SCHOOL ENERGY COALITION

CROSS-EXAMINATION MATERIALS – PANEL 5

EB-2018-0165

TORONTO 2020-2024 RATES

1	1 RESPONSES TO SCHOOL ENERGY COALITIO	N INTERROGATORIES
2	2	
3	3 INTERROGATORY 21:	
4	4 Reference(s): Exhibit 1B, Tab 4, Schedule 2, p. 3	
5	5	
6	6 SEC is interested in understanding how the current PSE cos	st benchmarking methodology
7	⁷ compares with the OEB's approved cost benchmarking me	thodology. To assist in this,
8	8 please apply the current PSE cost benchmarking methodol	ogy to each of the ten largest
9	9 electricity distributors in Ontario, including Toronto Hydro,	for each of the years 2014-
10	¹⁰ 2017, and compare the results to the results of the OEB's a	pproved cost benchmarking
11	11 methodology for those same distributors for the same yea	rs. Please ensure that the
12	comparison includes each of the six utilities PSE added to i	ts dataset individually, and not
13	13 aggregated as Alectra.	
14	14	
15	15	
16	16 RESPONSE (PREPARED BY PSE):	
17	17 Expansion of the sample to include the top ten Ontario dis	tributors, and adding an
18	additional year to the sample, would require a substantial	amount of work and take a
19	19 significant amount of time. PSE does not currently have al	l of the necessary data for
20	these 10 distributors and does not know whether all such o	data would be readily available.
21	Data on items such as wage levels would need to be gathe	red. This task therefore could
22	not be completed in the time allotted, and also would have	e limited (if any) additional
23	value. The requested results using the current PSE method	dology can be provided for the
24	seven Ontario distributors already included in the dataset	for the years 2014-2016, and
25	25 these results can be compared to the OEB cost benchmark	ing results for those years.

1 The results and comparison below address SEC's interest in understanding how the 2 current PSE cost benchmarking methodology compares with the OEB's benchmarking 3 methodology. As can be seen by the table below, the two benchmarking methodologies produce somewhat similar results for a number of the distributors, with the exceptions 4 being Toronto Hydro and Kitchner-Wilmont. Enersource, Horizon Utilities, London Hydro, 5 and Hydro Ottawa would all remain in the same stretch factor cohort group with either 6 approach. EnWin would move one group higher from 0.3% to 0.45%. Kitchner-Wilmont 7 8 would move up two groups higher (from 0.15% to 0.45%), and Toronto Hydro would 9 move down three groups (from 0.60% to 0.15%). The similarities in results for a number of the smaller Ontario distributors, and the differences in results for Toronto Hydro, are 10 explained by a number of reasons, including the following three main ones: (i) the 11 methodology used by the OEB has no urban congestion variable, and the smaller Ontario 12 distributors do not have much of an urban congestion challenge (in contrast to Toronto 13 Hydro); (ii) the sample used by the OEB methodology consists of Ontario distributors, all, 14 except for Hydro One, are smaller than Toronto Hydro – that methodology is therefore 15 more accurate for other Ontario distributors (i.e. not Toronto Hydro); and (iii) the 16 17 methodology used by the OEB assumes that the costs of capital construction are the same across the province, when in fact, these costs are much higher in Toronto compared to 18 other smaller places in Ontario. 19

20

Given that Toronto Hydro's PSE-projected benchmarking scores converge to the 0.30% stretch factor group during the CIR period (assuming full funding of the spending

amounts), PSE is recommending a 0.30% stretch factor.

Toronto Hydro-Electric System Limited EB-2018-0165 Interrogatory Responses **1B-SEC-21** FILED: January 21, 2019 Page 3 of 3

Distributor	PSE	OEB	PSE	OEB	PSE	OEB	PSE	OEB
	2014	2014	2015	2015	2016	2016	2017	2017
Toronto Hydro	-22.8	+49.9	-21.4	+51.5	-18.3	+52.3	-16.0	+52.9
Enersource	+2.4	-13.9	+9.1	-8.2	+10.4	-6.8	NA	NA
EnWin	+15.7	+10.9	+16.4	+9.9	+15.4	+9.6	NA	+5.3
Horizon	-6.0	-5.3	-2.9	-2.1	-4.1	-3.9	NA	NA
Utilities								
Kitchner-	+14.0	-19.0	+11.5	-22.3	+12.0	-20.4	NA	-19.9
Wilmont								
London Hydro	-6.6	-12.8	-3.8	-9.9	-2.0	-8.0	NA	-7.1
Hydro Ottawa	+10.3	+12.7	+13.3	+15.2	+12.9	+15.7	NA	+16.5

1 Table 1: Comparison of Benchmarking Scores

RESPONSES TO SCHOOL ENERGY COALITION INTERROGATORIES 1 2 **INTERROGATORY 22:** 3 Reference(s): Exhibit 1B, Tab 4, Schedule 2, p. 6 4 5 SEC is interested in understanding the impact of the %CU variable and the %UG*%CU 6 variable on the results in Table 1. Please re-specify and rerun the PSE model without 7 those variables, and provide the results in the same form as Table 1. 8 9 10 **RESPONSE (PREPARED BY PSE):** 11 This request is to create and run a different model that is not PSE's model, and is a 12 fundamentally different approach. Excluding these variables, and creating a model 13 without them, is not a proper or robust approach and would produce misle ading results 14 in portraying Toronto Hydro's cost performance. Serving a congested urban core and 15 constructing underground power lines in congested urban areas significantly increases a 16 distributor's total costs. This fact has been confirmed both empirically and through 17 engineering analysis. Excluding these variables from the model would be ignoring 18 important and statistically significant cost drivers that are significant at a 99.9% 19 confidence level. Excluding variables that have both strong engineering and statistical 20 support will produce misleading results that suffer from omitted variable bias. See also 21 the responses to 1B-SEC-28 and 1B-Staff-32 (b) in respect of the importance of these 22 variables. 23

