Connection Impact Assessment (CIA) Application

[LDC department's name that is handling the application] | [LDC department's email] | [LDC department's phone Number]

ABOUT THIS FORM

 (\mathbf{D})

This Connection Impact Assessment (CIA) application is to be completed by any proponent interested in connecting a Distributed Energy Resources (DER) with a project size over 10 kilowatts (kW) to [LDC name]. This includes DER applying for a new CIA or for revision(s) to their original CIA. This form expresses an intent to enter into an agreement between [LDC name] and the customer (or host customer* for load displacement projects) for completion of a CIA associated with connecting a DER to the [LDC name] distribution grid. The CIA Application shall be part of the required servicing (electrical installation, maintenance, and operating) agreements between [LDC name] and the proponent. Through this process, [LDC name] will be the proponent's contact with the transmission system provider (e.g. Hydro One Networks Inc.) and, if necessary, the provincial market operator, namely, the Independent Electricity System Operator (IESO).

*For Load Displacement projects, the term "host customer" refers to the owner of the load facility. The term "DER owner" refers to the owner of the DER facility.

Emergency Backup Generators should use the Emergency Backup Generation Application Form available at: [LDC link to application]

TECHNICAL REQUIREMENTS

For technical requirements of [insert LDC]'s DER projects, refer to the "DER Technical Interconnection Requirements Interconnections at Voltages 50kV and Below", available at:

[LDC link to "DER Technical Interconnection Requirements Interconnections at Voltages 50kV and Below" application]

SUBMISSION INSTRUCTIONS

Please return the completed form, fees and other required documents by mail to:

[LDC name] Attn: [LDC department's name that is handling the application] Generation Connection Application [Address] [City], [Province] [Postal Code]

IMPORTANT NOTES

- An engineering stamp and all red box fields (on electronic version of form) are mandatory. Incomplete applications may be returned by [LDC name] and will result in delays in processing your application. Click the "Validate Form" button on the top right of this page to ensure all required information is filled. If any of the required fields are not applicable to your project, type "N/A" in any required text field or "0" in any required numerical field

- [LDC name] specific requirements and notes are found in Sections S and T, respectively

- Applicants are cautioned NOT to incur major expenses until [LDC name] approves to connect the proposed DER facility.

- All technical submissions (CIA Application, Single Line Diagrams, etc.) must be signed, dated and sealed by a licensed Ontario Professional Engineer (P.Eng.).

- The proponent will pay for the CIA according to the [LDC name] CIA Fee Schedule.

- For Load Displacement or Energy Storage facility connections, the assessment performed by [LDC name] is a referred to as a Detailed Technical Connection Assessment (DTCA). For such facilities, the term "CIA" as it appears throughout this Connection Impact Assessment (CIA) Application shall be interpreted to mean "DTCA".

- The siting restrictions in O. Reg. 274/18 which were administered by electricity distributors such as [LDC name] have been replaced by amendments to the Planning Act (Ontario) that puts siting and planning requirements for renewable DER facilities under municipal oversight. It is recommended that you discuss municipal permitting and approvals requirements with the planning department in the municipality where your DER project is located before you proceed.

- For micro-embedded projects (10 kW or less), please fill out [LDC name]'s "Micro-Generation Connection Application (Form C)" available at:

[LDC link to Form C]

Engineering Stamp	Application Type choose one	Date mm/dd/yyyy
	Ø	
	Program Type/Purpose choose one	Program Type (additional details)
	Project Name	
	IESO Contract Number	IESO Reference Number FIT-XXXXXXX
Ontario Corporate Number c	or Business Identification Number Proposed In S	Service Date mm/dd/yyyy
f this project is a subdiv	vision project, please complete the following fie	əlds:
Subdivision Project Name	Number of Lo	ots
For certain application 1	type selections, please complete the required fi	elds:
Driginal CIA Project ID # xx	XXX	

SECTION B: PROJECT LOCATION

Address		
City/Town/Township	Postal Code	
Lot Number(s)	Concession Number(s)	

()

SECTION C: CONTACT INFORMATION

CIA will be issued in the name of the host customer (load facility owner). All agreements (including CCA and DCA) are only made between [LDC name] and the host customer. This section is strictly to gather contact information of some of the key contacts that are involved with the project.

Who is the single point of contact for this project?

