Hydro One Networks Inc. 7th Floor, South Tower 483 Bay Street Toronto, Ontario M5G 2P5 www.HydroOne.com

Tel: (416) 345-5680 Cell: (416) 568-5534 Frank.Dandrea@HydroOne.com

Frank D'Andrea Vice President, Chief Regulatory Officer, Chief Risk Officer

BY COURIER

June 18, 2018

Ms. Kirsten Walli Board Secretary Ontario Energy Board Suite 2700, 2300 Yonge Street P.O. Box 2319 Toronto, ON M4P 1E4

Dear Ms. Walli,

EB-2017-0049 – Oral Hearing Undertakings for Hydro One Networks Inc.'s 2018-2022 Distribution Custom IR Application (the "Application")

Please find enclosed the responses to undertakings J 1.5 and J 2.4 from the Oral Hearing held on June 11 and 12, 2018 in regards to the above noted proceeding.

This filing has been submitted electronically using the Board's Regulatory Electronic Submission System and two (2) hard copies will be sent via courier.

Sincerely,

ORIGINAL SIGNED BY FRANK D'ANDREA

Frank D'Andrea

Encls. cc. EB-2017-0049 parties (electronic)

Filed: 2018-06-18 EB-2017-0049 Exhibit J 1.5 Page 1 of 2

(86)

 $(\mathbf{A}) \div (\mathbf{B})$

UNDERTAKING – J 1.5

1	<u>UNDERTAKING – J 1.5</u>				
2	2				
3	<u>Reference</u>				
4	4 I-18-SEC-029				
5	5 K1.6				
6	5				
7	<u>Undertaking</u>				
8	To advise what caused the ch	ange in cost per	customer from 20	14 to 2015.	
9)				
10	<u>Response</u>				
11	The Total Cost per Customer measure in the Electricity Distributor Scorecard is				
12	e calculated by the Pacific Eco	onomics Group,	LLC (PEG), base	d on the annual I	Reporting
13	and Record-keeping Requirements (RRR) filings to the Ontario Energy Board.				
14	Ĺ				
15	Table 1 below illustrates t	he inputs used	in the 2017 PE	G Benchmarking	g Update
16	5 Calculations ¹ (the "PEG mod	lel") for the year	s 2014 and 2015.		
17	7				
18	Table 1 – Inputs	to the PEG Mod	del for Total Cost	t per Customer	
	in dollars, u.o.s.	2014	2015	Variance	
	Total Actual Cost	1,304,202,201	1,236,083,718	(68,118,483)	(A)
	Total Customer Count	1,219,670	1,257,467	37,797	(B)

19

The decrease of about 8 per cent, or \$86 in the Total Cost per Customer in 2015 was 20

1,069

983

primarily due to lower Total Actual Costs resulting from lower Total OM&A and Capital 21

Costs, and a slightly higher Total Customer Count. 22

Total Cost per Customer

¹ Pacific Economics Group LLC. (2017, August 17). Total cost benchmarking - updates, Benchmarking Update Calculations. Retrieved June 11, 2018, from Audit and Performance Assessment: https://www.oeb.ca/industry/rules-codes-and-requirements/audit-and-performance-assessment

1	The lower Total OM&A expense was mainly due to:
2	
3	• A decrease of \$70.1 million in OM&A from:
4	• Lower costs related to remediating the Company's customer information
5	system and lower customer support expenses
6	 Lower preventative maintenance related to vegetation management
7	
8	The lower Capital Cost was mainly due to:
9	
10	• A decrease of \$12.9 million in Capital Costs, which were partially offset by \$7.8
11	million stemming from the inclusion of Norfolk Power Inc.
12	
13	Capital Costs are subject to various PEG-based adjustments, which cannot be directly
14	attributed to the operations and capital work of Hydro One, but which can be explored in
15	further detail within the PEG model.
16	
17	The higher <i>Total Customer Count</i> was mainly due to:
18	
19	• An increase of 37,797 customers, with 19,564 customers attributable to the
20	merger with Norfolk Power Inc.
21 22	For RRR purposes, Hydro One was required to report the impact of the Norfolk
22	acquisition in its 2015 RRR annual filing. For the purposes of Hydro One's rate
23	application (EB-2017-0049), the impact of the mergers & acquisitions (i.e. Norfolk
24	Power Inc., Haldimand County Hydro Inc., and Woodstock Hydro Services Inc., are only
20	i oner men, runalmund County righto men, und mobastock righto bervices men, ute omy

