1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO			
2	BUILDING OWNERS AND MANAGERS ASSOCIATION			
3				
4	UNDERTAKING NO. JT4.24:			
5	Reference(s): 2B-BOMA-1			
6				
7	To clarify the general locations, the general distribution of the data centres throughout			
8	the territory.			
9				
10	RESPONSE:			
11	Data centers are generally located within Toronto Hydro's Horseshoe distribution region			
12	(i.e. outside of the downtown core).			

1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO
2	BUILDING OWNERS AND MANAGERS ASSOCIATION
3	
4	UNDERTAKING NO. JT4.25:
5	Reference(s): 3-BOMA-3
6	
7	To provide the monthly peak information by rate class from the forecasting perspective
8	used to derive the Coincident Peak and Non-coincident Peak figures for 2025.
9	
10	RESPONSE:
11	Please refer to Appendix A for the monthly peak information by rate class for 2025.

1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO
2	BUILDING OWNERS AND MANAGERS ASSOCIATION
3	
4	UNDERTAKING NO. JT4.27:
5	Reference(s): 3-BOMA-4
6	
7	To provide a breakdown of the table at 3-BOMA-4 into the three GS classes.
8	
9	RESPONSE:
10	Please see Appendix A for a breakdown of the table at 3-BOMA-4 into the three GS
11	classes.

TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO 1 **BUILDING OWNERS AND MANAGERS ASSOCIATION** 2 3 **UNDERTAKING NO. JT4.28:** 4 Reference(s): 3-BOMA-04 5 6 To determine whether the load profile information of the multi-residential class includes 7 a breakdown based on number of customers, or based on kilowatt-hours, and if so, to 8 provide the information. 9 10 **RESPONSE:** 11 As set out in 2B-ED-25, there are an estimated 7,161 MURBs in Toronto Hydro's service 12 territory. Approximately 365 of these are classified as Competitive Sector Multi-Unit 13 Residential Service (CSMUR) and are customers directly suite metered by Toronto Hydro. 14 Please refer to JT4.25 for CSMUR 2025 load profile information. 15 16 The remaining MURBs are within a mix of Residential and General Service accounts. The 17 MURBs customers within the General Service classes may be metered by sub-metering 18 companies. As such, Toronto Hydro does not have information on the number of units or 19 the load profiles associated with those accounts. 20

1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO
2	ONTARIO ENERGY BOARD STAFF
3	
4	UNDERTAKING NO. JT5.20:
5	Reference(s): 1B-Staff-54(d)
6	
7	To explain the change to the Non-Wires Solutions program in the context of the NPV
8	calculation and whether it changes the PIM measure or the metric itself.
9	
10	RESPONSE:
11	The change to the number of stations targeted by the LDR program did not impact the
12	overall 30 MW target. As such, there are no downstream impacts to the Benefit-Cost
13	Analysis (BCA), the NPV analysis or the PIM resulting from this change.

1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO
2	ONTARIO ENERGY BOARD STAFF
3	
4	UNDERTAKING NO. JT5.21:
5	Reference(s): 1B-Staff-34(c)
6	
7	In reference to 1B-Staff-34, Part C, the table compares PIM targets. Provide or request
8	Scott Madden to expand table to include TH's proposed PIM scorecard. Classify the
9	proposed PIMs based on the categories in the table. Consider if its appropriate to put TH
10	PIM against those in the IR in question, and provide or set out rationale for why not.
11	
12	RESPONSE (PREPARED BY SCOTTMADDEN):
13	As an initial matter, Toronto Hydro's performance incentive mechanism is unique and does
14	not necessarily fit within the context of the categories "Penalty" and "Reward". Penalty-
15	only mechanisms generally impose financial consequences on utilities for failing to meet
16	certain performance standards, targets, or regulations. Reward-only mechanisms generally
17	provide financial incentives for meeting or exceeding certain targets or outcomes. Toronto
18	Hydro's mechanism provides an upfront discount to the approved ROE that can be earned
19	back by achieving certain performance targets.
20	
21	However, in the context of Penalty and Reward, Toronto Hydro's mechanism more closely
22	aligns with Penalty since the approved ROE can only be achieved – all other things the same
23	- if the performance targets are met. In addition, there no opportunity to exceed the
24	approved ROE. Toronto Hydro's performance incentive mechanism is listed in Table 1
25	below.

Jurisdiction	Utility	Penalty Only Performance Incentive	Reward Only Performance Incentive	Penalty and Reward Incentives	Total Metrics
Alberta	ATCO Electric	-	-	-	0
California	SDG&E	-	1	-	1
California	PG&E	-	1	-	1
Hawaii	Hawaiian Electric	-	3	2	5
Illinois	Ameren	-	-	1	1
Maine	Central Maine Power	6	-	-	6
Massachusetts	Eversource	7	1	-	8
Minnesota	Northern States Power Co.	-	-	-	0
New Jersey	PSE&G	-	-	-	0
New York	Con Edison	-	7	-	7
New York	National Grid	-	9	-	9
North Carolina	Duke Energy	1	2	-	3
Nova Scotia	Nova Scotia Power	-	-	-	0
Ohio	AEP	-	-	-	0
Pennsylvania	PECO	-	-	-	0
Rhode Island	Rhode Island Energy	4	1	-	5
UK RIIO	General Review	-	-	10	10
Vermont	Green Mountain Power	-	-	-	0
Ontario	Toronto Hydro	12	-	-	12

1 Table 1: Jurisdictional Review of PIMs by Incentive Type

2

- 3 Table 2 below shows how Toronto Hydro's Custom Scorecard outcome categories align with the
- 4 incentive outcome categories of other utilities within the jurisdictional review.