Host Customer DER Owner (if different from host customer) Consultant

Please enter the following information about the **host customer** (load facility owner)

Contact Person	Company's Legal Name
Mailing Address including postal code, P.O. Boxes and Rural Routes	will not be accepted
Work Telephone	Cell Phone
Fax Number	Email Address
Please enter the following information about the Contact Person	e DER owner (if different from host customer) Company's Legal Name
Mailing Address including postal code P.O. Boyes and Pural Pourtes	will not be recented
WorkTelephone	Cell Phone
Fax Number	Email Address
Please enter the following information about the	e consultant
Contact Person	Company's Legal Name
Mailing Address including postal code, P.O. Boxes and Rural Routes	will not be accepted
WorkTelephone	Cell Phone
Fax Number	Email Address

SECTION	N D: CUS	TOMER S	ATUS			
Is there an exis	sting [LDC name] account at the	project location?			
Yes	No					
Is the account	holder aware o	f this application	?	Does your account	fall within	a residential-rate classification?
Yes	No			Yes	No	🔘 Do not Know
Existing Accou	unt Number			Account Holder Na	me	
Does the acco	unt holder have	an HST registrati	on number?	HST Number		
Yes	No					
SECTIO	N E: EXIS	STING DEI	R			
Are there exi	isting DER at the	e point of commo	n coupling (PCC)?			
Yes	No					
Existing Proje	ect Number			Existing Project	Size (kW)	
					>	
DER type:	Svnchronous	Induction	Inverter based	Other	>	
For synch	ronous units		For induction	units	For	r inverter based units
i or synem						inverter bused units
Min. power lii	mit for stable op	eration kw	Direct axis sub-tra	nsient reactance, X"d p	u Inve	rter rating kVA
					D. Annu	·····
Direct axis sul	b-transient react	ance, X''d pu	Direct axis transle	nt reactance, X°d pu	IVIAX	amum continuous power output <i>kw</i>
Direct avia tra	nciant reactores	V'd	Total PE correction	installed was		
Direct axis tra		, x u <i>pu</i>		Installed KVAR		
Direct axis svi	nchronous react	ance Xd nu				
		ande, nor pu				
Zero sequence	e reactance. X0	ри				

SECTION F: PROJECT INFORMATION

Station Name (opt	tional to leave blank for behind the meter projects	Fuel/Energy Type select all that apply
Feeder (optional to	leave blank for behind the meter projects)	
Feeder Voltage (k	XV) (optional to leave blank for behind the meter	projects)
Project Size (kW)	total maximum output capacity	
Equipment Capac	ity (kVA) total equipment nameplate rating	
Type of Connection Single Pha	on ase Three Phase	
If this is a solar	r project, please answer the follo	wing questions:
Mounting Type s	select one	
If this is a wate	er project, please answer the foll	lowing questions:
Is your generatio	n facility located on provincial Crown c	or federally-regulated lands?
Yes	No	
ls water your prir	mary energy source?	
Yes	No	
SECTION (The host custom	G: STATION SERVICE ner's station service load details	LOAD INFORMATION

If there is an existing account at the project location, populating the fields in Section G is [optional or required] for [LDC name]. Ensure selection below matches with this note.

Required Optional

Maximum Demand of Station Service Load of DER kW

Average Monthly Consumption kWh

SECTION H: CONNECTION INFORMATION

On a cut-out from the **[LDC name]** DOM (Distribution Operating Map) provide the location of the generation facility with proposed line routings for connection to **[LDC name]**'s distribution system. It should identify the Point of Expansion (POE), the Point of Common Coupling (PCC), the location of the generation facility, and (if applicable) the route of the new line between the generation facility and the POE (ie. on private property or public road/right-of-way). This is not required for existing load customers that are connecting a load displacement generation, net metering generation or energy storage system behind their existing metered connection point. Please see "Appendix A" for a visual representation of POE and PCC.

DOM Drawing/Sketch Number	DOM Revision Number
Please provide an SLD of the Generator's facilities, incluand supply voltage.	uding the PCC, transformer and connecting station, feeder,
SLD Drawing/Sketch Number	SLD Revision Number
POE Latitude degree decimalformat	POE Longitude degreedecimalformat
PCC Latitude degree decimal format	PCCLongitude degree decimalformat
Generation Facility Latitude degree decimal format	Generation Facility Longitude degree decimal format

Length of Line from POE to PCC km

Length of Line from PCC to Generation Facility km

Important: The line between the PCC and the Generation Facility must NOT be shared with any other DER owner (refer to Appendix A).

Conductor Type/Size for the line between the PCC and the Generation Facility
Generator Fault Contribution with fault location at the PCC

IMPORTANT NOTES:

If this project requires line expansion work between the POE and PCC, [LDC name] will provide a cost estimate to construct any line located on public road right-of-way. The cost estimate will include a breakdown of uncontestable work (i.e. overbuild to existing line) that can only be performed by [LDC name], as well as contestable work (i.e. new construction/green-field) that may be performed by the Generator, their contractor or [LDC name]. The design of uncontestable and contestable work shall conform to [LDC name] specifications).

