

David Stevens Direct: 416.865.7783 E-mail: dstevens@airdberlis.com

March 22, 2023

BY EMAIL AND FILED VIA RESS

Nancy Marconi Registrar Ontario Energy Board 2300 Yonge Street Suite 2700 Toronto, ON M4P 1E4

Dear Ms. Marconi:

Re: Enbridge Gas Inc. ("Enbridge Gas") EB-2022-0200 – 2024 Rates Application Documents from Guidehouse re Low-Carbon Pathways (LCP) model

We act as counsel to Enbridge Gas in this matter.

As we explained in our March 20, 2023 letter, Guidehouse agreed to provide certain intervenors with a detailed overview of how the LCP model works, on a confidential basis. Guidehouse also agreed to provide a "workbook" of inputs used specific to Enbridge Gas, also on a confidential basis.

Yesterday (March 21st), Enbridge Gas provided these materials to representatives of Environmental Defence, Green Energy Coalition and School Energy Coalition. Each of these parties (who have already signed the OEB's Declaration and Undertaking) agreed to treat the documents as confidential, subject to any later OEB determination.

After the documents were provided, a meeting was held between Guidehouse, Enbridge Gas and the intervenor representatives on March 21st to provide further details and explanation about the LCP model to assist intervenor understanding of how the model operates. From the perspective of Enbridge Gas, the meeting was successful. Guidehouse provided extensive information and explanation and agreed to provide model inputs and outputs (to be confirmed in an undertaking at the Technical Conference). Guidehouse also explained the infeasibility of providing "the model" to parties (along with the very strong concerns about risks and adverse consequences of disclosure). It is Enbridge Gas's strong hope that there will be no continuing need / insistence on production of the Guidehouse LCP model.

Enbridge Gas and Guidehouse have agreed with the intervenor representatives that the documents shared on March 21st will be filed in this proceeding, and intervenors acknowledged that confidentiality requests will be made in relation to portions of the documents.

Attached to this letter are two documents: (i) a detailed overview of the LCP model; and (ii) an Excel spreadsheet including inputs used for the Enbridge Gas LCP model.

On behalf of Guidehouse, Enbridge Gas requests confidential treatment for portions of the documents. The specific request and rationale are set out in the attached letter from Guidehouse.

As required by the Practice Direction on Confidential Filings, Enbridge Gas has filed confidential un-redacted versions of each of the applicable documents, identifying all portions of the document for which confidential treatment (or non-relevance) is claimed, as well as non-confidential redacted versions of each such document.

Yours truly,

AIRD & BERLIS LLP

David Stevens DS/

c: All parties registered in EB-2022-0200 Guidehouse, attn. Max Brady, Associate General Counsel Reena Goyal, McCarthy Tetrault LLP, counsel to Guidehouse

Attachments, Documents from Guidehouse and March 22, 2023 Letter from Guidehouse.

47705292.1

AIRD BERLIS

March 22, 2023

Via Email: dstevens@airdberlis.com David Stevens Aird & Berlis LLP Brookfield Place, 181 Bay Street, Suite 1800, Toronto, Ontario M5J 2T9

Re: Enbridge Gas Inc. 2024 to 2028 Rates Application EB-2022-0200 – Request for Confidential Treatment of Guidehouse Model Guide and Model Inputs

Dear Mr. Stevens:

As stated in the Guidehouse Inc. ("Guidehouse") letter delivered to you on March 19, 2023, and attached to the Enbridge Gas Inc. ("Enbridge Gas") letter delivered to the Ontario Energy Board ("OEB") on March 20, 2023, Guidehouse met virtually with ED and SEC on March 31, 2023 and provided detailed explanation of exactly how the Model works and answered questions regarding the Guide and Model Inputs (the "Conference"). After further correspondence by Enbridge Gas on Guidehouse's behalf with Environmental Defence ("ED") and School Energy Coalition ("SEC"), Guidehouse provided *The Guidehouse Low Carbon Pathways Model Methodology* (the "Guide") and the model inputs used in the pathways report ("Model Inputs") to Enbridge Gas for purposes of sharing with ED and SEC. On March 21, 2023,.

Certain portions of the Guide and Model Inputs are confidential to Guidehouse and, as such, we ask that you submit this letter to the OEB on our behalf respectfully requesting that, in accordance with the OEB's revised <u>Practice</u> <u>Direction on Confidential Filings</u> effective December 17, 2021 (the "Practice Direction"), the confidential portions of the Guide and Model Inputs be given confidential treatment by the OEB. Schedule 1 sets out details of the request being made for each document.

For purposes of the filings required by the Practice Direction, Guidehouse has provided a separate attachment containing un-redacted version of the Guide and Model Inputs, which identifies all portions of the respective documents for which confidential treatment is claimed in yellow highlight. Non-confidential redacted versions of the Guide and Model Inputs to be filed are attached hereto as Exhibit A and Exhibit B, respectively.

Lastly, Guidehouse wishes to note its concern with sharing further proprietary Guidehouse information with the OEB or intervenors. Declarations and Undertakings are given to and only enforceable by the OEB and not Guidehouse. As such, Guidehouse has no direct way to be kept whole for any breaches resulting in a leak of Guidehouse's proprietary information and we are aware that breaches of Declarations and Undertakings have occurred in the past. Even if Guidehouse were to have a direct claim against a participant, the participants in the proceedings are not large entities with the means to provide compensation equivalent to the losses that Guidehouse would suffer from a breach of confidentiality involving its proprietary information.

Documents from Guidehouse re. LCP model March 22, 2023 Attachment Page 2 of 33

Very truly yours,

Guidehouse Inc.

Max J Brady

By: Max J. Brady, Associate General Counsel

Date: March 22, 2023 Enclosure

Schedule 1

Confidentiality Requests

	Document	Description of Document	Confidential Information Location	Brief Description	Basis for Confidentiality Claim
1.	Guide	Detailed discussion of the Guidehouse model methodology	Pages 8-11	The redacted information consists of specific model constraints used and developed by Guidehouse.	The redacted information provides details on the inner workings of Guidehouse's model that could be used by a competitor to improve their own capacity expansion or pathways models in direct competition to Guidehouse, and potentially result in a significant loss of revenue to Guidehouse. This fits with item a) in the OEB's Considerations in Determining Requests for Confidentiality ("the potential harm that could result from the disclosure of the information, including (i) prejudice to any person's competitive position (iv) whether the disclosure would be likely to produce significant loss or gain to any person."). ¹ Because the redacted information relates to the inner workings of Guidehouse's model, this also fits item 7) in the OEB's Categories of Information that Will Presumptively Be Considered Confidential ("Underlying dataset and/or model of a consultant retained by a party"). ²
2.	Model Inputs	Inputs used in the pathways	Page 11	The redacted	The redacted existing generation capacity is commercial
		report		information is	information from confidential Guidehouse developed forecasts
				existing generation capacity developed	that Guidehouse provides to clients as a paid service.
				from confidential	Disclosure of the information would prejudice Guidehouse's

¹ Appendix A to the OEB's Practice Direction on Confidential Filings ² Appendix B to the OEB's Practice Direction on Confidential Filings

	Document	Description of Document	Confidential Information Location	Brief Description	Basis for Confidentiality Claim
				forecasts that Guidehouse requires clients to pay for access to.	competitive position by providing competitors with our proprietary research that could be used in their own service offerings to clients, and potentially result in a significant loss of revenue to Guidehouse.
					This fits with item a) in the OEB's Considerations in Determining Requests for Confidentiality ("the potential harm that could result from the disclosure of the information, including (i) prejudice to any person's competitive position (iv) whether the disclosure would be likely to produce significant loss or gain to any person."). ³ This also fits item 7) in the OEB's Categories of Information that Will Presumptively Be Considered Confidential ("Underlying dataset and/or model of a consultant retained by a
3.	Model Inputs	Inputs used in the pathways report	Page 12	The redacted information is planned capacity retirements developed from confidential forecasts that Guidehouse requires clients to pay for access to.	 party").⁴ The redacted planned capacity retirements are commercial information from confidential Guidehouse developed forecasts that Guidehouse provides to clients as a paid service. Disclosure of the information would prejudice Guidehouse's competitive position by providing competitors with our proprietary research that could be used in their own service offerings to clients, and potentially result in a significant loss of revenue to Guidehouse. This fits with item a) in the OEB's Considerations in Determining Requests for Confidentiality ("the potential harm that could result from the disclosure of the information, including (i) prejudice to any person's competitive position (iv) whether the disclosure would be likely to produce

³ Appendix A to the OEB's Practice Direction on Confidential Filings ⁴ Appendix B to the OEB's Practice Direction on Confidential Filings

Document	Description of Document	Confidential Information Location	Brief Description	Basis for Confidentiality Claim
				significant loss or gain to any person."). ⁵ This also fits item 7) in the OEB's Categories of Information that Will Presumptively Be Considered Confidential ("Underlying dataset and/or model of a consultant retained by a party"). ⁶

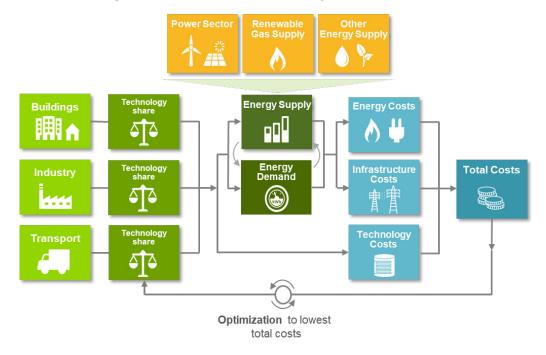
⁵ Appendix A to the OEB's Practice Direction on Confidential Filings ⁶ Appendix B to the OEB's Practice Direction on Confidential Filings

Exhibit A

Redacted Guide

[attached]

Appendix A. The Guidehouse Low Carbon Pathways Model Methodology


Governments, utilities, and commercial entities around the world are setting ambitious climate and energy targets, towards achieving a decarbonized future. However, due to the myriad decisions involved in this energy system transition, the best pathways to achieve goals are often unclear. Guidehouse's proprietary Low Carbon Pathways (LCP) model focuses on investigating different ways that regions may decarbonize energy systems, using an integrated capacity expansion and dispatch optimization model. The model facilitates critical decision-making by facilitating analysis of different potential pathways.

LCP leverages optimization techniques to identify the lowest total system cost pathway to achieve decarbonization targets in different scenarios:

- Within a specified time frame;
- Using a given set of technologies; and
- Under a set of constraints, both at the energy system level (e.g., the buildout and availability of supply, the development of interconnections) as well as operational, individual technology level (e.g., the operation of power generation plants).