Toronto Hydro-Electric System Limited EB-2023-0195 Technical Conference **Schedule JT5.21** FILED: April 18, 2024 Page 3 of 3

Jurisdiction	Utility	System Reliability & Resilience	Customer Service & Experience	Environment, Safety, & Governance	Efficiency & Financial Performance
Alberta	ATCO Electric				
California	SDG&E	✓			
California	PG&E	✓			
Hawaii	Hawaiian Electric	✓	✓	✓	✓
Illinois	Ameren				✓
Maine	Central Maine Power	✓			
Massachusetts	Eversource	✓			✓
Minnesota	Northern States Power Co.				
New Jersey	PSE&G				
New York	Con Edison	✓		✓	✓
New York	National Grid	✓		✓	✓
North Carolina	Duke Energy	✓	✓	✓	✓
Nova Scotia	Nova Scotia Power				
Ohio	AEP				
Pennsylvania	PECO				
Rhode Island	Rhode Island Energy	✓			✓
UK RIIO	UK RIIO	✓	\checkmark	✓	\checkmark
Vermont	Green Mountain Power				

1 Table 2: Jurisdictional Review of PIMs by Incentive Category

1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO
2	ONTARIO ENERGY BOARD STAFF
3	
4	UNDERTAKING NO. JT5.22:
5	Reference(s): 1B-Staff-34(d)
6	
7	
8	To ask ScottMadden to comment on trends of the PIMs within the scope of the scan it
9	performed
10	
11	RESPONSE (PREPARED BY SCOTTMADDEN):
12	Among the jurisdictions examined, ScottMadden did not find a trend regarding the
13	compensation structure of performance incentive mechanisms and whether recent
14	measures are more penalty or more reward focused.
15	
16	ScottMadden did find that performance incentive measures are receiving increased
17	attention for their ability to align expanded policy objectives with shareholder and
18	customer interests. Traditionally, performance incentives have been established for
19	utilities to achieve reliability metrics and program-based performance (e.g., achieved kWh
20	savings, kW reduction). However, more recent performance incentives are providing
21	additional earning opportunities for achieving expanded policy objectives, such as
22	distributed energy resource expansion and utilization, renewables integration, beneficial
23	electrification, and dynamic rate enrollment.
24	
25	Jurisdictions have stated performance incentives are necessary to achieve desired policy
26	outcomes include the Hawaii Commission, which stated "incentive mechanisms can

achieve ... objectives, such as incenting cost reduction, incenting achievement of policy

- 1 goals, improving performance, integrating technological advances, supporting new types
- 2 of customer choice, and encouraging a low-cost, customer-centric future."
- 3
- 4 In addition, the New York Commission noted that "outcome-based incentives are the most
- ⁵ effective approach to address the mismatch between traditional revenue methods and
- 6 modern electric system needs, while aligning utility shareholder interests with consumer
- 7 interests."

1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO
2	ONTARIO ENERGY BOARD STAFF
3	
4	UNDERTAKING NO. JT5.23:
5	Reference(s): Exhibit 1B, Tab 2, Schedule 1, Appendix A, Pg 7
6	
7	To ask ScottMadden to comment on the similarities and differences between Ofgem's
8	uncertainty mechanisms and Toronto Hydro's proposed variance account; (b) to explain
9	the degree to which other volume drivers were considered, and why the DRVA was
10	chosen over that mechanism
11	

12 **RESPONSE (PREPARED BY SCOTTMADDEN):**

- 13 Please see the table below for a comparison of the Ofgem uncertainty mechanisms to
- 14 Toronto Hydro's proposed DRVA.
- 15

	Ofgem Uncertainty Mechanisms	Toronto Hydro DRVA	Comparison
Objectives	 Adjust distributor revenue allowances to changes in operating conditions outside of distributor company control 	 Protects both ratepayers and the utility from structural unknowns in forecasted costs and revenues 	 Generally consistent
Mechanism Type	 Volume-driven: adjusts Volume-driven: adjusts allowances due to uncertainty about future demand levels	 Demand-Related Expenditure Variance Subaccount Due to policy, customer adoption, or technology market uncertainty Demand-Related Revenue Variance Subaccount Result from weather- normalized variances in billing determinants (i.e. customer count, kWh and kVA). 	 DRVA is generally consistent with volume-driven uncertainty mechanism

Toronto Hydro-Electric System Limited EB-2023-0195 Technical Conference **Schedule JT5.23** FILED: April 18, 2024 Page 2 of 3

	Ofgem Uncertainty Mechanisms	Toronto Hydro DRVA	Comparison
	 Administrative Re-opener: need, timing, or scope of project is unclear (e.g., net- zero implementation) 		
Adjustment Type	 Symmetrical 	 Symmetrical 	 Generally consistent
Cost Types	 For reopeners, both capital and O&M readjusted based on cost assessment For volume-driven mechanisms, unit rate of incremental capital funding determined at start of price control period Incremental operational funding provided at a value of 10.8% of each unit of incremental capital provided 	 Both capital and O&M for demand-related investments 	 Generally consistent; incremental O&M funding in UK RIIO differs by uncertainty mechanism type
Adjustment Timing	 Automatic (pass-through, indexation, use-it-or-lose-it, volume-driven) During price control period after administrative review (reopeners) 	 Next rebasing 	 Ofgem mechanism provides for recovery/ refund within the plan while DRVA defers recovery/ refund until the end of the plan
Materiality Threshold	 No materiality threshold for automatic adjustments Materiality threshold of 0.5% of annual average base revenue for most reopener mechanisms 	 \$1 million materiality threshold 	 Ofgem provides no materiality threshold for automatic adjustments and a percentage-based threshold for administrative adjustments, whereas the OEB has a \$1 million materiality threshold

1

2 **RESPONSE (PREPARED BY TORONTO HYDRO):**

As noted in Exhibit 1B, Tab 2, Schedule 1 at page 35, due to a confluence of external factors (i.e., policy, technology and consumer behaviour changes) Toronto Hydro is entering a period of unprecedented change and transformation, as customers, communities and governments at all levels are actively embarking on an energy transition to mitigate the existential and economic impacts of climate change. Decarbonization is expected to create new roles for electricity, including as an energy source for transportation and building heating systems. While there is certainty that fundamental change is ahead, there are
degrees of uncertainty about how that change will unfold (e.g., the pace and adoption of
electrified technologies such as EVs and heat pumps; the role of low-emission gas; and the
scale of local vs. bulk electricity supply).