For Generator-owned line, the Generator may apply to construct the line on existing [LDC name]-owned poles. This is known as an application for Joint Use (JU) of poles. If the application is accepted, [LDC name] will provide the Generator with information on initial connection costs, annual pole-space rental and emergency service (ES) fees, and required JU & ES Agreements.

Connection Impact Assessment (CIA) Application

SECTION I: ENERGY STORAGE OR UPS

Please complete the following section if your project includes energy storage.

Number of Units	Inverter Unit Size enter zero if inverter is shared with generation unit(s)
Energy Storage Unit Size kwh	Total Energy Storage Size kwh
Energy Storage Facility Control Strategy	
Peak Shaving Dynamic VAR Sunnort	

Frequency Support

Other

Please submit a detailed description of the control strategy according to the templates in Appendix B. [LDC name] reserves the right to modify the control strategy as part of its Detailed Technical Connection Assessment.

SECTION J: LOAD DISPLACEMENT/PEAK SHAVING

Open "break before mo

Please complete the following section if this is a load displacement or peak shaving project

Operating Mode

Parallel Non-Parallel

Transition Type

Closed "make before break"

Time that generator remains parallel to grid closed transition only, ms

For non-parallel load displacement, SCADA monitoring and Gross Load Billing (GLB) may apply. For load displacement generation facilities, please attach a schedule of the forecasted maximum generation output (as a function of loading of the facility). At a minimum, include the forecasted generation output information (i.e. Watts and VARs) during the minimum and maximum of the load facility to which the load displacement generator is connecting (see Appendix C for template)

 \odot

SECTION K: DER CHARACTERISTICS

For facilities with multiple generators: If your generators have different characteristics, please use the "Add Page" button and provide the characteristics for each generator on the additional pages.

Number of C			
Number of Ger	herating Units Rated Capacity of Each C	JNIT DER Out	put Voltage in kV
	kW	kVA	
Manufacturer		Type or Model Number	
If Power Conver	rsian Tuna is "Other" plages provide values of		uction two concrator
Maximum Startin	r In-rush Current multiple of full load current nu	Generator Winding Connection	chon type generator.
		Delta Star	
Neutral Groundin	ng Method for star winding connection only	Impedance R in ohms	Impedance X in ohms
Solid	Ungrounded Impedance		
Limits of ranae	of reactive power at the machine output:		
0	1 1		
Lagging over-excite	ed, kVAR Lagging Power Factor	Leading under-excited, kVAR	Leading Power Factor
Limits of range	e of reactive power at the PCC:		
Lagging over-excite	ed, kVAR Lagging Power Factor	Leading under-excited, kVAR	Leading Power Factor
	For synchronous units	For induction units	
	Nominal Machine Voltage kV (LL)	Nominal Machine Voltage kV (1	LL)
	Unsaturated Reactance kVA Base	Unsaturated Reactance kVA Bas	е
	Unsaturated Reactance kVA Base	Unsaturated Reactance kVA Bas	e
	Unsaturated Reactance kVA Base	Unsaturated Reactance kVA Base	e
	Unsaturated Reactance <i>kVA Base</i> Unsaturated Reactance <i>kV Base</i> Direct Axis Subtransient Reactance, Xd" <i>pu</i>	Unsaturated Reactance kVA Base	e ance, Xd" pu
	Unsaturated Reactance <i>kVA Base</i> Unsaturated Reactance <i>kV Base</i> Direct Axis Subtransient Reactance, Xd" <i>pu</i>	Unsaturated Reactance kVA Base	e ance, Xd" pu
	Unsaturated Reactance <i>kVA Base</i> Unsaturated Reactance <i>kV Base</i> Direct Axis Subtransient Reactance, Xd" <i>pu</i> Direct Axis Transient Reactance, Xd' <i>pu</i>	Unsaturated Reactance kVA Base	е ance, Xd" ри
	Unsaturated Reactance <i>kVA Base</i> Unsaturated Reactance <i>kV Base</i> Direct Axis Subtransient Reactance, Xd" <i>pu</i> Direct Axis Transient Reactance, Xd' <i>pu</i> Direct Axis Synchronous Reactance, Xd <i>pu</i>	Unsaturated Reactance kVA Base	е ance, Xd'' ри
	Unsaturated Reactance <i>kVA Base</i> Unsaturated Reactance <i>kV Base</i> Direct Axis Subtransient Reactance, Xd" <i>pu</i> Direct Axis Transient Reactance, Xd' <i>pu</i> Direct Axis Synchronous Reactance, Xd <i>pu</i>	Unsaturated Reactance kVA Base Unsaturated Reactance kV Base Direct Axis Subtransient Reacta	e ance, Xd" pu
	Unsaturated Reactance KVA Base Unsaturated Reactance KV Base Direct Axis Subtransient Reactance, Xd' pu Direct Axis Transient Reactance, Xd' pu Direct Axis Synchronous Reactance, Xd pu Subtransient Time, Td'' ms	Unsaturated Reactance kVA Base	e ance, Xd" pu
	Unsaturated Reactance KVA Base Unsaturated Reactance KV Base Direct Axis Subtransient Reactance, Xd" pu Direct Axis Transient Reactance, Xd' pu Direct Axis Synchronous Reactance, Xd pu Subtransient Time, Td" ms Zero Sequence Reactance, X0 pu	Unsaturated Reactance kVA Base	e ance, Xd" pu