The LCP model illustrated in Figure A-1, uses an integrated approach across different energy carriers to determine the lowest cost pathway to achieve a given scenario. Important features include:

- 1. Integrates decisions regarding both how much of a technology to deploy each year and how to dispatch that technology on an hourly basis.
- 2. Captures interactions between energy sub-systems, such as interactions between the electricity, natural gas, and hydrogen systems.
- 3. Uses representative days and peak days to reflect the seasonal variability of electricity and gas demand loads and supply resources.
- 4. Simulates a given energy system, subdivided into one or more primary regions, as well as one or more secondary neighboring regions.

Figure A-1. Low Carbon Pathways Model Overview

A.1 Model Inputs

Defined scenarios drive runs of the LCP model. A scenario consists of scope and resolution of geography, time period, and defined decarbonization targets (e.g., achieving net-zero for specific regions over 2030-2050). The scenario also represents a particular pathway to achieve targets, based on parameters such as:

- Existing and planned generation, storage, and transmission capacities over the time period
- Potential supply technologies that could be deployed, including technological characteristics and associated costs
- Forecasted demand for hydrogen, electricity, and natural gas (e.g., in different sectors) - this is accomplished exogenously to the LCP model itself.
- Potentials for renewable energy resources
- Fuel and emissions price assumptions

Example scenarios could compare achieving targets using a full-electrification pathway with an integrated pathway involving a mix of electricity, hydrogen, and renewable natural gas. Table A-1 describes the inputs that define a scenario. Scenarios may be defined by a subset of these inputs depending on the requirements of a particular study.

Category	Input Data
General	Economic parameters (e.g., WACC)
Model Dimensions	Temporal (Season, representative days, temporal granularity) Geographic (Primary and neighbouring regions)
Emissions	Emissions target, carbon prices, offset prices and availability, emissions intensities for supply technologies
Demand	 Reference Case forecast of demand (e.g., 2020-2050) Electricity, methane, and hydrogen demand
Demand	 Hourly demand profiles by sector & network load profiles Hourly profiles for each representative day (e.g., each season and a winter and/or summer-peak)
Supply	 Existing supply capacity Current electricity supply mix and gas supply mix (e.g., imports, domestic biogas production via anaerobic digestion, etc.)
Supply	 Planned changes to system capacity (e.g., in 2030, 2040, and 2050) Planned capacity additions and planned capacity retirements
Supply	Input fuel types and prices
Supply	 Maximum fuel type supply potentials (or minimum supply), e.g.: Define max limit on RNG supply via anaerobic digestion and biomass gasification Define max limit on blue and green hydrogen supply Define max limit on gas storage capacity (salt caverns, aquifers, etc.)
Supply	 Techno-economic parameters for supply technologies considered, e.g., Electricity: Solar, wind, hydrogen- and natural gas-fired CCGT / OCGT, battery storage, etc. Hydrogen: Blue H2 (SMR + CCS) and green H2 (dedicated vs. curtailed renewables), H2 storage (salt caverns, aquifers, etc.) Methane: Anaerobic digestion, biomass gasification
Infrastructure	 Existing (e.g., 2020) and planned (e.g., 2030, 2040, 2050) interconnection capacities Capacities for energy exchange between the primary region and connected neighboring regions
Infrastructure	Cost parameters for new electric transmission lines Overhead AC, Underground/Overhead HVDC
Infrastructure	Cost parameters for new and repurposed methane and hydrogen transmission pipelines
End Users	 Cost of end user retrofits and equipment replacement, e.g., Cost of weatherization and deep building retrofits Total installed cost of heating equipment (e.g., whole-building electric heat pumps, dual fuel systems, and gas heat pumps) Total installed cost of other relevant appliances (water heaters, cooktops, etc.)

Table A-1. Example Input Data and Assumptions Required for LCP Modelling

A.2 Model Optimization

Fundamentally, LCP is an optimization model, comprising an objective function, decision variables (DVs), and constraints. Figure A-2 provides an illustrative example of a generic optimization for two decision variables and three constraints, where the model attempts to determine a single point in the feasible region that minimizes the objective function.

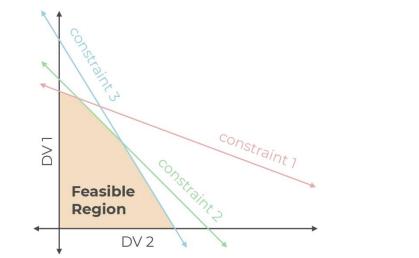


Figure A-3 describes the objective function, DVs, and constraints for the LCP model in more detail. From a whole-system, central planning perspective, LCP minimizes the net present value of total system cost – capital expenditures (CAPEX) as well as fixed and variable operational expenditures (OPEX) – over the specified time period (e.g., 2030-2050).

Fig	ure A-3. LCP Model Objective Function, Decision Variables, and Constraints
OBJECTIVE FUNCTION	The model's primary objective function is to minimize energy system costs over the analysis horizon (e.g., 2020-2050) – including supply, infrastructure, and demand costs.Supply CostsInfrastructure CostsDemand Costs• Cost of new entry (CONE) • Fixed O&M (FOM) • Variable O&M (VOM)
DECISION VARIABLES	The model determines the optimal capacity and dispatch for supply and infrastructure, as wellSupply Tech Capacity & Dispatch• Installed cap. by supply tech, year, region • Fossil gen, renewables, crossloads, short- and long-term storageInfrastructure Capacity & DispatchDemand Technology Mix• Installed cap. by supply tech, year, region, season, hour, region• Installed capacity by energy carrier,
CONSTRAINTS	The model is constrained by existing and planned supply and infrastructure capacity, interim & final emissions reduction targets, and balancing energy supply and demand. Emissions Supply & Infrastructure Capacity Energy Balance • Total emissions are <= the target • Maximum Supply Capacity: by supply tech, region, and year • Demand = Supply • Sufficient Infrastructure Capacity: by energy carrier, region, and year • Sufficient Infrastructure Capacity: by energy carrier, region, and year

A.2.1 Dimensionality

The model currently uses the following dimensions:

- Simulation Year: Calendar years considered, e.g., 2020, 2030, 2040, 2050
- **Season:** Seasons to represent in the model, e.g., Summer, Summer Peak, Winter, Winter Peak, Fall, Spring
- **Timestep:** The temporal resolution of demand in the model, e.g., hourly, at hours 1, 2, 3, ..., and 24
- **Subregion:** Regions to model e.g., an entire province/state or subregions therein as well as neighbouring provinces/states.
- **Supply Technology:** energy supply technologies considered, e.g., electric generation from nuclear, coal, and solar resources, and hydrogen generation from SMR and electrolyzer resources
- Infrastructure Technology: Means of transporting energy considered, e.g., Wire, Pipe, Trucked Hydrogen
- Fuel Type: Energy carriers considered e.g., Electricity, Heat, Hydrogen, Methane

A.2.2 Supply Technology Definitions

This section provides some definitions regarding supply technologies within the LCP model.

Generation Technologies

Technologies defined as "Generation" use imported fuels with defined costs and availability, if applicable, and capacity factors to account for total limits on resource availability and seasonal variation in that availability. For example, an onshore wind power plant has no associated fuel costs, but has a capacity factor that depends on both Timestep and Season to account for patterns in wind direction and speed.

Crossload Technologies

Technologies defined as "Crossload" use a modeled Fuel Type to produce a different modeled Fuel Type. For example, electrolyzers may use electricity (produced by other technologies in the model) to produce hydrogen (which is then used to meet end use demand). Natural gas and hydrogen turbines use a gaseous fuel to produce electricity, depending on the amount of gaseous fuel that can be produced in or imported to the region.

Storage Technologies

Storage technologies have the same input fuel and output fuel and are able to store energy hourly and/or seasonally. The capacity of a storage technology refers to the amount of energy the technology can charge or discharge in a single timestep. For example, an electric battery that can dispatch 20 kW and has a 3 hour storage duration would have a capacity of 20 kW and a storage capacity of 60 kWh.

Some storage technologies are eligible for carryover storage, which allows them to use energy stored in the previous seasons for other seasons. For example, natural gas storage which typically fills in the summer and empties in the winter.

Technology Groups

Supply technology groups model supply technologies that are dependent on the capacity or dispatch of another supply technology, such as H2 enriched natural gas or an open cycle gas turbine that can use hydrogen or natural gas as an input fuel. Within a technology group, one is considered a primary technology (the one mainly used) and the other is considered secondary.

Import Technologies

These technologies represent imported energy separately from defined infrastructure connections between neighbouring Subregions (i.e. they are a different way of characterizing imported energy). When defining import technologies, the cost can be characterized as a fuel cost per unit of energy and/or a CAPEX and OPEX of building and operating the infrastructure needed to deliver the energy. For example, methane imports can be defined as an import technology using the price of natural gas at the point of reception in the associated Subregion.

Retrofitted Technologies

Supply technologies and infrastructure technologies can both be modeled as "retrofits" of existing original technologies. The "original tech" is the technology that's being replaced and the "replacement tech" is the new technology that's being brought online. CAPEX of retrofit technologies may be substantially lower than the installation of new resources, depending on the retrofit. Similar to new installs, the total cost of production for retrofit resources accounts for

the capital cost of installing the resource and the operating cost of using the resource to produce energy. The capacity of the replacement technology is limited by the existing capacity of the original technology subject to a defined limit.

A.2.3 Decision Variables

DVs represent the unknowns the optimizer will solve, for example, the amount of energy dispatched from a specific nuclear plant in the summer of 2050. In the model, all decisions are combined into a vector of variables for which the model ultimately finds a cost-optimized solution, $DV_1, DV_2, ..., DV_n$. The full decision vector represents how an energy system would change (e.g., what is constructed) and how it is dispatched over the analysis timeframe.

The number of DVs will vary based on how the model is configured, but comprise the following categories:

1. Dispatch

The modeled energy dispatched by each Supply Technology in each Timestep, Season, Simulation Year, and Subregion. This decision variable captures the dispatch of generation facilities, storage technologies, crossload technologies, import, and export technologies.

2. Storage

The modeled amount of energy charging for both short and long-term storage technologies (i.e., batteries, natural gas storage, hydrogen storage) in each Timestep, Season, Simulation Year, and Subregion.

3. Carryover

For relevant technologies, the modeled amount of stored energy to carry over from one Season or Simulation Year to the next by Subregion. Specifically, this decision variable represents the level of storage that the simulation starts with in each Season and Simulation Year. This is particularly relevant to long-term seasonal storage such as underground gas storage or a hydro reservoir.

4. Supply Capacity

The modeled new capacity of each Supply Technology installed in each Simulation Year and Subregion. This sets the maximum energy output in each timestep (constraint described below). Includes generation facilities, storage technologies, and crossload technologies.

5. Intra/Interconnection Capacity

The modeled new capacity installed of each Infrastructure Technology connecting two Subregions together ("interconnection") and within a Subregion ("intraconnection") for each Simulation year and Subregion. This sets the maximum amount of energy that can be transmitted across that infrastructure in each Timestep.

6. Intra/Interconnection Dispatch

The modeled amount of energy transmitted from one Subregion to another ("inter-") or distributed within a Subregion ("intra-") in each Timestep, Season, and Simulation Year.