recognized starting in 2021.

Filed: 2018-06-18 EB-2017-0049 Exhibit J 2.4 Page 1 of 1

<u>UNDERTAKING – J 2.4</u>

2 3 **Reference**

4 I-38-CCC-044-01

5

6 **Undertaking**

To provide in advance of the appearance of panel 5 material created by Boston
 8 Consulting Group.

9

1

10 **<u>Response</u>**

The Boston Consulting Group conducted an initial review of Hydro One's vegetation management program and prepared a draft PowerPoint presentation of their findings, provided as Attachment 1. The presentation was never finalized.

14

Hydro One did not consider the Boston Consulting Group's draft presentation when it developed its vegetation strategy in this application.

17

18 To develop its vegetation strategy in this application, Hydro One retained Clear Path

¹⁹ Utility Solutions LLC, an expert in utility vegetation and shared the Boston Consulting

20 Group's draft presentation with them for that purpose.

Effectiveness of Hydro One's existing VM programs on par with other utilities

• \$/ACI for cyclic and strategic trim in line with BCG benchmarks

Under existing grid technology/design, opportunity to improve reliability through better VM practices appears limited

- Based on historical data, trimming every year would only drive a SAIFI improvement of 0.09 (18%)
- Consistent with observation that ~80% of tree-related outages come from off-ROW

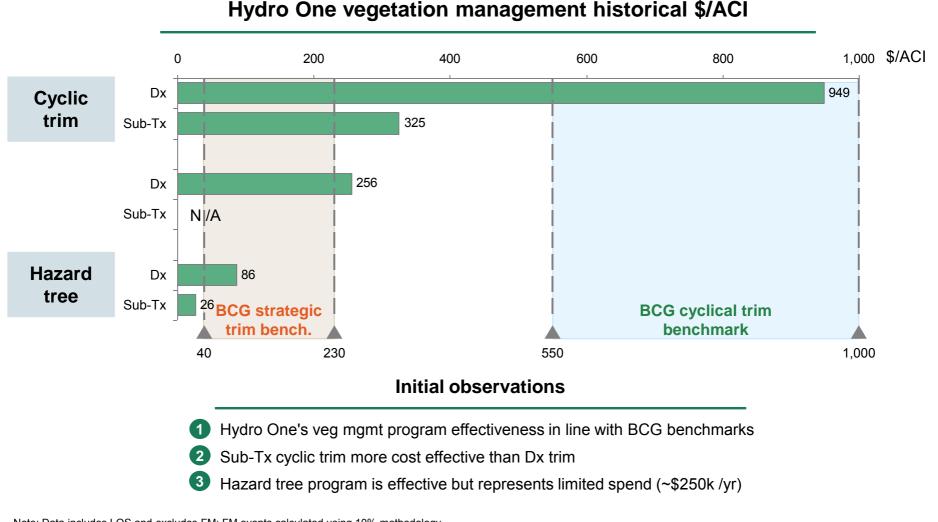
Hydro One's VM program can deliver maximum value to customers by focusing on two areas

- Ensuring that existing VM program is optimized for cost effectiveness
- Delivering expected reliability outcomes (e.g. ensuring high reliability to LDAs while maintaining performance for rural customers)

3 potential opportunities for reducing VM spend while meeting customer segment expectations