SECTION L: INTERFACE TRANSFORMER

The transformer connecting to the [LDC name] distribution system

Transformer Own Customer	ership [LDC name]			
Transformer Ratir	ng KVA		Transformer Type	
			Single Phase	Three Phase
Nominal Voltage	of High Voltage Windir	ng kV	Nominal Voltage of Low V	oltage Winding kV
Impedance Base (i	f different than ratings	above)	Impedance (R) pu Impe	edance (X) pu Impedance (Z%) %
	kVA Base	kV Base		OR
High Voltage Win	ding Connection			
Delta	Star			
High Voltage Grou	nding Method for star	winding connection only	Star Impedance R in ohms	Star Impedance X in ohms
Solid	Ungrounded	Impedance		
Low Voltage Wine	ding Connection			
Delta	Star			
Low Voltage Grounding Method for star winding connection only			Star Impedance R in ohms	Star Impedance X in ohms
Solid	Ungrounded	Impedance		

Notes

The term "High Voltage" refers to the connection voltage to [LDC name]'s distribution system and "Low Voltage" refers to the generation or any other intermediate voltage.

Providing a photo of transformer equipment along with this application may help expedite your application.

SECTION M: INTERMEDIATE TRANSFORMER

Transformer between the interface transformer and DER

Please complete the following section if your project includes an intermediate transformer.

Do you intend to	o install an intermediate transformer?		
Yes	No		
Transformer Rati	ng KVA	Transformer Type	
		Single Phase	Three Phase
Nominal Voltage	e of High Voltage Winding kV	Nominal Voltage of Low V	oltage Winding kv
Impedance		Impedance R pu	Impedance X pu
	kVA Base kV	/ Base	
High Voltage Wi	nding Connection		
Delta	Star		
High Voltage Gro	ounding Method for star winding connection on	ly Star Impedance R in ohms	Star Impedance X in ohms
Solid	Ungrounded Impedance	e	
Low Voltage Wi	nding Connection		
Delta	Star		
Low Voltage Grou	unding Method for star winding connection only	Star Impedance R in ohms	Star Impedance X in ohms
Solid	Ungrounded Impedance		
Notes:			

Notes:

The term "High Voltage" refers to the connection voltage to [LDC name]'s distribution system and "Low Voltage" refers to the generation or any other intermediate voltage.

SECTION N: HIGH-VOLTAGE GROUNDING TRANSFORMER

Please complete the following section if your project includes a high-voltage grounding transformer. Do you have a high-voltage grounding transformer?

	Yes	No	
Tra	insformer Type	select one	
	Zig-Zag	Star-Delta	
Zer	o Sequence Imp	edance (ZO) R ohms	Ze

Sequence Impedance (Z0) X ohms

SECTION O: SUBMISSION CHECKLIST

 (\mathbf{D})

Please if any i	ensure the following items are completed prior to submission. Your application may not be processed
	Payment in full including applicable taxes (by cheque payable to "[LDC name]")
	Completed Form B stamped by a Professional Engineer
	Signed Study Agreement (original signature is required)
	Single Line Diagram (SLD) of the Generator's facilities, must be stamped by a Professional Engineer
	Protection Philosophy
	Distribution Operating Map (DOM) and/or Site Plan (not required for existing load customers that are connecting a load displacement generation, net metering generation or energy storage system behind their existing metered connection point)
	Load Displacement Generation Facility's load and generation schedules (if applicable)
	Load Displacement Generation Facility's mode of operation (if applicable)
	Energy Storage Facility operating strategy description an parameters (if applicable)
	Emergency Backup Generation Facility's mode of operation (if applicable)