1	RESPONSE	S TO SCHOOL ENERGY COALITION INTERROGATORIES
2		
3	INTERROGATORY 2	23:
4	Reference(s):	Exhibit 1B, Tab 4, Schedule 2, p. 6
5		
6	SEC is seeking to ur	nderstand how Toronto Hydro's cost performance compares to the
7	benchmark over di	fferent time periods. To this end, we have prepared the following
8	spreadsheet that e	xpands Table 1. (A live version of the spreadsheet is included with the

- 9 filing of these interrogatories)
- 10

Toronto Hydro Actual and Benchmark Cost Increases								
	Using PSE Model							
Year	Actual	Increase	Benchmark	Increase				
2005	\$436,128		\$641,275					
2006	\$450,686	3.34%	\$681,212	6.23%				
2007	\$502,433	11.48%	\$744,486	9.29%				
2008	\$556,429	10.75%	\$813,528	9.27%				
2009	\$595,932	7.10%	\$852,775	4.82%				
2010	\$647,456	8.65%	\$882,130	3.44%				
2011	\$710,544	9.74%	\$912,729	3.47%				
2012	\$691,388	-2.70%	\$910,814	-0.21%				
2013	\$727,152	5.17%	\$925,488	1.61%				
2014	\$777,414	6.91%	\$976,095	5.47%				
2015	\$826,886	6.36%	\$1,024,030	4.91%				
2016	\$861,394	4.17%	\$1,034,492	1.02%				
2017	\$904,560	5.01%	\$1,061,642	2.62%				
2018	\$964,885	6.67%	\$1,095,430	3.18%				
2019	\$999,492	3.59%	\$1,122,407	2.46%				
2020	\$1,044,567	4.51%	\$1,148,601	2.33%				
2021	\$1,085,324	3.90%	\$1,174,549	2.26%				
2022	\$1,134,689	4.55%	\$1,201,662	2.31%				
2023	\$1,180,820	4.07%	\$1,229,463	2.31%				
2024	\$1,225,282	3.77%	\$1,257,907	2.31%				
Total 19 Ye	ear Increase	180.95%		96.16%				
CAGR - 19	years	5.59%		3.61%				
Increase f	rom 2017	35.46%		18.49%				
CAGR - 7 y	ears	4.43%		2.45%				

1	With r	espect to Table 1 and the above spreadsheet:
2	a)	Please confirm that the calculations and results shown above are correct.
3		
4	b)	Please add a column to the above table showing the increase in outputs assumed
5		for each year in the expected costs. Please confirm that the same increase in
6		outputs has been assumed for each year in the forecast Toronto Hydro costs.
7		Please provide the expected costs for the period 2020 to 2024 using the PSE
8		model if the outputs are assumed to remain at 2019 levels.
9		
10	c)	Please reconcile, mathematically, the rates of increase for Toronto Hydro on the
11		above table with the rates of increase of the CPCI proposed in Ex.1B/4/1, p. 13,
12		Table 5.
13		
14	d)	Please confirm that, in seventeen of the nineteen years, Toronto Hydro's actual
15		cost increases were higher than the PSE benchmark.
16		
17	e)	Please confirm that, for each of the years in the CIR period, Toronto Hydro
18		proposes to increase its costs at a rate in excess of the benchmark set by its own
19		expert, and that on average it proposes to increase its costs from 2017 to 2024 by
20		almost double the PSE benchmark increase.
21		
22	f)	Please explain why, in the expert's opinion, the expected costs for a distributor
23		like Toronto Hydro were expected to increase over the nineteen years in the
24		model period by more than twice the rate of inflation. What underlying or
25		systemic factors existed during this period, in the expert's opinion, that resulted in
26		Toronto Hydro's costs rising at a much greater rate than the costs of other

7

1			businesses in the Canadian economy?
2			
3		g)	Please provide a detailed explanation of any investigations carried out by the
4			expert to determine the reasons why Toronto Hydro's actual costs in 2005 were
5			only 64.4% of the expected costs for that year using the current PSE cost
6			benchmarking methodology.
7			
8		h)	Please confirm that, if the Board only allowed the rates (and therefore costs) of
9			Toronto Hydro to increase at the same rate as the PSE benchmark from 2018 to
10			2024, Toronto Hydro's total costs for the five year CIR period would be \$548
11			million less than those proposed in the current application, and costs (and
12			therefore rates) in 2024 would be \$153 million (12.53%) less than proposed by
13			Toronto Hydro.
14			
15			
16	RES	SPO	NSE (PREPARED BY PSE):
17	a)	We	e can confirm that the actual and benchmark costs in the table match those in the
18		202	18 PSE Study and that the arithmetic percentage increases are calculated correctly.
19		Но	wever, in displaying the percentage increases, the conventional approach is to
20		sho	ow these logarithmically rather than arithmetically. Please see page 27 of the PSE
21		rep	port for an example of how to calculate a logarithmic difference. The arithmetic
22		apı	proach used in SEC's expanded table requires a decision on which denominator to
23		use	e in showing the change between the two numbers. In contrast, the logarithmic
24		apı	proach will produce the same answer regardless of that choice. In the table
25		pre	epared by SEC, the arithmetic approach is used with the prior year as the chosen
26		de	nominator. This will tend to exaggerate the percentage increase, due to the prior

8

- 1 year typically being the lower value. The table below shows the logarithmic
- 2 percentage differences.
- 3
- 4

PSE Expanded Table 1 (Logarithmic)