- **1** Cyclical trim: reduce trim cycle for highest priority feeders (M-class, LDA-serving, 3-phase, etc.)
 - Shorter trim cycle reduces total O&M costs but likely not feasible/optimal for all feeders
- 2 Strategic trim: optimize around cost effectiveness of spend
- 3 Deployment of new design standards (e.g. Hendrix cables) in high risk areas to reduce customer impacts from tree outages

Tree contacts are a large and growing driver of outages in the distribution system


Tree contacts remain major driver of Tree contact outages have highest SAIFI, increasing in the past 3 years CAIDI, reflecting high cost of response CAIDI (2011-2015 avg.) SAIFI (2011-2015 avg.) 0.8 Tree contact SAIFI 5 is increasing 2013: 0.44 2014: 0.49 4 0.6 2015: 0.51 3 System Average 0.4 2 0.2 1 0.0 0 Sched Tree Foreign Sched. Unk. / LOS Foreign Human Tree Def. Unk. / Human LOS Def. Contact Equip. Equip. Other Sontacts Interf. Element Interf. Other Element Tree contracts account for 16% of system SAIFI and 28% of overall SAIDI

Note: Data includes LOS and excludes FM; data follows the Hydro One standard defining a sustained outage as greater than 1 minute; FM events calculated using 10% methodology Source: H1 OMS Data

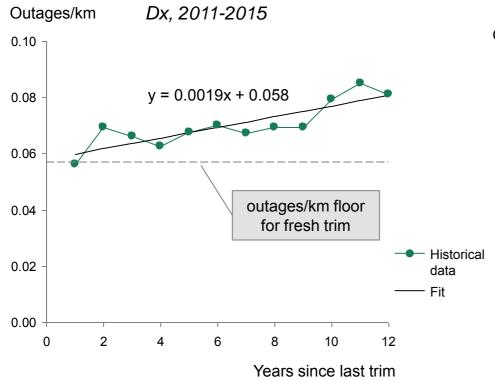
THE BOSTON CONSULTING GROUP

Copyright © 2016 by The Boston Consulting Group, Inc. All rights

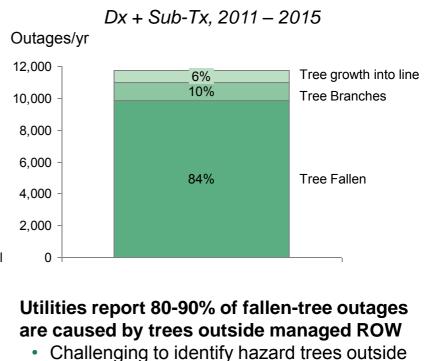
H1's historical vegetation management cost effectiveness on par with other utilities

Note: Data includes LOS and excludes FM; FM events calculated using 10% methodology Source: BCG Analysis, BCG experience with other utilities

