Background 

In Achieving Balance: Ontario's Long-Term Energy Plan (L TEP 2013), released on 
December 2, 2013 the Government established a provincial conservation and demand 
management (COM) target of 30 terawatt hours (TWh) in 2032. To assist the 
Government in achieving this target, L TEP 2013 also committed to establishing a new 
six-year Conservation First Framework beginning in January 2015, replacing the one 
that is currently winding down. The new Conservation First Framework will enable the 
achievement of all cost-effective conservation and foster innovation through information 
sharing and the adoption of new technologies and approaches, including innovative 
performance management structures to drive greater energy savings. 

To remain on track to achieve the L TEP 2013 COM target, it is forecasted that 7 TWh 
needs to be achieved between 2015 and the end of 2020 through Distributor COM 
programs enabled by the Conservation First Framework. In addition, transmission 
connected customers will continue to have access to OPA COM programs. 

.. ..2/ 
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To this end, I have issued a directive to the Ontario Energy Board (the "Board") (the 
"COM Directive"), instructing it to amend the license of each licensed electricity 
distributor (Distributor) to add a condition that specifies the Distributor shall, between 
January 1, 2015 and December 31, 2020, make COM programs available to customers 
in its licensed service area and shall, as far as is appropriate and reasonable having 
regard to the composition of the Distributor's customer base, do so in relation to each 
customer segment in its service area (COM Requirement). Such Distributor COM 
programs are required to achieve reductions in electricity consumption. 

Each Distributor will be required to meet its COM Requirement by: 

i. 	 making a core set of province-wide COM programs, funded by the OPA, 
available to customers in its licensed service area (Province-Wide 
Distributor COM Programs); 

ii. 	 making local and/or regional COM programs, funded by the OPA, 
available to customers in its licensed service area (Local Distributor COM 
Programs); or 

iii. 	 a combination of (i) and (ii). 

Direction 

Therefore, pursuant to my authority under section 25.32 of the Act, I hereby direct 
the OPA to coordinate, support and fund the delivery of COM programs through 
Distributors to achieve a total of 7 TWh of reductions in electricity consumption 
between January 1, 2015 and December 31, 2020 in accordance with the following 
guiding principles and requirements. 

GUIDING PRINCIPLES 

The OPA shall implement this direction according to the following principles: 

1 . 	 Distributors are the face of electricity conservation to their customers in all sectors. 

2. 	 Distributors will be provided with long term, stable funding to provide the certainty 
they need to implement COM programs. 

3. 	 Customers will be given more COM program choice along with streamlined 
oversight and administration. 

4. 	 Distributors will have accountability for meeting their assigned COM targets and 
will be provided the authority and means for meeting them cost-effectively. 

5, 	 Innovation and the adoption of new technologies will be encouraged. 

.. ..3/ 
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6 0 	 While there will be COM programs available for all residential, commercial and 
industrial sectors, the value of COM investments may be higher in some sectors 
than others. 

7 0 	 There will be renewed efforts to deepen consumer awareness of COM and how it 
relates more broadly to the electricity system. 

8 0 	 COM programs for low-income residential customers will be improved. 

9. 	 The role of Distributors in the delivery of COM programs to on-reserve First Nation 
customers will be enhanced. 

1 0. Distributor COM programs will result in the full achievement of 7 TWh of electricity 
savings. 

1 1 . 	Approvals and administrative requirements will be streamlined to provide 
Distributors flexibility to design, deliver and administer COM programs to their 
customers. 

12. OPA will provide support to Distributors in the design and delivery of COM 
Programs. 

REQUIREMENTS 

1. GOVERNANCE 

1.1 	 The OPA shall manage its relationship with Distributors through new streamlined 
contracts on a non-competitive basis. The OPA will work with Distributors to put 
such contracts in place by January 1, 2015. 

1.2 	 The OPA shall provide support to Distributors to assist them in submitting their 
COM Plans, as outlined in section 3, to the OPA no later than May 1, 2015 for 
approval. The OPA shall continue to make 2011-2014 OPA contracted Province­
Wide COM Programs available to customers through their Distributor until the 
Distributor's COM Plan is approved by the OPA. 

1.3 	 The OPA shall provide Distributors with flexibility to design, deliver and administer 
Province-Wide Distributor COM Programs and Local Distributor COM Programs . 

... .41 
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1.4 	 The OPA shall establish a budget to achieve 7 TWh of electricity savings over the 
six-year period, based on current system planning projections. The budget and 7 
TWh target will be reviewed as part of the mid-term review, as described in section 
6, and revised as needed based on achievable cost-effective conservation and 
system planning projections at the time. 