SECTION P: CIA APPLICATION FEE CHECKLIST

Please ensure the following items are completed prior to submission. Your application will not be processed if any part is omitted or incomplete. Check all that apply:

Applicable CIA Fee See the Connection Impact Assessment Fee Schedule on our website for costs. Please enter the amount from the fee schedule.	\$	+HST
Transmission Customer Impact Assessment (TxCIA) Fee (if applicable) A TxCIA is also required if the total nameplate generation of the project is greater than 10MW.	\$	+HST
IESO System Impact Assessment (SIA) Fee (if applicable) An SIA deposit is required if the total nameplate generation of the project is greater than 10MW. The total cost of the SIA will be Trued Up Down upon the receipt of the SIA from the IESO. See the IESO's SIA Application for costs.	\$	

SECTION Q: ATTACHMENTS

Attached Documents / Drawings

Item #	Description	Document #	# of Pages

SECTION R: NOTES

SECTION S: [LDC name] Specific Required Fields

This section contains specific information that is required by [LDC name]. Please read Section T notes regarding this section if you need further details.

What is the barcode of the nearest pole serving the project location?

[LDC name] Account Number if transformer is owned by [LDC name]

SECTION T: [LDC name] Specific Additional Notes

Section A: no additional notes Section B: no additional notes

Section C: no additional notes

Section D: no additional notes

Section E: no additional notes

Section F: no additional notes

Section G: no additional notes

Section H: no additional notes

Section I: no additional notes

Section J: no additional notes

Section K: no additional notes

Section L: At the Generator's expense, and if requested, [LDC name] may provide transformation up to a maximum of 500 kVA three-phase, as described in the [LDC name] Conditions of Service (Section 3.5 item C.4). **Section M:** no additional notes

Section N: no additional notes

Section O: for new DER site, Distribution Operating Map (DOM) is required by [LDC name] in addition to Site Plan

Section P: When there is an upstream LDC, an additional \$10,000+HST will be required for costs associated with this LDC's CIA.

Section Q: no additional notes

Section R: no additional notes

Section S: - For question: "What is the barcode of the nearest pole serving the project location?", this is only applicable if you choose "No" to question: "Is there an existing [LDC name] account at the project location?" in Section D

- For question: "[LDC name] Account Number (if transformer is owned by [LDC name])", this is only applicable if you answer "[LDC name] " to question: "Transformer Ownership" in Section L.

APPENDIX A - FIGURES & DIAGRAMS

LDC Station The "Point of Common PCC and POC Coupling" (PCC)* Line tap Line tap owned by the owned by the The "Point customer customer of DER Connection" (POC) * * DER Load DER Customer's System

Figure A1: Where There is No New [LDC name] Owned Line Expansion

*PCC: the point where the customer facility connects to the LDC owned system **POC: the point where the DER unit(s)'s interconnection system connects the DER unit(s) to the DER facility.

Figure A2: Where There is a New [LDC name] Owned Line Expansion

Œ

 (\mathbf{h})

APPENDIX B - MINIMUM CONTROL STRATEGY INFORMATION FOR ENERGY STORAGE FACILITIES OR OTHER TECHNOLOGIES

Figure B1: Peak Shaving

Peak Shaving						
Description of Control Strategy						
	When Operating as a Load					
Switch In Time	Switch Out Time	Load kW (peak)	Load kVAR (peak, leading/lagging)			
	When Operating	g as a Generator				
Switch In Time	Switch Out Time	Generation kW (peak)	Generation kVAR (peak, leading/lagging)			

Figure B2: Dynamic VAR Support

Dynamic VAR Support						
Description of Control Strategy						
Switch In Condition	Switch Out Condition	Generation kVAR (peak, leading/lagging)				

Figure B3: Frequency Support

Frequency Support						
Description of Control Strategy						
Switch In Condition	Switch Out Condition	Generation kW (peak)	Generation kVAR (peak, leading/lagging)			
	·					

Figure B4: Other Control Strategies

Other				
Description of Control Strategy and Relevant Operating Parameters				

 \odot

APPENDIX C - LOAD DISPLACEMENT FIGURES

Figure C1: Example Schedule With Minimum Information Required for Load Displacement Projects

	Load of Facility (kW)	Load of Facility (kVAR, lead or lag)	Generation Output (kW)	Generation Output (kVAR, lead or lag)
Minimum Load				
Maximum Load				

SLD CHECKLIST

The legal name of the facility owner, facility address/location, project purpose, assigned project ID, and revision history should be included in the title block

See attached table for remaining important items. Note, please <u>do not</u> include the hex markers on the official SLD submitted to**LDC. They** are shown here for illustration only

NOTES:

 Colour code of the revenue metering instrument transformers secondary wiring shall match the overhead phase conductors
 100:5A, Measurement of Canada approved current transformer AE-1653, 0.15B0.9 CCRF=1.5
 44000:115V Measurement of Canada approved voltage transformer AE-2160r3, 0.3WXY, 200kV BIL
 Transformer owned by ABC Inc

DISCLAIMER: This sample SLD shall only be used to highlight some of the main information that must be shown on the SLD submitted to [LDC]. All design decisions must be made by the proponent and meet the minimum requirement set forth in the TIR. Due to limited space, only some of the required items are shown. The rest of the information is indicated in the notes related to each number.