Toronto Hydro Actual and Benchmark Cost Increases						
	Using	PSE Mode	1			
Year	Actual	Increase	Benchmark	Increase		
2005	\$436,128		\$641,275			
2006	\$450,686	3.3%	\$681,212	6.0%		
2007	\$502 <i>,</i> 433	10.9%	\$744,486	8.9%		
2008	\$556,429	10.2%	\$813,528	8.9%		
2009	\$595,932	6.9%	\$852,775	4.7%		
2010	\$647,456	8.3%	\$882,130	3.4%		
2011	\$710,544	9.3%	\$912,729	3.4%		
2012	\$691,388	-2.7%	\$910,814	-0.2%		
2013	\$727,152	5.0%	\$925,488	1.6%		
2014	\$777,414	6.7%	\$976,095	5.3%		
2015	\$826,886	6.2%	\$1,024,030	4.8%		
2016	\$861,394	4.1%	\$1,034,492	1.0%		
2017	\$904,560	4.9%	\$1,061,642	2.6%		
2018	\$964,885	6.5%	\$1,095,430	3.1%		
2019	\$999,492	3.5%	\$1,122,407	2.4%		
2020	\$1,044,567	4.4%	\$1,148,601	2.3%		
2021	\$1,085,324	3.8%	\$1,174,549	2.2%		
2022	\$1,134,689	4.4%	\$1,201,662	2.3%		
2023	\$1,180,820	4.0%	\$1,229,463	2.3%		
2024	\$1,225,282	3.7%	\$1,257,907	2.3%		
Total 19 Year Incr	ease	103.3%		67.4%		
CAGR - 19 years		5.44%		3.55%		
Increase from 201	L7	30.35%		16.96%		
CAGR - 7 years		4.34%		2.42%		

5

6 b) The table below provides Toronto Hydro's outputs, which are the number of

7 customers and maximum peak demand. The percentage increase is calculated

8 arithmetically, to match the calculations found in the table in the question. However,

as we stated in our answer to the previous question, the logarithmic method is
 preferred. The increase in outputs is based on projections provided to PSE by Toronto
 Hydro. The forecasts in outputs are the inputs for determining the benchmark levels
 of Toronto Hydro's costs. The columns added by PSE are shaded in green.

6

Table 1 with THESL Outputs

Toronto	Hydro Actual	and Bend	hmark Cost li	ncreases				
	Usi	ng PSE Mo	del	1				
Vear	Actual	Increase	Benchmark	Increase	Number of Customers	Increase	Maximum Peak Demand	Increase
2005	\$136 128	mercuse	\$6/11 275	macase	676 678	marcuse	5 005	mercuse
2005	\$450,526	3 3/1%	\$681 212	6 23%	678 106	0 21%	5,005	0.26%
2000	\$502 / 33	11 / 8%	\$744.486	9.29%	679.913	0.21%	5,010	0.20%
2007	\$556.429	10 75%	\$744,400	9.25%	68/ 1/5	0.27%	5,018	0.00%
2000	\$595,425	7 10%	\$852 775	1.87%	690 2/3	0.0270	5,018	0.00%
2005	\$647.456	8 65%	\$82,775	3 1/1%	700 386	1 /17%	5,018	0.00%
2010	\$710 547	9.05%	\$002,130	3.44%	700,300	1 28%	5,018	0.00%
2011	\$601 388	-2 70%	\$910.81/	-0.21%	703,523	1 37%	5,018	0.00%
2012	\$727,152	5 17%	\$910,814	1 61%	724 576	2 21%	5,010	0.00%
2013	\$727,132	6 01%	\$925,488	5.47%	734,370	1 27%	5,018	0.00%
2014	\$276 226	6.36%	\$970,095	J.4776	744,232	1.32%	5,018	0.00%
2015	\$861 20/	1 17%	\$1,024,030	4.91%	750,511	0.48%	5,018	0.00%
2010	\$904,560	5.01%	\$1,054,452	2.62%	762 126	0.4070	5,018	0.00%
2017	\$964,500	6.67%	\$1,001,042	2.02/0	708,120	0.81%	5,018	0.00%
2010	\$904,885	2 E 09/	\$1,035,430	2 16%	773,901	0.70%	5,018 E 019	0.00%
2019	\$9999,492	3.39/0	\$1,122,407	2.40%	779,902	0.76%	5,010	0.00%
2020	\$1,044,507	4.51%	\$1,146,001	2.33%	707,505	0.94%	5,018	0.00%
2021	\$1,085,324	3.90%	\$1,174,549	2.20%	794,105	0.80%	5,018	0.00%
2022	\$1,134,689	4.55%	\$1,201,662	2.31%	801,729	0.96%	5,018	0.00%
2023	\$1,180,820	4.07%	\$1,229,463	2.31%	809,403	0.96%	5,018	0.00%
2024	\$1,225,282	3.77%	\$1,257,907	2.31%	817,078	0.95%	5,018	0.00%
Total 19 Ye	earIncrease	180.95%		96.16%		20.75%		0.26%
CAGR - 19	years	5.59%		3.61%		1.09%		0.01%
Increase fr	om 2017	35.46%		18.49%		6.37%		0.00%
CAGR - 7 y	ears	4.43%		2.45%		0.91%		0.00%

7

8	If the Toronto Hydro system stayed at its projected 2019 output values for	or both
---	--	---------

9 customers and maximum peak demand, the benchmark costs for the 2020 to 2024

- 10 period would be as indicated in the column shaded green in the following table. Note:
- 11 the maximum peak demand is already projected to remain flat in the PSE report.

