Daliana Coban

Manager, Regulatory Law Toronto Hydro-Electric System Limited 14 Carlton Street

14 Carlton Street Toronto, ON M5B 1K5 Telephone: 416.542.2627 Facsimile: 416.542.3024

 $\underline{regulatory affairs @toronto hydro.com}$

www.torontohydro.com

July 5, 2019

Via RESS

Ms. Kirsten Walli Board Secretary Ontario Energy Board PO Box 2319 2300 Yonge Street, 27th floor Toronto, ON M4P 1E4

Dear Ms. Walli:

Re: EB File No. EB-2018-0165, Toronto Hydro-Electric System Limited ("Toronto Hydro")
Custom Incentive Rate-setting ("Custom IR") Application for 2020-2024 Electricity Distribution
Rates and Charges – Undertaking Responses for Day 3 of the Oral Hearing and Request for

Corrections to the Oral Hearing Transcripts for Day 3 and 4

Please find enclosed Toronto Hydro's responses to undertakings J3.1 and J3.3 provided on Day 3 of the Oral Hearing. Toronto Hydro is filing its confidential responses to undertakings JX3.4 and JX3.5 under separate cover.

In addition, Toronto Hydro has reviewed the transcripts from Day 3 and 4 (July 3rd and 4th, respectively) and requests that the transcripts be corrected for the following errors:

Day 3 (July 3, 2019)

- Page 8, line 16: "133.8" should state "13.8" [Redacted Public Transcript];
- Page 81, lines 9, insert word "in" following "resulted" [Redacted Public Transcript];
- Page 124, line 2, "CEA" should state "ACA" [Redacted Public Transcript]; and
- Page 144, line 26, "H" should be replaced with "age" [Redacted Public Transcript].

Day 4 (July 4, 2019)

- Page 37, line 13, "denomination" should state "combination;"
- Page 65, line 1, "innovative" should state "intrusive;"

- Page 74, line 12, "course" should state "coarse;"
- Page 118, lines 17, 22, 26 and 28: "ACM" should state "ACA;" and
- Page 131, line 6, "have" should state "half."

Please contact me directly if you have any questions or concerns.

Respectfully,

Daliana Coban

Manager, Regulatory Law

Toronto Hydro-Electric System Limited

cc: Lawrie Gluck, OEB Case Manager

Michael Miller, OEB Counsel

Parties of Record

Amanda Klein, Toronto Hydro

Andrew Sasso, Toronto Hydro

Charles Keizer, Torys LLP

Toronto Hydro-Electric System Limited

EB-2018-0165 Oral Hearing Schedule J3.1

FILED: July 5, 2019 Page 1 of 1

2	SCHOOL ENERGY COALITION		
3			
4	UNDERTAKING NO. J3.1:		
5	Reference(s): 2B-Staff-80 (d)		
6			
7	In reference to interrogatory Staff 80 or 81, to make available on the record the excerpt		
8	that is relied upon in answer to (d) of the undertaking, as referenced in EB-2012-0064.		
9			
10			
11	RESPONSE:		
12	Appendix A contains the excerpt referred to in Toronto Hydro's response to interrogatory		

2B-Staff-80 (d) (EB-2012-0064, Exhibit B, Tab 2, Schedule B6, pages 32-37). In this

excerpt, Toronto Hydro explains the various reasons why it is not feasible to replace

overhead rear lot distribution assets with overhead front lot distribution assets. These

reasons are also summarized in Toronto Hydro's evidence for the Real Lot Conversion

segment at pages 27-28 of Section E6.1 in Exhibit 2B.

ORAL HEARING UNDERTAKING RESPONSES TO

Panel: Distribution Capital & Maintenance

1

13

14

15

16

17

Toronto Hydro-Electric System Limited EB-2018-0165

Oral Hearing Schedule J3.1 Appendix A Filed: July 5, 2019

(6 pages)

Toronto Hydro-Electric System Limited EB-2012-0064 Tab 4 Schedule B6

ORIGINAL

ICM Project

Rear Lot Construction Segment

1 IV ALTERNATIVES FOR ADDRESSING REAR LOT CONSTRUCTION

2 3 1. Alternatives Considered

7

10

11

12

13

15

16

- 4 THESL has considered four alternatives to address the issues associated with rear lot service:
- Option 1, remediation where aged rear lot facilities are repaired/replaced on an as needed basis;
 - Option 2, rebuild rear lot distribution to ensure poles and assets meet current safety regulations;
 - Option 3, replace overhead rear lot distribution assets with overhead front lot distribution assets; and
 - Option 4, replace overhead rear lot distribution assets with underground front lot distribution assets.

Table 4 provides a summary of each of these four options.

Table 4: Summary of rear lot conversion options considered by THESL

Option	Summary of Procedure	
Option 1	 All poles, transformers and assets remain as is 	
Remediation, where only aged	 Repairs are done on an as-needed basis to the 	
assets are repaired/replaced	defective assets	
aged assets on an as-needed		
basis		

1

4

ICM Project | Rear Lot Construction Segment

Option	Summary of Procedure		
Option 2	 Trench property owners' backyards to upgrade the 		
Rebuild rear lot distribution	underground cables passing through their yards		
	 Remove existing poles and transformers 		
	 Perform necessary tree-trimming 		
	 Install new poles, cable covers to protect the cables 		
	going into the risers		
	 Install new transformers 		
	 Backfill the trench, re-sod the yard 		
	 Restore power to the customers 		
Option 3	 Transformers, primary cable, secondary bus installed 		
Replace overhead rear lot	overhead on poles		
distribution assets with	 Secondary services supplied from poles/mid-span 		
overhead front lot distribution	taps		
assets			
Option 4	 Primary and secondary bus installed in concrete- 		
Replace overhead rear lot	encased ducts within city road allowance		
distribution assets with	 Above grade low-profile or below grade submersible 		
underground front lot	transformers to be installed		
distribution assets	Secondary services on private property to be installed		
	in underground direct buried duct to existing meter		
	base locations		
	 Meter bases to be changed from overhead to 		
	underground where required		

