Appendix D

Turbine Specifications

SIEMENS

January 19, 2007

Ross Keating President and Chief Operating Office Canadian Hydro Developers, inc. 500, 1324-17th Avenue SW Calgary, Alberta T2T 5S8 Canada

Subject: Wolfe Island Wind Park, Ontario, Canada

MR. Keating:

This letter confirms that Canadian Hydro Developers, Inc. has purchased SWT 2.3-93 turbines from Siemens. This is the only wind turbine model that Siemens has offered to the North American market. Please note that the SWT 2.3-93 was previously known as the Siemens 2.3 MW Mk II, as we recently announced to re-name PG products and services under a common nomenclature structure that is consistent with Siemens global communication standards.

It is important to note that while the names of our products have changed, all else about them remains the same.

Sincerely,

Dany St-Pierre

Marketing Manager - Americas

Siemens Wind Power

Siemens Power Generation

Technical Description
2.3 MW Mk II 60 Hz
Document PG-R-03-10-0000-0007-02
Restricted Release

2.3 MW Mk II 60 Hz Technical Description

General

The 2.3 MW Mk II wind turbine is a variable speed version of the well-known 2.3 MW type typically preferred by major utilities and developers for large onshore and offshore wind power stations.

General Design

The basic design of the 2.3 MW Mk II is similar to the design of the 2.3 MW turbine type. However, due to the increased requirements for noise and grid control at high penetration of wind power the Mk II version has a number of new features.

The rotor has a larger rotor with variable speed and pitch regulation. Due to aerodynamic advances this arrangement has reduced aerodynamic noise output even at rated power.

The generator is connected to the MV transformer with Siemens' new NetConverter® power conversion system. This system provides maximum flexibility in the turbine response to voltage and frequency control, fault conditions, etc. and meets the requirements of all applicable grid codes.

Even though many other manufacturers use similar concepts, specific design features distinguish Siemens turbines from the rest – features which have characterised all Siemens models during the last two decades.

Major components such as the rotor hub, the main shaft, the gearbox, the yaw system, etc., are all of particularly heavy dimensions. The main shaft is long and has the reaction supports located optimally for transfer of bending moments to the yaw system and tower. The turbine has two truly independent safety systems consisting of the blade pitch system and the mechanical brake. The two-stage mechanical brake system use reduced torque in normal shutdown situations and full torque in emergency shutdown only.

All details are designed with a view to the best engineering practice. Bolt extenders are used on all dynamically loaded bolts, vibration-proof cable clamps are used in the electrical system, and all fitting surfaces for machine elements are machined.

Rotor

The 2.3 MW Mk II rotor is a three-bladed cantilevered construction, mounted upwind of the tower. The power output is controlled by pitch regulation. The rotor speed is variable in order to maximise the aerodynamic efficiency, and the speed compliance during power regulation minimises the dynamic loads on the transmission system.

Blades

The B45 blades are made of fibreglass-reinforced epoxy in Siemens' proprietary IntegralBlade® manufacturing process. In this process the blades are cast in one piece, providing optimum quality and eliminating weaker areas at glue joints. The aerodynamic design represents state-of-the-art wind turbine technology, and the structural design has the usual Siemens safety factors on top of all type approval requirements. This concept has been thoroughly verified by static and dynamic testing of both prototype and serial production blades.

The blades are mounted on pitch bearings and can be feathered 80 degrees for shutdown purposes. Each blade has its own independent failsafe pitching mechanism capable of feathering the blade under any operating condition.

The blade pitch arrangement allows optimising of the power output throughout the operating range, and the blades are feathered to minimise wind loads during standstill under extreme wind conditions.

Technical Description
2.3 MW Mk II 60 Hz
Document PG-R-03-10-0000-0007-02
Restricted Release

Rotor hub

The rotor hub is cast in nodular cast iron and is fitted to the main shaft with a flange connection. The hub is sufficiently large to provide a comfortable working environment for two service technicians during maintenance of blade roots and pitch bearings from inside the structure.

Main shaft and bearing

The main shaft is forged in alloy steel and is hollow for the transfer of power and signals to the blade pitching system.

The main shaft is supported by a large self-aligning double spherical roller bearing shrunk onto the main shaft. The bearing is grease lubricated and the bearing seals are labyrinth seals requiring no maintenance.