Toronto	Hydro Actual	and Benc			
	Usi	ng PSE Mo			
					Benchmark using 2019 output levels
Year	Actual	Increase	Benchmark	Increase	for 2020-2024
2005	\$436,128		\$641,275		
2006	\$450,686	3.34%	\$681,212	6.23%	
2007	\$502,433	11.48%	\$744,486	9.29%	
2008	\$556,429	10.75%	\$813,528	9.27%	
2009	\$595,932	7.10%	\$852,775	4.82%	
2010	\$647,456	8.65%	\$882,130	3.44%	
2011	\$710,544	9.74%	\$912,729	3.47%	
2012	\$691,388	-2.70%	\$910,814	-0.21%	
2013	\$727,152	5.17%	\$925 <i>,</i> 488	1.61%	
2014	\$777,414	6.91%	\$976,095	5.47%	
2015	\$826,886	6.36%	\$1,024,030	4.91%	
2016	\$861,394	4.17%	\$1,034,492	1.02%	
2017	\$904,560	5.01%	\$1,061,642	2.62%	
2018	\$964,885	6.67%	\$1,095,430	3.18%	
2019	\$999,492	3.59%	\$1,122,407	2.46%	
2020	\$1,044,567	4.51%	\$1,148,601	2.33%	\$1,141,341
2021	\$1,085,324	3.90%	\$1,174,549	2.26%	\$1,160,328
2022	\$1,134,689	4.55%	\$1,201,662	2.31%	\$1,179,415
2023	\$1,180,820	4.07%	\$1,229,463	2.31%	\$1,198,885
2024	\$1,225,282	3.77%	\$1,257,907	2.31%	\$1,218,731
Total 19 Ye	ear Increase	180.95%		96.16%	
CAGR - 19	years	5.59%		3.61%	
Increase fr	om 2017	35.46%		18.49%	
CAGR - 7 y	ears	4.43%		2.45%	

Table 1 with THESL Outputs (Outputs stay at 2019 Level)

2

1

3 c) We are unsure what the question is requesting.

4

5 d) Confirmed. Given Toronto Hydro's low-cost position at the beginning of the sample,

6 with actual costs being \$200 million below benchmark costs, we would expect

⁷ convergence to the benchmark value. This would make it likely there would be more

8 years where actual cost increases exceed benchmark cost increases.

Toronto Hydro-Electric System Limited EB-2018-0165 Interrogatory Responses **1B-SEC-23** FILED: January 21, 2019 Page 7 of 8

1	e)	The PSE benchmarking study makes assumptions and normalizations in calculating the
2		actual costs reported in the study. The cost levels reported by PSE are not equivalent
3		to the revenue requirement and cost levels being requested by Toronto Hydro. We
4		can confirm that the actual costs shown for Toronto Hydro in Table 1 increase at a
5		rate in excess of the benchmark calculated by PSE. This is to be expected for a utility
6		that is requesting a C factor to meet its capital needs. By our calculations, the
7		increase is not double (or near double) the PSE benchmark increase. The PSE
8		benchmark increases by \$196 million from 2017 to 2024. Toronto Hydro's actual
9		(projected) total costs increase by \$320 million during that same period.
10		
11	f)	The expected costs (benchmark costs) increased by about 3.5% annually during the
12		full sample period. There are two primary reasons this is higher than the general rate
13		of inflation.
14		
15		The first is that Toronto Hydro's system added customers during this period. Since the
16		3.5% is measuring costs, and customers are the primary driver of costs, we would
17		expect the growth rate in the number of customers to increase a utility's costs above
18		the industry input price inflation. In Toronto Hydro's case, customers grew by 1.1%
19		during the sample period. The second primary reason is that the electric distribution
20		industry has experienced industry-specific input price inflation at a level higher than
21		the general economy. This is due to the different input components of the electric
22		distribution industry relative to the composition of the economy at large. An example
23		of this is that the price of copper has increased by an annual growth rate of
24		approximately 4.4% from 2005 to the present day. Capturing these differences is why
25		using an asset price inflation index that is specific to the electric distribution industry
26		is important.

g) There were no investigations carried out by PSE to determine the reasons why 1 2 Toronto Hydro's actual costs in 2005 were only 64.4% of the expected costs for that 3 year. Toronto Hydro in 2005 and onward has consistently been below its cost benchmarks with convergence towards the benchmarks. 4 5 h) The PSE benchmarking study makes assumptions and normalizations in calculating the 6 7 actual costs reported in the study. The cost levels reported by PSE are not equivalent 8 to the revenue requirement and cost levels being requested by Toronto Hydro. We 9 can confirm that in this hypothetical scenario posed by this question, the total costs in

Table 1, if summed for all five CIR years, would be \$548 million lower if the
 benchmark increase rate was used. Such a result would ignore Toronto Hydro's
 capital needs or imply that the additional capital needs identified by the company
 throughout its proposal are not reasonable or justified. This average is just under
 \$110 million per year. In 2024, the difference would be \$153 million.

15

An additional point is necessary. If the proposed capital spending plan were in fact significantly reduced by a Board decision, then the projected actual total costs of Toronto Hydro would also be significantly reduced. This would likely push Toronto Hydro to the 0.15% stretch factor cohort during the CIR period. Therefore, if the capital spending program proposed by Toronto Hydro were significantly reduced (in this hypothetical scenario), PSE's recommended stretch factor would likely become 0.15% rather than 0.3%.

Table 10

Year	Percent Difference ¹				
2005	-38.5%				
2006	-37.5%				
2007	-30.9%				
2008	-29.1%				
2009	-27.5%				
2010	-20.0%				
2011	-12.2%				
2012	-13.9%				
2013	-8.7%				
2014	-6.9%				
2015	-4.6%				
2016	0.8%				
2017	3.7%				
2018	7.5%				
2019	8.7%				
2020	11.4%				
2021	13.4%				
2022	15.9%				
2023	17.8%				
2024	19.5%				
Annual Averages					
2005-2017	-17.3%				
2015-2017	0.0%				
2020-2024	15.6%				
¹ Formula for benchmark comparison is In(Cost ^{THESL} /Cost ^{Bench}).					