7. Carbon Offset

The modeled quantity of offsets used to reach emission targets, specified system-wide (across all Subregions) for each Simulation Year.

8. Supply Retrofits

The modeled retrofitted capacity of each Supply Technology (if eligible to be retrofitted) in each Simulation Year and Subregion. This keeps track of how much of the original supply technology capacity has been replaced by a replacement technology.

A.2.4 Objective Function

LCP's core objective is to minimize the present value of total system costs over the analysis horizon. To setup the objective function, the model generates a cost for each DV. That is, for a given a decision vector, $DV_1, DV_2, ..., DV_n$, the model generates an associated cost objective vector, $Cost_1, Cost_2, ..., Cost_n$, such that the objective function becomes:

 $Cost_1DV_1 + Cost_2DV_2 + \dots + Cost_nDV_n = Total Cost$

The model seeks to minimize Total Cost and leverages a commercially available solver, Gurobi. Since there are many dimensions to the model including time, the cost function for each decision variable must account for factors such as the time value of money, technology lifetimes, and the salvage value of resources at the end of the study period.

A.2.5 Constraints

The LCP model imposes limitations on the optimization of decision variables when determining the solution for a given scenario. In other words, the model determines the set of decision variables that minimizes the objective function subject to a set of constraints. The constraints defined in the model comprise the following categories:

 Energy Balance – energy balance is split into two distinct balances (one at generation and one at end use) to enable flexibility such as modeling multiple intraconnection technologies (e.g., trucks vs. pipeline) and multiple crossloads at the end use (e.g., heat pump converting electricity into heat vs. furnace converting natural gas into heat)

 Dispatch – constraints on dispatch could require that dispatch is less than capacity (supply technologies), meet minimum dispatch, be less than capacity (infrastructure), have regional constraints on percent of energy imported, constrain firm capacity, or limit one-way capacity.

3. Capacity -

 Emissions – Emissions constraints involve overall emissions targets in each year, as well as limits on carbon offsets.

 Storage – The storage constraints pertain to storage technologies (e.g., batteries, natural gas storage, hydrogen storage), and are constrained in terms of their charge and dispatch levels

6. Ramping – Supply technologies can be constrained in terms of how fast they can be ramped up or down.

7. Technology Groups –The model includes some possible constraints regarding how technology groups are treated, including that their capacities must be equal to maintain linearity in the optimization problem, and that the secondary technology must be dispatched at a specified proportion of the primary technology. For example, this constraint may be used to model hydrogen blended into natural gas at 6% energy content.

8. Annual Fuel Usage – Annual usage of input fuels can be individually constrained at a maximum or minimum.

A.3 Model Outputs

Successful execution of the model (i.e., finding a feasible solution) produces a solution vector (i.e., optimal values for the decision vector, $DV_1, DV_2, ..., DV_n$). The model processes the solution to output important details, such as:

- **Required investments in new generation and storage capacity** e.g., solar, wind, electrolyzers, and hydrogen storage
- **System operation** e.g., system dispatch, energy flows between regions, storage levels, and curtailment
- System costs e.g., CAPEX, OPEX, fuel costs, and CO₂ emissions costs
- **CO₂ emissions incurred throughout the study period** e.g. emissions resulting from the dispatch of natural gas plants, or losses in transport

A.4 Model Limitations

The LCP model has been designed with the intent of being as comprehensive as is practical within the scope of its intended use as a tool to explore different scenarios of a decarbonized future. The model does currently have limitations in its capabilities and application, and some important ones include:

- While the model calculates total supply of energy from different sources (e.g., MWh from onshore wind) and total production cost for supply technologies (e.g., total CAPEX and OPEX of onshore wind), the model does not attempt to calculate retail or wholesale cost of energy of different energy sources (e.g., \$/kWh). This is a deliberate design choice. The future cost of energy will depend on factors that are not forecast by the model, such as cost of financing, tax rates, depreciation schedules and other factors. Additionally, energy rates could depend on future policy initiatives to incentivize particular technologies or to promote cost socialization. The goal of the model is to determine the approach to energy supply that will result in the least cost outcome from an economy-wide perspective.
- The LCP model optimizes supply-side resources but does not currently optimize demandside technologies. For scenario-based analyses, demand-side technologies (e.g., heat electrification, efficiency improvements, fuel substitutions, etc.) are set by the scenario definitions. The impact of demand-side technologies on the annual and hourly demand for different energy types is calculated exogenously to the LCP model. For example, a scenario may define the adoption curve and future saturations of different heat pump technologies (e.g., air-source, ground-source, and gas heat pumps) and the LCP model's optimization function is not designed to alter these scenario-defining characteristics.
- The LCP model does not currently deploy demand response technologies as a supply resource. The model takes hourly demand profiles as an input and does not include technologies that could in effect shift the hourly demand profiles specified for individual scenarios. If demand response approaches are to be considered in a scenario, they must be specified in the upstream calculations that produce the hourly demand profiles that are taken as an input to the LCP model.
- The LCP model is not configured to model exact transmission and distribution systems (i.e. every substation). These systems are typically simplified to represent capacity connections between and within Subregions.

<u>Exhibit B</u>

Redacted Model Inputs

[attached]

Documents from Guidehouse re. LCP model March 22, 2023 Attachment Page 20 of 33

BUSINESS INTERNAL \ INTERNAL USE

Region	Region Key
ON	Ontario
QC	Quebec
WC	Western Canada
NY	New York State
MI	Michigan
PJ	Pennsylvania (PJM)

BUSINESS INTERNAL \ INTERNAL USE

Season	Representative Number of Days
Winter	91
Winter Peak	1
Spring	91
Summer	91
Fall	91

Fuel	Unit (real 2020\$ CAD)	2020	2030	2040	2050	Notes
		2020	2030	2040		
Uranium	\$/MWh	7	7	7	7	Guidehouse nternal analysis.
Biomass	\$/MWh	51	51	51	51	. Gas for Cl mate (2019). Link: https://gasforclimate2050.eu/sdm_downloads/2019-gas-for-cl mate-study/
Methane Imports	cents/m3	9	14	16	16	Source: Enbridge ETSA Report
Hydrogen Imports from Quebec	\$/kg	-	2.0	1.6	1.5	Assumes 100% green hydrogen produced from hydro. Source of hydrogen costs: European Hydrogen Backbone 2020. Link: https://ehb.eu/files/downloads/2020_European-Hydrogen-Backbone_Report.pdf
Hydrogen Imports from Western Canada	\$/kg	-	2.4	2.1	1.8	Assumes 50% green hydrogen in 2030 through 2040 and 75% green hydrogen by 2050. Rema nder is assumed to be blue hydrogen. Source of hydrogen costs: European Hydrogen Backbone.

Annual Ontario province-wide demand for each energy carrier

Electrification Scenario

	2020	2030	2040	2050
Electricity (TWh)	135	209	348	435
Methane (PJ)	922	798	442	182
Hydrogen (PJ)	0	55	152	262

Diversified Scenario

	2020	2030	2040	2050
Electricity (TWh)	135	186	232	277
Methane (PJ)	922	882	618	305
Hydrogen (PJ)	0	145	463	844

Documents from Guidehouse re. LCP model March 22, 2023 Attachment Page 25 of 33

Hourly hydrogen demand for Ontario (MW). Note that hydrogen demand was not modelled for other regions.

