ONTARIO ENERGY BOARD

IN THE MATTER OF the *Ontario Energy Board Act, 1998*, S.O. 1998, c.15 (Sched. B), and in particular, s.92 and s.97 thereof;

AND IN THE MATTER OF an Application by Hydro One Networks Inc. for an Order granting leave to construct five circuit kilometres of 230 kV underground transmission cables in downtown Toronto.

INTERROGATORIES OF

THE BUILDING OWNERS AND MANAGERS ASSOCIATION ("BOMA")

January 6, 2021

Albert M. Engel
Partner
Fogler, Rubinoff LLP
77 King Street West, Suite 3000
Toronto, ON M5K 1G8

Counsel for BOMA

1-BOMA-1

Ref: Exhibit F/Tab 1/Schedule 1/Attachment 2/Page 3 and 4 (Appendix A)

Preamble:

Hydro One Networks Inc. (the "connection applicant" and "transmitter") is proposing to replace the 115 kV underground cables from Terauley Transformer Station (TS) to Esplanade TS on circuits C5E and C7E (the "project"). The electrical parameters of the new cables are included in Appendix A of this report.

Proposed CSE

Appendix A: Data Verification

Table 1 Disconnect switch specifications

Parameter	Existing C5E	Existing C7E	Proposed C5E	Proposed C7E
Sections	Terauley TS to Esplanade TS			
Length (km)	3.57	3.57	2.51	2.51
Positive sequence R (pu)	0.001891	0.001722	0.000364	0.000367
Positive sequence X (pu)	0.004875	0.004526	0.004289	0.004289
Positive sequence B (pu)	0.077123	0.081672	0.028442	0.028442
Zero sequence R (pu)	0.014093	0.013768	0.003087	0.003106
Zero sequence X (pu)	0.001459	0.001387	0.002571	0.002592
Zero sequence B (pu)	0.077123	0.081672	0.028442	0.028442
Winter continuous rating (A)	750	750	1200	1200
Winter 15 min STE rating (A)	2240	2240	6733	6733
Winter pre-loading used for STE calculation (A)	600	600	500	500
Winter LTE rating (A)	N/A²	N/A²	2174	2174
Summer continuous rating (A)	700	700	1200	1200
Summer 15 min STE rating (A)	2390	2390	6733	6733
Summer pre-loading used for STE calculation (A)	500	500	500	500
Summer LTE rating (A)	N/A²	N/A²	2174	2174

Final Report, CAA ID 2020-EX1104, 16/10/2020 | Public

Questions:

The IESO SIA does not refer to the replacement cables being 230 kV cables. Can (a) cable voltage have an impact on SIA?

¹ The cable lengths have changed due to a change in routes
² At the time of this assessment the connection applicant did not provide the long term emergency (LTE) ratings of the existing cables, however, the connection applicant confirmed that the LTE ratings of the new cables are higher than the existing ones.

(b) Was the IESO informed that the project is proposed to involve the replacement of 115 kV low-pressure oil-filled underground transmission cables with 230 kV rated oil-free XLPE cables?

1-BOMA-2

Ref: Exhibit B/Tab 1/Schedule 1/Page 2 of 5

Preamble:

The IESO has also provided an expedited and final System Impact Assessment 26 ("SIA").

Questions:

- (a) Did HONI seek an "expedited" SIA? If so, what was the reason for seeking an "expedited" SIA?
- (b) What is the difference between an "expedited" and a non-expedited SIA?

1-BOMA-3

Ref: Exhibit G/Tab 1/Schedule 1/Attachment 1 (Final November 24, 2020)/Page 4

Preamble:

There is an insignificant increase in the fault level primarily at the Esplanade TS 115kV buses as a result of the HV cable replacement. The short circuit levels at all area HV and LV buses are given in Appendix B Tables 1 for the before and after scenarios.

All local customers are advised to review the short circuit results to ensure that their equipment ratings are adequate for the increased fault current level.

Questions:

- (a) The CIA does not refer to the replacement cables being 230 kV cables. Can cable voltage have an impact on CIA?
- (b) Would the use of 230 kV replacement cables have an impact on fault levels?

1-BOMA-4

Ref: Exhibit B/Tab 5/Schedule 1/Page 2 of 3/Footnote 1

Preamble:

https://www.hydroone.com/abouthydroone/CorporateInformation/majorprojects/power-downtown-toronto/Documents/Final_ESR/PDT%20-%20Class%20EA%20Final%20Environmental %20Study%20Report.pdf

Questions:

(a) The hyperlink provided in Footnote 1 to the ESR does not work. Please provide a copy of the ESR.

1-BOMA-5

Ref: Exhibit B/Tab 6/Schedule 1/Page 1 of 3

Preamble:

Hydro One is required by provincial legislation to provide locate services for its underground infrastructure. Locate requests are most often requested by utilities planning construction activities in close proximity to Hydro One's underground assets. By installing the replacement cables in a tunnel at a depth of approximately 25m, these assets will be far below typical utility depths, reducing the need to perform field locates. It is estimated that approximately \$12,000 13 per year in locate costs will be saved, compared to similar surface routes.

Questions:

(a) At what depth are the existing 115 kV cables?

1-BOMA-6

Ref: Exhibit B/Tab 5/Schedule 1/Page 2 of 3

Preamble:

In pursuing this alternative, Hydro One considered multiple installation methods 6 and routes. Through a comprehensive and completed Class Environmental Assessment that evaluated socioeconomic, natural environment, technical and financial factors in detail, Hydro One will be

completing this Project utilizing a tunnel installation method and route, which has the following key advantages:

- Least disruption to vehicular, and pedestrian traffic;
- Least conflicts with existing and planned infrastructure and utilities;
- The anticipated noise and vibrations from the tunnel boring machine 13 (TBM) operating at approximately 25 m below ground surface will not be 14 perceptible at the surface, minimizing disruptions to communities;
- No anticipated direct effects to institutions, emergency uses, and businesses as a result of the construction method and route alignment;
- Similar costs to other route and construction methods that would be far more disruptive and,
- *Minimal impacts to the natural environment.*

Questions:

(a) What would the cost be to replace the 115 kV cables using the existing underground cable route?