Year by Year Total Cost Benchmarking Results

Note: Italicized numbers are projections/proposals.

1	RESPO	NSES TO ENERGY PROBE INTERROGATORIES
2		
3	INTERROGATORY 73:	
4	Reference(s):	Exhibit L3, Reply Report to PEG Evidence; Exhibit L1/Tab
5	2	2/Schedule 2, pp. 3-4.
6		
7	Preamble:	
8	With regard to the refe	erence 2, we wish to understand directionally, how the differences
9	in sample, input data a	nd methodology between PEG and PSE may affect the PSE total
10	cost benchmark for To	ronto Hydro. Exhibit L1/Tab 2/Schedule 2, Page 3 of 4 IRM-4" refers
11	to the 2013 PEG study	(and its annual updates) and Exhibit M1 refers to the PEG's revised
12	benchmarking study of	Toronto Hydro submitted in response to M1-TH-026. The table
13	also lists differences fo	und between the latter study and PSE's study in Exhibit 1B, Tab 4,
14	Schedule 2.	

15

		IRM-4	Exhibit M1 (Revised)	PSE
Sample	Region of sampled Utilities Sample Size Sample Period	Ontario 73 2002-2012	U.S., Ontario (THESL only) 84 1995-2017	U.S., Ontario (6 utilities) 90 2002-2016
Cost Definition	Distribution O&M Sales Expenses Customer Accounts (less uncollectible) Customer Service and Information Pensions and Benefits Capital Benchmark Year Contributions in Aid of Construction High Voltage Expenses	Included Included Included Included Included 1989 or 2002 Included Excluded	Included Included Excluded Excluded 1964 (U.S.), 1989 (THESL) ² Excluded Included	Included Included Excluded Included 1989 (U.S.), 2002 (Ontario) Excluded Included
Price Indexes	Labor Price Index Materials Price Index Construction Cost Trend Index O&M Cost Share Weights	Ontario AWE Canada GDP-IPI EUCPI ³ Fixed	Regionalized ECI ⁴ (US), Ontario AWE (THESL) Canada GDP-PI (US), GDP-IPI (THESL) HW (US), Custom ⁵ (THESL) Varied	ECI (US), ECI*PPP ⁵ (Ontario) GDP-PI (US), GDP-PI*PPP (Ontario) HW (US), HW*PPP (Ontario) Fixed

Toronto Hydro-Electric System Limited EB-2018-0165 Interrogatory Responses L3-EP-73 FILED: June 20, 2019 Page 2 of 7

Function	Translog Treatment of Scale Variables	Yes	Yes	Yes
Estimation	Cost-share equations, SUR ⁷	Yes	No	No
Procedure	Composite price index, one equation	No	Yes	Yes
	Correction for Autocorrelation	Yes	Yes	No
	Correction for Heteroskedasticity	Yes	Yes	Yes
Total Cost Model	Number of Customers	Yes	Yes	Yes
Variables	Ratcheted Maximum Peak Demand	Yes	Yes	Yes
	Retail Deliveries	Yes	No	No
	Average Line Length	Yes	No	No
	Customer Growth over 10 Years	Yes	No	No
	Percent Congested Urban	Yes	Yes	Yes
	Percent of Plant Underground	Yes	No	Yes
	Area Not Congested Urban	No	Yes	No
	Percent Forested	No	Yes	Yes
	Percent of Customers Electric	No	Yes	Yes
	Percent of Customers with AMI	No	Yes	Yes
	Elevation Deviation	No	Yes	Yes
	Trend	Yes	Yes	Yes
	Ontario Binary Variable	No	No	Yes
	%UG*%CU	No	No	Yes
	Percent Plant Overhead	No	Yes	No

1

- 2 1. Kaufmann, Lawrence, Hovde, Kalfayan, Rebane. Productivity and Benchmarking
- 3 Research in Support of Incentive Rate Setting: Final Report to the Ontario Energy Board.
- 4 November 5, 2013.

5

- 6 2. Exceptions are Toronto Hydro and Northern States Power WI, which both received a
- 7 1989 benchmark year.
- 8

9 3. Electric utility construction price index for distribution systems (Statistics Canada).

10

11 4. Regionalized Utility Salaries and Wages ECIs (Employment Cost Indexes from the U.S.

12 Bureau of Labor and Statistics). Note that PSE uses the salaries and wages version of ECI

- 13 too even though pensions and benefits are included in their cost.
- 14
- 15 5. PEG's preferred Ontario LDC plant additions deflator originates from Statistics Canada
- 16 Stock and Consumption of Fixed Non-Residential Capital ("SCFNRC") program. The annual
- 17 survey collects data on utility-business capital expenditure on over 140 different types of

1	machinery, equipment, and construction assets, which is then used to construct an				
2	annual index of deflated capital investment. Since deflated investment is provided in both				
3	constant (2012) and current prices, the ratio of the two implicitly yields capital asset price				
4	change over time. The indexes are constructed by industry and region and in particular,				
5	are available for the utility business in Ontario. Handy-Whitman (HW) regional power				
6	distribution construction cost indexes are used for the U.S. companies.				
7					
8	6. Utility Employment Cost Index (U.S. Bureau of Labor Statistics). Purchasing Power				
9	Parity between U.S. and Canada.				
10					
11	7. SUR = seemingly unrelated regression technique for estimating parameters of multiple				
12	equations.				
13					
14	a) Please provide any corrections or additions to the PSE column in the PEG Table				
15					
16	b) Please add an additional column showing, where applicable, directionally, the				
17	noted material differences between PSE and PEG that may affect the PSE Result				
18	for Toronto Hydro cost benchmark. Use arrows to indicate Neutral/No Change ᄡ				
19	Reduce 🖶 and Increase 👚 Toronto Hydro benchmark total costs.				
20	Provide complete explanations for the results.				
21					
22	c) Based on Table 2 in Exhibit M3, please provide a graphical representation of the				
23	PSE and PEG total benchmark cost for Toronto Hydro for the 2015-2024 period.				
24					
25	d) Please add a line for the PSE forecast from the prior proceeding.				