5

In light of the uncertainty and potential for variability noted above, Toronto Hydro requires greater flexibility to manage demand-driven aspects of its plan in order to protect both the rate payers and the utility from structural unknowns in forecasted costs and revenues. The proposed DRVA provides Toronto Hydro the necessary flexibility using a regulatory mechanism (a variance account) that the utility and the OEB have ample experience with over the last two custom IRs.

12

At this early stage of the energy transition, a volumetric mechanism would be difficult to 13 design and implement since the relationship between volumes and costs/revenues remains 14 subject to structural uncertainties associated with the factors noted above, and higher 15 degree of variability as Toronto Hydro (i) gains experience integrating new technologies 16 into the grid, (ii) adapts to changing policies and customer behaviours, and (iii) develops 17 advanced capabilities to analyze, predict and address these dynamic external factors into 18 its planning and execution processes. For these reasons, a volumetric mechanism may not 19 be able to effectively address the noted concerns with respect to uncertainty and variability 20 in demand, and as a result could impair the utility's flexibility to: (i) protect customers from 21 structural unknowns in forecasted costs and revenues, (ii) adapt to emerging business 22 23 conditions related to energy transition, and (iii) take least regret actions to prepare the grid and its operations for a decarbonized and electrified future and provide near-and long-24 25 term value to ratepayers.

1	TECHN	ICAL CONFERENCE UNDERTAKING RESPONSES TO
2		ONTARIO ENERGY BOARD STAFF
3		
4	UNDERTAKING NO	JT5.24:
5	Reference(s):	1B-DRC-06, Part C
6		
7	To comment or sum	nmarize how the governance framework and the selection of
8	innovation projects	or initiatives compares to the other jurisdictions that it reviewed in
9	formulating this inn	ovation fund proposal.
10		
11	RESPONSE:	
12	As described in the	exchange leading up to this undertaking noted in the April 12, 2024,
13	Technical Conferen	ce Transcript at page 64, line 27 to page 65, line 22, Toronto Hydro's
14	jurisdictional scan	assessed: (i) which jurisdictions/utilities have similar funds as part of
15	their regulatory frai	nework, (ii) what types of innovation form part of these funds, and (iii)
16	how much funding	is being allocated to investments in innovation through similar funds.
17	The referenced rese	earch did not specifically consider the governance frameworks in other
18	jurisdictions; howev	ver, Toronto Hydro's third-party expert Scott Madden did consider this
19	information in the r	esponse to Undertaking JT3.36.

1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO
2	ONTARIO ENERGY BOARD STAFF
3	
4	UNDERTAKING NO. JT5.25:
5	Reference(s): 1B-EP-23, Part E, Pg 3
6	
7	To ask ScottMadden to provide the criteria it used to select jurisdictions or utilities in its
8	review.
9	
10	RESPONSE (PREPARED BY SCOTTMADDEN):
11	Criteria used to select jurisdictions/utilities in ScottMadden's review included:
12	 Jurisdictions that have passed mandates regarding climate/ clean energy goals
13	• Jurisdictions that have implemented elements of performance-based regulation
14	• Utilities that have proposed or implemented performance-based regulation in the
15	context of meeting mandates regarding climate/ clean energy goals
16	It is important to note the review was not intended to be a jurisdiction-by-jurisdiction
17	review of rate plans.

1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO	
2	ONTARIO ENERGY BOARD STAFF	
3		
4	UNDERTAKING NO. JT5.26:	
5	Reference(s): 1B-EP-23, Part E, Pg 3	
6		
7	To ask ScottMadden to comment on whether there were utilities that were excluded that	ŧ
8	are in a similar stage to Toronto Hydro in the energy transition	
9		
10	RESPONSE (PREPARED BY SCOTTMADDEN):	
11	ScottMadden's review did not specifically exclude any jurisdictions or utilities that met	
12	the criteria described in JT5.25.	

1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO
2	ONTARIO ENERGY BOARD STAFF
3	
4	UNDERTAKING NO. JT5.27:
5	Reference(s): 1B-EP-23, Part E, Pg 3
6	
7	To ask ScottMadden to confirm that within the context of Ofgem, it relies heavily on its
8	own analysis to set the revenue requirements, and that under RIIO-ED-2, Ofgem offers
9	incentives to distributors who manage to present forecasts that do better than Ofgem's
10	benchmark for cost categories for which Ofgem has its high confidence in forecasting.
11	
12	RESPONSE (PREPARED BY SCOTTMADDEN):
13	Within the Ofgem UK-RIIO context, revenue requirements are largely based on Ofgem's
14	assessment of each distribution company's analysis of expected costs over the price control
15	period. However, we would not characterize it as heavily. Ofgem does use other
16	information outside of a company's own analysis to set revenue requirements, including
17	comparisons of plans from other electric distributors, international benchmarking
18	evidence, and information on historical performance.
19	
20	In RIIO-2, Ofgem presented the Business Plan Incentive (BPI) mechanism, which is designed
21	to encourage efficient revenue requirements based on justified cost forecasts. Under BPI
22	mechanism, companies present business plans that identify costs and outputs, such as
23	service quality. The quality of the business plans is subject to rewards or penalties up to

- 1 +/-2% of the utility revenues.¹ The greater confidence that Ofgem has in the proposed
- 2 costs, the higher the incentive rate.

¹ Jamasb, Tooraj. "Incentive Regulation of Electricity and Gas Networks in the UK: From RIIO-1 to RIIO-2." Economics of Energy & Environmental Policy, vol. 10, no. 2, Sept. 2021

1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO
2	ONTARIO ENERGY BOARD STAFF
3	
4	UNDERTAKING NO. JT5.28:
5	Reference(s): Exhibit 4
6	
7	To confirm that 2 JA, JB, JC, and JD have been updated, and if not, to file updated
8	versions.
9	
10	RESPONSE:
11	Toronto Hydro confirms that it filed updated OEB Appendices 2-JA, 2-JB, 2-JC, and 2-L in
12	response to interrogatory 4-SEC-89.1

¹ Toronto Hydro filed the OM&A Programs Table (OEB Appendix 2-JC) instead of the OM&A by USoA Table (OEB Appendix 2-JD) in accordance with section 2.4.2 of the OEB's Filing Requirements for Electricity Distribution Rate Applications (December 15, 2022).

