Analysis of Heat Pumps for Cost-Effectiveness & Climate Alignment EB-2021-0002 March 21, 2022 Prepared by Dr. Heather McDiarmid & Kent Elson

Background

- Enbridge proposal:
 - \$12 million on gas heat pumps and hybrid systems over 2023 and 2024
 - Fastest growing program area
 - \$0 on all-electric cold climate heat pumps
- Purpose of report
 - 1. Assess the cost-effectiveness of gas, hybrid and electric heat pumps for residential buildings
 - 2. Assess the role of gas, hybrid and electric heat pumps in a net zero transition

Heat pump types

Traditional Gas Furnace	Electric heat pumps	Hybrid system	Gas heat pump
Converts fuel energy to heat	Moves heat using a compressor	Electric heat pump with Smart controls that switch to gas backup	Gas powers a heat pump or drives the refrigeration cycle
Max 100% efficient	Currently up to 390% efficient	Currently up to 390% efficient (but not modelled here due to complexity)	Expected efficiency of 120-140% (but not yet commercially available)
Heating only	Heating and cooling	Heating and cooling	Heating only
Gas water heaters are 81% efficient	Heat pump water heaters are currently 350% efficient	Paired with gas water heater in models	Same unit can heat water at 120-140% efficiency

Cost effectiveness (avoided cost)

- Gas heat pumps are not cost-effective vs any option
- Electric heat pumps are often the most cost-effective option
 - Cost-effective vs. all other options where gas infrastructure can be avoided
 - New residential developments where gas connection >\$4,100
 - Gas pipeline expansion communities
 - For existing homes, outcomes depend on electricity cost assumptions
 - Using Enbridge electricity avoided costs
 - Hybrid and conventional gas-only systems somewhat more cost-effective than all electric heat pumps
 - Using IESO electricity avoided costs
 - All electric heat pump is more cost-effective (hybrid system not modeled)

5

Cost effectiveness (customer costs)

All electric heat pumps are most cost effective vs. gas furnace systems or gas heat pumps

Customer costs of gas furnace, water heater and air conditioner, a gas heat pump and air conditioner, and a ccASHP with a HPWH.

	Gas furnace (95%), gas water heater (EF 0.81) and SEER 13 AC	Gas heat pump (120%) with SEER 13 AC	All electric ccASHP (HSPF 10) with HPWH (EF 3.75)
Upfront cost	\$10,500	\$18,250	\$15,357
15-yr operational cost	\$27,135	\$21,342	\$16,309
15-yr NG fixed costs	\$5,505	\$5 <i>,</i> 505	NA
15-yr operational/NG fixed cost savings	NA	\$5,793	\$16,331
Lifetime savings	NA	-\$1,957	\$11,474
NPV (compare to gas furnace scenario)	NA	-\$3,993	\$1,869

^[1] Discount rate of 6.08% used

Heat pumps in net zero transition

- Net zero target for 2050 in Canada
 - Heating equipment promoted should be consistent with this target
- Leading institutions call for electrification of heating
 - e.g. International Energy Agency recommends phase out of fuel-based heating systems by 2025
- Low carbon gas-based options (RNG, hydrogen) are untenable
 - Limited availability or feedstock
 - Very expensive
 - Needed for other uses
- Hybrid and gas heat pumps are likely to be inconsistent with our net zero targets
- Electric heat pumps are the best option for net zero transition

Future cost-effectiveness of electric HP

- Heat pump efficiencies have been increasing
- Current efficiencies not close to the theoretical maximum
- Equipment costs expected to decline
- Carbon costs are increasing
- Would benefit from market transformation program to
 - Overcome low consumer and installer awareness of the technology
 - Overcome misconceptions about their performance and lifetime costs
 - Build installer capacity

Issues raised by Enbridge

- Appropriate to model seasonal heat pump efficiency at 293% (HSPF 10, zone V)
 - YES
 - Units with up to 390% efficiency are already available
 - Many units are available with 293% or higher
- Appropriate to model straight line carbon price increases though 2030?
 - YES
 - Continuation of current \$15/t/yr increase
 - IESO proposes the same in Pathways Modelling draft assumptions (<u>link</u>)
 - Carbon reductions after 2030 will cost more than \$170/t after lower-hanging fruit is picked
 - Assuming no increase after 2030 is a forecast itself, and is inconsistent with net zero targets
- All electric heat pumps are still cost-effective even at lower efficiencies and no carbon price increase after 2030 (IESO avoided costs)

Big picture assessment

- Regardless of specific modelling assumptions, no doubt that:
 - All electric heat pumps are near or over a cost-effectiveness tipping point relative to gas
 - All electric heat pumps are getting more cost-effective as carbon prices increase and technology improves
 - All electric heat pumps would benefit from programming to overcome low consumer and installer awareness of the technology, overcome misconceptions about their performance and lifetime costs, and build installer capacity
 - Gas heat pumps are expensive and inconsistent with a net zero transition