01 Revised as per [LDC] comments 18/11/2020					
Initial SLD f	or [LDC]] review		13/07/2020	
REVISION/ISSUE DATE					
PROJECT: Customer Name Customer Address Line 1 Customer Address Line 2 Project Purpose LDC Project ID: #12,345 Other Info					
ABC Inc. ABC Inc.					
DWG NAME: BEHIND THE METER EXAMPLE SLD					
DATE: DD/MM/YYYY DRAWN:			СН	ECKED:	
18/11/2020	S.	Matti		S. Hughes	
NO:	•	SHEET NO):	REV NO:	
18/11/2020)	1 of 1		01	
	Revised as per Initial SLD fr REVISI CT: Customer A Customer A Customer A Project Pur LDC Project Other Info C Inc. DGO VAME: BEH DD/MIM/YYYY 18/11/2020	Revised as per [LDC] of Initial SLD for [LDC] REVISION/ISS CT: Customer Name Customer Address Customer Address Customer Address Project Purpose LDC Project ID: #12 Other Info C Inc. OGO AE NAME: BEHIND THI DD/MIM/YYYY DRAW 18/11/2020 S.	Revised as per [LDC] comments Initial SLD for [LDC] review REVISION/ISSUE CT: Customer Name Customer Address Line 1 Customer Address Line 2 Project Purpose LDC Project ID: #12,345 Other Info C Inc. OGO ABC Inc. OTHE BEHIND THE METER EX DD/MM/YYYY 18/11/2020 S. Matti NO: 18/11/2020 1 of 1	Revised as per [LDC] comments Initial SLD for [LDC] review REVISION/ISSUE CT: Customer Name Customer Address Line 1 Customer Address Line 2 CT: Customer Address Line 1 Customer Address Line 2 Project Purpose LDC Project ID: #12,345 Other Info CInc. OGO ABC Inc. OGO ABC Inc. OD/MM/YYYY DRAWN: 18/11/2020 18/11/2020 1 of 1	

Item	Information to Include					
Number						
1	The title block should include:					
	The legal name of the facility owner					
	Facility address/location					
	Project purpose					
	LDC assigned project ID					
	Revision history					
2	• State utility's distribution and transmission facility (station) name(s)					
	• State the name of utility's station feeder to which the generator is connected					
	 State the nominal distribution supply voltage (eg. 44kV) 					
	 State the information for the upstream and downstream switches closest 					
	to the PCC (nomenclature, type, etc.)					
3	 LDC to assign nomenclature for this switch. 					
	Note: initial submission can have the consultant/customer assigned nomenclature if					
	a LDC designation is not yet available. Later, the customer is assigned a LDC					
	designation, which should be added to the SLD and resubmitted to LDC before the					
	SLD is considered finalized. The consultant/customer then has the option to replace					
	the initial designation with LDC designation or keep both. Ensure the LDC					
	designation is clearly marked to differentiate it from the consultant/customer					
	designation (bolded, in brackets, etc). Item 3 has an example showing only LDC					
	designation, while item 17 shows an alternate method that shows both designations.					
	LDC only refers to the LDC designation when dealing with the customer. Example					
	when witnessing the switch used for work protection as per section 2.1.7 of the TI					
	When submitting the new SLD with the changes, a higher revision number of the					
	SLD should be used to track the changes. See SLD					
	example.					
4	• The Point of Common Coupling (PCC) is the point of demarcation					
	between LDC and the DER. It is the point where the DER is to connect to					
	LDC's Distribution System. PCC demarcation point					
	 LDC designated facility operating designation (NCXXXX) 					
	• If the nomenclature is not included, the SLD is considered incomplete.					
5	• Fault indicators with directional functionality are required for each phase					
	between the PCC and the first pole on the customer owned new line and					
	should be visible from the PCC location.					
6	• Provide the length(s), ownership, and size(s) of line(s) from PCC to the					
	meter. This data is used for SSLA determination. The metering point is at					
	the location of the CT's and not the physical meter.					
	To comply with TIR section 2.1.6					
8	State the number of CTs being used					
	• State the CT ratios including both ratios if they are dual ratio					
	State the in-use CT ratio if dual ratio					
	 State the ANSI/CSA CT accuracy class information (provide example on SLD 					
	after)					