1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO
2	ONTARIO ENERGY BOARD STAFF
3	
4	UNDERTAKING NO. JT5.29:
5	Reference(s): Exhibit 4
6	
7	Within the System Access category, to provide the annual contributions by program
8	(Customer and Generation Connections, Externally Initiated Plant Relocations and
9	Expansion, Generation Protection Monitoring and Control, Load Demand, and Metering at
10	that resolution) for the 2023 actual, and project it forward by any year that's affected by
11	the April 2, or January 29 updates.
12	
13	RESPONSE:
14	Toronto Hydro notes that the 2025-2029 Customer and Generation Connections (Exhibit
15	2B, Section E5.1) and Externally Initiated Plant Relocations and Expansion (2B, E5.2)
16	investments plans were not affected by the January 29 th and April 2 nd updates or by the
17	2023 actuals and updated bridge. The table below provides the 2023-2029 capital
18	contributions by program/segment updated for 2023 actuals and revised 2024 bridge.
19	The 2025-2029 forecasts align with those provided in Section 4 of each program/segment.
20	
21	Table 1: System Access Capital Contributions (\$ Millions)

Program/Segment	2023	2024	2025	2026	2027	2028	2029
Customer Connections	(71.8)	(71.9)	(82.9)	(89.0)	(94.7)	(100.5)	(106.3)
Generation Connections	(0.1)	0.0	0.0	0.0	0.0	0.0	0.0
Externally Initiated Plant Relocations & Expansion	(68.6)	(75.6)	(81.1)	(61.8)	(46.1)	(46.7)	(48.6)
System Access Capital Contributions	(140.4)	(147.5)	(164.0)	(150.7)	(140.7)	(147.2)	(154.9)

- 1 There are no capital contributions forecasted for the Generation Protection, Monitoring and
- 2 Control (2B, E5.5), Load Demand (2B, E5.3) or Metering (2B, E5.4) programs.

1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO
2	ONTARIO ENERGY BOARD STAFF
3	
4	UNDERTAKING NO. JT5.30:
5	Reference(s): Exhibit 4
6	
7	For the Station Renewal and IT/OT System programs, to provide the Capex data by
8	segment, by year; similarly for 2023 and any year that may have been affected by the
9	January 29 or April 2 updates.
10	
11	RESPONSE:
12	Please see Table 1 and Table 2 below for the updates to the 2023-2024 segment-level
13	capital expenditures for the Stations Renewal and IT/OT Systems programs, respectively
14	Toronto Hydro notes that there are no changes to the 2025-2029 forecasts for these
15	programs since the application filed on November 17, 2023.
16	
17	Table 1: Stations Renewal Program Historical & Forecast Program Costs (\$ Millions)

Segments		Act	tual		Bridge	Forecast				
Segments	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Stations TS	12.0	16.7	18.8	9.6	19.5	31.1	31.1	30.0	25.0	16.8
Stations MS	11.5	12.4	2.4	3.3	12.0	10.2	11.3	13.4	17.0	18.4
Stations Control & Monitoring	4.7	3.1	5.1	6.9	8.1	11.9	12.1	13.5	13.1	14.2
Stations Ancillary and Battery	1.9	1.2	1.1	2.1	1.0	3.2	2.2	1.9	3.4	2.9
Total	30.2	33.6	27.4	21.9	40.6	56.4	56.7	58.8	58.6	52.3

19 In preparing the response to this undertaking, Toronto Hydro identified an error in Exhibit

20 2B, Section E8.4, Table 4 at pages 15-16. The 2022 actuals for Communication

- 1 Infrastructure was understated by \$0.6 million and is corrected in the table below. This
- 2 error was isolated and does not affect the total costs in that year or the amounts included
- 3 in the OEB Appendices.

4

Commente		Act	ual		Bridge	Forecast				
Segments	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
IT Hardware	11.6	15.1	14.9	17.3	12.0	17.5	19.8	22.6	18.1	20.3
IT Software	22.2	26.6	42.4	41.6	42.1	38.6	40.6	41.0	33.3	34.8
Communication Infrastructure	3.6	3.0	0.7	2.3	1.8	3.7	2.5	0.9	6.8	1.0
Total	37.4	44.7	58.0	61.2	55.9	59.7	62.9	64.5	58.2	56.0

5 Table 2: IT/OT Historical & Forecast Program Costs (\$ Millions)

1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO
2	ONTARIO ENERGY BOARD STAFF
3	
4	UNDERTAKING NO. JT5.32:
5	Reference(s): Clearspring Working Papers
6	
7	In Clearspring's working papers, to review the values for approximately 30 entries in the
8	field called alloc and their associated formulas, to make corrections and adjustments as
9	deemed necessary; to comment on findings and provide them to PEG.
10	
11	RESPONSE (PREPARED BY CLEARSPRING):
12	The "alloc" field is a calculated ratio that takes a proportion of A&G expenses and
13	allocates those expenses to the total cost amount within the study. This is useful when
14	the sample contains several utilities with G, T, and D functions. Clearspring took the
15	approach of not making data adjustments within the ratio calculation when calculating
16	the allocator.
17	
18	In deciding not to make adjustments, there are 28 observations out of the 1,642 total
19	observations that are either negative or higher than 100%. If these 28 values are changed
20	to the prior year value (or the next year value for observations in the year 2000), a minor
21	change in the results occurs. Rather than Toronto Hydro having a benchmark score of
22	-22.9% during the 2025 to 2029 CIR period, the score changes to -21.9%.