1.5 	 The OPA shall establish a budget allocation for each Distributor in consideration of 
the Distributor COM Target and COM Plan as outlined in sections 2.2 and 3. 

1.6 	 The OPA shall, in consultation with Distributors, develop a cost recovery and 
performance incentive mechanism for Distributors for making Province-Wide 
Distributor COM Programs and/or Local Distributor COM Programs available to 
customers in their service areas. For each Province-Wide Distributor COM 
Program and Local Distributor COM Program within the Distributors' COM Plan, 
Distributors shall be provided a choice of the following cost recovery mechanisms: 

i. 	 Full Cost Recovery: The Distributor shall be paid the full amount of 
prudently incurred costs for the administration and implementation of its 
Province-Wide Distributor COM Program and/or Local Distributor COM 
Program, subject to the Distributor achieving a specified minimum level of its 
Distributor COM Target. The OPA shall report back by July 1, 2014 with 
recommendations on administrative or financial consequences of Distributor 
underperformance, should it occur. A tiered performance incentive 
mechanism shall be made available to Distributors with incentives beginning 
to accrue once a Distributor achieves 100% of the portion of its Distributor 
COM Target allocated to the full cost recovery mechanism, in amounts 
determined by the OPA in consultation with Distributors.; or 

ii. 	 Pay for Performance: The Distributor shall be paid for the administration 
and implementation of its Province-Wide Distributor COM Program and/or 
Local Distributor COM Program, corresponding to the portion of the 
Distributor COM Target allocated to the pay for performance mechanism, 
based on a pre-specified value for each verified kilowatt hour of electricity 
savings achieved, in amounts determined by the OPA in consultation with 
Distributors. 

1.7 	 The OPA shall, subject to necessary regulatory amendments, recover payments 
made under the Province-Wide Distributor COM Programs and Local Distributor 
COM Programs from the Global Adjustment Mechanism up to the budget 
established under section 1.4. 

. ... 5/ 
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1.8 	 The OPA shall ensure that its contracts with Distributors include clauses allowing 
for corrections and changes in each Distributor CDM Target, as outlined in section 
2.2, and in Distributor budgets which may be required in accordance with a mid­
term review as outlined in section 6. 

2. DISTRIBUTOR COM TARGETS 

2.1 	 The OPA, in consultation with Distributors, shall develop an allocation 
methodology to allocate the full 7 TWh among Distributors. The allocation 
methodology may take into consideration Distributor CDM potential at a local 
and/or regional level as identified in the OPA's 2014 energy efficiency achievable 
potential study, and other factors, as appropriate. 

2.2 	 The OPA shall allocate to each Distributor a numeric CDM target ("Distributor 
CDM Target") to achieve reductions in electricity consumption for all customer 
segments in the Distributor's licensed service area. 

2.3 	 The OPA shall encourage Distributors to aggregate Distributor CDM Targets with 
neighbouring Distributors to develop 21 regional CDM targets for the period 
January 1, 2015 to December 31, 2020. The OPA shall encourage Distributors to 
work cooperatively to develop regional CDM Plans to meet the regional CDM 
targets. 

2.4 	 The OPA shall evaluate Distributor achievement of electricity savings on an annual 
incremental basis based on the OPA's Evaluation, Measurement and Verification 
(EM&V) protocols. 

3. CDMPLANSANDPROGRAMS 

3.1 	 The OPA shall support Distributors in designing a core set of Province-Wide 
Distributor CDM Programs for the following segments of distribution system 
connected customers to make available for delivery in Distributors' licensed 
service areas: 

i. 	 Residential 
ii. 	 Low-income 
iii. 	 Small business 
iv. 	 Commercial (including multi-family buildings) 
v. 	 Agricultural 
vi. 	 Institutional 
vii. 	 Industrial 

....6/ 

Filed: September 7, 2017, EB-2017-0150, Exhibit I, Tab 1.1, Schedule 2.04, Attachment 4



3.2 	 Province-Wide Distributor COM Programs shall: 

i. 	 Be designed by Distributors, with support from the OPA, through working 
groups. The membership of the working groups shall consist of OPA and 
Distributor representatives. 

ii. 	 Balance the value of flexibility for some program customization to meet local 
and/or regional needs with the value of offering consistent COM measures to 
customer segments across all Distributor service areas. 

3.3 	 The OPA shall support Distributors, as required, in designing Local Distributor 
COM Programs, including programs for specific industry concentrations or 
customer segments in a particular licensed service area and/or region that require 
unique approaches to achieve electricity savings, such as on-reserve First Nation 
customers. 