1	RE	SPONSE (PREPARED BY PSE):
2	a)	The only minor correction to the table above is that the PSE sample includes seven
3		Ontario utilities rather than the six stated, with one of the seven being the studied
4		utility, Toronto Hydro.
5		
6	b)	Given the limited response time and the expectation of the OEB that the
7		interrogatories be "very limited in scope and address only the evidence provided in
8		the Supplemental Report," ¹ PSE is unable to produce a dataset and model to examine
9		the impact of all the differences. However, we provide our estimate of the directional
10		changes. These expectations were not fully tested, and only represent our current
11		expectation of the directional change.
12		
13		• Sample differences between PEG and PSE. PSE believes that adding the
14		Ontario distributors to the sample decreased Toronto Hydro's total cost
15		benchmark. Said differently, adding the Ontario distributors likely
16		worsened Toronto Hydro's score.
17		
18		 Pensions and benefits being included in PSE's dataset worsened Toronto
19		Hydro's benchmark score. We anticipate, however that this had a small
20		impact on the benchmark score.
21		
22		• The capital benchmark differences had an unknown impact. If the PEG
23		data from 1964 was implemented appropriately, we would expect the
24		difference in results to be small. Given that the older data cannot be

¹ Procedural Order No. 8 dated June 6, 2019.

1	verified and may contain errors, we do not know if the difference in results
2	is actually small.
3	
4	• The differences in the input price indexes are unknown and dependent on
5	when the levelization is taking place (specifically the levelization for
6	capital). PEG's results using the 2012 capital levelization found in their
7	response to M1-TH-026 (f) will have a smaller difference, due to the input
8	price indexes used, than the difference in PEG's results when using an
9	older 2008 capital levelization.
10	
11	• The differences in the OM&A cost share weights would likely not have a
12	meaningful impact on results.
13	
14	• The autocorrelation correction difference would likely not have a
15	meaningful impact on the results.
16	
17	• PSE included a percent plant underground variable. Adjusting for this
18	business condition raised Toronto Hydro's total cost benchmark. Said
19	differently, including the variable improved Toronto Hydro's benchmark
20	score.
21	
22	• PSE did not include the area <u>not</u> congested urban variable. PEG did. If PSE
23	had included the variable, Toronto Hydro's benchmark total costs would
24	have increased. Said differently, the company's benchmarking score would
25	have improved.

1		 PSE included the Ontario binary variable. Adjusting for this business
2		condition lowered Toronto Hydro's total cost benchmark. Said differently,
3		including the Ontario binary variable worsened Toronto Hydro's
4		benchmark score.
5		
6		 PSE included a percent plant underground variable interacted with the
7		congested urban variable. Adjusting for this business condition raised
8		Toronto Hydro's total cost benchmark. Said differently, including the
9		variable improved Toronto Hydro's benchmark score.
10		
11		• Energy Probe's table includes a "Percent Plant Overhead". This is
12		essentially the inverse of the percentage underground variable. The table
13		states the PEG includes this variable in their total cost study. However,
14		after reviewing the PEG report, we do not believe that is the case.
15		
16	c)	The PEG (solid yellow line) and PSE (solid blue line) results from Table 2 of the Reply
17		Report are provided graphically. We also added the PSE results from the prior
18		Toronto Hydro application (blue dotted line), PEG's results from the prior application
19		(yellow dotted line), and the latest OEB 4 th Generation Incentive Regulation (4GIR)
20		total cost benchmarking update for Toronto Hydro (dotted black line). In our view,
21		the prior 2014 study conducted by PEG, and the OEB 4GIR study, do not adequately
22		account for the congested urban challenges encountered by Toronto Hydro.
23		However, in its report in this application PEG has included our congested urban
24		variable and its proposed stretch factor has been lowered.

1

2 d) Please see our response to part (c).

The column labeled "PEG TC Results (2012 Capital Level)" shows the updated PEG results from their Interrogatory Answers. PEG corrected their results from the initial PEG Report in their response found in M1-TH-026 (f).¹

Year	PSE TC Results	PSE—Average Results Prior 3 Years	PEG TC Results (2012 Capital Level)	PEG—Average Results Prior 3 Years
2015	-18.4%		-7.6%	
2016	-15.7%		-3.1%	
2017	-13.8%		-0.2%	
2018	-10.5%	-16.0% (SF=0.15%)	3.5%	-3.6% (SF=0.30%)
2019	-9.3%	-13.3% (SF=0.15%)	4.8%	0.1% (SF=0.30%)
2020	-7.2%	-11.2% (SF=0.15%)	7.5%	2.7% (SF=0.30%)
2021	-5.5%	-9.0% (SF=0.30%)	9.4%	5.3% (SF=0.30%)
2022	-3.3%	-7.3% (SF=0.30%)	11.8%	7.2% (SF=0.30%)
2023	-1.6%	-5.3% (SF=0.30%)	13.8%	9.6% (SF=0.30%)
2024	-0.1%	-3.5% (SF=0.30%)	15.4%	11.7% (SF=0.45%)
CIR Avg.	-3.5%		+11.6%	

Table 1 PSE Total Cost Results vs. PEG Total Cost Results

In Table 1 we show each model's annual benchmarking score and included the average of the prior three years for both PSE's results and PEG's results. We also included the applicable stretch factor (SF) based on the 4th Generation SF cohorts.²

As can be seen in the table, PSE's results suggest a 0.30% SF for the majority of the Custom IR period and for the 2020 to 2024 average. PEG's model results also suggest a 0.30% SF for the majority of the Custom IR period. If the full custom IR forecasted period is averaged, PEG's recommended stretch factor becomes 0.45%.