veg mgmt strategy overview v5.pptx


THE BOSTON CONSULTING GROUP

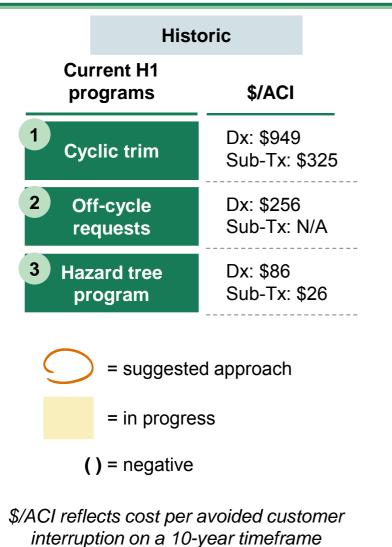
Draft—for discussion only

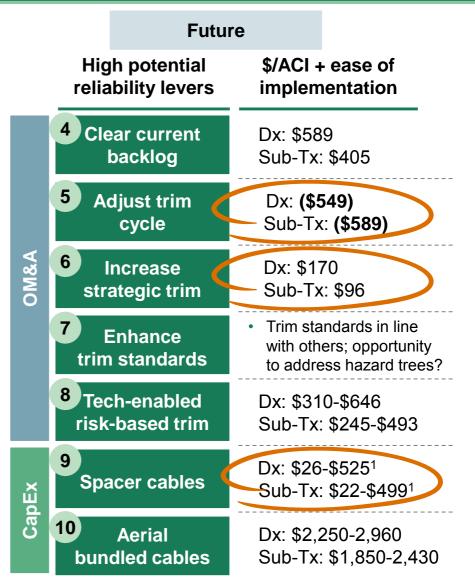

hydro

Outages increase with time since last trim – but base level of outages likely due to fall-ins

Recently trimmed feeders still suffer from number of tree-related outages

Majority of tree-related outages caused by trees falling from off ROW


maintenance zone


Outage/km floor suggests trimming on <u>1-year</u> cycle reduces tree-related SAIFI by 18%, from 0.51 to 0.42

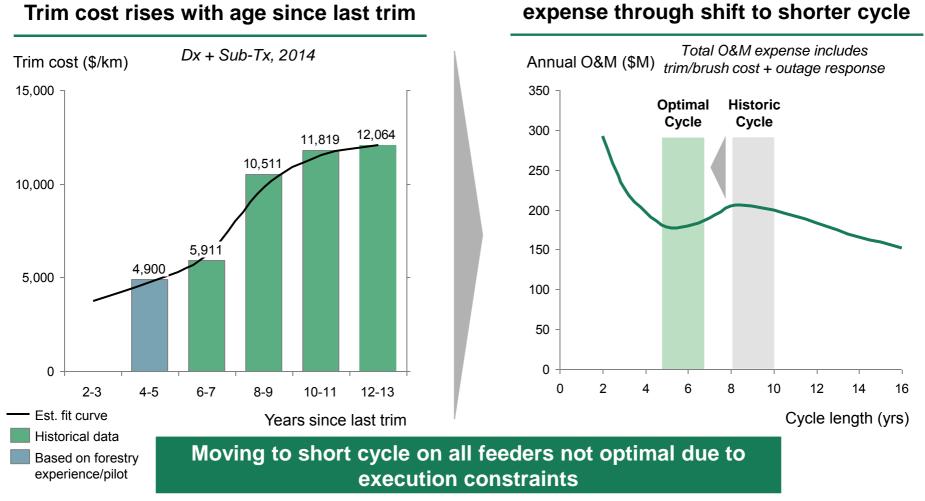
Note: Outages/km data includes LOS and excludes FM; outages/yr data includes FM events; data follows the Hydro One standard defining a sustained outage as greater than 1 minute; FM events calculated using 10% methodology. Source: H1 OMS Data

Copyright © 2016 by The Boston Consulting Group, Inc. All rights reserved

Several potential levers identified to improve vegetation management program

Source: BCG Analysis, H1 OMS Data, 1. Lower limit of cost range reflects \$/ACI for first 100km of addressible line. veg mgmt strategy overview v5.pptx THE BOSTON CONSULTING GROUP