3.4 	 The OPA shall require each Distributor to submit a COM Plan to the OPA for 
approval. 

3.5 	 The OPA shall establish a streamlined review and approval process for Distributor 
COM Plans and proposals for Province-Wide Distributor COM Programs and Local 
Distributor COM Programs. To facilitate this process, the OPA, in consultation with 
Distributors, shall establish guidelines that include rules relating to the streamlined 
review and approval of COM Plans and proposals for Province-Wide Distributor 
COM Programs and Local Distributor COM Programs. In establishing such 
guidelines, the OPA shall have regard to the following objectives in addition to 
such other factors as the OPA considers appropriate: 

i. 	 Distributor COM Plans must provide a description of how the Distributor will 
achieve its Distributor COM Target, including but not limited to, a description 
of the Distributor's year-by-year plan, including milestones for achieving its 
Distributor COM Target, a description of Province-Wide Distributor COM 
Programs and any Local Distributor COM Programs, and projected budgets 
and electricity savings by sector. 

ii. 	 The OPA shall establish a service standard of no more than 60 days for 
review and approval of Distributor COM Plans and program. Any request by 
the OPA for additional information during its review will cause the remaining 
period for approval to be paused and shall resume at such time as the 
request is satisfied. 

... .71 
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iii. The OPA shall seek to approve unique Local Distributor COM Programs that 
avoid marketplace confusion and ensure the prudent use of funds by 
avoiding duplication of Province-Wide Distributor COM Programs. The OPA, 
in consultation with Distributors, shall establish rules on what constitutes 
duplication. 

iv. The OPA shall encourage Distributors to incent COM measures with 
relatively longer lifespans and energy savings persistence and shall consider 
the system value of the measures, including reductions at peak times. 

v. The OPA shall ensure there is a positive benefit-cost analysis of each COM 
Plan and each Province-Wide COM Program and Local Distributor COM 
Program utilizing the OPA's Total Resource Cost Test and the Program 
Administrator Cost Test found in the OPA's Cost-Effectiveness Guide, dated 
October 15, 2010 (OPA Cost-Effectiveness Tests), which may be updated by 
the OPA from time to time. The OPA will establish hurdle rates to consider 
the cost of delivering Province-Wide Distributor COM Programs and Local 
Distributor COM Programs against the avoided cost of procuring supply. 

vi. The OPA shall, despite section 3.5 (v), allow Distributors to apply to the OPA 
for approval of Province-Wide Distributor COM Programs and Local 
Distributor COM Programs where cost effectiveness is not demonstrated if 
the program is: 

a) targeted to on-reserve First Nation customers 
b) designed for educational purposes 
c) a low-income COM program 

vii A Distributor may, despite section 3.5(v), submit a COM Plan where cost 
effectiveness is not demonstrated if the Distributor can reasonably 
demonstrate that it is unable to develop a plan that is cost effective due its 
size, location, the nature of its customer base or other unusual 
circumstances. In order to obtain the approval of such a COM Plan, the 
Distributor must also demonstrate that: 

(a) it has made reasonable efforts to determine if a COM Plan could be 
delivered cost effectively in its service area by another Distributor; and 

(b) The COM Plan will be delivered in as cost effective a manner as is 
reasonably possible. 
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viii. The OPA shall take into consideration the cost and the number of First 
Nation, educational and low-income COM programs that a Distributor already 
has undertaken or plans to undertake when approving these COM programs. 
Although there is no requirement that First Nation, educational, or low-income 
programs be cost effective, Distributors shall be required to provide adequate 
evidence that the COM programs will likely result in electricity savings and will 
be delivered in as cost effective a manner as is reasonably possible. 

ix. The OPA shall allow Distributors to propose changes and modifications to its 
COM Plan on an annual basis, or more frequently. 

x. The OPA shall encourage Distributors to maximize administrative and 
delivery efficiencies by utilizing appropriate program delivery models. 
Specifically, the OPA and/or Distributors shall provide enhanced co-ordination 
efforts with regard to: 

a) Opportunities to target consumers with multiple locations across 
several licensed service areas (e.g., national accounts) and COM 
measures delivered or promoted through provincial or national 
channels (e.g., retailer in-store rebates or coupons); and 

b) COM activities, including, but not limited to, the marketing, 
procurement and delivery of COM measures and/or services where 
these will afford significant administrative cost and/or delivery 
efficiencies (e.g., call centre, rebate fulfillment and appliance de­
commissioning). 

xi. The OPA shall require Distributors, where appropriate, to coordinate and 
integrate Province-Wide Distributor COM Programs and Local Distributor 
COM Programs with natural gas distributor ("Gas Distributors") conservation 
programs to achieve efficiencies and convenient integrated programs for 
electricity and natural gas customers. 

xii. The OPA shall require Distributors, where appropriate, to coordinate and 
integrate low-income Province-Wide Distributor COM Programs and Local 
Distributor COM Programs with Gas Distributor low-income conservation 
programs. 