This convergence in results toward a 0.30% stretch factor is primarily due to the advancement of the congested urban variable. PSE and PEG each use the new variable in their models. The congested urban challenges of Toronto Hydro are now being recognized in both models, and the total cost benchmarking results of both consultants reflect this advancement.

¹ In PEG's response to interrogatory questions M1-TH-026 (e) and (f), PEG calculated total costs using 2008 and 2012, respectively, as the capital levelization year. In Table 1 we show the results using the newer 2012 capital levelization found in part (f) of the interrogatory response. In Section 3.1.1 we discuss why using the more recent capital levelization provides the most accurate depiction and partially mitigates the impact of PEG using inconsistent asset price escalators between Toronto Hydro and the rest of the sample. We note that in the PEG Revised Report, PEG used the older and less accurate 2008 capital levelization year.

² The 4th Generation SF cohorts are based on the 3-year historical total cost benchmarking scores. Average scores greater than 25%, between 10% to 25%, between 10% to -10%, between -10% to -25%, and less than -25% suggest a SF of 0.60%, 0.45%, 0.30%, 0.15%, and 0.00%, respectively.

1		RESPONSES	TO SCHOOL ENERGY COALITION INTERROGATORIES
2			
3	INTER	ROGATORY 2	7:
4	Refer	ence(s):	Exhibit 1B, Tab 4, Schedule 2, p. 18, 21
5			
6	With	respect to inpu	ut prices:
7	a)	Please expla	in why the expert did not use the same measure of input prices that
8		the OEB use	s to calculate inflation.
9			
10	b)	Please provi	de tables for each of the seven Ontario distributors showing the
11		changes in O	M&A inputs assumed by PSE, and a breakdown of each such
12		assumption.	
13			
14	c)	Please recon	cile the resulting changes in assumed input prices with the assumed
15		1.2% inflatio	n factor used by Toronto Hydro in the Application (e.g. Table 5).
16			
17			
18	RESPO	ONSE (PREPAR	ED BY PSE):
19	a) In	nportant meas	ures of input prices for a benchmarking study are the input price
20	le	velizationsuse	d to adjust for the fact that items like wages and construction costs
21	va	ary from city to	city and region to region. For example, salaries and wages will tend
22	to	be significant	ly higher in New York City than in Madison, Wisconsin. These
23	di	fferencesnee	d to be properly adjusted to create a level playing field for the entire
24	sa	mple within th	ie benchmarkingstudy.
25	А	key difference	in the PSE Study versus the OEB Study is that the PSE adjusts for the
26	CC	onstruction cos	t differences between the utilities using RSMeans construction cost

indexes by city. A city like Toronto is likely to have higher construction costs than a
 city like London, ON. The OEB Study assumes all the Ontario distributors have equal
 capital prices. This will tend to unfairly harm the benchmarking scores of utilities
 serving higher cost regions, such as Toronto Hydro. PSE has corrected for this
 omission in our study.

6

PSE also updated our labour levelizations using 2010 Canadian census data and U.S.
Bureau of Labor Statistics (BLS) data. We are unsure of how the OEB Study specifically
adjusted for labour input prices but we use the updated Canadian Census on over 100
job occupations to create a composite wage level that matches the composition of an
electric utility. We used Bureau of Labor Statistic (BLS) data to match those same
occupations for the U.S. sample.

13

After the levelizations are set, growth rates (inflation) are applied to move the 14 levelized input prices from year to year. PSE used Handy-Whitman indexes for electric 15 distribution in constructing the capital input price. The OEB Study methodology uses 16 17 the Canadian Electric Utility Construction Price Index (EUCPI). However, the EUCPI has been discontinued as of 2014. Further, PSE is of the opinion that it is more 18 appropriate to use a construction cost inflation index that is specific to the electric 19 distribution industry, rather than other possibilities that are generalized to either the 20 electric utility industry or just the utility industry at large. For the Ontario distributors, 21 we did translate the Handy-Whitman electric distribution indexes into Canadian 22 currency using the purchasing power parity indexes (PPPs) for Canada. Similarly, PSE 23 24 used U.S. employment cost indexes and a GDP price index to inflate OM&A related costs, but adjusted these inflation measures using the Canadian PPP for the Ontario 25 distributors. 26

b) The table below illustrates the input price levels and trends for the Ontario 1 2 distributors including in the PSE sample. As can be seen by the fact the growth rates 3 are all the same, we used identical input price inflation assumptions for all seven distributors. The differences show up in the levelizations of labour and capital. 4 Toronto Hydro and Enersouce have the same input prices in all years because we 5 mapped each one to the city of Toronto to determine the levels of salaries and wages 6 7 and capital construction prices. The other utilities were mapped to their respective 8 headquarter cities.

9

Distributor	2016 Labour OM&A Input Price	2005-2016 Annual % Growth Rate	2016 Non- Labour OM&A Input Price 2016	2005-2016 Annual % Growth Rate	2016 Capital Input Price	2005-2016 Annual % Growth Rate
Toronto	90,563	3.0%	1.40	2.0%	13.38	4.0%
Hydro						
Enersource	90,563	3.0%	1.40	2.0%	13.38	4.0%
Horizon	85,546	3.0%	1.40	2.0%	13.04	4.0%
Utilities						
London	81,346	3.0%	1.40	2.0%	12.85	4.0%
Hydro						
Kitchner-	85,236	3.0%	1.40	2.0%	12.32	4.0%
Wilmont						
Hydro	91,495	3.0%	1.40	2.0%	12.95	4.0%
Ottawa						
EnWin	87,251	3.0%	1.40	2.0%	12.20	4.0%