		ivivi). Not	te that h	yarogen aei	nana was i	not modelled for other regio		l Cooncelo					
Electrificatio Season	Region Hour	r :	2020	2030	2040	2050	Diversified Season	Region	Hour	2020	2030	2040	2050
Winter	ON	1	-	2 264	6 776	12 088	Winter	ON	1		5 486	21 022	39 131
Winter	ON	2	-	2 150	6 483	11 645	Winter	ON	2		5 346	20 610	38 259
Winter Winter	ON ON	3 4	2	2 035 1 920	6 194 5 902	11 212 10 771	Winter Winter	ON ON	3	-	5 207 5 066	20 222 19 814	37 433 36 567
Winter	ON	5	-	1 920	5 907	10 786	Winter	ON	5	-	5 068	19 852	36 639
Winter	ON	6	-	1 920	5 911	10 798	Winter	ON	6	-	5 070	19 882	36 696
Winter Winter	ON ON	7 8	-	1 920 1 920	5 913 5 917	10 803 10 814	Winter Winter	ON ON	7	-	5 071 5 072	19 896 19 924	36 721 36 774
Winter	ON	8 9	-	1 920	5 917	10 814	Winter	ON	8		5 072	19 924	36 774
Winter	ON	10	-	2 035	6 182	11 177	Winter	ON	10	-	5 202	20 133	37 265
Winter	ON ON	11	-	2 173	6 501	11 618	Winter	ON	11	-	5 358	20 397	37 879
Winter Winter	ON	12 13	-	2 264 2 379	6 704 6 976	11 883 12 266	Winter Winter	ON ON	12 13	-	5 458 5 590	20 499 20 758	38 148 38 733
Winter	ON	14	-	2 494	7 257	12 676	Winter	ON	14	-	5 726	21 087	39 450
Winter	ON	15	-	2 517	7 308	12 743	Winter	ON	15	-	5 751	21 114	39 518
Winter Winter	ON ON	16 17	-	2 425 2 333	7 067 6 839	12 369 12 033	Winter Winter	ON ON	16 17		5 636 5 526	20 735 20 451	38 729 38 116
Winter	ON	18	-	2 3 5 5 2 2 6 4	6 681	12 033	Winter	ON	18		5 449	20 451	37 832
Winter	ON	19	-	2 333	6 881	12 151	Winter	ON	19	-	5 543	20 753	38 685
Winter	ON	20	-	2 425	7 134	12 560	Winter	ON	20	-	5 663	21 222	39 645
Winter Winter	ON ON	21 22	-	2 494 2 494	7 324 7 337	12 868 12 903	Winter Winter	ON ON	21 22	-	5 753 5 758	21 576 21 667	40 368 40 539
Winter	ON	23	-	2 494	7 348	12 937	Winter	ON	23	-	5 763	21 752	40 700
Winter	ON	24	-	2 494	7 358	12 966	Winter	ON	24	-	5 767	21 826	40 838
Winter Peak	ON ON	1	-	3 126 2 949	9 4 3 6	16 734	Winter Peak	ON ON	1	-	6 726	27 489	52 022
Winter Peak Winter Peak	ON	3		2 949	9 003 8 560	16 103 15 442	Winter Peak Winter Peak	ON	2	-	6 517 6 304	26 980 26 396	50 916 49 669
Winter Peak	ON	4	-	2 597	8 123	14 796	Winter Peak	ON	4	-	6 092	25 850	48 492
Winter Peak	ON	5	-	2 597	8 180	14 958	Winter Peak	ON	5	-	6 115	26 262	49 267
Winter Peak Winter Peak	ON ON	6 7	-	2 597 2 597	8 267 8 247	15 208 15 149	Winter Peak Winter Peak	ON ON	6 7		6 150 6 142	26 900 26 750	50 466 50 184
Winter Peak	ON	8		2 597	8 262	15 149	Winter Peak	ON	8		6 142	26 750	50 184
Winter Peak	ON	9	-	2 597	8 2 1 0	15 046	Winter Peak	ON	9	-	6 127	26 487	49 690
Winter Peak	ON	10	-	2 773	8 648	15 692	Winter Peak	ON	10	-	6 339	27 034	50 867
Winter Peak Winter Peak	ON ON	11 12	-	2 985 3 126	9 105 9 369	16 273 16 543	Winter Peak Winter Peak	ON ON	11 12	-	6 565 6 699	27 194 27 001	51 349 51 106
Winter Peak Winter Peak	ON	12	-	3 3 3 0 2	9 369 9 765	16 543	Winter Peak Winter Peak	ON	12	-	6 894	27 247	51 106
Winter Peak	ON	14	-	3 478	10 146	17 556	Winter Peak	ON	14	-	7 083	27 381	52 120
Winter Peak	ON	15	-	3 513	10 207	17 608	Winter Peak	ON	15	-	7 115	27 295	51 988
Winter Peak Winter Peak	ON ON	16 17	-	3 372 3 231	9 799 9 401	16 927 16 274	Winter Peak Winter Peak	ON ON	16 17	-	6 923 6 735	26 438 25 656	50 257 48 667
Winter Peak Winter Peak	ON	17	-	3 2 3 1	9 401 9 209	16 274	Winter Peak Winter Peak	ON	17	-	6 636	25 839	48 667
Winter Peak	ON	19	-	3 2 3 1	9 515	16 598	Winter Peak	ON	19	-	6 780	26 481	50 218
Winter Peak	ON	20	-	3 372	9 881	17 162	Winter Peak	ON	20	-	6 955	27 038	51 385
Winter Peak Winter Peak	ON ON	21 22	-	3 478 3 478	10 161 10 187	17 600 17 673	Winter Peak Winter Peak	ON ON	21 22	-	7 089 7 099	27 494 27 681	52 331 52 684
Winter Peak	ON	23	-	3 478	10 157	18 144	Winter Peak	ON	22		7 165	28 881	54 940
Winter Peak	ON	24	-	3 478	10 321	18 056	Winter Peak	ON	24		7 153	28 656	54 517
Spring	ON	1	-	1 863	5 308	9 271	Spring	ON	1	-	4 818	16 348	30 002
Spring Spring	ON ON	2	2	1 777 1 691	5 096 4 886	8 960 8 655	Spring Spring	ON ON	2	-	4 715 4 613	16 093 15 854	29 450 28 927
Spring	ON	4	-	1 604	4 675	8 349	Spring	ON	4	-	4 512	15 610	28 395
Spring	ON	5	-	1 604	4 685	8 378	Spring	ON	5	-	4 516	15 683	28 533
Spring	ON	6	-	1 605	4 696	8 408	Spring	ON	6	-	4 520	15 761	28 680
Spring Spring	ON ON	7	2	1 604 1 604	4 685 4 645	8 376 8 262	Spring Spring	ON ON	7	-	4 515 4 499	15 679 15 388	28 525 27 978
Spring	ON	9	-	1 604	4 594	8 116	Spring	ON	9	-	4 479	15 017	27 279
Spring	ON	10	-	1 690	4 760	8 297	Spring	ON	10	-	4 563	14 940	27 208
Spring Spring	ON ON	11 12	-	1 794 1 863	4 985 5 137	8 586 8 783	Spring Spring	ON ON	11 12	-	4 675 4 750	15 032 15 104	27 470 27 663
Spring	ON	13	-	1 949	5 338	9 062	Spring	ON	12	-	4 848	15 277	28 061
Spring	ON	14	-	2 035	5 545	9 359	Spring	ON	14		4 948	15 498	28 551
Spring	ON	15	-	2 052	5 581	9 404	Spring	ON	15	-	4 966	15 504	28 575
Spring Spring	ON ON	16 17		1 983 1 914	5 399 5 223	9 118 8 852	Spring Spring	ON ON	16 17		4 879 4 795	15 206 14 958	27 956 27 432
Spring	ON	18	-	1 863	5 109	8 704	Spring	ON	18		4 739	14 903	27 286
Spring	ON	19	-	1 914	5 275	9 001	Spring	ON	19	-	4 815	15 337	28 145
Spring	ON ON	20 21	-	1 983 2 035	5 494 5 660	9 392 9 689	Spring	ON ON	20 21	-	4 917 4 994	15 904 16 338	29 269 30 131
Spring Spring	ON	22	-	2 035	5 683	9 754	Spring Spring	ON	21		5 003	16 504	30 131
Spring	ON	23	-	2 035	5 708	9 825	Spring	ON	23	-	5 013	16 685	30 781
Spring	ON	24	-	2 035	5 727	9 879	Spring	ON	24	-	5 021	16 823	31 042
Summer Summer	ON ON	1	-	1 461 1 403	3 584 3 435	5 724 5 495	Summer Summer	ON ON	1	-	4 047 3 976	9 814 9 588	17 376 16 901
Summer	ON	3	-	1 346	3 286	5 265	Summer	ON	3	-	3 904	9 361	16 426
Summer	ON	4	-	1 289	3 136	5 036	Summer	ON	4	-	3 833	9 134	15 951
Summer	ON	5	-	1 289	3 136	5 036	Summer Summer	ON	5	-	3 833	9 134	15 951
Summer Summer	ON ON	6 7		1 289 1 289	3 136 3 136	5 036 5 036	Summer	ON ON	6		3 833	9 134 9 134	15 951 15 951
Summer	ON	8	-	1 289	3 136	5 036	Summer	ON	8	-	3 833	9 134	15 951
Summer	ON	9	-	1 289	3 1 3 6	5 036	Summer	ON	9	-	3 833	9 134	15 951
Summer Summer	ON ON	10 11	-	1 346 1 415	3 286 3 465	5 265 5 541	Summer Summer	ON ON	10 11	-	3 904 3 990	9 361 9 633	16 426 16 996
Summer	ON	12	-	1 415	3 584	5 724	Summer	ON	11	-	4 047	9 814	17 376
Summer	ON	13	-	1 518	3 733	5 954	Summer	ON	13	-	4 118	10 041	17 851
Summer	ON	14	-	1 575	3 882	6 183	Summer	ON	14	-	4 190	10 267	18 325
Summer Summer	ON ON	15 16	-	1 587 1 541	3 912 3 793	6 229 6 046	Summer Summer	ON ON	15 16	-	4 204 4 147	10 313 10 131	18 420 18 040
Summer	ON	17	-	1 495	3 673	5 862	Summer	ON	17		4 090	9 950	17 661
Summer	ON	18	-	1 461	3 584	5 724	Summer	ON	18	-	4 047	9 814	17 376
Summer Summer	ON	19 20	-	1 495	3 673	5 862	Summer	ON	19 20	-	4 090	9 950	17 661
Summer Summer	ON ON	20 21	-	1 541 1 575	3 793 3 882	6 046 6 183	Summer Summer	ON ON	20 21	-	4 147 4 190	10 131 10 267	18 040 18 325
Summer	ON	22	-	1 575	3 882	6 183	Summer	ON	22		4 190	10 267	18 325
Summer	ON	23	-	1 575	3 882	6 183	Summer	ON	23	-	4 190	10 267	18 325
Summer	ON ON	24 1	-	1 575 1 461	3 882 4 058	6 183	Summer	ON ON	24	-	4 190 4 236	10 267 13 263	18 325 23 860
Fall Fall	ON	1	-	1 461 1 404	4 058 3 923	7 077 6 889	Fall Fall	ON	1	-	4 236 4 170	13 263 13 141	23 860 23 583
Fall	ON	3	-	1 346	3 789	6 701	Fall	ON	3	-	4 104	13 022	23 310
Fall	ON	4	-	1 289	3 655	6 518	Fall	ON	4	-	4 039	12 912	23 054
Fall Fall	ON ON	5	-	1 289 1 289	3 663 3 665	6 539 6 544	Fall Fall	ON ON	5	-	4 042 4 043	12 966 12 980	23 156 23 183
Fall	ON	7	-	1 289	3 668	6 553	Fall	ON	5	-	4 043	12 980	23 183 23 222
Fall	ON	8	-	1 289	3 659	6 527	Fall	ON	8		4 041	12 936	23 100
Fall	ON	9	-	1 289	3 598	6 352	Fall	ON	9	-	4 016	12 491	22 262
Fall Fall	ON ON	10 11	-	1 346 1 415	3 687 3 819	6 412 6 551	Fall Fall	ON ON	10 11	-	4 064 4 131	12 285 12 209	21 923 21 840
Fall	ON	11	-	1 415	3 819	6 642	Fall	ON	11	-	4 131 4 175	12 209	21 840 21 773
Fall	ON	13	-	1 518	4 027	6 794	Fall	ON	13	-	4 236	12 182	21 877
Fall	ON	14	-	1 576	4 164	6 988	Fall	ON	14	-	4 302	12 320	22 185
Fall	ON ON	15 16	-	1 587 1 541	4 183 4 070	7 003 6 836	Fall Fall	ON ON	15 16	-	4 312 4 257	12 287 12 146	22 132 21 829
Fall	ON	15	-	1 4 9 5	3 966	6 697	Fall	ON	16	-	4 257	12 146	21 829 21 661
		18	-	1 461	3 899	6 624	Fall	ON	18	-	4 172	12 107	21 688
Fall	ON												
Fall Fall Fall Fall	ON	19	-	1 495	4 022	6 858	Fall	ON	19		4 229	12 490	22 437
Fall			-		4 022 4 171 4 287	6 858 7 126 7 337	Fall Fall Fall	ON ON ON	19 20 21	-	4 229 4 298 4 351	12 490 12 886 13 210	22 437 23 220 23 859
Fall Fall Fall Fall	ON ON	19 20		1 495 1 541	4 171	7 126	Fall	ON	20		4 298	12 886	23 220
Fall Fall Fall Fall Fall	ON ON ON	19 20 21	-	1 495 1 541 1 576	4 171 4 287	7 126 7 337	Fall Fall	ON ON	20 21	-	4 298 4 351	12 886 13 210	23 220 23 859

Hourly methane demand for Ontario (MW). Note that methane demand was not modelled for other regions. NOTE: Figure 10 of the P2NZ report presents 2020 peak gas demand based on the Enbridge ETSA Report not the figures presented here.