Options 1 and 2 do not address or resolve the underlying safety and reliability issues associated 2

with rear lot service. These Options would perpetuate the safety, cost, reliability and customer 3

service issues described in Section III. They would also require continuing intrusion into the

affected backyards, disrupting customers' use and enjoyment. If the remediation or rebuild 5

were to occur in the winter, crew access would become more challenging. If carried out in the 6

ICM Project Rear Lot Construction Segment

- summer, homeowners would lose the use of their backyards, a time when they most want to 1
- enjoy them. 2

3

8

- Further, these intrusions will provide little lasting benefit. As soon as an animal contact occurs, 4
- or a serious storm takes place, resulting in an unplanned outage, homeowners will be 5
- 6 inconvenienced, once again, by crews accessing their properties. In the meantime, the safety
- risks for THESL's crews and customers remain. 7
- 9 With regard to Option 3, replacement of overhead rear lot distribution assets with overhead
- front lot distribution assets, Table 5 provides an overview developed by THESL's Standard Design 10
- Practice Team regarding the challenges involved in installing overhead service. 11

ICM Project Rear Lot Construction Segment

Table 5: Overview of THESL Standard Design Practice Team's considerations for overhead 1

distribution design 2

Challenge	Reason		
Customer acceptance	Streetscape aesthetics will be negatively impacted with the		
Customers will be	installation of poles, pole-mounted transformers, overhead		
reluctant to accept a new	primary and secondary cables, and serviced cables		
pole line in front of their	Customer acceptance of a pole installation in front of their		
property for the	property will be difficult to obtain, in most cases		
enumerated reasons	 Customers may view this installation as decreasing the value 		
	of their properties		
City approval	Negative impact on streetscape aesthetics		
Obtaining City approval	 Increased customer complaints 		
will be challenging	 Any 'above ground' utility installation is met with a higher 		
	level of City scrutiny. For example, Ward 2 in Etobicoke		
	required a site meeting with the Councillor prior to any		
	new/relocated down guy installation		
Tree Trimming	■ This option will continue all the problems associated with		
	overhead plant		
	■ Existing areas have mature trees which will require extensive		
	tree trimming to accommodate clearances for installation of		
	poles, primary and secondary bus, secondary services and		
	transformers. Relative to the undergrounding option, this will		
	increase operating costs due to increased tree trimming		
	required		
	 Negative impact on neighbourhood aesthetics 		
Toronto Hydro Corporate	■ Increased resources required to deal with an extensive		
Communications	community outreach initiative		
	 Delays are expected to occur in situations where customers 		
	reject the overhead design option and mobilize to oppose it		

1

ICM Project Rear Lot Construction Segment

Challenge	Reason	
Scheduling	In the event the overhead option is ultimately rejected due to customers' complaints and THESL is required to install underground service, delays of six months to a year to	
	redesign and obtain approvals can be expected	
Foreign Attachments	 There may be instances where foreign attachments (Bell, Rogers) remain on the existing rear lot pole line. Customers will be reluctant to accept pole lines in both the rear and the front of their property 	

- Table 6 provides a summary comparison of Option 3 (replacement with overhead front lot 2
- distribution assets) and Option 4 (replacement with underground front lot distribution assets),
- the two options considered for conversion of rear lot plant.

ICM Project Rear Lot Construction Segment

Table 6: Summary of the two rear lot conversion options 1

Criteria	Option 3 OH	Option 4 UG
Safety	Favourable	Highly Favourable
Customer Service Initiative	Least Favourable	Highly Favourable
Corporate Communications	Least Favourable	Highly Favourable
Customer Acceptance	Least Favourable	Highly Favourable
City Approvals	Least Favourable	Favourable
Reliability	Least Favourable	Highly Favourable
Tree Trimming	Least Favourable	Favourable
Construction Cost (Initial)	Highly Favourable	Least Favourable
Service Connections	Least Favourable	Favourable
Scheduling	Least Favourable	Favourable

2

As is evident from Table 6, Option 4 (replacement with underground front lot distribution assets) is the more favourable option on every dimension, except initial construction cost. This Option's higher initial construction cost is expected to be overcome, however, by the lower overall cost of ownership including lower maintenance, community engagement, and customer outage cost. When comparing the overhead and underground front lot options, the underground solution provides a cost of ownership that is approximately \$47.97M less when compared to the overhead solution. This difference in cost of ownership is due to the reduced risks associated with the underground plant when compared to the overhead plant, when accounting for risks pertaining to asset failure as well as non-asset-related risks associated with weather, animal and human-related events, which are directly associated to the overhead system. As Option 4 is expected to be the most favourable option from the customers' perspective, it is recommended.

Toronto Hydro-Electric System Limited

EB-2018-0165 Oral Hearing Schedule J3.3

FILED: July 5, 2019 Page 1 of 1

ORAL HEARING UNDERTAKING RESPONSES TO 1 **POWER WORKERS UNION** 2 3 **UNDERTAKING NO. J3.3:** 4 Reference(s): Exhibit K3.2 5 6 To review and confirm whether Toronto Hydro is in agreement with the change numbers 7 in the tables at page 3 and page 5 of Exhibit K3.2. 8 9 10 **RESPONSE:** 11 Toronto Hydro confirms that the referenced information is accurate and consistent with 12 the utility's calculations. 13