1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO
2	ONTARIO ENERGY BOARD STAFF
3	
4	UNDERTAKING NO. JT5.33:
5	Reference(s): Clearspring Model
6	
7	In Clearspring's model, the O&M-based scope variable, to review the values for
8	approximately three companies, to review, comment, provide updates.
9	
10	RESPONSE (PREPARED BY CLEARSPRING):
11	The O&M-based scope variable is a calculated ratio that measures the level of D functions
12	relative to G, T, and D within each observation. Clearspring took the approach of not
13	making data adjustments within the ratio calculation when calculating the variable.
14	
15	In deciding not to make adjustments, there are 3 observations/values out of the 1,642
16	total observations that are higher than 100%. If these 3 values are changed to the prior
17	year value, a minor change in the results occurs. Rather than Toronto Hydro having a
18	benchmark score of -22.9% during the 2025 to 2029 CIR period, the score changes to
19	-23.3%.

TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO 1 **ONTARIO ENERGY BOARD STAFF** 2 3 **UNDERTAKING NO. JT5.34:** 4 Reference(s): **Clearspring Working Papers** 5 1B-Staff-67 6 7 Within the Clearspring working papers and with reference to 1B-Staff-67a, distribution 8 substation data, to review the data and comment on whether there are problems in the 9 counting methods; whether corrections would improve the performance of Toronto 10 Hydro; whether the corrected data could be provided in a timely manner; and to provide 11 any other commentary or alternative models that could be informative. 12 13 **RESPONSE (PREPARED BY CLEARSPRING):** 14 As Clearspring stated in 1B-Staff-67a, there are hundreds of thousands of addresses and 15 observation lines regarding the construction of the substation variables. In reality the 16 number is well over one million data lines. Clearspring undertook extensive data 17 processing efforts to calculate the substation variables with a view of improving the 18 model specification. Clearspring did this utilizing formulas and made a good faith effort in 19 calculating the variables and provided those formulas and all the data in our working 20 papers. It is not feasible in the very short amount of time since this undertaking was 21 22 requested, nor worthwhile in Clearspring's view, to examine the data line-by-line. Examining every line would take many weeks, if not months, of work. Clearspring is of the 23 view that its data processing approach was reasonable and the models are enhanced by 24 the inclusion of the substation variables. 25

1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO									
2	ONTARIO ENERGY BOARD STAFF									
3										
4	UNDERTAKING NO. JT5.35:									
5	Reference(s): Clearspring Working Paper									
6										
7	To clarify and confirm Toronto Hydro's coverage area.									
8										
9	RESPONSE (PREPARED BY CLEARSPRING):									
10	The Clearspring data for Toronto Hydro's service area came from GIS mapping from									
11	information subscribed to from Platt's. The 642 km squared number cited by PEG is fror	n								
12	the OEB Yearbook data reporting. If the 642 km number is inserted into the model for									
13	Toronto Hydro, the benchmark score moves from -22.9% to -27.9%.									

1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO
2	ONTARIO ENERGY BOARD STAFF
3	
4	UNDERTAKING NO. JT5.36:
5	Reference(s): Clearspring Working Paper
6	
7	To review the variable construction and the interaction between logged and unlogged.
8	
9	RESPONSE (PREPARED BY CLEARSPRING):
10	Regarding the interaction term with the percentage overhead and forestation, Clearspring
11	constructed this the same way as we previously did, as contained in the Hydro One Joint
12	Report issued by Clearspring and PEG. We logged the forestation variable and then
13	multiplied that by the percentage of overhead (not logged). While this construction of the
14	variable makes intuitive sense to Clearspring by modifying the elasticity on the forestation
15	variable by the proportion of overhead assets, we note that modifying the variable to also
16	take the natural log of the percentage of overhead assets would create a minor change in
17	the results. Rather than the reported -22.9% benchmark score, when both components
18	are logged the result becomes -20.9%.

1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO
2	ONTARIO ENERGY BOARD STAFF
3	
4	UNDERTAKING NO. JT5.37:
5	Reference(s): 1B-Staff-60
6	
7	To provide the full list of instances for the three scale variables in 1B-Staff-60, part b.
8	
9	RESPONSE (PREPARED BY CLEARSPRING):
10	The custom elasticities are provided in the Excel file "Dataset Dx Custom Elasticities
11	JT5.37". The elasticities are found in columns B, C, and D. This file is provided on a
12	confidential basis.

1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO
2	ONTARIO ENERGY BOARD STAFF
3	
4	UNDERTAKING NO. JT5.38:
5	Reference(s): 1B-Staff-102
6	
7	To clarify the response to 1B-Staff-102c, whether the congested urban variable referred
8	to cities or metro areas.
9	
10	RESPONSE (PREPARED BY CLEARSPRING):
11	As far as Clearspring recalls, it was city populations above 200,000 that originally served
12	as the criterion to be included in the analysis, as referred to in my report in the last
13	Toronto Hydro proceeding [EB-2018-0165]. The vast majority of the congested urban core

areas were contained in cities with populations well above 200,000.

1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO
2	ONTARIO ENERGY BOARD STAFF
3	
4	UNDERTAKING NO. JT5.39:
5	Reference(s): 1B-STAFF-75J
6	
7	To give the applicant's view of the causes of Toronto Hydro's such poor SAIFI and good
8	SAIDI scores
9	
10	RESPONSE:
11	In reviewing the transcript, Toronto Hydro notes that this undertaking does not fully
12	capture the request made by OEB Staff (PEG). The scope of the undertaking is to provide
13	insights from an engineering perspective on underlying causes of Toronto Hydro's SAIFI
14	and SAIDI performance relative to the benchmark in the context of the reliability
15	benchmarking study conducted by Clearspring.
16	
17	Toronto Hydro's strong SAIDI performance reflects the distributor's commitment over the
18	years to delivering safe and reliable power to its customers while minimizing the duration
19	of interruptions. This commitment is evident not only in the econometric reliability
20	benchmarking study produced by Clearspring, but also when comparing SAIDI trends with
21	those of other large distributors within the Province of Ontario, as shown in 2B-Staff-245.
22	As evident through Customer Engagement, Toronto Hydro's customers also prioritize the
23	need to continue to address the duration of outages when it comes to reliability
24	preferences. From an engineering and operational perspective, Toronto Hydro attributes
25	its strong SAIDI performance over the years to historical investments in renewal and
26	system enhancement efforts. Particularly, the deployment of remote-operable switches
27	(also known as SCADA controlled switches) and investments in enhancements to Toronto

Hydro's Network Management System (NMS) have had significant impacts on minimizing
outage duration. SCADA controlled switches provide operational efficiencies, enabling
power system controllers to perform remote switching for fault isolation and restoration.
Historically, restoration crews on the ground had to perform these tasks manually, which
prolonged outages and restoration times. For more information, please see response to
1B-Staff-98.