Electri	fication	Scenario					Divers	ified Sce	enario				
Season Winter	Region ON	Hour 1	2020 54 389	2030 46 570	2040 24 556	2050 9 217	Season Winter	Region ON	Hour 1	2020 54 389	2030 50 201	2040 32 863	2050 14 546
Winter	ON	2	53 321	46 570	24 336 23 746	8 725	Winter	ON	2	53 321	49 114	32 803	13 909
Winter	ON	3	52 364	44 533	22 972	8 239	Winter	ON	3	52 364	48 126	30 799	13 283
Winter Winter	ON ON	4	51 313 51 488	43 484 43 624	22 167 22 226	7 748 7 758	Winter Winter	ON ON	4	51 313 51 488	47 054 47 208	29 751 29 826	12 647 12 664
Winter	ON	6	51 627	43 736	22 272	7 767	Winter	ON	6	51 627	47 329	29 885	12 677
Winter Winter	ON ON	7	51 688 51 817	43 785 43 889	22 293 22 336	7 770 7 778	Winter Winter	ON ON	7	51 688 51 817	47 382 47 495	29 912 29 967	12 683 12 696
Winter	ON	9	51 606	43 889	22 350	7 765	Winter	ON	9	51 606	47 310	29 967	12 696
Winter	ON	10	51 955	44 205	22 835	8 215	Winter	ON	10	51 955	47 768	30 623	13 243
Winter Winter	ON ON	11 12	52 184 51 995	44 634 44 646	23 456 23 755	8 743 9 075	Winter Winter	ON ON	11 12	52 184 51 995	48 151 48 108	31 438 31 834	13 906 14 315
Winter	ON	13	52 363	45 146	24 331	9 526	Winter	ON	13	52 363	48 582	32 589	14 885
Winter	ON	14	53 054	45 906 45 912	25 015	9 996 10 079	Winter	ON	14	53 054	49 338 49 330	33 483	15 486 15 589
Winter Winter	ON ON	15 16	53 010 51 933	45 912 44 883	25 091 24 368	9 672	Winter Winter	ON ON	15 16	53 010 51 933	49 330 48 267	33 583 32 643	15 589
Winter	ON	17	51 283	44 197	23 788	9 291	Winter	ON	17	51 283	47 577	31 886	14 567
Winter Winter	ON ON	18 19	51 225 52 668	44 027 45 310	23 497 24 252	9 030 9 372	Winter Winter	ON ON	18 19	51 225 52 668	47 434 48 788	31 503 32 481	14 241 14 701
Winter	ON	20	54 162	46 674	25 114	9 804	Winter	ON	20	54 162	50 215	33 601	15 272
Winter	ON	21	55 289	47 703	25 764 25 903	10 128	Winter	ON	21	55 289 55 705	51 292	34 443	15 702
Winter Winter	ON ON	22 23	55 705 56 097	48 037 48 352	25 903 26 034	10 152 10 175	Winter Winter	ON ON	22 23	55 /05 56 097	51 656 51 999	34 622 34 791	15 742 15 780
Winter	ON	24	56 433	48 622	26 147	10 195	Winter	ON	24	56 433	52 292	34 935	15 812
Winter Pe Winter Pe		1	77 859 76 787	66 966 65 789	35 816 34 761	13 821 13 099	Winter Pe Winter Pe		1	77 859 76 787	71 862 70 690	47 429 46 051	20 819 19 895
Winter Pe		3	75 371	64 337	33 591	12 356	Winter Pe		3	75 371	69 218	44 526	18 938
Winter Pe		4	74 127	63 023	32 478	11 624	Winter Pe		4	74 127	67 897	43 075	17 998
Winter Pe Winter Pe		5	76 015 78 934	64 540 66 886	33 111 34 088	11 736 11 908	Winter Pe Winter Pe		5	76 015 78 934	69 548 72 100	43 886 45 141	18 180 18 461
Winter Pe		7	78 247	66 334	33 858	11 867	Winter Pe	ON	7	78 247	71 499	44 846	18 395
Winter Pe		8	78 763	66 748	34 031	11 898	Winter Pe		8	78 763	71 950	45 067	18 445
Winter Pe Winter Pe		9 10	77 046 78 290	65 368 66 682	33 456 34 568	11 796 12 529	Winter Pe Winter Pe		9 10	77 046 78 290	70 449 71 770	44 329 45 781	18 279 19 220
Winter Pe	≥ ON	11	77 516	66 438	35 144	13 274	Winter Pe	e ON	11	77 516	71 375	46 548	20 130
Winter Pe Winter Pe		12 13	75 627 75 498	65 172 65 383	35 068 35 720	13 689 14 341	Winter Pe Winter Pe		12 13	75 627 75 498	69 911 70 031	46 469 47 330	20 604 21 412
Winter Pe Winter Pe		13	75 498 74 853	65 383 65 179	36 200	14 341 14 961	Winter Pe		13	75 498 74 853	69 702	47 970	21 412 22 170
Winter Pe		15	74 209	64 725	36 124	15 055	Winter Pe		15	74 209	69 186 66 447	47 877	22 272 21 334
Winter Pe Winter Pe		16 17	71 291 68 716	62 128 59 807	34 590 33 171	14 356 13 677	Winter Pe Winter Pe		16 17	71 291 68 716	66 447 64 009	45 889 44 049	21 334 20 430
Winter Pe	≥ ON	18	70 304	60 895	33 285	13 375	Winter Pe	e ON	18	70 304	65 257	44 182	20 091
Winter Pe Winter Pe		19 20	72 493 74 038	62 842 64 335	34 436 35 510	13 900 14 518	Winter Pe Winter Pe		19 20	72 493 74 038	67 311 68 849	45 672 47 070	20 794 21 599
Winter Pe		20	75 368	65 593	36 373	14 518	Winter Pe		20	75 368	70 152	48 192	22 220
Winter Pe		22	76 227	66 283	36 660	15 042	Winter Pe		22	76 227	70 903	48 561	22 303
Winter Pe Winter Pe		23 24	81 722 80 691	70 698 69 870	38 500 38 155	15 367 15 306	Winter Pe Winter Pe		23 24	81 722 80 691	75 706 74 806	50 922 50 479	22 833 22 734
pring	ON	1	35 853	30 959	16 763	6 621	Spring	ON	1	35 853	33 463	22 807	10 888
pring	ON ON	2	35 300	30 361	16 238	6 266	Spring	ON	2	35 300	32 865	22 122	10 434
Spring Spring	ON	3	34 818 34 315	29 820 29 263	15 737 15 229	5 916 5 565	Spring Spring	ON ON	3	34 818 34 315	32 330 31 776	21 467 20 804	9 987 9 538
Spring	ON	5	34 651	29 533	15 342	5 585	Spring	ON	5	34 651	32 070	20 948	9 571
Spring Spring	ON ON	6 7	35 008 34 631	29 819 29 516	15 461 15 335	5 606 5 584	Spring Spring	ON ON	6 7	35 008 34 631	32 381 32 052	21 101 20 939	9 605 9 569
Spring	ON	8	33 300	28 447	14 889	5 505	Spring	ON	8	33 300	30 888	20 367	9 440
Spring	ON	9	31 598	27 079	14 319	5 404	Spring	ON	9	31 598	29 400	19 636	9 276
Spring Spring	ON ON	10 11	30 633 30 320	26 458 26 390	14 336 14 639	5 669 6 037	Spring Spring	ON ON	10 11	30 633 30 320	28 672 28 535	19 669 20 071	9 584 10 034
Spring	ON	12	30 158	26 383	14 856	6 285	Spring	ON	12	30 158	28 484	20 360	10 339
Spring Spring	ON ON	13 14	30 334 30 736	26 678 27 154	15 255 15 729	6 617 6 962	Spring Spring	ON ON	13 14	30 334 30 736	28 753 29 218	20 883 21 503	10 757 11 196
Spring	ON	15	30 637	27 106	15 764	7 021	Spring	ON	15	30 637	29 154	21 550	11 267
Spring	ON	16	29 763	26 281	15 199	6 712	Spring	ON	16	29 763	28 299	20 817	10 862
Spring Spring	ON ON	17 18	29 119 29 238	25 640 25 644	14 712 14 548	6 416 6 230	Spring Spring	ON ON	17 18	29 119 29 238	27 645 27 680	20 182 19 964	10 479 10 250
Spring	ON	19	30 855	27 035	15 293	6 519	Spring	ON	19	30 855	29 162	20 928	10 647
Spring Spring	ON ON	20 21	32 960 34 582	28 850 30 245	16 270 17 017	6 900 7 189	Spring Spring	ON ON	20 21	32 960 34 582	31 094 32 581	22 191 23 156	11 170 11 567
Spring	ON	22	35 340	30 854	17 271	7 234	Spring	ON	22	35 340	33 243	23 482	11 640
Spring	ON	23	36 167	31 518	17 548	7 283	Spring	ON	23	36 167	33 966	23 838	11 720
Spring Summer	ON ON	24 1	36 801 8 800	32 028 8 505	17 760 6 118	7 320 3 522	Spring	ON ON	24 1	36 801 8 800	34 521 9 280	24 110 9 091	11 781 6 409
Summer	ON	2	8 172	7 897	5 681	3 271	Summer	ON	2	8 172	8 654	8 523	6 081
Summer Summer	ON ON	3	7 543 6 915	7 290 6 682	5 244 4 807	3 019 2 767	Summer	ON ON	3	7 543 6 915	8 029 7 403	7 954 7 386	5 754 5 426
Summer		4	6 915	6 682	4 807	2 767	Summer Summer	ON	4 5	6 915	7 403	7 386	5 426
Summer	ON	6	6 915	6 682	4 807	2 767	Summer	ON	6	6 915	7 403	7 386	5 426
Summer Summer	ON ON	7	6 915 6 915	6 682 6 682	4 807 4 807	2 767 2 767	Summer Summer	ON ON	7	6 915 6 915	7 403 7 403	7 386 7 386	5 426 5 426
Summer	ON	9	6 915	6 682	4 807	2 767	Summer	ON	9	6 915	7 403	7 386	5 4 2 6
Summer Summer	ON ON	10 11	7 543 8 298	7 290 8 019	5 244 5 768	3 019 3 321	Summer Summer	ON ON	10 11	7 543 8 298	8 029 8 780	7 954 8 637	5 754 6 147
Summer Summer	ON	11	8 298	8 505	5 /68 6 118	3 522	Summer	ON	11	8 298 8 800	8 780 9 280	9 091	6 409
Summer	ON	13	9 429	9 112	6 555	3 774	Summer	ON	13	9 429	9 906	9 660	6 737
Summer Summer	ON ON	14 15	10 058 10 183	9 720 9 841	6 992 7 079	4 025 4 076	Summer Summer	ON ON	14 15	10 058 10 183	10 532 10 657	10 229 10 342	7 065 7 130
Summer	ON	16	9 681	9 355	6 730	3 874	Summer	ON	16	9 681	10 156	9 887	6 868
Summer	ON	17	9 178	8 869	6 380	3 673	Summer	ON	17	9 178	9 656	9 433	6 606
Summer Summer	ON ON	18 19	8 800 9 178	8 505 8 869	6 118 6 380	3 522 3 673	Summer Summer	ON ON	18 19	8 800 9 178	9 280 9 656	9 091 9 433	6 409 6 606
Summer	ON	20	9 681	9 355	6 730	3 874	Summer	ON	20	9 681	10 156	9 887	6 868
Summer Summer	ON ON	21 22	10 058 10 058	9 720 9 720	6 992 6 992	4 025 4 025	Summer Summer	ON ON	21 22	10 058 10 058	10 532 10 532	10 229 10 229	7 065 7 065
Summer Summer	ON	22 23	10 058 10 058	9 720 9 720	6 992 6 992	4 025 4 025	Summer	ON	22	10 058 10 058	10 532 10 532	10 229 10 229	7 065
Summer	ON	24	10 058	9 720	6 992	4 025	Summer	ON	24	10 058	10 532	10 229	7 065
Fall Fall	ON ON	1	24 592 24 444	21 193 20 973	11 406 11 131	4 455 4 231	Fall Fall	ON ON	1	24 592 24 444	23 085 22 880	15 879 15 517	7 932 7 651
Fall	ON	3	24 308	20 761	10 858	4 009	Fall	ON	3	24 444 24 308	22 685	15 160	7 371
	ON	4	24 211	20 581	10 600	3 789	Fall	ON	4	24 211	22 524	14 820	7 094
	ON	5	24 461 24 525	20 781 20 832	10 683 10 705	3 803 3 807	Fall Fall	ON ON	5	24 461 24 525	22 742 22 798	14 927 14 955	7 118 7 125
all	ON	7	24 621	20 910	10 737	3 813	Fall	ON	7	24 621	22 882	14 996	7 134
all all all	ON		24 323 22 283	20 670	10 637	3 795	Fall	ON	8 9	24 323 22 283	22 621	14 868	7 105
all all all all	ON ON	8		19 031 18 047	9 954 9 727	3 675 3 809	Fall Fall	ON ON	9 10	22 283 20 930	20 838 19 732	13 991 13 708	6 908 7 045
all all all all all	ON	8 9 10	20 930			4 017	Fall	ON	11	20 094	19 092	13 707	7 285
Fall Fall Fall Fall Fall Fall Fall	ON ON ON ON	9 10 11	20 930 20 094	17 498	9 719		Fall	ON	12	19 508			
Fall Fall Fall Fall Fall Fall Fall Fall	ON ON ON ON ON	9 10 11 12	20 930 20 094 19 508	17 498 17 109	9 704	4 154	Coll.				18 641 18 477	13 694	7 442
Fall Fall Fall Fall Fall Fall Fall Fall	ON ON ON ON	9 10 11	20 930 20 094	17 498		4 154 4 353 4 580	Fall Fall	ON ON	13 14	19 508 19 233 19 456	18 641 18 477 18 748		7 442 7 683 7 971
Fall Fall Fall Fall Fall Fall Fall Fall	ON ON ON ON ON ON ON ON	9 10 11 12 13 14 15	20 930 20 094 19 508 19 233 19 456 19 221	17 498 17 109 16 990 17 272 17 104	9 704 9 838 10 140 10 106	4 353 4 580 4 609	Fall Fall	ON ON	13 14 15	19 233 19 456 19 221	18 477 18 748 18 558	13 694 13 874 14 268 14 227	7 683 7 971 8 002
Fall Fall Fall Fall Fall Fall Fall Fall	ON ON ON ON ON ON ON ON ON	9 10 11 12 13 14 15 16	20 930 20 094 19 508 19 233 19 456 19 221 18 905	17 498 17 109 16 990 17 272 17 104 16 768	9 704 9 838 10 140 10 106 9 819	4 353 4 580 4 609 4 419	Fall Fall Fall	ON ON ON	13 14 15 16	19 233 19 456 19 221 18 905	18 477 18 748 18 558 18 221	13 694 13 874 14 268 14 227 13 852	7 683 7 971 8 002 7 758
Fall Fall Fall Fall Fall Fall Fall Fall	ON ON ON ON ON ON ON ON	9 10 11 12 13 14 15	20 930 20 094 19 508 19 233 19 456 19 221	17 498 17 109 16 990 17 272 17 104	9 704 9 838 10 140 10 106	4 353 4 580 4 609	Fall Fall	ON ON	13 14 15	19 233 19 456 19 221	18 477 18 748 18 558	13 694 13 874 14 268 14 227	7 683 7 971 8 002
Fall Fall Fall Fall Fall Fall Fall Fall	ON ON ON ON ON ON ON ON ON ON ON	9 10 11 12 13 14 15 16 17 18 19	20 930 20 094 19 508 19 233 19 456 19 221 18 905 18 919 19 301 20 808	17 498 17 109 16 990 17 272 17 104 16 768 16 697 16 942 18 215	9 704 9 838 10 140 10 106 9 819 9 643 9 635 10 275	4 353 4 580 4 609 4 419 4 248 4 142 4 360	Fall Fall Fall Fall Fall Fall	ON ON ON ON ON	13 14 15 16 17 18 19	19 233 19 456 19 221 18 905 18 919 19 301 20 808	18 477 18 748 18 558 18 221 18 172 18 460 19 823	13 694 13 874 14 268 14 227 13 852 13 620 13 605 14 431	7 683 7 971 8 002 7 758 7 546 7 422 7 728
Fall Fall Fall Fall Fall Fall Fall Fall	ON ON ON ON ON ON ON ON ON ON ON ON	9 10 11 12 13 14 15 16 17 18 19 20	20 930 20 094 19 508 19 233 19 456 19 221 18 905 18 919 19 301 20 808 22 294	17 498 17 109 16 990 17 272 17 104 16 768 16 697 16 942 18 215 19 491	9 704 9 838 10 140 10 106 9 819 9 643 9 635 10 275 10 954	4 353 4 580 4 609 4 419 4 248 4 142 4 360 4 619	Fall Fall Fall Fall Fall Fall Fall	ON ON ON ON ON ON	13 14 15 16 17 18 19 20	19 233 19 456 19 221 18 905 18 919 19 301 20 808 22 294	18 477 18 748 18 558 18 221 18 172 18 460 19 823 21 183	13 694 13 874 14 268 14 227 13 852 13 620 13 605 14 431 15 309	7 683 7 971 8 002 7 758 7 546 7 422 7 728 8 085
Fall Fall Fall Fall Fall Fall Fall	ON ON ON ON ON ON ON ON ON ON ON	9 10 11 12 13 14 15 16 17 18 19 20 20 21 22	20 930 20 094 19 508 19 233 19 456 19 221 18 905 18 919 19 301 20 808 22 294 23 532 24 332	17 498 17 109 16 990 17 272 17 104 16 768 16 697 16 942 18 215	9 704 9 838 10 140 10 106 9 819 9 643 9 635 10 275	4 353 4 580 4 609 4 419 4 248 4 142 4 360	Fall Fall Fall Fall Fall Fall	ON ON ON ON ON	13 14 15 16 17 18 19	19 233 19 456 19 221 18 905 18 919 19 301 20 808	18 477 18 748 18 558 18 221 18 172 18 460 19 823	13 694 13 874 14 268 14 227 13 852 13 620 13 605 14 431	7 683 7 971 8 002 7 758 7 546 7 422 7 728
Fall Fall Fall Fall Fall Fall Fall Fall	ON ON ON ON ON ON ON ON ON ON ON ON	9 10 11 12 13 14 15 16 17 18 19 20 21	20 930 20 994 19 508 19 233 19 456 19 221 18 905 18 919 19 301 20 808 22 294 23 532	17 498 17 109 16 990 17 272 17 104 16 768 16 697 16 942 18 215 19 491 20 547	9 704 9 838 10 140 10 106 9 819 9 643 9 635 10 275 10 954 11 504	4 353 4 580 4 609 4 419 4 248 4 142 4 360 4 619 4 821	Fall Fall Fall Fall Fall Fall Fall	ON ON ON ON ON ON ON	13 14 15 16 17 18 19 20 21	19 233 19 456 19 221 18 905 18 919 19 301 20 808 22 294 23 532	18 477 18 748 18 558 18 221 18 172 18 460 19 823 21 183 22 311	13 694 13 874 14 268 14 227 13 852 13 620 13 605 14 431 15 309 16 020	7 683 7 971 8 002 7 758 7 546 7 422 7 728 8 085 8 364