9	Clearly identify existing and new facility if applicable
	• If a new equipment (ex. transformer) is being replaced in an existing
	facility, it should be indicated
	Ensure all existing generators or backup generators are shown
10	LDC designation must be shown
	Voltage rating
	Current rating
	Type of switch
	• Single/3 phase
	Physically accessible to LDC
	Alternatively, switch information can be shown on SLD as per item number 14
11	Fuse information to include:
	Fuse rating
	Manufacturer make/model
	• Fuse type on the SLD
	• Example: S&C SMD-1A 50E TCC153
12	Transformer Information to include:
	Winding configuration
	LDC designation
	Manufacturer make/model
	• Rating
	• Ratio
	Transformer ownership
13	 Please detail where the existing FIT/micro-FIT generator/meter are connected.
	Include LDC ID
	Show existing load
	• Capacity
	• Type
	For new generators:
	• Show the generator(s) connection(s) to the power transformer(s)
	• Show the operating nomenclature of the generator(s) (e.g. G1, G2, etc.)
	• State the nameplate capacity of the generator or individual generators,
	where there is more than one, in kVA / MVA. or kW / MW
	• For solar, state the size(s) and number of inverter(s)
	• State the operating power factor (PF)
	 State connection type (wye, Delta, etc.) and indicate grounding State whether the generator is induction or synchronous type
14	• State whether the generator is induction of synchronous type.
14	• IDC designation
	Voltage rating
	Current rating
	 217 indicate which device is complaint with 217
15	To comply with TIR section 2.1.6
16	See item number 12

17	LDC designation					
	Manufacturer make/model					
	Current rating					
	• Single/3 phase					
	Note: initial submission can have the consultant/customer assigned nomenclature if					
	a LDC designation is not yet available. Later, the customer is assigned a LDC					
	designation, which should be added to the SLD and resubmitted to LDC before the					
	SLD is considered finalized. The consultant/customer then has the option to replace					
	the initial designation with LDC designation or keep both. Ensure the LDC					
	designation is clearly marked to differentiate it from the consultant/customer					
	designation (bolded, in brackets, etc). Item 3 has an example showing only LDC					
	designation, while item 17 shows an alternate method that shows both					
	designations. LDC only refers to the LDC designation when dealing with the					
	customer. Example, when witnessing the switch used for work protection as per					
	section 2.1.7 of the TIR. When submitting the new SLD with the changes, a higher					
	revision number of the SLD should be used to track the changes. See SLD example.					
18	 The Point of DER Connection (POC) is the point where DER 					
	unit(s)'s interconnection system connects the DER unit(s) to					
	the DER facility.					
	 Depending on the facility, it can be the same as the PCC 					
19	Include LDC Project ID #					
	Inverter manufacturer make/model					
	• MW rating					
	IEEE/ANSI protection elements need to be noted for the customer's inverters					
20	Include CSA Certification					
20	Manufacture make/model					
	 Mining Include information for gross load billing where required 					
21	Teleportation equipment make/model					
21	 Flow of information/signals 					
22	Relay manufacturer make/model					
	ANSI Device numbers used					
	Flow of information signals					
23	Flow of signals between devices					
24	Other general information required:					
	 SLD must be stamped and signed by a Registered Professional 					
	Engineer in the Province of Ontario					
	• All information on the SLD must be legible, and of a reasonably sized font					
	for ease of reading					
	The Connection Impact Assessment provides details regarding the					
	type and configuration of isolation devices required.					
	• The DER facility must comply with all applicable interconnection					
	requirements specified in the "HONI Distributed Generation Technical					
	Interconnection					

Requirements Interconnections at Voltages 50kV and Below" (TIR).

Ontario | Commission Energy | de l'énergie Board | de l'Ontario

Protection for Distributed Energy Resource Proponents Applying for Connection

This document is a summary of a sample protection philosophy for non-exporting, inverter-based (NE/I) connections including storage, solar, and wind. The OEB intends it as a guide for proponents regarding the kinds of protections, and particularly the categories of protections, that distributors will require for connection.

This is one example of a protection philosophy that would meeting the interconnection standards¹. Other philosophies may also meet the standards. It provides guidance to a distributed energy resource (DER) proponent on good utility practice as it relates to protection requirements of non-exporting, inverter-based (NE/I) DERs. To form a protection scheme, all the elements for each category within any given protection philosophy are requirements.