7

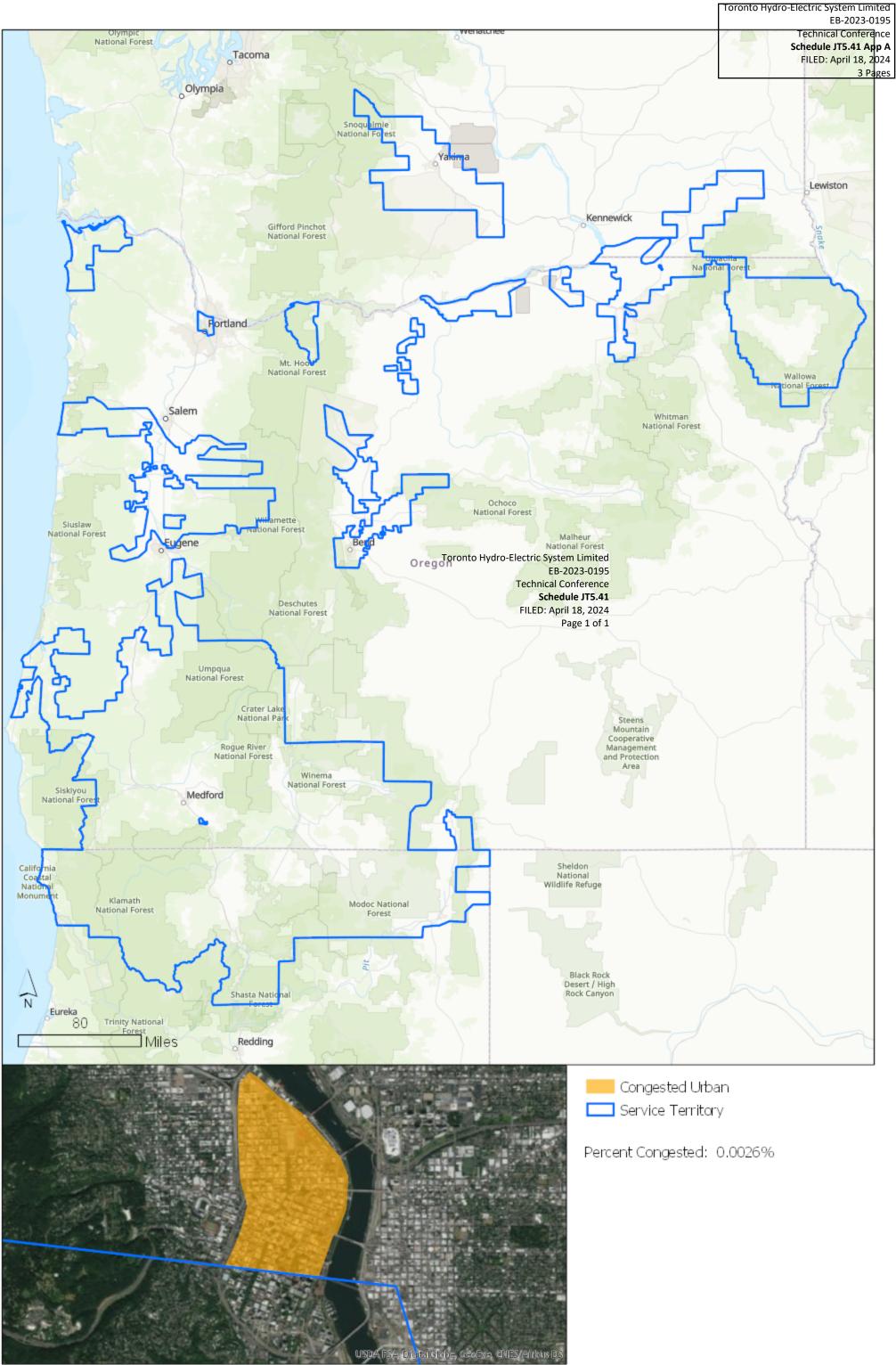
In regard to higher SAIFI performance relative to the econometric benchmark, Toronto 8 9 Hydro views this as largely a reflection of its distribution system (e.g. age, condition, topology, existence of legacy equipment, etc.) and its operating environment. As outlined 10 in the Executive Summary (Exhibit 1B, Tab 1, Schedule 1), Toronto Hydro operates in a 11 12 complex urban environment within the City of Toronto due to the dense nature of the city's population (4,428 people per sq. kilometer), coupled with a growing tree canopy 13 consisting of approximately 11.5 million trees. This requires approximately 15,000 circuit 14 15 kilometers of overhead conductors and 13,800 circuit kilometers of underground cable to service the city's 630 square kilometers. These realities of the distribution system result in 16 a high volume of short-duration high-impact interruptions. On average, between 2018 to 17 2022, 23% of SAIFI contribution (excluding MEDs and Loss of Supply) are associated with 18 interruptions lasting less than 5 minutes. 19