SupplyTechnology	InputFuel	OutputFuel	Lifetim	e TechEfficiency	Source / Note
Wind Onshore	Wind	Electricity		25 Varies by season and hour see "Supply Tech Efficiencies by Szn" tab	
Wind Offshore	Wind	Electricity		25 Varies by season and hour see "Supply Tech Efficiencies by Szn" tab	
Solar PV	Solar	Electricity		25 Varies by season and hour see "Supply Tech Efficiencies by Szn" tab	
Hydro	Water	Electricity		50 Varies by season and hour see "Supply Tech Efficiencies by Szn" tab	
Hydro Pumped Storage	Electricity	Electricity		50	80% U.S. Energy Information Administration - EIA - Independent Statistics and Analysis
Nuclear	Uranium	Electricity		50	35% Nuc ear power p ant - Energy Education
O/CCGT - CH4	Methane	Electricity		25	42% Our Energy Sources Natural Gas — The National Academ es (nas.edu)
O/CCGT - H2	Hydrogen	Electricity		25	42% Our Energy Sources Natural Gas — The National Academ es (nas.edu)
Biomass	Biomass	Electricity		25	28% Biomass for Heat and Power Technology Brief (Irena.org)
CH4 Salt Cavern Storage	Methane	Methane		50	99%
H2 Salt Cavern Storage	Hydrogen	Hydrogen		50	99%
Battery Storage	Electricity	Electricity		15	85% Fact Sheet Energy Storage (2019) White Papers EESI
Electrolyser 2030	Electricity	Hydrogen		25	71% Eff ciency chosen to match cost of electrolyzer. Source: European Hydrogen Backbone 2020. Link: https://ehb.eu/fies/down oads/2020 European-Hydrogen-Backbone Report.pdf
Electrolyser 2040	Electricity	Hydrogen		25	76% Eff ciency chosen to match cost of electrolyzer. Source: European Hydrogen Backbone 2020. Link: https://ehb.eu/fi es/down oads/2020 European-Hydrogen-Backbone Report.pdf
Electrolyser 2050	Electricity	Hydrogen		25	80% Eff ciency chosen to match cost of electrolyzer. Source: European Hydrogen Backbone 2020. Link: https://ehb.eu/fies/down oads/2020_European-Hydrogen-Backbone_Report.pdf
Anaerobic Digestion	AD Feedstock	Methane		25	N/A Feedstock price is included in the unit energy cost (and therefore the effic ency value is not specified).
SMR CCS	Methane	Hydrogen		25	69%
Biomass CCS	Biomass	Electricity		25	28% Biomass for Heat and Power Technology Brief (Irena.org)
Nuclear SMR	Uranium	Electricity		50	35% Assumed to be the same as conventional nuclear.