Draft—for discussion only


eserved

Copyright © 2016 by The Boston Consulting Group, Inc. All rights

hydro

Increased trim costs with age lead to lower overall VM costs with shorter cycles

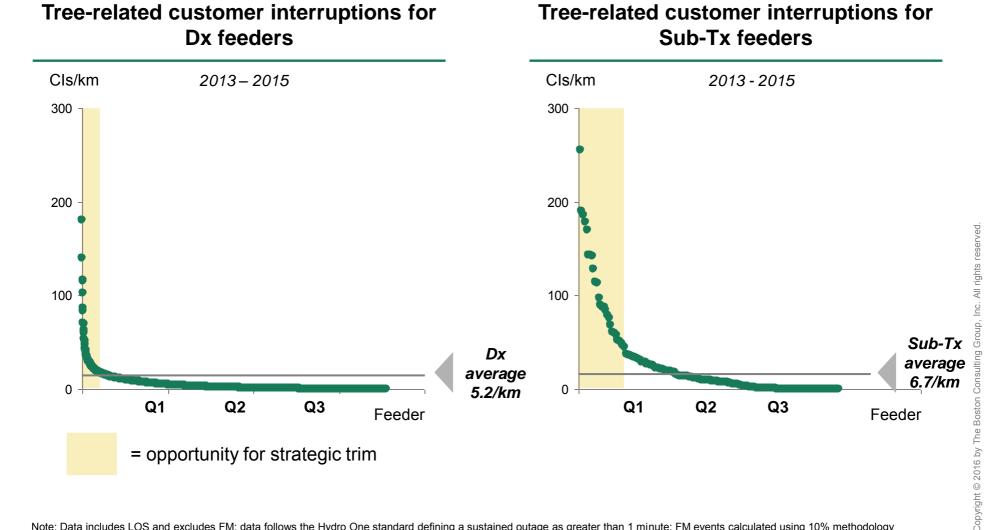
Trim cost rises with age since last trim

Source: H1 forestry data, H1 OMS data, H1 short cycle study

veg mgmt strategy overview v5.pptx

THE BOSTON CONSULTING GROUP

Draft—for discussion only


Opportunity to reduce total O&M

Increase strategic trim

6

Small number of feeders have significantly more treerelated outages than system average

Note: Data includes LOS and excludes FM; data follows the Hydro One standard defining a sustained outage as greater than 1 minute; FM events calculated using 10% methodology Source: H1 OMS Data, BCG Analysis

THE BOSTON CONSULTING GROUP

Draft—for discussion only

Adjusting strategic trim prioritization mechanism yields significant cost benefits

H1's current strategic trim prioritization emphasizes overall SAIDI/SAIFI

H1's current prioritization criteria

- Feeder-level reliability data (SAIDI / SAIFI for last 3 years) - (70%)
- Years since last trim (20%)
- Condition data from SAP on per-pole
- defects (10%)

More cost efficient to prioritize based on potential \$/ACI

Focus on CI/km rather than absolute number of interruptions

 Customer interruptions (non-FM) per km is more relevant reliability metric than total CI

Factor in variation in trimming costs

- · Longer feeders are more expensive to trim
- Trimming costs vary significantly by region

Age and defect count do not enhance prediction of future reliability

Projected SAIFI impact of highest priority Dx feeder trim

	H1 2016 Scheduled ¹	H1 2016 Prioritized ²	New Priority ³
Cost (\$M)	25.5	25.7	7.3
SAIFI Improve.	0.013	0.013	0.013
\$/ACI	302	303	88

1. Highest priority feeders using H1 methodology scheduled for work in 2016. 2. Highest priority feeders using H1 methodology. 3. Highest priority feeders using new \$/ACI methodology. Source: H1 OMS Data, BCG Analysis

Spacer cables provide opportunity to reduce outages from tree fall-ins, but are not suitable everywhere