20

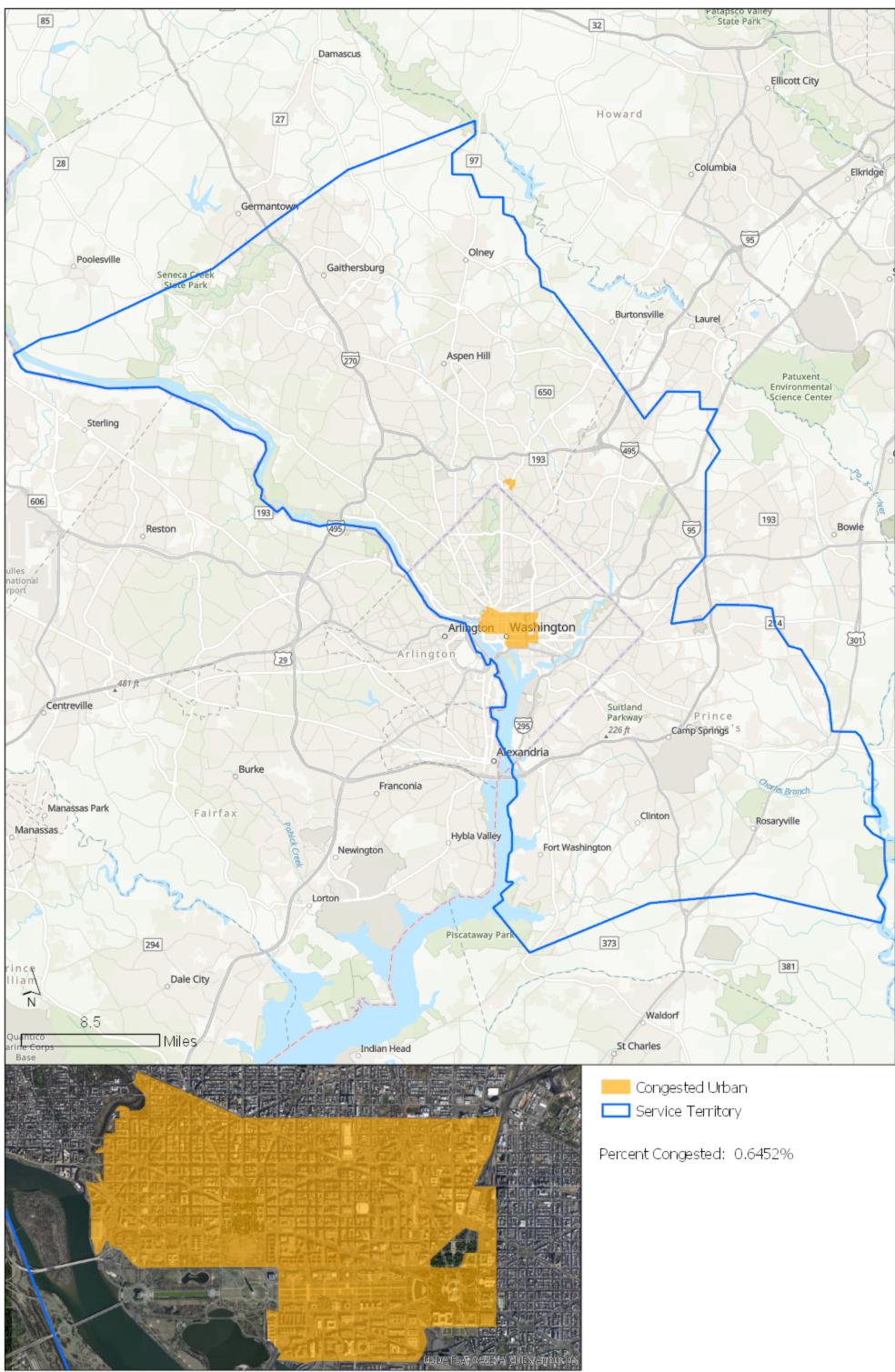
A large share of SAIFI contribution to Toronto Hydro's distribution system originates from the Horseshoe region, which includes feeders that service thousands of customers. Due to the nature of these feeders (length, topology, and customer density), interruptions that occur along the feeder trunk – i.e. system faults downstream of the station circuit breaker and upstream of expulsion or current limiting fuses – result in a high SAIFI impact, interrupting all customers served from the feeder. Furthermore, the realities of Toronto Hydro's operating context can prevent the utility from constraining certain trunk level

1 outages to less than one minute in duration, meaning that a higher proportion of large, 2 but still very short, outages are counted against SAIFI as sustained interruptions. For example, Toronto Hydro makes extensive use of "hold-offs" to ensure employee and 3 third-party safety when working on or near lines. These hold-offs prevent automatic 4 breaker reclosing under fault conditions. Also, Toronto Hydro does not have control 5 6 authority over transmitter-owned equipment (including feeder circuit breakers) for 7 certain transformer stations in the Horseshoe region, which in turn prolongs restoration 8 times due to incremental coordination requirements with the transmitter. Please see 9 response to 2B-EP-27 for more information on distribution operation and protection practices, and 2B-Staff-162, part (c) for design differences between the Downtown Core 10 and Horseshoe region. 11

