EB-2022-0059 PUC Distribution Inc. – Cost of Service Application

Interrogatories of Environmental Defence

1. **Reference: Distribution System Plan**

Questions:

- (a) Please describe how PUC sizes new equipment to ensure it will be able to handle the future load from electrification.
- (b) For the three largest capital spending items in the distribution system plan, please provide the following:
 - i. What is the approximate threshold of electric vehicle penetration (%) in the relevant area at which point an additional upgrade would be required to the proposed investment?
 - ii. What is the approximate threshold of the percentage of customers that electrify their fossil fuel heating with high-efficiency cold climate heat pumps in the relevant area at which point an additional upgrade would be required to the proposed investment?
 - iii. What is the approximate threshold of the percentage of customers that electrify both their vehicles and fossil fuel heating in the relevant area at which point an additional upgrade would be required to the proposed investment?

These questions will require a number of assumptions to be made to provide an answer. Please make and state those assumptions as necessary. To address uncertainties, please state all caveats and/or provide a range of possible figures. An order-of-magnitude answer on a best-efforts basis is sufficient.

2. Reference: Distribution System Plan

Question:

(a) We are trying to explore the ballpark impact on unit costs that might arise from possible large increases in demand from electrification. If annual and peak demand were to double over the next decade, but the load factor were to remain constant, would the additional distribution infrastructure costs lead to increases or decreases in unit distribution costs (i.e. total distribution costs per MW peak demand or total distribution costs per MWh of annual demand)? Please explain why and comment as best as you can on the order of magnitude. We understand that no concrete answer can be provided – directional and order of magnitude commentary is sufficient.

3. Reference: Distribution System Plan

Questions:

- (a) What percent of PUC's customers are on restricted feeders?
- (b) Please provide a list of investments in the DSP that PUC considers as potential candidates for a non-wires alternative (NWA), including CDM.
- (c) Will PUC consider implementing any cost-effective NWAs prior to the expiry of its DSP in 2027?
- (d) If PUC implements an NWA in lieu of a currently-planned capital project, how would it account for the change in costs, including any migration of capital costs to operating costs?

4. Reference: Distribution System Plan

Questions:

- (a) Please describe and itemize all proposed spending to enable the implementation of DER's by DER's customers.
- (b) The market for DERs is rapidly changing, as are the regulatory processes and technology for connecting them to the grid. If PUC decides between now and 2027 that additional DER-enabling investments should be made before the end of the DSP, which are not part of the proposed DSP, how would PUC cover those costs?

5. Reference: Distribution System Plan

Questions:

- (a) Please file a copy of any reports in PUC's possession containing forecasts for the numbers of electric vehicles in PUC's service area.
- (b) Please file a copy of any reports in PUC's possession on the impacts of electric vehicles on (i) utility revenue and (ii) utility costs.
- (c) What is PUC's best estimates of the number and percent of electric cars in its service area total and incremental between now and 2030?
- (d) Please describe all steps that PUC is taking or considering to encourage customers to charge their cars at off-peak times.
- (e) Please describe all steps that PUC is taking or considering to encourage customers to use their car batteries to off-set the peak load of their building via bi-directional chargers.
- (f) Please estimate the impact on PUC's revenues and costs as a result of electric vehicles over 2023-2027. Please consider whether PUC will experience additional revenues than costs as described in the following Synapse energy study: <u>https://www.synapseenergy.com/sites/default/files/EVs-Driving-Rates-Down-8-122.pdf</u>. Please explain the response.
- (g) What investments is PUC making over 2023-2027 to accommodate an expansion of electric vehicles? Please describe these and provide the dollar total.

- (h) Does a residential customer need to notify or seek approval from PUC before installing a high-speed electric vehicle charger? Please explain and provide any relevant excerpts from the relevant document containing said requirement.
- (i) Does a residential customer need to notify or seek approval from PUC before installing a high-speed bi-directional electric vehicle charger (under 10 kW) that does not export to the grid? Please explain and provide any relevant excerpts from the relevant document containing said requirement.
- (j) Can PUC require a residential customer to make a financial contribution toward distribution system upgrades necessary to allow the customer to install a high-speed onedirectional EV charger? If yes, would PUC do so? Please explain.
- (k) Can PUC require a residential customer to make a financial contribution toward distribution system upgrades necessary to allow the customer to install a high-speed bidirectional EV charger (non-exporting)? If yes, would PUC do so? Please explain.
- (l) Generally speaking, what protective devices would be needed for a residential customer to install a bi-directional EV charger that is not meant to export to the grid to ensure that there is no damage in the event of a grid outage?
- (m)Is PUC obligated to undertake the upgrades necessary for residential customers to install EV chargers if they choose to do so?
- (n) How many electric vehicles will PUC buy over 2023-2027?
- (o) How many electric vehicle chargers will PUC buy over 2023-2027?

6. Reference: Distribution System Plan, 5.3.2.1.3

Questions:

- (a) Does PUC quantify and consider the potential value of distribution loss reductions for different options when procuring equipment (e.g., transformers) and deciding on the details of demand-driven capital projects (e.g., the type and sizing of conductors)? If yes, please explain how and provide documentation detailing the methodology used.
- (b) If PUC is considering the value to its customers of distribution loss reductions for planning purposes, how does it calculate the dollar value (\$) of said loss reductions (kWh)? Is the value calculated based only on the HOEP or on all-in cost of electricity (e.g., including the GA)?
- (c) Further to the above question, Hydro Ottawa and Burlington Hydro use the all-in cost of electricity. If PUC's practice differs, please explain whether there are aspects of its system that would justify this.
- (d) Please provide a table showing PUC's annual historic (past 5 years) and forecast (future 5 years) losses as a percent of annual consumption and as a ratio to the peak demand.
- (e) What would a reasonable target be for PUC's average losses over 2023-2027 as a percent of annual consumption?
- (f) Has PUC completed studies to determine cost-effective measures to reduce losses? If yes, please file those.

