Gas Alternatives: Stage 2 analysis and greenhouses

EB-2022-0157

November 10, 2023

Prepared by Dr. Heather McDiarmid & Kent Elson

Overview

- Gas heating is not the most cost-effective option heat pumps can lower homeowner energy bills by \$12,000 over the equipment lifetime
- Alternatives exist to reduce some or all gas needs in greenhouses

- Enbridge says customers save \$226 million with gas (over 20 yrs)
- Problems with analysis:
 - Does not account for equipment efficiencies
 - Assumes electric resistance heating over electric heat pumps
 - Heat pumps are the most efficient and cost-effective option
 - Ignores some variable fuel costs and fixed charges

- My analysis Part I
- I revised Enbridge's spreadsheet:
 - Accounted for equipment efficiency
 - Compared to best alternative option heat pumps
 - Included all variable costs*
- Result: customers will lose \$48 million with gas (over 20 years)

- My analysis Part II
- Total cost impact gas vs. heat pumps for houses
 - Upfront costs, variable costs, gas fixed costs, cooling, heating
- Result: \$12,000 lower lifetime energy bills with heat pumps on avg.
 - \$5,200 NPV total savings (20 yrs)
 - Still cost-effective even if gas prices drop by >95%

- Analysis was conservative:
 - Panhandle region is warmer: results in greater efficiency than modelled
 - New construction likely have lower up-front installation costs
 - Ground source heat pumps are even more efficient and cost-effective
 - Federal grants not accounted for
 - No carbon price increases assumed after 2030

Alternatives for greenhouses

- Alternatives exist to replace some or all gas in greenhouses
 - Biomass (incl. combined heat & power)
 - Efficiency
 - Heat pumps
 - Ground-air heat transfer systems
 - Combinations of heating approaches