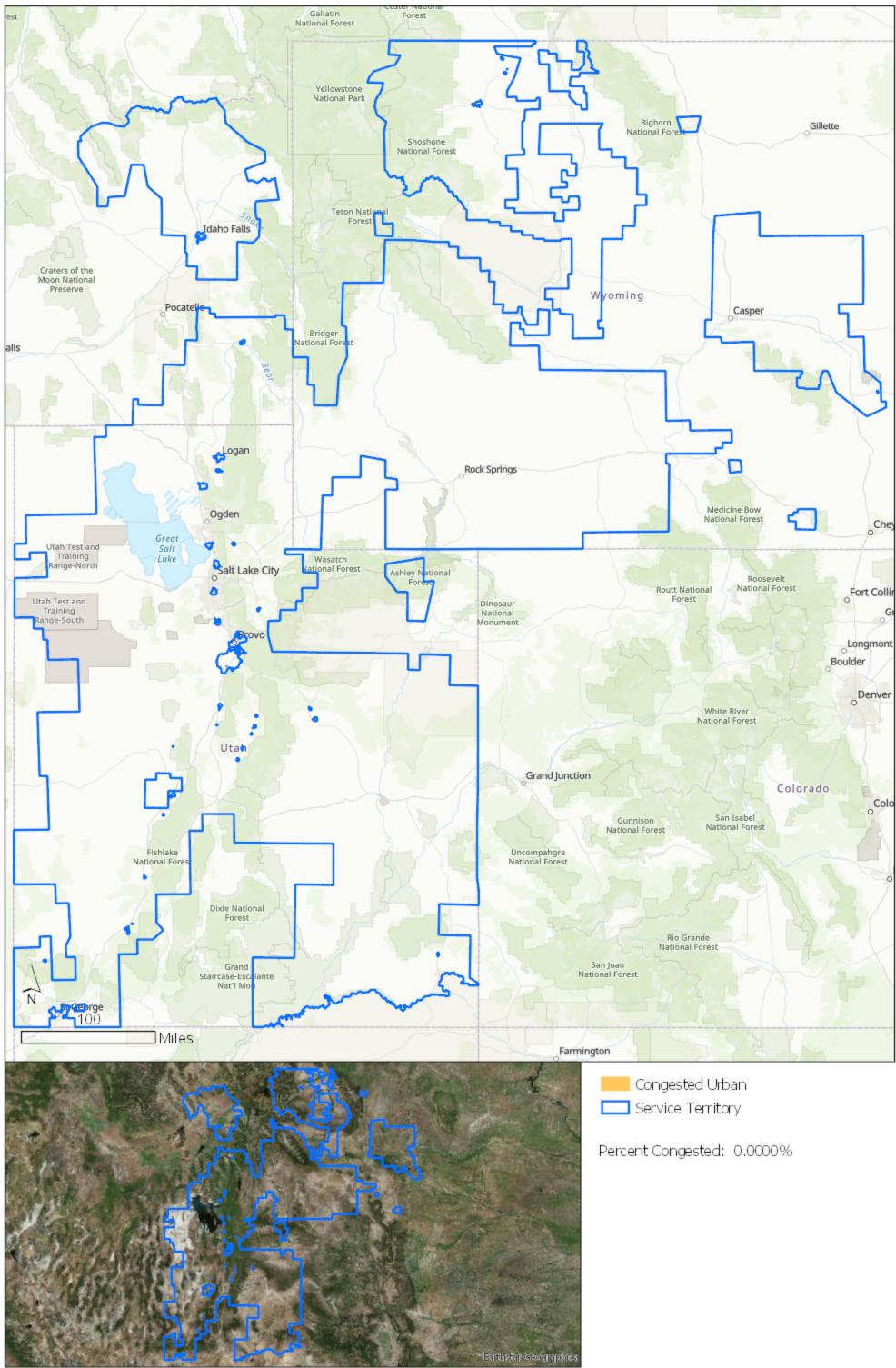
12


Additionally, Toronto Hydro's distribution system currently lacks certain advanced 13 technologies aimed at improving system reliability. These include, but are not limited to, 14 the deployment of mid-line reclosers along distribution feeders and the implementation 15 16 of Fault Location, Isolation, and Service Restoration ('FLISR') or Distribution Automation ('DA'). For more details on Toronto Hydro's plans within the 2025-2029 rate period for 17 mid-line recloser implementation and other strategic investment initiatives that are 18 designed to improve reliability and resiliency of the distribution system over the long 19 term, please refer to Section E7.1 and D5.2.1. For more details on it's FLISR 20 implementation, please refer to Section D5.2.1.2 and D5.3.2. 21

1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO
2	ONTARIO ENERGY BOARD STAFF
3	
4	UNDERTAKING NO. JT5.40:
5	Reference(s): Exhibit 1B, Tab 3, Schedule 3, Appendix A, Page 23
6	
7	Toronto Hydro and Clearspring to comment on declines in THESL's total cost efficiency in
8	2010 and 2011.
9	
10	RESPONSE PREPARED BY CLEARSPRING:
11	In the two years of 2010 and 2011, the Company's costs in the total cost benchmarking
12	study increased by an average annual rate of 9.0%. This total cost increase outpaced the
13	total cost model benchmarks for those years. The model benchmarks estimated an
14	average annual increase of 3.3% during those two years.
15	
16	RESPONSE PREPARED BY TORONTO HYDRO:
17	Toronto Hydro respectfully disagrees with the characterization of its 2010 to 2011 cost
18	performance as a decline in cost efficiency. It is Toronto Hydro's understanding that the
19	costs underpinning the Total Costs values undergo a series of normalizations, and as such
20	is unable to comment on the trends using those data points. However, Toronto Hydro is
21	able to comment on capital expenditure and OM&A trends between 2009 and 2011
22	based on data disclosed in its 2011 EDR (EB-2010-0142) and 2015-2019 CIR (EB-2014-
23	0116) Applications.
24	
25	Capital Expenditures
26	The increase in capital expenditures between 2009 and 2010 is primarily attributed to


27 emerging requirements associated with:

1	 Stations Expansion (Copeland TS project, known as Bremner TS at the time);
2	 The need to address worst performing feeders (i.e. FESI-7); and
3	• Safety requirements by replacing and upgrading handwells to reduce the risk of
4	contact voltage.
5	
6	It is also attributed to incremental requirements to convert smart meters in 2010 and
7	2011 and to replace underground direct buried cables staring in 2010.
8	
9	OM&A Expenses
10	The increases in OM&A costs between 2009 and 2011 were driven by Administrative and
11	Other Costs, in part related to internal resources to support the safe and efficient delivery
12	of the capital and operational work programs over that time. Toronto Hydro notes that its
13	headcount increased by about 200 FTE in that period. A more detailed analysis with
14	respect to the specific drivers for the OM&A increase over this period could not be
15	performed within the timeframe of responding to this undertaking.


1	TECHNICAL CONFERENCE UNDERTAKING RESPONSES TO
2	ONTARIO ENERGY BOARD STAFF
3	
4	UNDERTAKING NO. JT5.41:
5	Reference(s): Clearspring Working Paper
6	
7	To file the two maps related to the congested urban variables.
8	
9	RESPONSE (PREPARED BY CLEARSPRING):
10	Clearspring examined our files and we have the maps for Potomac Electric Power and
11	PacifiCorp. Regarding PacifiCorp, there are two maps because the company is a merge
12	entity serving the historic territories of Pacific Power and Rocky Mountain Power. The
13	three maps are provided.

PACIFIC POWER

POTOMAC ELECTRIC POWER CO.

ROCKY MOUNTAIN POWER