SupplyTechnology Existing Generation Capacity (MW) Source 5,534 Canadian Wind Energy Association Wind Onshore Wind Offshore Solar PV 478 Transmission-Connected Generation (ieso.ca) Hydro Hydro Pumped Storage Guidehouse Internal Source (Confidential & Proprietary) Guidehouse Internal Markets Modeling Team (confidential forecast) Guidehouse Internal Markets Modeling Team (confidential forecast) Transmission-Connected Generation (ieso.ca) Guidehouse Internal Markets Modeling Team (confidential forecast) Guidehouse Internal Markets Modeling Team (confidential forecast) Nuclear Fossil Fuel Thermal (Coal, Peat, Oil) 13,0 O/CCGT - CH4 O/CCGT - H2 Guidehouse Internal Markets Modeling Team (confidential forecast) Biomass Battery Storage CH4 Salt Cavern Storage H2 Salt Cavern Storage 36,000 Based on 281 bcf storage volume. Source: https://www.enbridge.com/about-us/natural-gas-transmission-and-midstream/natural-gas-storage Electrolyser 2030 Electrolyser 2040 Electrolyser 2050 Anaerobic Digestion SMR CCS Biomass + CCS Nuclear SMR

Planned Capacity Retirements (MW)

SupplyTechnology	2020	2030	2040	2050 Source
Wind Onshore	0	0	0	0
Wind Offshore	0	0	0	0
Solar PV	0	0	0	0
Hydro	0	0	0	0
Hydro Pumped Storage	0	0	0	0
Nuclear				Guideho
Fossil Fuel Thermal (Coal, Peat, Oil)				Guideho
O/CCGT - CH4 Existing				Guideho
O/CCGT - CH4 New				Guideho
O/CCGT - H2 New				Guideho
Biomass				Guideho
Battery Storage	0	0	0	0
CH4 Salt Cavern Storage	0	0	0	0
H2 Salt Cavern Storage	0	0	0	0
Electrolyser 2030	0	0	0	0
Electrolyser 2040	0	0	0	0
Electrolyser 2050	0	0	0	0
Anaerobic Digestion	0	0	0	0
SMR CCS	0	0	0	0
Biomass + CCS	0	0	0	0
Nuclear SMR	0	0	0	0

Documents from Guidehouse re. LCP model March 22, 2023 Attachment Page 31 of 33

Guidehouse Internal Markets Modeling Team (confidential forecast) Guidehouse Internal Markets Modeling Team (confidential forecast)

n aTechnology Electrici y Tiansmission ine	Region1 ON	Reg on 2 ON	uel Elect ici v		ength km) i etime	yea 1) Notes 70 A (25) ou ac o is assumed o of et o-extraolefect ki y tammis on No e that the entity is a brance losses a ends calculated a terms o length
	OC OC	OC OC		6%	1	
Elect ici y T ansmission ne			Elect ici y		1	70 A 6% loss at a lassumed a all nt a regional elect ki y tammius on No e that the ength a Laecause losses a e not calculated in terms o length
Elect ici y T ansmission ne	WC	wc	Elect ici y	6%	1	70 A 6% loss ac o is assumed o all nt a-regional elect ki y tansmiss on No e that the ength s 1 because losses a e nat calculated n te mis o length
Elect ici y T ansmission ne	NY	NY	Elect ici y	6%	1	70 A 6% loss at a lassumed a all nt a regional elect ki y tammius on No e that the ength a Laecause losses a e not calculated in terms o length
Elect ici y T ansmission ne	M	MI	Elect ici y	6%	1	70 A 6% loss ac o is assumed o all nt a-rejocal elect ki y tansmiss on No e that the ength s 1 because losses a e nat calculated n te mis o length
Elect ici y T ansmission ne	PU	PJ	Elect ici y		1	70 A 6% loss ac o is assumed o all nt o- egional elect is y t ansmiss on No e that the ength s I because losses a e not calculated n te ms o length
Elect ici y T ansmission ne	ON	qc	Elect ici y	0 011%	700	70 A 0 022% ass acto is assumed a all inter - eg anal elect city t ansmissions based on the s anda d 1 2% 100-km
Elect ici y T ansmission ne	ON	WC	Elect ici y	0 011%	2000	70 A 0.011% ous acto is assumed a all inte - eg anal elect. oity t animiss ans based on the s anda d 1 1% 100-km
Elect ici y T ansmission ne	ON	NY	Elect ici y	0 011%	500	70 A 0 022% ons acto is assumed o all inte - eg anal elect city t annumissions based on the s anda d 1 2% 100-km
Elect ici y T ansmission ne	ON	MI	Elect ici y	0 011%	500	70 A 0.011% ous acto is assumed a all inte - eg anal elect. oity t animiss ans based on the s anda d 1 1% 100-km
Elect ici y T ansmission ne	ON	PJ	Elect ici y	0 011%	200	70 A 0.011% ous acto is assumed a all inte - eg anal elect. oity t animiss ans based on the s anda d 1 1% 100-km
Elect ici y T ansmission ne	QC	NY	Elect ici y	0 011%	500	70 A 0.011% ous acto is assumed a all inte - eg anal elect. oity t animiss ans based on the s anda d 1 1% 100-km
Elect ici y T ansmission ne	WC	MI	Elect ici y	0 011%	500	70 A 0.011% ous acto is assumed a all inte - eg anal elect. oity t animiss ans based on the s anda d 1 1% 100-km
New Ded cated H2 T ansmiss on P pe ine	ON	ON	Hyd ogen		1	70 Sou or Enbidge Link h tai www.di.oeb.co.CHWebD.owe.Reco.d.728474 ile document
New Ded cated H2 T ansmiss on P pe ine	qc	QC	Hyd ogen	3%	1	70 App ying high-evil assumption o 3% based on in the PHMSA database which lit is more han 1 400 gas companies 72 companies role and inand unaccounted o aterio 10 per cent o highe. Two-hund ed-and-seven y-live companies had a a be weren 3 and 9.9 per cent. Sou ce h taps i weren view cientificame ican cent a lice how-much-natu al gas-eaks
New Ded cated H2 T ansmiss on P pe ine	WC	WC	Hyd ogen	3%	1	70 App ying high-evel assump ion o 3% based on n the PHMSA database which lits mo e han 1 400 gas companies 72 companies epo ed lost and unaccounted o ates o 20 pe cent o highe Two-hund ed-and-seven y-ive companies had a a e be ween 3 and 9 p pe cent. Sou ce h tys www. clenti icome icon com a icle how-much-natu al gas-eaks
New Ded cated H2 T ansmiss on P pe ine	NY	NY	Hyd ogen	3%	1	70 App ying high-evel assump lon o 3% based on n the PHMSA database which it is mo e hon 1 400 gas companies 72 companies 72 companies and gas-easis
New Ded cated H2 T ansmiss on P pe ine	M	MI	Hyd ogen	3%	1	70 App ying high-evel assump ion o 3% based on n the PHMSA database which lits mo e han 1 400 gas companies 72 companies epo ed lost and unaccounted o ates o 20 pe cent o highe Two-hund ed-and-seven y-ive companies had a a e be ween 3 and 9 p pe cent. Sou ce h tys www. clenti icome icon com a icle how-much-natu al gas-eaks
New Ded cated H2 T ansmiss on P pe ine	PI	PJ	Hyd ogen	3%	1	70 App ying high-evel assump lon o 3% based on n the PHMSA database which it is mo e hon 1 400 gas companies 72 companies root and year-eols
New Ded cated H2 T ansmiss on P pe ine	ON	QC .	Hyd ogen	0.005%	100	70 Assuming 0.005% km losses based on compa luon with elect icly losses a elect city in e onnection asses a e 0.011% km whe elosses in nt a- egion a e 6% gas asses a e 3% equiva ent to "50% o e ect ic ty asses assume a so 50% x 0.021% km o gas
New Ded cated H2 T ansmiss on P pe ine	ON	WC	Hyd ogen	0 005%	1400	70 Assuming 0.025% km losses based on compa licon with elect (c) y losses a elect city n e connection asses a e 0.021% km whe e losses in nt a- egion a e 6% gas asses a e 3% equiva ent to *50% a e ect (c ty asses a summe as a 50% x 0.021% km 0.025% km o gas
New Ded cated H2 T ansmiss on P pe ine	ON	NY	Hyd ogen	0.005%	500	70 Assuming 0.005% km losses based on compa luon with elect icly losses a elect city in e onnection asses a e 0.011% km whe elosses in nt a- egion a e 6% gas asses a e 3% equiva ent to "50% o e ect ic ty asses assume a so 50% x 0.021% km o gas
New Ded cated H2 T ansmiss on P pe ine	ON	MI	Hyd ogen	0 005%	500	70 Assuming 0.005% km losses based on compa ison with elect (i) y losses a elect city n e onnection asses a e 0.011% km whe e losses in nt a-region a e 6% gas asses a e 3% equiva ent to "50% a eact ic ty asses a summe as a 50% x 0.011% km 0.005% km a gas
New Ded cated H2 T ansmiss on P pe ine	ON	PJ	Hyd ogen	0.005%	200	70 Assuming 0.005% km losses based on compa luon with electricity losses a electricity in e onnection asses a e 0.011% km whe elosses in nt a- egion a e 6% gas asses a e 3% equiva ent to "50% o e etricity asses assume a so 50% x 0.021% km o gas
Repu posed Dedicated H2 T arism salon Pipeline	ON	ON	Hyd ogen	0.4%	1	70 Sau or Enbidge Link h tas www. ds oeb os CMWebD owe Reco d 728474 ile document
Repu posed Dedicated H2 T ansm ssion Pipeline	QC .	QC .	Hyd ogen	3%	1	70 App ying high-evel assump ion a 3% based on n the PHMSA database which lits may e han 1400 gas companies 72 companies 22 companies epo of lost and unaccounted a ates a 10 pe cent o highe Two-hund ed-and-seven y-ive companies had a a be ween 3 and 9 pe cent Sou ce h tys. www. cienti icame kan cam a icle how-much-natu al gas-eaks
Repu posed Dedicated H2 T arism salon Pipeline	WC	wc	Hyd ogen	3%	1	70 App ying high-evel assumption o 3% based on n the PMMSA database which it is more han 1 400 gas companies 72 companies 72 companies rate or lost and year-color of the Two-hund ed-and-seven y-twe companies had a are be weren 3 and 9 9 pe cent Sou cer h tays
Repu posed Dedicated H2 T arsm salon Pipeline	NY	NY	Hvd open	3%	1	70 App vira high-evel assumption o 3% based on n the PHMSA database which it is more han 1 400 past constanties 22 constanties and samp costs of base were 3 and 99 per cent. Sau cer h tas were view in the PHMSA database which it is more han 1 400 past constanties and samp costs.
Repu posed Dedicated H2 T ansm ssion Pipeline	NU	MI	Hyd ogen	3%	1	70 App ying high-evel assump ion a 3% based on n the PHMSA database which lits may e han 1 400 gas companies 72 companies 22 companies epo of lost and unaccounted a ates a 10 pe cent o highe Two-hund ed-and-seven y-ive companies had a a be ween 3 and 9 pe cent Sou ce h tys. www. cienti icame kan cam a icle how-much-natu al gas-eaks
Repu posed Dedicated H2 T arsm salon Pipeline	P1	PJ	Hvd open	3%	1	70 App vira high-evel assumption o 3% based on n the PHMSA database which it is more han 1 400 past constanties 22 constanties and samp costs of base were 3 and 99 per cent. Sau cer h tas were view in the PHMSA database which it is more han 1 400 past constanties and samp costs.
Repu posed Dedicated H2 T arsm salon Pipeline	ON	OC	Hvd open	0.005%	100	70 Assuming 0.005% km losses based on compa luon with elect (c) visues o elect city or e connection outra or 0.011% km whe elases in nt o-epion or e6% approximate a to "50% or ent (c ty outer a suppre a to 50% x 0.011% km or again
Repu posed Dedicated H2 T arism salon Pipeline	ON	wc	Hyd ogen	0 005%	1400	70 Assuming 0.005% km losses based on compa ison with elect (i) y losses a elect city n e connection asses a e 0.011% km whe e losses in nt a- egion a e 6% gas asses a e 3% equiva ent to "10% a eact ic ty asses a summe a to 50% x 0.011% km 0.005% km a gas
Repu posed Dedicated H2 T arsm salon Pipeline	ON	NY	Hvd open	0.005%	500	TO Assuming 0.005% km losses based on compa luon with elect (c) visues a elect city or e connection outra a e 0.011% km whe electric or to enter a e 0.001% km assume a to 50% v 0.011% km a data
Repurposed Dedicated H2 T arism salon Pipeline	ON	MI	Hvd open	0.005%	500	70 Assuming 0.000% km (assess based on compa (son with elect (i) y losses) a elect city o e connection assess a e 0.011% km whe e (asses in nt a eation a e 0%, agui assess a e 2% aguitatent to "20% a eatie (try asses) aguitatent to "20% a eatie (try asses) aguitatent to "20% and aguitatent to "20% and aguitatent to "20% aguitatent to aguitatent to "20% aguitatent to aguitatent to "20% aguitatent to aguitatent to aguitatent to "20% aguitatent to "20% aguitatent to aguitatent to aguitatent to aguitatent to "20% aguitatent to "20% aguitatent to aguitaten
Repu posed Dedicated N2 T arsm salon Pipeline	ON	PJ	Hvd open	0.005%	200	TO Assuming 0.005% km losses based on compa lion with elect (c) visions a elect city or e connection outra a e 0.011% km where assume a e 0.025% km losses a e 2% postor are to "50% or ent (c ty outra assume a to 50% x 0.011% km 0.0025% km 0.001%
Methane T ansm salon Pipe ine	ON	ON	Methane	0.4%	1	70 Sav or Enb Idan Link h Eas www.di onb ca CMWebD over Reco d 728474 (le document
Methane T anom solon Dine ine	oc	OC	Methane	3%	1	70 And what high-ever assumption or 3% based on a the PMMSA database which it is more han 1 400 pas companies 72 companies 72 companies rate of last and unpactauthed or ates or 10 per cent or higher Two-hund ed-and-seven v-ive companies had a or be were 3 and 9 per cent Sau cer h tas were clent income icon com a lice how-much-natural aga-expla
Methane T anim salon Pipe ine	WC	WC	Methane	3%	1	70 Are vira bioh-evel assumptions 35 based on a the PMK54 database which II is more item 1400 pas constantis; 72 constantis; 7
Methane T anom solon Dine ine	NY	NY	Methane	3%	1	70 Ass vira high-sevi assumptions 3% based on a the PMMSA database which it is no e han 1 400 pas constantis 72 constantis 72 constantis rate and last and unaccounted o sters to 20 or cent o higher Two-hund ed-and-seven v-ive constantis had a or be were 3 and 9 per cent. Say or h tas were vient licence ican caller how-much-natural ass-rate
Methane T anim salon Pipe ine	M	MI	Methane	3%	1	70 Are vira bioh-evel assumptions 35 based on a the PMK54 database which II is more item 1400 pas constantis; 72 constantis; 7
Methane T ansm salon Pipe ine	PI	PJ	Methane	3%	1	70 Ass vira high-sevi assumptions 3% based on a the PMMSA database which it is no e han 1 400 pas constantis 72 constantis 72 constantis rate and last and unaccounted o sters to 20 or cent o higher Two-hund ed-and-seven v-ive constantis had a or be were 3 and 9 per cent. Say or h tas were vient licence ican caller how-much-natural ass-rate
Methane T ansm salon Pipe ine	ON	OC	Methane	0.005%	700	70 Assuming 0000% km (assess based on compa (son with elect (it y losses) a elect city o e connection asses a e 0011% km where (asses in nt a estion a e 0%, ago asses a e 2%, ago asses a e 2%, ago asses a e 1% or asses
Methane T anim salon Pipe ine	ON	WC	Methane	0.005%	2000	70 Assuming 0000% km (osses) based on company lines with elect (i) y lines a elect city or economical on system or elect city or economical and the election of the election o
Methane T ansm salon Pipe ine	ON	NY	Methane	0.005%	500	70 Assume 0005% km (asses based or correct lon w the elect is y bases or elect city is a correct lon asses or e0012% km where elouses in it or ealors or e0% and uses or e1% require ent to "20% or ect is tr cases assume a to 50% x 0.011% km .0005% km o ass
Methane T anym salon Dire ine	ON	MI	Methane	0.005%	500	70 Assume 0005% km (asses based or correct lon w the elect is y bases or elect city is a correct lon asses or e0012% km where elouses in it or ealors or e0% and uses or e1% require ent to "20% or ect is tr cases assume a to 50% x 0.011% km .0005% km o ass
Methane T anim solon Pipe ine	ON	PJ	Methane	0.005%	200	To Assuming Orders with the interpretent or yours or end only in a control one of e0125 km with end one of the option of a control extent or your and a control extent or yours or end on your and a control extent or yours or end on your and a control extent or yours or end on your and a control extent or yours or end on your and a control extent or yours or end on your and a control extent or yours or end on your and a control extent or yours or end on your and a control extent or yours or end on your and a control extent or yours or end on your and a control extent or yours or end on your and a control extent or yours or end on your and a control extent or your and a control extent or yours or end on your and a control extent or yours or end or your and a control extent or your and a cont