Gearbox

The gearbox is a custom-built three-stage planetary-helical design. The first, high torque stage is of helical planetary design, providing a compact high-performance construction. The two high-speed stages are of normal helical design, providing the offset of the high speed shaft that is needed to allow passage of power and control signals to the pitch systems.

The gearbox is shaft-mounted and the main shaft torque is transferred to the gearbox by a shrink disk connection. The gearbox is supported on the nacelle with flexible rubber bushings, thereby reducing structural noise transfer.

The gearbox is fitted with an oil conditioning system that maintains optimum operating conditions. All bearings are lubricated with oil fed directly from a large in-line filter, and as an additional feature the oil is continuously cleaned by an off-line filter unit. The cooling system maintains an operating temperature at normal ambient conditions between 40 and 50 degrees C irrespective of the gearbox loading.

The gearbox is fitted with monitoring of temperature, oil pressure and vibration levels.

Generator

The generator is a fully enclosed asynchronous generator. The generator has a squirrel-cage rotor without slip-rings. The generator rotor construction and stator winding is specially designed for high efficiency at partial loads. The generator is protected with thermal switches and analogue temperature measurement.

The generator is fitted with a separate thermostat-controlled ventilation arrangement. Air is recirculated internally in the generator and heat is transferred through an air-to-air heat exchanger that efficiently separates the internal environment in the generator from the ambient air.

Mechanical brake

The mechanical brake is fitted to the gearbox high-speed shaft. It is failsafe and has three hydraulic calipers. The brake application system has two stages; one for normal shutdown and the other for emergency shutdown in case of malfunctioning pitch systems.

Yaw system

The yaw bearing is an externally geared slewing ring with a friction bearing acting as a yaw brake. Eight electric planetary gear motors drive the yawing.

Tower

The 2.3 MW Mk II turbine is mounted on a tapered tubular steel tower. The tower can be fitted with a personnel hoist as an option.

Controller

The turbine controller is a microprocessor-based industrial controller; similar to the type used in other Siemens wind turbines. The controller is complete with switchgear, protection devices, etc. It is self-diagnosing and has a keyboard and display for easy readout of status and for adjustment of settings. Remote control is easily installed.

Technical Description 2.3 MW Mk II 60 Hz Document PG-R-03-10-0000-0007-02 Restricted Release

The NetConverter® power conversion system allows generator operation at variable speed, frequency and voltage while supplying power at constant frequency and voltage to the MV transformer. The power conversion system is of modular arrangement for easy maintenance and is water cooled.

The 2.3 MW Mk II turbine can be adapted to comply with all currently valid grid code requirements on relevant markets. The power factor can be controlled over a wide range, and the turbine has ride-through capability for all normal faults. Voltage and frequency control and other grid-related adjustments can be implemented by the integrated Park Pilot facility in the WebWPS SCADA system.

SCADA

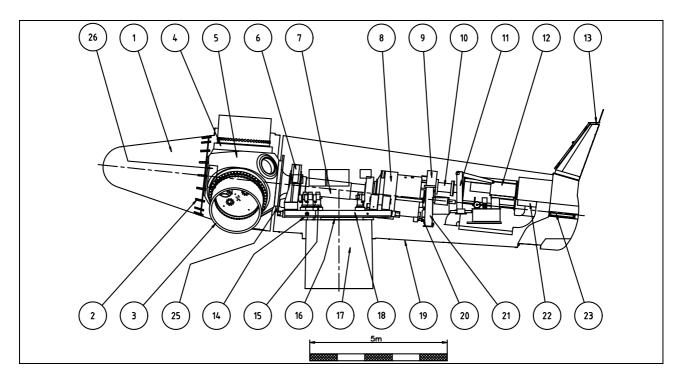
The 2.3 MW Mk II turbine is equipped with Siemens' WebWPS SCADA system. This system offers long-distance control and a variety of status views and useful reports from a standard internet web browser. The status views present information such as electrical and mechanical data, operation and fault status, meteorological data and grid station data.

Primary-level users can be granted access to key server features, including any control over the turbine needed for grid compliance.

Turbine Condition Monitoring

In addition to the WebWPS SCADA system, the 2.3 MW Mk II turbine is equipped with Siemens' unique WebCMS condition monitoring system. This system continuously monitors the vibration level of the main turbine components and compares the present vibration spectra with a set of reference spectra established previously on the same turbine. Result review, detailed analysis and reprogramming can all be carried out using a standard web browser.