This document is not an approval for connection. This information should help proponents file better and more complete applications for connection. A proponent will need to submit detailed protection settings after the utility has completed the impact assessment of the submitted connection application.

The standards and certification testing referenced in this document should be read as referring to the current versions of these standards at time of reading.

Sample Protection Philosophy for Non-exporting Inverter-based Sources

The protection system of the connection will be designed to:

- Detect internal faults with the generator facility, downstream of the Point of Common Coupling (PCC), and automatically disconnect the NE/I source
- Detect external faults on the utility feeder and automatically disconnect the NE/I source
- Detect islanding conditions and disconnect the NE/I source
- Detect export of power from the NE/I source to the utility feeder and automatically disconnect the NE/I source

¹ The contents of this document, although intended as guidance, conform to the interconnection and approval requirements prevalent at the time of its issuance. At all times, the current versions of relevant codes and standards govern.

Internal Faults Within the Generator Facility

The following protections are in place to protect against internal faults resulting from the NE/I source:

- **Multi-Function Relay-**At the PCC, a multi-function relay will be installed to monitor internal faults resulting from the NE/I source. The 52 Trip Breaker will trip if it detects the following:
 - 25 Synchronization Check
 - 27 Undervoltage
 - 59 Overvoltage
 - 810/U Under and Over Frequency
 - ID -Active Anti-Islanding
- **Inverter Breakers** Each inverter is equipped with an AC breaker at the output of the inverter providing additional overcurrent protection
- Facility Overcurrent Protection All circuits within the facility are protected from both phase-to-phase and phase-to-ground faults by appropriate overcurrent protection devices. Fuses are sized to clear under fault conditions within the generator facility

External Phase and Ground Faults in the Distribution System

The following protections are in place to protect against external faults resulting from the utility feeder:

- Multi-Function Relay At the main utility service, prior to the first facility load, a multi-function relay will be installed to monitor faults from the utility feeder. The 52 Trip Breaker at the NE/I source PCC will trip under the following faults:
 - 27 Undervoltage
 - 32R- Reverse Power
 - 50/51- Overcurrent
 - 59 Overvoltage
 - 810/U Under and Over Frequency
 - 67 Directional
- Inverter Protection: The inverters proposed for this project are certified to UL 1741, IEEE 1547, CSA C22.2 107.1-01 standards² and will behave accordingly.

² All references to standards or testing certifications should be read as the most current version.

Anti-Islanding

- The Energy Resource Facility will operate in a grid following mode and will not operate islanded.
- Anti-Islanding Inverters -The NE/I source inverters contain both passive and active anti- islanding protection as required by IEEE 1547 and UL1741 SA. If the utility normal power supply is interrupted, the inverters detect the loss of power and disconnect.

Reverse Power

• **Reverse Power Protection** - In addition to the multi-function relay at the utility supply monitoring reverse power (32R), the load is continually monitored to ensure the NE/I source discharge is below the consumption of the facility. This additionally protects against power injection to the utility grid.

Directional Overcurrent

 Directional overcurrent protection - Directional overcurrent relays are normally used on incoming line circuit breakers on buses which have two or more sources. They are connected to trip an incoming line breaker for fault current flow back into the source, so that a fault on one source is not fed by the other sources.

Special Comment Regarding Inverter Based Generation

The inverters specified for this project have a limited fault current contribution.

• Because inverters are current-limited devices, unlike rotating generators, the fault current is very close to the maximum output current, limiting the fault current in the system to 120% -140% of FLA.

Description	IEEE Device	Internal Faults	External Faults	Anti-Islanding	Reverse Power
Over-Voltage	59	х	Х	Х	
Under-Voltage	27	Х	Х	Х	
Over-Frequency	810	Х	Х	x	
Under-Frequency	81U	Х	Х	х	
Instantaneous Over-Current Phase	50	Х	х		
Timed Over- Current Phase	51	х	x		
Reverse Power	32R			х	х
Directional	67	x	X		
Active Anti- Islanding	IEEE 1547			x	

Table 1: Protection Summary Matrix

Table 2: Protection Elements

Protection Element	Device#	Feeder Protection	IEEE 1741
Function	Device#	Relay/Shunt Trip	SA
			Inverter
Over-Voltage	59	Х	Y
Under-Voltage	27	Х	Y
Over-Frequency	810	Х	Y
Under-Frequency	81U	Х	Y
Synchronization	25	Х	Y
Check			
Reverse Power	32R	Х	
Overcurrent	50/51	Х	Y
Directional	67	Х	
Active Anti-islanding	ID		Х
X	X = Primary Y = Secondary		