7. Reference: Distribution System Plan, s. 5.3.5 (Smart Grid Project)

Questions:

- (a) Table 5.3-28 provides the NPV of annual net benefits and the NPV of projected reliability benefits. Is there overlap between the tables? Please provide the NPV of all quantifiable benefits, including reliability benefits, and a breakdown of each item included therein.
- (b) Please provide an update of PUC Undertaking Responses JTC1.8 from the smart grid ICM case, which calculated the 10-year carbon price savings of avoided GHG emissions, accounting for Ontario's plans to increase gas generation.

8. Reference: Distribution System Plan

Question:

(a) Please review the Sustainable Brooklin project proposed by Elexicon Energy in EB-2022-0024. Would PUC consider pursuing a similar project between 2023 and 2027?

9. Reference: Distribution System Plan

Questions:

For all of the below questions, please provide an answer on a best-efforts basis and please make and state any assumptions and caveats as necessary.

- (a) Please provide any analysis that PUC has produced or reviewed to examine heat pumps as a replacement for resistance electric heating as a way to reduce distribution costs (e.g. as part of an NWA).
- (b) Please complete the following table:

PUC Customers – Characteristics by Sector						
	2022		2027			
Total Customers						
Residential						
Commercial						
Industrial						
Customers with						
Electrical Space						
Heating						
Residential						
Commercial						
Industrial						
Annual Consumption						
(kWh) for Resistance						

Space Heating for		
Average Customer		
Residential		
Commercial		
Industrial		
Peak Demand (kW)		
for Resistance Space		
Heating for Average		
Customer		
Residential		
Commercial		
Industrial		
Annual Consumption		
(kWh) for Resistance		
Water Heating for		
Average Customer		
Residential		
Commercial		
Industrial		
Peak Demand (kW)		
for Resistance Water		
Heating for Average		
Customer		
Residential		
Commercial		
Industrial		

(c) Please complete the following table:

Electricity Use – Typical Customer After Conversion to Heat Pumps									
	Average Annual		Average Annual			Average Annual			
	Electricity Consumption		Electricity Consumption			Electricity Consumption			
	– Resistance Heating		(ccASHP & HPWP,		(GSHP & HPWP,				
	(kWh)		HSPF R	HSPF Region $5=10^{1}$)		sCOP=5) (kWh)		
				(kWh)					
	Total –	Space	Water	Total –	Space	Water	Total –	Space	Water
	Space/	Heating	Heating	Space/	Heating	Heating	Space/	Heating	Heating
	Water			Water			Water		
Average or									
Typical									
Single-Family									
Residential									
Customer									

¹ Equivalent to ~sCOP=2.9 (2.96516)

(d) Please complete the following table:

Winter Peak Demand – Typical Customer After Conversion to Heat Pumps									
	Average Peak Demand –			Average Peak Winter			Average Peak Winter		
	Resistance Heating (kW)		Demand (ccASHP &			Demand (GSHP &			
			HPWP,	HPWP, HSPF Region		HPWP, sCOP=5) (kWh)			
				$5=10^2$) (kW)					
	Total –	Space	Water	Total –	Space	Water	Total –	Space	Water
	Space/	Heating	Heating	Space/	Heating	Heating	Space/	Heating	Heating
	Water			Water			Water		
Average or									
Typical									
Single-Family									
Residential									
Customer									

(e) Please complete the following table:

Summer Peak Demand – Typical Customer After Conversion to Heat Pumps									
	Average Peak Demand –			Average Peak Winter			Average Peak Winter		
	Traditional Central AC		Demand (ccASHP &			Demand (GSHP &			
	(kW)			HPWP, HSPF Region		HPWP, sCOP=5) (kWh)			
				$5=10^{3}$ (kW)					
	Total –	Space	Water	Total –	Space	Water	Total –	Space	Water
	Space/	Cooling	Heating	Space/	Cooling	Heating	Space/	Cooling	Heating
	Water			Water	_	_	Water		_
Average or									
Typical									
Single-Family									
Residential									
Customer									

(f) Please complete this table of cooling efficiencies:

Cooling Efficiencies of Various Equipment Types						
	SEER EER					
Central air conditioners	Average of current stock (best estimate, PUC customers or Ontario average)					
	Standard unit					

² Equivalent to ~sCOP=2.9 (2.96516) ³ Equivalent to ~sCOP=2.9 (2.96516)

	Energy Star rated	
	Energy Star – Most	
	efficient of 2021	
	Standard unit	
Air source heat	Energy Star rated	
pumps	Energy Star – Most	
	efficient of 2021	
Air course heat	Standard unit	
All source neat	Energy Star rated	
sustame (if different)	Energy Star – Most	
systems (ir unrefent)	efficient of 2021	
	Standard unit	
Ground source heat	Energy Star rated	
pumps – closed loop	Energy Star – Most	
	efficient of 2021	
	Standard unit	
Ground source heat	Energy Star rated	
pumps – open loop	Energy Star – Most	
	efficient of 2021	
Cold climate heat	Standard unit	
	Energy Star rated	
pumps – variable	Energy Star – Most	
spece	efficient of 2021	