Spacer cables offer potential to reduce tree-caused outage baseline

Network reliability benefits

 Reduction in tree-caused outages of 70-90%¹ relative to bare wires

Reduced tree trimming costs

Compact design and shielded wires allow vegetation to grow closer to lines

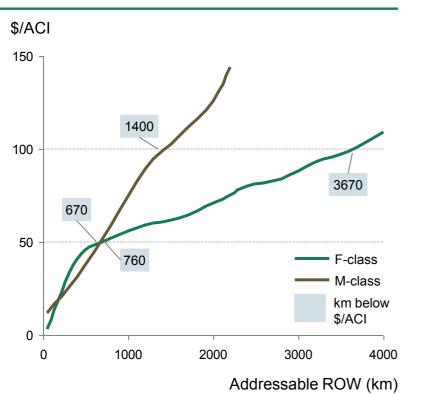
Assumptions

Reduction in VM spend of $30\%^{3,4}$ and tree-related outages by $70\%^{1}$

Incremental spacer cable cost is 15% above bare line $\mbox{cost}^{3,4}$

Spacer cables have low \$/ACI on select feeders

	Dx	Sub-Tx
Spacer Cables	\$26-\$525 ²	\$22-\$499 ²


Initial Observations

- Low \$/ACI for both Dx and Sub-Tx on highimpact feeders
- 2 Cost effectiveness of spacer cables highly dependent on reduction in customer interruptions
- 3 Spacer cables likely not suitable for widespread deployment, but appear cost effective for some feeders

Outages measured under all conditions Source: H1 OMS Data, 1. Electric Power Distribution Handbook, T&D World. 2. Lower limit of cost range reflects \$/ACI for first 100km of addressible line. 3. CEMIG (Brazil) case study 4. Hendrix Wire and Cable. BCG Analysis

Spacer cables cost effective on significant portion of ROW

ROW addressable by spacer cables

Replacement program targets highest impact feeders at end of line life

Spacer cables only suitable when line is at end of life or for new build

 Not cost effective to replace conductors which are in good condition

Feeders with highest Cl/km are most attractive target for replacement

 Areas with either high outages/km (densely forested) or high Cl/outage (densely populated) are good candidates

Trimming standards can be adjusted on replaced feeders

Compact design and covered conductors
 permit smaller clearances

Deployment will require implementation of new design standards as lines reach end of life

Copyright © 2016 by The Boston Consulting Group, Inc. All rights reserved

Source: H1 OMS data, H1 forestry data veg mgmt strategy overview v5.pptx

Summary of proposed vegetation management program

1 Strict maintenance of shorter cycle on high-priority feeders

 Maintain M-class, LDA-serving, and 3-phase F-class feeders on strict cycle corresponding to lowest total VM costs

2 Increased use of targeted strategic trim on lower-priority feeders

- Adjust prioritization methodology to maximize avoided customer interruptions per dollar
- Continue to evaluate tech-based monitoring to better assess vegetation risk
- 3 Deployment of spacer cables in high-impact areas as lines reach end of life
- 4

Management of existing backlog to maintain system integrity

- Will need to establish maximum age since last trim
- Likely to be driven by regulatory pressures

Appendix

Adjust trim cycle Shortening trim cycle results in lower costs and higher reliability

Methodology

Calculated total veg mgmt cost for various trim cycle lengths

• used historical \$/km trim cost data

Determined historical outages/km for all Dx feeders based on time since last trim

Estimated impact of scenarios on tree-related SAIFI

 reduction in tree-related outages used to calculate O&M savings from storm/trouble calls

Assumptions

Sub-Tx feeders display same rate of reliability benefit degradation from veg mgmt as Dx feeders

Shorter trim cycle would yield lower overall costs and better reliability

Total cost (trim + brush + trouble calls)	Tree-related SAIFI
485	0.420
292	0.433
229	0.446
197	0.460
178	0.473
179	0.486
190	0.500
207	0.513
	(trim + brush + trouble calls) 485 292 229 197 178 178 179 190

Initial Observations

 System will be further segmented to determine optimal cycle length for feeder subsets hvdro

Note: Data includes LOS and excludes FM; data follows the Hydro One standard defining a sustained outage as greater than 1 minute; FM events calculated using 10% methodology Source: H1 OMS Data, BCG Analysis

6

Targeted strategic trim is more cost effective than cyclic trim

Methodology

Estimated \$/ACI for each feeder

- Outages/km assumed to reach system average after targeted trim
- · Trim cost estimated from historical data