BUSINESS INTERNA LINTERNA USE

BUSINESS INTERNAL \ INTERNAL USE

Existing Transmiss on Infrastructure (MW)

InfraTechnology	Region1	Region2	Fuel	Capacity (MW) Notes
Electricity Transmission Line	ON	ON	Electricity	23000 Source: IESO Fall 2021 Reliability Outlook nk: https://www.eso.ca/en/Sector-Participants/P anning-and-Forecasting/Re iabi ity-Out ook
Electricity Transmission Line	ON	QC	Electricity	2350 Source: IESO Fall 2021 Reliability Outlook nk: https://www.eso.ca/en/Sector-Participants/P anning-and-Forecasting/Re iabi ity-Out ook
Electricity Transmission Line	ON	WC	Electricity	300 Source: IESO Fall 2021 Reliability Outlook 1 nk: https://www.eso.ca/en/Sector-Participants/P anning-and-Forecasting/Re labi ity-Out ook
Electricity Transmission Line	ON	NY	Electricity	2100 Source: IESO Fall 2021 Reliability Outlook nk: https://www.eso.ca/en/Sector-Participants/P anning-and-Forecasting/Re iabi ity-Out ook
Electricity Transmission Line	ON	MI	Electricity	1700 Source: IESO Fall 2021 Reliability Outlook nk: https://www.eso.ca/en/Sector-Participants/P anning-and-Forecasting/Re iabi ity-Out ook
Electricity Transmission Line	ON	PJ	Electricity	g Source: IESO Fall 2021 Reliability Outlook nk: https://www.eso.ca/en/Sector-Participants/P anning-and-Forecasting/Re iabi ity-Out ook
Electricity Transmission Line	QC	NY	Electricity	2500 Source: IESO Fall 2021 Reliability Outlook 1 nk: https://www.eso.ca/en/Sector-Participants/P anning-and-Forecasting/Re labi ity-Out ook
Electricity Transmission Line	WC	MI	Electricity	1000 Source: IESO Fall 2021 Reliability Outlook I nk: https://www.eso.ca/en/Sector-Participants/P anning-and-Forecasting/Re labi ity-Out ook
New Dedicated H2 Transmission Pipe ine	ON	ON	Hydrogen	0
New Dedicated H2 Transmission Pipe ine	ON	QC	Hydrogen	0
New Dedicated H2 Transmission Pipe ine	ON	WC	Hydrogen	0
New Dedicated H2 Transmission Pipe ine	ON	NY	Hydrogen	0
New Dedicated H2 Transmission Pipe ine	ON	MI	Hydrogen	0
New Dedicated H2 Transmission Pipe ine	ON	PJ	Hydrogen	0
Repurposed Dedicated H2 Transmission Pipeline	ON	ON	Hydrogen	0
Repurposed Dedicated H2 Transmission Pipeline	ON	QC	Hydrogen	0
Repurposed Dedicated H2 Transmission Pipeline	ON	WC	Hydrogen	0
Repurposed Dedicated H2 Transmission Pipeline	ON	NY	Hydrogen	0
Repurposed Dedicated H2 Transmission Pipeline	ON	MI	Hydrogen	0
Repurposed Dedicated H2 Transmission Pipeline	ON	PJ	Hydrogen	0
Methane Transmission Pipeline	ON	ON	Methane	120 000 Based on a 20-22 MCM/day peak demand in 2020 from Enbridge ETSA Report and rounded up to 120 GW.
Methane Transmission Pipeline	ON	QC	Methane	14 000 Based on a capacity of approx mately 1.21 bcf/day. Source: CER link: https://www.cer-rec.gc ca/en/data-analysis/facilities-we-regu ate/pipe ine-profi es/index.html
Methane Transmission Pipeline	ON	WC	Methane	61 500 Based on the Northern Ontario Line and the Vector Pipe ine with a combined capacity of approximately 5.3 bcf/day. Source: CER link: https://www.cer-rec.ac.ca/en/data-ana ysis/facilities-we-regulate/pipeline-profiles/index.html
Methane Transmission Pipeline	ON	NY	Methane	12 000 Based on the Niagara and Chippawa interconnect on pipelines with a combined utilization of approximate y 1 bcf/day. Source: CER.
Methane Transmission Pipeline	ON	MI	Methane	0
Methane Transmission Pipeline	ON	PJ	Methane	0