. ... 9/ 
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4. MARKETING 

4.1 	 The OPA shall be responsible for province-wide marketing and mass media buying 
for Province-Wide Distributor COM Programs under the saveONenergy brand. 

4.2 	 The OPA shall work with Distributors to ensure Province-Wide Distributor COM 
Programs and Local Distributor COM Programs are consistently marketed under 
the saveONenergy brand, and for local marketing and advertising efforts, co­
branded with Distributor logos. The OPA may also work with Distributors to 
provide them with the advantages of scale (for example, in the purchase of media 
and the development, production and distribution of marketing material). 

4.3 	 The OPA shall make the saveONenergy brand available to the Gas Distributors for 
marketing of natural gas conservation programs on terms that the OPA may 
negotiate with the Gas Distributors. 

5. REPORTING 

5.1 	 The OPA shall continue to produce and publish an annual report on overall 
progress toward achieving the provincial COM target of 30 TWh, including 
contributions to the target achieved through Province-Wide Distributor COM 
Programs, Local Distributor COM Programs, demand response programs, 
programs for transmission connected customers and product codes and 
standards. The annual report shall cover the period from January 1 to December 
31 of the previous year. 

6. MID-TERM REVIEW 

6.1 	 The OPA, in consultation with the Ministry of Energy and Distributors, shall no later 
than June 1, 2018 have completed a formal mid-term review of: 

i. 	 the 7 TWh target and the overall budget for achieving that target 
ii. 	 allocation of budgets and Distributor COM Targets 
iii. 	 lessons learned on cost recovery and performance incentive mechanisms, 

and; 
iv. 	 COM contribution to regional planning 

.... 1 0/ 
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6.2 	 The OPA shall conduct an achievable potential study for electricity efficiency in 
Ontario every three-years, with the first study completed by June 1 2016, to inform 
electricity efficiency planning and programs. The achievable potential study 
should, as far as is appropriate and reasonable having regard to the respective 
characteristics of the electricity and natural gas sectors, be coordinated with the 
natural gas efficiency achievable potential study referred to in the COM Directive to 
the Board. 

7. DEFINITION OF COM 

7.1 	 The OPA shall consider COM to be inclusive of activities aimed at reducing 
electricity consumption and reducing the draw from the electricity grid, such as 
geothermal heating and cooling, solar heating and small scale (i.e., <10MW) 
behind the meter customer generation. However, COM should be considered to 
exclude those activities and programs related to a Distributor's investment in new 
infrastructure or replacement of existing infrastructure, any measures a Distributor 
uses to maximize the efficiency of its new or existing infrastructure, activities 
promoted through a different program or initiative undertaken by the Government 
of Ontario or the OPA, such as the OPA Feed-in Tariff (FIT) Program and micro­
FIT Program and activities related to the price of electricity or general economic 
activity. 

8. SUPPORT AND FUNDING FOR RESEARCH AND INNOVATION 

8.1 	 The OPA Conservation Fund provides financial support to new and innovative 
electricity conservation initiatives designed to enable Ontario's residents, 
businesses and institutions to cost-effectively reduce their demand for electricity 

8.2 	 The OPA shall continue to provide, through its Conservation Fund, support and 
funding for new and innovative electricity conservation initiatives, including small 
scale distribution storage technologies, as a means to assist Distributors and 
others in their conservation efforts. 

9. PEAKSAVERPLUS PROGRAM 

9.1 	 L TEP 2013 committed that Ontario will aim to use demand response to meet 10% 
of peak demand by 2025, equivalent to approximately 2,400 megawatts under 
current forecast conditions. To encourage further development of demand 
response in Ontario, the Independent Electricity System Operator ("IESO") will 
evolve existing demand response programs in Ontario and introduce new 
initiatives. 
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9.2 	 A transition plan is currently being developed to evolve existing programs, 
potentially including the peaksaverPLUS program, to an IESO administered 
market. Until such time as the transition plan has been finalized, including plans 
for the peaksaverPLUS program, the OPA shall continue to make the program 
available to Distributors to deliver to customers in their licensed service areas. 

This direction takes effect on the date it is issued. 

Sincerely, 

Bob Chiarelli 
Minister 

cc. 	 James D. Hinds, Chair, Ontario Power Authority 
Rosemarie T. Leclair, Chair and Chief Executive Officer, Ontario Energy Board 
Bruce Campbell, President and Chief Executive Officer, Independent Electricity 
System Operator 
Tim O'Neill, Chair, Independent Electricity System Operator 
Serge Imbrogno, Deputy Minister, Ministry of Energy 
Halyna Perun, Director, Legal Services Branch, Ministries of Energy and 
Infrastructure 
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