Rank ordered feeders from worst to best based on \$/ACI

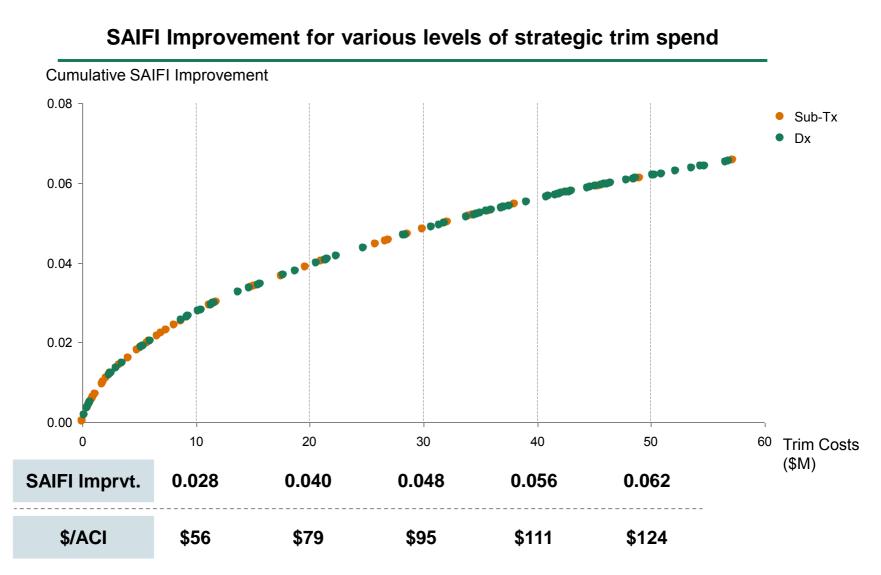
Determined total cost and reliability impact for all feeders with \$/ACI below \$300

Assumptions

Assumed feeder outages/km reaches system average after strategic trim

Linear decline in VM benefit over 5 year period

Projected impact from first year targets


	Dx	Sub-Tx
Total ACI (5-yr)	220,000	209,000
Trim Cost	\$37 M	\$20 M
SAIFI Improvement	0.034	0.032
\$/ACI	170	96
		H1 has strategic trim program

Initial Observations

- 1 High-outage feeders represent large SAIFI improvement opportunity
- 2 Hydro One initiated strategic trim program on F-class feeders in 2016

Well-targeted strategic trim has large SAIFI impact

Source: H1 OMS Data, BCG Analysis

veg mgmt strategy overview v5.pptx

Recent reliability is best predictor of future SAIFI

Years since last trim and defects/km do not reliably predict SAIFI for individual feeders

Factors used in current strategic trim prioritization

- 1 Feeder-level reliability data (SAIDI / SAIFI for last 3 years) - (70%)
- 2 Years since last trim (20%)
- 3 Condition data from SAP on per-pole defects (10%)

Recent CI/km is only significant predictor of 2015 CI/km¹

	Coeff.	Std. Error	p-value
2012-2014 [–] Cl/km	0.66	0.06	2 x 10 ⁻²⁵
Age (yrs)	-0.21	0.16	0.21
Defects/km	0.14	0.31	0.66

Suggested new prioritization criteria

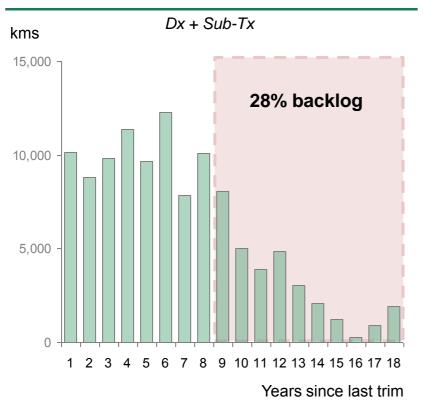
- Length-normalized feeder-level reliability data (CI/km for last 3 years)
- 2 Trimming cost/km
- Projected \$/ACI for each feeder

1. Multiple regression analysis performed on feeders trimmed prior to 2014. Coefficient indicates rise in 2015 Cl/km for one unit rise in independent variable listed. P-value is likelihood relationship between variables was obtained by chance.