10 c) The input price inflation assumed by PSE is looking at the historic industry inflation for

each year, whereas the 1.2% is the recent escalation factor. Further, the industry

Toronto Hydro-Electric System Limited EB-2018-0165 Interrogatory Responses **1B-SEC-27** FILED: January 21, 2019 Page 4 of 4

1	inflation has been higher than the inflation factor, primarily due to the 4.0% growth in
2	capital prices and the 3.0% growth in utility employment cost indexes. We would
3	expect the industry-specific inflation to be different from the more general indexes
4	used in the inflation factor. In a benchmarking study, all utilities receive the same or
5	similar treatment regarding inflation assumptions, and this assumption will likely have
6	a small impact on the relative scores or rankings of the individual utilities being
7	benchmarked. The inflation assumptions are important when benchmarking
8	projected data. PSE believes we have used estimates that are conservative in those
9	projections. For example, rather than continuing the 4.0% capital inflation rate, we
10	instead used a capital inflation assumption of 2.18% for 2020 to 2024. PSE stayed on
11	the lower bound of what we would consider reasonable estimates for asset price
12	inflation in order to help address one of the three Board concerns cited in the Board's
13	2015 Decision.

1	RESPONSES TO S	CHOOL ENERGY COALITION INTERROGATORIES
2		
3	INTERROGATORY 28:	
4	Reference(s): Exhi	ibit 1B, Tab 4, Schedule 2, p. 20
5		
6	Please explain why the %C	CU variable and the %UG*%CU variable do not measure similar
7	or related effects.	
8		
9		
10	RESPONSE (PREPARED BY	PSE):
11	The congested urban varia	able (%CU) measures the cost impact of serving a highly
12	congested urban service to	erritory. This has been shown both empirically and through
13	engineering analysis to be	a significant driver of a distributor's total costs.
14		
15	The underground variable	(%UG*%CU) measures the important cost differences between
16	undergrounding power lin	es in congested urban areas relative to non-congested urban
17	areas. It will tend to be fa	r less costly to underground lines in suburban and/or rural
18	areas. In fact, in many are	as, utilities are able to direct bury power lines, and overall costs
19	can be reduced relative to	constructing overhead power lines (see the negative
20	coefficient value on the %	UG variable). By including the %UG*%CU variable, the model
21	can disaggregate the vast	cost differences between undergrounding in rural/suburban
22	areas versus underground	ing lines in congested urban areas.
23		
24	The added flexibility of dis	tinguishing between the differences this variable provides is
25	important to accurately ev	valuating Toronto Hydro's total cost performance, given their
26	high percent underground	ling and high percentage of congested urban service territory. If
27	this variable were exclude	d, undergrounding costs in the model would combine the low-

cost rural/suburban undergrounding with the much higher cost urban undergrounding 1 2 making the model less precise and accurate. 3 PSE stated the importance of disaggregating the underground costs on p. 20 of the PSE 4 5 report: 6 7 The percent underground multiplied by congested urban variable provides the 8 interaction between the percent underground variable and the congested urban 9 variable. Constructing underground lines in urban settings is far more costly than in more rural settings. For example, underground lines in rural settings can be 10 "direct buried" without the need for concrete-enclosed banks and other capital 11 infrastructure. We would expect a positive coefficient on the variable. 12

1		RESPONSES TO SCHOOL ENERGY COALITION INTERROGATORIES		
2				
3	INTERROGATORY 29:			
4	Reference(s):		Exhibit 1B, Tab 4, Schedule 2, p. 22	
5				
6	SEC i	EC is seeking to understand how the change in the maximum peak demand variable		
7	impa	mpacts the model results.		
8				
9	а) Please prov	ide a table showing the maximum peak demand of Toronto Hydro for	
10		each year fr	om 2002 onwards using the 2015 methodology and using the current	
11		methodolog	gy, and explain each year that there is a difference.	
12				
13	b) Please conf	rm that the new methodology assumes that, even if demand declines,	
14		that never,	over time, reduces the costs of an electricity distributor. If not	
15		confirmed,	please explain.	
16				
17				
18	RESPONSE (PREPARED BY PSE):			
19	a) T	he maximum o	lemand variable is defined the same as the capacity variable included	
20	ir	n the 4 th Gener	ation OEB benchmarking model. The difference in the annual peak	
21	d	emand and ma	aximum peak demand is due to the maximum peak demand variable	
22	n	measuring the highest peak demand variable from either the current year, or from all		
23	р	ast years since	2002, whereas the annual peak demand measures only the current	
24	у	ear.		

Toronto Hydro-Electric System Limited EB-2018-0165 Interrogatory Responses **1B-SEC-29** FILED: January 21, 2019 Page 2 of 3

Year	Annual Peak Demand	Maximum Peak Demand
2002	4,771	4,771
2003	4,821	4,821
2004	4,521	4,821
2005	5,005	5,005
2006	5,018	5,018
2007	4,788	5,018
2008	4,564	5,018
2009	4,607	5,018
2010	4,786	5,018
2011	4,919	5,018
2012	4,830	5,018
2013	4,915	5,018
2014	4,274	5,018
2015	4,404	5,018
2016	4,592	5,018
2017	4,260	5,018
2018	4,217	5,018
2019	4,195	5,018
2020	4,165	5,018
2021	4,119	5,018
2022	4,069	5,018
2023	4,038	5,018
2024	4,052	5,018

Table 1: Annual and Maximum Peak Demand for Toronto Hydro

2 b) A distributor's actual total costs can still increase or decrease based on the actual cost

3 levels incurred. It is true that the definition of the variable prevents the maximum

1

- 1 peak demand variable from decreasing over time. This is because the distribution
- 2 system is required to be built to meet maximum peak demands over a multi-year
- ³ period and not just the annual peak demand in each year.