Operation and Safety Systems


The wind turbine operates automatically, self-starting when the wind reaches an average speed of about 3–5 m/s. The output increases approximately linearly with the wind speed until the wind reaches 13–14 m/s. At that point the power is regulated at rated power.

If the average wind speed exceeds the maximum operational limit of 25 m/s the turbine is shut down by feathering of the blades. When the wind drops back below the restart speed the safety systems reset automatically.

2.3 MW Mk II 60 Hz Technical Specifications

Rotor Type	Upwind 93 m 6800 m ² 6-16 rpm Pitch regulation	Generator Type Nominal power Protection Cooling Insulation class Generator designation Generator manufacturer	2300 kW IP 54 Integrated heat exchanger F AMA 500L4 BAYH
Blade Type Blade length Tip chord Root chord	45 m 0.8 m 3.5 m	Grid terminals (LV) Nominal power Voltage Frequency	690 V
Aerodynamic profile	GRE Semi-mat, < 30 / ISO2813	Yaw system Type Yaw bearing Yaw drive Yaw brake	Externally geared slewring Eight electric gear motors Passive friction brake +
Aerodynamic brake Type Activation Load supporting parts Hub	Active, fail-safe	Controller TypeSCADA systemController designationController manufacturer	WPS via modem KK WTC 3.0
Main bearing	Spherical roller bearing Alloy steel	Tower Type	Cylindrical or tapered tubular
Transmission system Coupling hub - shaft Coupling shaft – gearbox Gearbox type Gearbox ratio	Shrink disc 3-stage planetary/helical	Hub height Corrosion protection Surface gloss Colour	Painted Silk mat, 30-40 / ISO2813
Gearbox lubrication	Approx. 400 I Separate oil cooler PEAB 4456 Flender AG	Operational data Cut-in wind speed Nominal power at Cut-out wind speed Maximum 2 s gust	13-14 m/s 25 m/s
Mechanical brake Type Position Number of callipers	High speed shaft	Weights (approximately) Rotor Nacelle Tower for 60 m hub height Tower for 60 m hub height	82,000 kg
Canopy Type Material		(off-shore) Tower for 80 m hub height.	

2.3 MW Mk II 60 Hz **Nacelle Arrangement**

Dans	k	Engli	sh	Deuts	sch
1.	Spinner	1.	Spinner	1.	Spinner
2.	Spinner beslag	2.	Spinner bracket	2.	Spinner beschlag
3.	Vinge	3.	Blade	3.	Rotorblatt
4.	Pitchleje	4.	Pitch bearing	4.	Pitchlager
5.	Rotornav	5.	Rotor hub	5.	Nabe
6.	Hovedleje	6.	Main bearing	6.	Hauptlager
7.	Hovedaksel	7.	Main shaft	7.	Hauptwelle
8.	Hovedgear	8.	Gearbox	8.	Getriebe
9.	Bremseskive	9.	Brake disc	9.	Scheibenbremse
10.	Kobling	10.	Coupling	10.	Kupplung
11.	Service kran	11.	Service crane	11.	Kran
12.	Generator	12.	Generator	12.	Generator
13.	Meteorologiske sensorer	13.	Meteorological sensors	13.	Windfane und Anemometer
14.	Krøjeleje	14.	Yaw bearing	14.	Gleitführung
15.	Krøjegear	15.	Yaw gear	15.	Windnachführung
16.	Krøjering	16.	Yaw ring	16.	Verzahnte Kranz
17.	Tårn	17.	Tower	17.	Turm
18.	Maskinramme	18.	Nacelle bedplate	18.	Maschinenrahmen
19.	Maskinskærm	19.	Canopy	19.	Gondel
20.	Olie filter	20.	Oil filter	20.	Öl Filter
21.	Olie filter	21.	Oil filter	21.	Öl Filter
22.	Generatorblæser	22.	Generator fan	22.	Generator Kühlung
23.	Olie køler	23.	Oil cooler	23.	Öl Kühlung
25.	Rotorlås	25.	Rotor lock	25.	Rotor Arretirung
26.	Navboks	26.	Hub controller box	26.	Nabe controller box