Enhance trim standards

7

hydro Jurisdictions with mandated vegetation management have similar clearance standards to Hydro One but shorter cycles


State/province (standard)	Horizontal Clearance (m)	Vertical Clearance (m)	Trim Cycle (yrs)	Motivation
Hydro One	3.0 (at trim)	3.0 (at trim)	8	 Provide cost effective service that mitigates tree related risk
Maryland	3.0 (at trim)	3.0 (at trim)	4 (urban) 6 (rural)	 Response to PEPCO's status as one of the most unreliable utilities
Alberta	1.0	2.0	n/a	 Desire to create 'best in class' utilities which comprehensively address risk of tree contact
Oregon	1.5	1.5	n/a	 Attempt to mitigate accidents and electrocutions from climbing tree near power lines
California	1.2	1.2	n/a	 Primarily adopted to reduce high risk of fire
Missouri	n/a	n/a	6(r) 4 (u)	Improve utility reliability
Oklahoma	n/a	n/a	4	Improve utility reliability
Florida	n/a	n/a	3	Reduce hurricane related damage

Source: 1. CNUC 2010 Regulatory Requirements Report 2. Oregon Public Utilities Commission Division 24 Safety Standards. 3. Electrical Protection Act Alberta Electrical & Communication Utility Code Section 3.1.7 4. MD PSC RM 43 Vegetation Management 5. California Public Resource Code 4293, General Order 95 Rule 35

ire right-of-

Backlog has now grown to nearly 30% of entire right-ofway, increasing strain on vegetation management

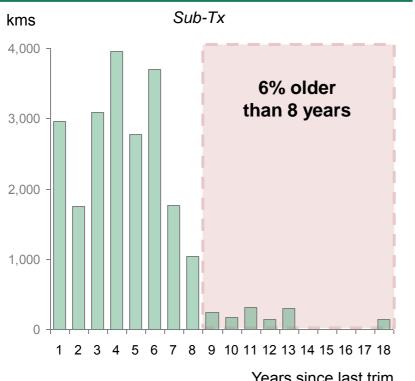
28% of right-of-way is greater than 8 years since last clearing

Backlog imposes growing burdens on vegetation management

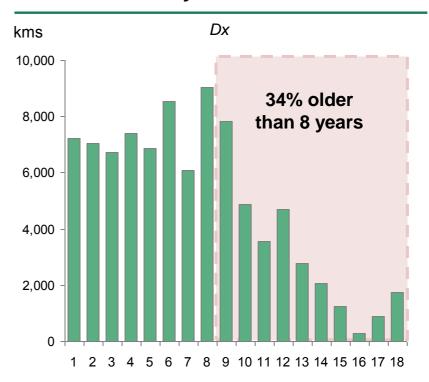
Trimming costs increase with years since last trim

- More trees must be addressed in cyclic trim
- Higher-cost labor must be employed for brush management when brush nears lines (>6 years)

Safety concerns rise for trimming and outage response


 Overgrown feeders present greater challenges for forestry and repair crews working in vicinity of lines

Tree-related outages increase with years since last trim


 Outage rate rises linearly with trim age causing deterioration in system SAIFI

4 Clear backlog Sub-Tx lines have been maintained on a 6-8 year cycle at the expense of Dx lines

Nearly all Sub-Tx lines have been maintained on 6-8 year cycle

Over one third of Dx feeders older than 8 years old

Years since last trim

Years since last trim

Current vegetation management spending insufficient to maintain all ROW on <8 year cycle

Source: Hydro One Asset Portfolio Document: Right-of-Way Management

veg mgmt strategy overview v5.pptx

THE BOSTON CONSULTING GROUP

Copyright © 2016 by The Boston Consulting Group, Inc. All rights reserved

hydro